
Optimization Models
Draft of August 26, 2005

I.
Formulating an
Optimization Model:
An Introductory Example

Robert Fourer

Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, Illinois 60208-3119, U.S.A.

(847) 491-3151

4er@iems.northwestern.edu
http://www.iems.northwestern.edu/˜4er/

Copyright c
 1989–2005 Robert Fourer

A–2 Optimization Models — x1.0

Draft of August 26, 2005 A–3

1. A Simple Model

To introduce the fundamentals of our subject, we begin with a simple exam-
ple, the “diet problem”: choosing from a menu of available foods to produce a
diet that meets daily nutritional requirements. Since there are many different
combinations of foods that meet the requirements, our goal will be to identify a
combination that does the job at the lowest possible cost. This is the character-
istic goal of any optimization problem: to find a preferred arrangement among
all that are acceptable.

This chapter works through the basic steps of generating and solving a diet
problem. In the process, we show how to formulate a mathematical “model”
that describes diet problems in a general way, and how to submit a model and
data to a software package that computes minimum-cost diets and related in-
formation. Then in Chapter 2, your intuition for diets will enable you to see
how our model must be refined to produce sensible results. You will also see
how certain refinements can make the optimal diet harder to compute. These
are characteristics that you will encounter repeatedly as you study different op-
timization problems and models for them.

Diet problems are only one example of the general idea of a minimum-cost
input problem. Chapter 3 will take a tour through a variety of other applications
of this idea, including blending, scheduling, and cutting. Then Chapter 4 will
extend the idea even further to encompass output and input-output problems.

1.1 A small diet problem

When approaching any unfamiliar kind of optimization problem, it’s best
to start with a version that’s small and simple. Thus let’s begin by imagining
that your diet is limited to a selection of items from a well-known fast food
restaurant. We’ll give each food a nickname to assist in referring to it:

QP: Quarter Pounder FR: Fries, small
MD: McLean Deluxe SM: Sausage McMuffin
BM: Big Mac 1M: 1% Lowfat Milk
FF: Filet-O-Fish OJ: Orange Juice
MC: McGrilled Chicken

Suppose also that you are interested in providing your diet with appropriate
amounts of seven “nutrients”:

Prot: Protein Iron: Iron
VitA: Vitamin A Cals: Calories
VitC: Vitamin C Carb: Carbohydrates
Calc: Calcium

Your problem is to find the lowest-cost combination of the foods that will pro-
vide a day’s requirements for the nutrients.

To solve this problem, you need to know how much of each nutrient is in one
serving of each food, and the total of each nutrient that you require. You also

A–4 Optimization Models — x1.1

QP MD BM FF MC FR SM 1M OJ

Cost 1.84 2.19 1.84 1.44 2.29 0.77 1.29 0.60 0.72 Req’d

Prot 28 24 25 14 31 3 15 9 1 55
VitA 15 15 6 2 8 0 4 10 2 100
VitC 6 10 2 0 15 15 0 4 120 100
Calc 30 20 25 15 15 0 20 30 2 100
Iron 20 20 20 10 8 2 15 0 2 100
Cals 510 370 500 370 400 220 345 110 80 2000
Carb 34 35 42 38 42 26 27 12 20 350

Figure 1–1. Costs, requirements and nutritional values for the simple diet problem.
Costs are in dollars per serving, columns under the costs are in appropriate nutrient
units per serving, and requirements are in nutrient units per day.

need the price per serving of each food. To save you the trouble of collecting this
information, Figure 1–1 presents a table of all the relevant costs, requirements,
and nutritional values.

What is the optimization problem involved here, and how can we describe
it? There are three kinds of entities that we must identify in order to construct
a suitable description, or formulation:

� the decision variables,

� the objectives, and

� the constraints.

These entities are fundamental to many kinds of decision-making via optimiza-
tion, and will appear repeatedly in subsequent chapters. We thus proceed to
define each one in a general sense, with illustrations from the case of the small
diet problem.

A decision variable represents a choice that an optimization problem re-
quires. Often it is called simply a variable, when the context makes its purpose
clear. Taken together, the values of the variables specify a decision that is to be
made. Variables usually represent choices by taking numbers as values, though
there are important exceptions.

In the simple diet problem, the decision is how much of each food to buy.
Thus we define a decision variable corresponding to each food, representing the
amount of that food to be purchased. Following the conventions of algebra,
we use the letter x to refer to these (as yet) unknown quantities: we let xQP
represent the number of Quarter Pounders to be bought, xMD the number of
McLean Deluxes, and so forth for xBM, xFF, xMC, xFR, xSM, x1M and xOJ. Any
assignment of values to these 9 variables is a prospective decision in the context
of the diet problem.

An objective is a quantity that you want to make as small or as large as
possible. Equivalently, in the terminology of optimization, an objective is some
characteristic of an optimization problem that you would like to minimize or
maximize. To be useful in formulating optimization models, an objective must

Draft of August 26, 2005 A–5

be computable from the values of the decision variables. In mathematical terms,
objectives are functions of the variables, and in fact the term objective function
is often used synonymously with objective.

For the diet problem as we have described it, there is one objective: the total
cost of the foods purchased, which is of course to be minimized. It is easy to
write a mathematical expression for this objective in terms of the decision vari-
ables previously defined. Consider first only the cost of the Quarter Pounders
that you buy; this is equal to the cost per serving, $1.84, times the number
of servings to buy, as given by the decision variable xQP. That is, your cost
for Quarter Pounders comes to 1:84xQP. By the same reasoning, your cost for
McLean Deluxes is 2:19xMD, your cost for Big Macs is 1:84xBM, and so forth. The
total cost of all your purchases is simply the sum of the individual costs for all
of the foods:

1:84xQP � 2:19xMD � 1:84xBM � 1:44xFF �
2:29xMC � 0:77xFR � 1:29xSM � 0:60x1M � 0:72xOJ:

This is your objective for the problem. Given any 9 values for the decision
variables — what we call a solution — you can plug them into this expression to
get the corresponding total cost. You can verify, for instance, that one serving
of each food (xQP � 1; : : : ; xOJ � 1) costs $12.98. A solution consisting of five
servings of Quarter Pounders and Fries with three of milk and two of orange
juice (xQP � 5, xFR � 5, x1M � 3, xOJ � 2, the rest 0) has a total cost of $16.29.

The objective expression is said to be linear in this case, because it can be ex-
pressed as a sum of terms of the form constant times variable. Linearity implies
that the cost for each food is proportional to the number of servings of that food
purchased, and is independent of the amounts of other foods purchased. Your
experience with food service can suggest that these are reasonable assumptions,
at least for a simple case; we’ll revisit them when we refine the diet model in
Chapter 2.

A constraint is a restriction that any meaningful solution must satisfy. We
can write constraints much like objectives, using expressions in terms of the
decision variables. Specifically, a constraint may be specified as an equality (�)
or inequality (� or �) between two expressions, one or both being a function of
the variables.

In the case of the diet problem, we explicitly require that the purchased
foods provide at least a certain total amount of each nutrient. Thus there is
a constraint corresponding to each nutrient. Consider for example the protein
requirement. The units of protein provided by all Quarter Pounders that you
buy is equal to the units per serving times the number of servings, or 28xQP.
The units of protein provided by all McLean Deluxes is 24xMD, and so forth.
Reading across the Prot row of the data table, you can see that the total protein
provided by all your purchases is

28xQP � 24xMD � 25xBM � 14xFF �
31xMC � 3xFR � 15xSM � 9x1M � 1xOJ:

Since we require that the total protein be at least 55, this leads to the following

A–6 Optimization Models — x1.1

inequality constraint:

28xQP � 24xMD � 25xBM � 14xFF �
31xMC � 3xFR � 15xSM � 9x1M � 1xOJ � 55:

Similar reasoning applies to each of the other nutrients. Each line of the table
in Figure 1–1 gives rise to a nutrient constraint, such as this one for vitamin A:

15xQP � 15xMD � 6xBM � 2xFF �
8xMC � 0xFR � 4xSM � 10x1M � 2xOJ � 100:

Only a solution that satisfies all of these constraints — a so-called feasible so-
lution — is acceptable.

Given any particular solution, you can plug it into the constraint expressions
to check its feasibility. Thus the $16.29 solution given above is feasible for both
protein and vitamin A; in fact you can verify that it satisfies the constraints for
all of the nutrients. The $12.98 solution (having one serving of each food) is
feasible in the protein constraint, but does not satisfy the vitamin A constraint;
it provides only 62 of the 100 required units of vitamin A. Hence although this
solution costs less to buy, it is not acceptable for the given diet problem.

Each of the diet problem’s nutrient constraints is linear, because the expres-
sion on the left of the inequality operator is a sum of terms of the form constant

Minimize 1:84xQP � 2:19xMD � 1:84xBM � 1:44xFF �
2:29xMC � 0:77xFR � 1:29xSM � 0:60x1M � 0:72xOJ

Subject to 28xQP � 24xMD � 25xBM � 14xFF �
31xMC � 3xFR � 15xSM � 9x1M � xOJ � 55

15xQP � 15xMD � 6xBM � 2xFF �
8xMC � 4xSM � 10x1M � 2xOJ � 100

6xQP � 10xMD � 2xBM
15xMC � 15xFR � 4x1M � 120xOJ � 100

30xQP � 20xMD � 25xBM � 15xFF �
15xMC � 20xSM � 30x1M � 2xOJ � 100

20xQP � 20xMD � 20xBM � 10xFF �
8xMC � 2xFR � 15xSM � 2xOJ � 100

510xQP � 370xMD � 500xBM � 370xFF �
400xMC � 220xFR � 345xSM � 110x1M � 80xOJ � 2000

34xQP � 35xMD � 42xBM � 38xFF �
42xMC � 26xFR � 27xSM � 12x1M � 20xOJ � 350

xQP � 0; xMD � 0; xBM � 0; xFF � 0
xMC � 0; xFR � 0; xSM � 0; x1M � 0; xOJ � 0

Figure 1–2. Objective and constraints of the simple diet problem. Following familiar
mathematical conventions, we write 1xOJ as xOJ and leave out terms like 0xFR.

Draft of August 26, 2005 A–7

times variable — like the linear objective — while the expression on the right is
simply a constant. In general, a constraint is linear if each of its two expressions
is linear, in the sense of being either a constant, a variable, a constant times a
variable, or sums of such terms. In the diet context, linearity of the constraints
follows from the reasonable assumptions that the nutrients each food provides
are proportional to the amount consumed, and that different foods contribute
their nutrients independently.

Of course we also require, for any solution to be meaningful, that no negative
amounts be purchased: xQP � 0, xMD � 0, and so forth for all of the variables.
Putting these trivially linear constraints and the nutrient constraints together
with the objective, our small diet problem can be stated fully as shown in Figure
1–2. An optimization problems of this sort, where the objective and all con-
straints are linear in terms of the variables, is called a linear program, or an LP
for short.

If you wanted the diet to supply exactly as much of some nutrients as re-
quired, you could change some of the � signs to � signs in the constraints
above. (Your minimum-cost diet might be more expensive as a result.) There is
no way to avoid the inequalities xQP � 0, . . . , xOJ � 0, however. As a result, you
can’t solve linear programs by any of the “elimination” techniques that you may
have learned for linear systems of equations. More complicated computational
approaches must be applied, though fortunately they can still be quite efficient.

1.2 A simple diet model

To keep our first presentation of a linear program simple, we have arbitrarily
limited our attention to 9 foods and 7 nutrients. In reality we were able to col-
lect full data on 63 foods and 12 nutrients, for which the corresponding linear
program has 63 variables and 12 constraints (plus nonnegativity). Imagine writ-
ing out this LP in Figure 1–2’s format. Such a lengthy listing would be tedious
to create, prone to error, and hard for others to read — and yet it would still
be tiny by current-day standards. LPs involving thousands of constraints are
common in practical applications, as some of our later chapters will show.

How can you manage linear programs of more than a few variables and con-
straints? Somehow you would like to be able to communicate, for example,
that the full diet LP has the same form as the smaller one, only with more data.
There is fortunately a way to do this, by specifying an abstract model that in-
corporates the essential features of all diet LPs, using symbols of some kind in
place of specific numbers. There are several ways to do this, but for current
purposes we’ll adopt one approach, based on mathematical notation, that has
the advantages of being both widely understood and broadly applicable.

To formulate a diet model, we begin by identifying its fundamental entities.
Clearly they are of two kinds: nutrients and foods. We denote by the symbolN
the collection, or set, of nutrients, and by F the set of foods. Each individual
nutrient or food is a member of N or F , respectively. In the case of the small
diet LP, N has the 7 members Prot, VitA, VitC, Calc, Iron, Cals, and Carb,
representing the 7 nutrients, and F has the 9 members QP, MD, BM, FF, MC,FR,

A–8 Optimization Models — x1.2

SM, 1M, and OJ, representing the 9 foods. For the complete diet LP, there are 12
members ofN and 63 members of F .

We next define symbols for all of the numerical data, or parameters, of the
model. In the case of the diet problem, a great many numbers may be involved
in specifying the LP, but they are all of only three fundamental types: nutrient
amounts, nutrient requirements, and costs. The mathematical convention is to
denote each of these by a letter, so we’ll say that a denotes the amounts, b the
requirements, and c the costs. Individual parameter values of each kind are in-
dicated by subscripting these letters with appropriate model entities. Thus cQP
stands for the cost per serving of Quarter Pounders, bCalc for the requirement
for units of calcium, and aIron;MD for the number of units of iron in one serving
of McLean Deluxe; for our small diet LP they have the values 1.84, 100, and 20
from Table 1–1.

You can see that certain parameters are associated with certain sets, and are
subscripted only by the members of those sets. Specifically, b is subscripted
only by members of N , because our diet problem has requirements only for
nutrient amounts; c is subscripted only by members of F , because our problem
involves costs only for foods. The parameter a is a little different, because there
are nutrient amounts for each combination of a nutrient and a food. As a result
a must have a pair of subscripts, one fromN and one from F . In summary, we
can present the following symbolic description of the data required by any diet
problem:

anf � 0 number of units of nutrient n in one serving of food f ,
for each n 2N and f 2 F

bn > 0 number of units of nutrient n required, for each n 2N
cf � 0 cost per serving of food f , for each f 2 F

This description incorporates simple conditions that the data must satisfy, if the
resulting linear program is to make any sense. We require anf � 0, for instance,
because we can’t imagine that any food could provide a negative amount of
any nutrient. Conditions of this kind are distinct from the model’s constraints,
which are restrictions that involve the decision variables as well as the data.

The remainder of the model consists of symbolic counterparts to the com-
ponents of an optimization problem introduced previously: the variables, ob-
jective, and constraints.

The variables are the same as parameters, except that their values are to be
determined by optimization, rather than being given as part of the data. The
diet example has only one type of variable, associated — like the costs — with
the set of foods:

xf � 0 number of servings of food f purchased, for each f 2 F
The small diet example thus has variables xQP representing the number of Quar-
ter Pounders to be bought, xMD representing the number of McLean Deluxes to
be bought, and so forth just as in Figure 1–2. The restrictions xf � 0 are simple
constraints on these variables, which we include for convenience in the vari-
ables’ definition.

Draft of August 26, 2005 A–9

The objective of a symbolic model is an algebraic expression in parameters
and variables. For the diet example, we can construct such an expression by first
considering the costs attributable to individual foods. The amount in dollars
that you spend on Quarter Pounders is given by the cost of Quarter Pounders in
dollars per serving, times the number of servings you purchase, or cQPxQP. The
amount you spend on McLean Deluxes is similarly cMDxMD, and so forth for each
of the other foods. Thus the total cost is cQPxQP � cMDxMD � � � � � cOJxOJ.

While this is a more symbolic representation than the one in Figure 1–2, it is
just as long and awkward. We want to say that the cost per serving times the
number of servings purchased should be summed over all foods, but we want to
say it without listing each food separately. Mathematical notation provides theP

operator to express exactly this kind of symbolic summation. To specify the
sum of cf times xf , over all foods f 2 F , you write

P
f2F cfxf :

This is a general formulation for the objective in the diet model. It is the same
no matter which or how many foods you include in the set F .

The same notation serves to concisely specify each constraint. Consider the
small diet example’s protein requirement. The amount of protein supplied to
the diet through Quarter Pounders is given by the number of units of protein
supplied in each serving, time the number of servings purchased, or aProt;QPxQP.
The protein supplied by McLean Deluxes is similarly aProt;MDxMD, and so forth
for each of the other foods. Thus the total protein supplied by purchases of all
foods is aProt;QPxQP � aProt;MDxMD � � � � � aProt;OJxOJ, or, using the concise

P

notation for the sum, P
f2F aProt;fxf :

Since an amount bProt of protein is required, the relevant constraint is
P
f2F aProt;fxf � bProt:

The same reasoning yields an analogous constraint for each of the other nutri-
ents: P

f2F aVitA;fxf � bVitA;
P
f2F aVitC;fxf � bVitC; : : :

This is a more concise statement of the constraints than in Figure 1–2, but still
it requires that you write out a separate expression corresponding to each nu-
trient. These expressions are actually all the same except for the name of the
nutrient. This suggests that we state the constraint for a generic nutrient n that
runs over the set of nutrientsN :

P
f2F anfxf � bn; for each n 2N :

This is the general constraint formulation for the diet model, applicable to any
set of foods F and any set of nutrientsN .

Although you have probably seen notation like this in calculus or linear alge-
bra, you may find that its use in specifying constraints will require some prac-
tice. The most common confusion has to do with the symbols f and n that
stand for members of F and N , respectively, in the general constraint. These
index symbols are defined and used in distinctly different ways:

A–10 Optimization Models — x1.2

� The index n is defined by “for each n 2N .” This indicates that
a separate constraint is to be generated by substituting each
member ofN for n in the constraint expression.

� The index f is defined by “
P
f2F .” This indicates that a separate

term is to be generated by substituting each member of F for
f in the summand anfxf . All of these terms are then to be
summed as part of the same constraint.

When you first substitute a particular member ofN for n, and then expand the
sum by substituting all members of F for f , the result is one of the explicit
constraints shown in Figure 1–2. Since there are seven members ofN in our ex-
ample, there are seven different constraints. Each of these constraints contains
a sum of terms for all nine foods (though a few are not explicit in the figure
because they are zero).

A common mistake is to get the two kinds of index definitions mixed up, us-
ing

P
to try to declare all constraints in one big summation (

P
n2N

P
f2F anfxf �P

n2N bn) or using “for each” to declare each summand in a separate constraint
(anfxf � bn for each n 2 N ; f 2 F). You can avoid such errors by taking
the approach we have used with the diet model: first describe the constraint in
words, then build up the mathematical formulation so that it matches the word
description.

A related error is to use an index like f or n in a way that is inconsistent with
its area, or scope, of definition. Every appearance of an index in a constraint
must lie in exactly one scope within that constraint. The scope of an index
defined in a “for each” phrase is the entire constraint expression, but the scope
of an index defined by a

P
is only the next term: everything up to the next �, �,

�, �, �, or right parenthesis, ignoring any parenthesized expressions. Thus all
of the following constraint expressions are incorrect:

� P
f2F anfxf � bf , for each n 2 N : the scope of the index f

defined by
P
f2F does not extend as far as bf .

� P
n2N

P
f2F anfxf � bn: the scope of the index n defined byP

n2N does not extend as far as bn.

� P
n2N

P
f2F anfxf � bn, for each n 2 N : there are two over-

lapping scopes of index n, one defined by “for each n 2N ” and
the other by

P
n2N .

In our examples we have used f and n as the indices to run over F and N ,
respectively. Adopting a convention like this will often help you to spot indexing
scope errors, but it is not required, nor even possible in some more complex
models to be introduced in later chapters. It would have been mathematically
just as correct to use, say, cj to denote the “cost per serving of food j, for
each j 2 F .” The general rule to remember is that each appearance of an index
must be associated with members of some set, by appearing within exactly one
defining scope.

Putting all of our definitions together, the general algebraic statement of
the diet model is as shown in Figure 1–3. Combined with appropriate data as in

Draft of August 26, 2005 A–11

Given F , a set of foods

N , a set of nutrients

and anf � 0, the units of nutrient n in one serving of food f ,
for each n 2N and f 2 F
bn > 0, the units of nutrient n required, for each n 2N
cf � 0, the cost per serving of food f , for each f 2 F

Define xf � 0, the number of servings of food f purchased,
for each f 2 F

Minimize
P
f2F cfxf

Subject to
P
f2F anfxf � bn, for each n 2N

Figure 1–3. A general “algebraic” statement of the simple diet model.

Figure 1–1, the diet model gives rise to a particular LP instance as in Figure 1–2.
By changing the data, you generate other instances of the same model. In this
way, the diet model provides a convenient way of thinking about the whole class
of diet problems. The interrelationship of model and data will be a key theme
through this and subsequent chapters.

1.3 Writing the simple diet model for a computer system

A diet problem would not be very interesting if you could only state a model
and instantiate it with data, of course. You want to solve the resulting problem
instance: to choose values of the variables that give the smallest possible value
for the objective among all solutions that satisfy the constraints. You seek, in
other words, an optimal solution to the problem.

Fortunately, the solving of linear programs has been studied for many dec-
ades, and is by now well understood — it is the first subject of the companion
volume Optimization Methods. Solving LPs is not trivial, even for ones as small
as our diet example. Of the several solution methods that are known to be effec-
tive, all are based on significant mathematical principles and require a computer
to be carried out efficiently. These methods have been implemented in numer-
ous software packages, which we’ll refer to as LP solvers. Currently available
solvers are sufficiently reliable to be applied to LPs from many different appli-
cations, and are sufficiently fast to solve in a few seconds or minutes LPs that
have many thousands of variables and constraints.

For present purposes, therefore, we can assume that the technology for solv-
ing linear programs is available. That doesn’t address all our difficulties, how-
ever, as we still need some way to communicate a linear program to a solver.
This, too, is not a trivial matter, as you can see by considering just the problem
of preparing input to represent our small diet problem.

One possibility would be to use an input format based on the problem rep-
resentation exemplified by Figure 1–2. For convenience or efficiency, repeated

A–12 Optimization Models — x1.3

set NUTR; # nutrients
set FOOD; # foods

param nutrLo {NUTR} >= 0; # lower bounds on nutrients in diet
param foodCost {FOOD} >= 0; # costs of foods
param amt {NUTR,FOOD} >= 0; # amounts of nutrient in each food

var Buy {FOOD} >= 0; # amounts of foods to be purchased

minimize TotalCost: sum {f in FOOD} foodCost[f] * Buy[f];

subject to Need {i in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f] >= nutrLo[n];

Figure 1–4. An algebraic statement of the simple diet model of Figure 1–3, rewritten
in the AMPL modeling language (diet1.mod).

elements like the � and � signs might be omitted, subscripting might be re-
placed by a variable-naming convention more suitable to text files, and coeffi-
cients of the same variable might be rearranged so that they can be read at the
same time. Most solvers do in fact accept one or more formats of this sort. As
you can tell from even the diet example, however, these formulations tend to
be large and cumbersome for all but the smallest and simplest LP problems. It
is hard to imagine typing and maintaining even a few hundred variables and
constraints without error. Thus, as a practical matter, input of this kind has to
be created by use of a computer program, a so-called matrix generator. Each
modeling project requires the creation of a new generator, and unfortunately
these programs are difficult to write and maintain. They are particularly hard to
debug, because their output is a lengthy list of variable names and coefficients
that’s hard to check for correctness.

A more appealing alternative is to use an input format based on the general
algebraic model representation. The input then consists of a model as in Fig-
ure 1–3, together with appropriate data as in Figure 1–1. As we have previously
observed, the size and complexity of the model depends only on the inherent
complexity of the application, while the size of the LP to be solved is determined
by the sizes of the sets and parameter tables that comprise the data. This ap-
proach has proved to be powerful and convenient for a broad range of linear
programs and other optimization problems, and it is the approach adopted for
much of this book. (Other input formats may be preferable for particular kinds
of models, as we’ll see eventually for the case of network optimization.)

Since the language of algebraic models is considerably richer than the lan-
guage of explicit LP problems, the design and implementation of software to
process models is considerably more challenging than the creation of individ-
ual matrix generators. Nevertheless, there are a number of well-established
packages that incorporate algebraic modeling languages designed to serve the
same purpose as the mathematical language of Figure 1–3.

Figure 1–4 shows our simple diet model expressed in one such language,
AMPL. Comparing it to Figure 1–3, you can see many differences that reflect

Draft of August 26, 2005 A–13

param: FOOD: foodCost :=
"Quarter Pounder" 1.84 "Fries, small" .77
"McLean Deluxe" 2.19 "Sausage McMuffin" 1.29
"Big Mac" 1.84 "1% Lowfat Milk" .60
"Filet-O-Fish" 1.44 "Orange Juice" .72
"McGrilled Chicken" 2.29 ;

param: NUTR: nutrLo :=
Prot 55 VitA 100 VitC 100
Calc 100 Iron 100 Cals 2000 Carb 350 ;

param amt (tr): Cals Carb Prot VitA VitC Calc Iron :=
"Quarter Pounder" 510 34 28 15 6 30 20
"McLean Deluxe" 370 35 24 15 10 20 20
"Big Mac" 500 42 25 6 2 25 20
"Filet-O-Fish" 370 38 14 2 0 15 10
"McGrilled Chicken" 400 42 31 8 15 15 8
"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
"Orange Juice" 80 20 1 2 120 2 2 ;

Figure 1–5. Data for the simple diet model from Figure 1–1, rewritten in the AMPL data
format (diet1.dat).

the contrast between a human (though mathematical) language and a computer-
readable language. Notable features of the AMPL representation include:

� longer, more mnemonic identifiers, such as FOOD for the set F ,
amt for the parameter array a, and Buy for the variables x;

� brackets [. . .] enclosing and commas separating subscripts, so
that anf and xf become amt[n,f] and Buy[f];

� multiplication represented by an explicit * operator;

� summation expressed by sum and a set in braces { . . . }, withP
f2F becoming sum {f in FOOD};

� statements ended by a semicolon, and explanatory comments
separated from the formal language by the # symbol.

These differences stem mainly from two requirements, that AMPL use the stan-
dard (ASCII) character set, and that its syntax be sufficiently regular to be parsed
by a computer.

Looking beyond the superficial syntactic differences, however, you can see
that there is in fact a very close analogy between the mathematical model repre-
sentation in Figure 1–3 and the AMPL representation in Figure 1–4. In particular,
the statements of the objective and constraints are much the same. Total cost
is represented by

P
f2F cfxf ! sum {f in FOOD} cost[f] * Buy[f]

and the requirement for nutrients is written

A–14 Optimization Models — x1.4

P
f2F anfxf � bn !

sum {f in FOOD} amt[n,f] * Buy[f] >= nutrLo[n]

The specification of a constraint “for each n 2 N ” is denoted by the AMPL
phrase subject to Need {n in NUTR}. The identifier Need is merely a name that
we have chosen for purposes of referring to these constraints in AMPL state-
ments; the requirement of such a name is another consequence of the greater
formality required in a computer language. The AMPL objective function is sim-
ilarly named, by use of the phrase minimize TotalCost.

There’s also an AMPL format for the data associated with a model. An AMPL
representation of the small diet problem’s data is shown in Figure 1–5. It closely
resembles the data as we originally presented it in Figure 1–1, but like the model
representation it has been standardized for computer processing. The represen-
tation of the complete data is entirely analogous, though the tables are longer
to accommodate the full 63 foods and 12 nutrients.

1.4 Solving the diet problems

Suppose now that we have created the AMPL model and data representations
for the small diet problem (Figures 1–4 and 1–5) and have saved them in files
named, say, diet1.mod and diet1.dat. Then an AMPL session that finds a
minimum-cost diet can be as simple as this:

ampl: model diet1.mod;
ampl: data diet1.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 3.42213
’Big Mac’ 0

Filet-O-Fish 0
’Fries, small’ 6.14754

’McGrilled Chicken’ 0
’McLean Deluxe’ 0
’Orange Juice’ 0

’Quarter Pounder’ 4.38525
’Sausage McMuffin’ 0

Commands that you type are printed here in this slanted font, to distinguish
them from AMPL’s output. The model and data commands cause the appropri-
ate files to be read and processed. Then the solve command constructs the
linear program specified by the model and data, and sends it to a solver called
MINOS. When AMPL receives the results, it displays a brief message from the
solver, indicating that 7 steps or “iterations” of the solver algorithm determined
the optimal objective value to be 14.8557377 dollars. Finally, the display com-
mand asks for a listing of the decision variables’ optimal values, using their
name, Buy, as defined in the model. You can see that to six digits of precision
(the default for output of display) the minimum-cost acceptable diet consists

Draft of August 26, 2005 A–15

of 4.38525 quarter pounders, 6.14754 servings of fries, and 3.42213 servings of
milk.

In response to solve, AMPL translates our model and data into what is es-
sentially Figure 1–2’s explicit linear program, but in a format more convenient
for the solver than for human readers. In this small example, both AMPL’s work
of translation and the solver’s work of finding optimal values are completed in a
small fraction of a second. Thus for practical purposes you can think of solve
as a “black box” that simply returns optimal values for the decision variables.
Sometimes to check your work, however, you might want to use AMPL’s expand
command to display part of the explicit LP:

ampl: expand Need[’Cals’];

subject to Need[’Cals’]:
510*Buy[’Quarter Pounder’] + 220*Buy[’Fries, small’] +
370*Buy[’McLean Deluxe’] + 345*Buy[’Sausage McMuffin’] +
500*Buy[’Big Mac’] + 110*Buy[’1% Lowfat Milk’] +
370*Buy[’Filet-O-Fish’] + 80*Buy[’Orange Juice’] +
400*Buy[’McGrilled Chicken’] >= 2000;

You can confirm that the constraint shown here, for the calories requirement,
matches the calories constraint in Figure 1–2.

Once the solver has completed its work, it writes the resulting values back
for AMPL to read. You can then use the display command to explore various
aspects of the optimal solution. For the diet model, here’s how you could look
at some information about the constraints:

ampl: display Need.lb, Need.body, Need.slack;

: Need.lb Need.body Need.slack :=
Calc 100 234.221 134.221
Cals 2000 3965.37 1965.37
Carb 350 350 5.68434e-14
Iron 100 100 0
Prot 55 172.029 117.029
VitA 100 100 -2.84217e-14
VitC 100 132.213 32.2131
;

Each row corresponds to the Need constraint for one of the nutrients. The
column headed Need.body shows the sum of the constraint’s terms involv-
ing variables — the constraint body — which in the diet problem is the total
amount of the nutrient provided by the diet. The Need.lb value is the lower
bound on the constraint body, which is the lower limit on the nutrient pro-
vided; the Need.slack value is the amount by which the nutrient provided
exceeds the lower bound, or the difference between the previous two values.
In this example you can see that the minimum-cost diet meets the require-
ments for carbohydrates, iron and vitamin A exactly, while supplying more than
enough of the other four nutrients. (A tiny number like 5.68434e-14, meaning
5:68434�10�14, should be regarded as zero; its slight deviation from zero is an
artifact of the computer’s finite-precision representation of numbers.)

You may be surprised so many of the requirements are met exactly while

A–16 Optimization Models — x1.4

using so few of the available foods, but in fact this is typical of optimal solutions
to LPs. The theory of linear programming shows that if there is any optimal
solution at all, there must be one in which the number of positive variables
plus the number of positive slacks is no greater than the number of constraints
(Optimization Methods, part II). Most solvers for linear programs can find a basic
solution of this sort. In the present example, the total of three positive variables
and four positive slacks exactly equals the number of constraints, there being
one constraint for each of the seven nutrients.

To switch to the large diet problem, we can use the same model in conjunc-
tion with the larger data representation previously described. Supposing that
the representation is stored in diet1all.dat, we can direct AMPL to switch to
the new data and re-solve as follows:

ampl: reset data;
ampl: data diet1all.dat;

ampl: solve;
MINOS 5.5: optimal solution found.
16 iterations, objective -4.467016456e-14

The solving time remains negligible, even though there are now 63 foods and
12 nutrients. It is tempting to type display Buy at this point, but that will get
us a listing of all 63 variables, one for each food. We can expect most of these
variables to be zero, however; with only 12 constraints, one for each nutrient,
there can be at most 12 positive variables as explained previously.

AMPL’s display command is designed to deal with such a situation. Before
issuing this command, we can set an AMPL option to direct that zeroes be sup-
pressed:

ampl: option omit zero rows 1;

The option command is used to set options for a variety of purposes. An option
setting remains in effect for all subsequent commands, until it is changed by
another option command.

We can now see that only three of the variables are positive in the optimal
solution:

ampl: display Buy;
Buy [*] :=

’Bacon Bits’ 55
’Barbeque Sauce’ 50

’Hot Mustard Sauce’ 50

These are not three foods that we would expect to comprise a diet! At this point
we have solved some diet problem, but evidently not yet the desired one. In
Chapter 2 we develop some of the refinements that are necessary in a model
that can be considered practical and realistic for analyses of the fast-food diet.

Addendum to Chapter 1: “Programming”

The term programming was used in the 1940’s to describe the planning or

Draft of August 26, 2005 A–17

scheduling of related activities within a large operation. Programmers found
that they could represent the amount or level of each activity as a decision
variable. Then they could mathematically describe the restrictions inherent in
the planning or scheduling problem, as a series of equations or inequalities
involving certain of the variables. A solution to all of these constraints would be
considered an acceptable plan or schedule.

Experience soon showed that it was hard to model a complex operation sim-
ply by specifying constraints. If there were too few constraints, then many dif-
ferent solutions could satisfy them; if there were too many, then no solutions
were possible. A key insight provided a way around this difficulty, however. One
could specify, in addition to the constraints, an objective: a function of the vari-
ables, such as cost or profit, that could be used to decide whether one solution
was better than another. Then it didn’t matter that many different solutions
satisfied the constraints — it sufficed to find one such solution that minimized
or maximized the objective. The term “mathematical programming” came to be
used to describe the minimization or maximization of an objective function of
many variables, subject to constraints on the variables.

A special case of considerable interest occurs when the objective is a linear
function, and the constraints are linear equations and linear inequalities. Then
the problem is called a linear program.

There are several reasons why linear programming is particularly important.
First, as these notes will show, a wide variety of problems can be modeled as
linear programs. Furthermore, as you will later see, there are fast and reliable
methods for solving linear programs even in hundreds or thousands of vari-
ables and constraints. The ideas of linear programming are also important for
analyzing and solving programming models that are not linear.

All useful methods for solving linear programs require a computer. This
is the reason why most of the study of linear programming has taken place
since about 1950. Coincidentally, the development of computers gave rise to
a new (and now familiar) meaning for the term “programming”. There is no
direct connection between the notions of linear programming and computer
programming, although indirectly some computer programming must be done
in order to solve a linear program.

A–18 Optimization Models — x2.0

Draft of August 26, 2005 A–19

2. A Realistic Model

Chances are that you found Chapter 1’s “optimal” solutions to be more enter-
taining than enlightening. Can you seriously contemplate the small instance’s
daily diet of Quarter Pounders (ground beef), Fries (potatoes) and milk? Can
you accept a calorie content that’s almost twice the minimum? Do you expect
to be able to purchase fractions of a serving, correctly measured to five decimal
places? The solution to the large instance is entirely absurd. It finds a no-cost
diet by selecting large quantities of three “foods” that cost zero dollars per unit.

These solutions fail the “laugh test” for the diet problem. They are math-
ematically correct for the given model and data, but clearly ridiculous from a
practical standpoint. This state of affairs is not unusual at the outset of a mod-
eling project, but it’s particularly obvious in this case — at least to the extent
that you’re already quite familiar with fast food and diets. Most of the work of
developing a new model lies in studying the situation to be modeled and refining
the model accordingly until it is close enough to reality to be useful.

To address the small diet instance’s most obvious shortcomings, we’ll next
investigate a series of additions and refinements: integer solutions, upper bounds
on foods and on so-called nutrients, alternative objectives, and penalties for in-
feasibility. We’ll conclude by looking at further, application-specific constraints
that are necessary to bring some realism to the large diet instance’s solution. By
the end of this chapter we’ll have a model capable of producing a diet that you
might actually be able to follow, at least for a day.

2.1 Integer solutions

Fast-food establishments cannot be asked to serve arbitrarily fractional quan-
tities of the foods on their menu. Indeed, they most often limit orders to whole
numbers of servings, and this is the case in the situation we wish to model. We
can think of this requirement as being an additional restriction on the decision
variables, to the effect that they take only whole number, or integer, values. The
objective and the nutrient constraints remain as given.

The desired integrality requirement is readily communicated through the
AMPL version of the model, by adding the keyword integer to the variables’
declaration:

var Buy {FOOD} integer >= 0;

If we store this modified model in file diet1int.mod and proceed as before,
however, we get only the same result:

ampl: model diet1int.mod;
ampl: data diet1.dat;

ampl: solve;
MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377

A–20 Optimization Models — x2.1

ampl: option omit zero rows 1;

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 3.42213
’Fries, small’ 6.14754

’Quarter Pounder’ 4.38525

The message about ignoring integrality tells us that MINOS, the solver we
have been using, is not designed to enforce integrality restrictions. We might
try to get some use out of the solution anyway, by rounding it to the nearest
integer values; AMPL provides an easy way of doing this:

ampl: let {f in FOOD} Buy[f] := round(Buy[f]);

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 3
’Fries, small’ 6

’Quarter Pounder’ 4

AMPL’s let command performs an assignment much as in other computer lan-
guages. For each f in the set FOOD, the value of variable Buy[f] is reassigned
the value of expression round(Buy[f]), which is simply the integer closest to
the fractional Buy[f] value.

The display command introduced by the previous chapter can now be ap-
plied to the rounded solution:

ampl: display Need.lb, Need.body, Need.slack;

: Need.lb Need.body Need.slack :=
Calc 100 210 110
Cals 2000 3690 1690
Carb 350 328 -22
Iron 100 92 -8
Prot 55 157 102
VitA 100 90 -10
VitC 100 126 26

We see that the rounded diet provides insufficient amounts of carbohydrates,
iron, and vitamin A. As it happens, rounding in this case reduces the amounts
of all three foods in the diet. Because all of the constraints in this problem
are of “�” type, we could guarantee a feasible solution by instead rounding up
the amounts. But then the total cost would also necessarily increase. We can
investigate this situation by re-solving, rounding all variables up — using AMPL’s
function ceil rather than round in the assignment — and displaying the value
of objective TotalCost that results:

Draft of August 26, 2005 A–21

ampl: solve;
MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377

ampl: let {f in FOOD} Buy[f] := ceil(Buy[f]);

ampl: display TotalCost;
TotalCost = 16.99

This feasible diet is almost 15% more expensive. Perhaps a cheaper feasible diet
could be found by rounding some amounts up and some down, but even if you
found such a diet you could not be sure that it was the lowest in cost.

To find the least-cost integer solution, a different kind of solver is needed.
Here we show the results of switching to such a solver, CPLEX:

ampl: option solver cplex;

ampl: solve;
CPLEX 8.1.0: optimal integer solution; objective 15.05
27 MIP simplex iterations
15 branch-and-bound nodes

ampl: display Buy;
Buy [*] :=

’1% Lowfat Milk’ 4
Filet-O-Fish 1

’Fries, small’ 5
’Quarter Pounder’ 4

The solver requires 27 “iterations” compared to 7 before, and constructs 15
“nodes” of a kind of search tree; this all reflects the fact that the problem is
substantially more difficult when the variables are required to be integer. The
lowest-cost integer diet, which is only about 1.3% more expensive than the frac-
tional one, is not a rounding of any kind. The orders of small fries go from
6.14754 down to 5, and one order of a fourth food, “filet-o-fish,” is added.

2.2 Upper bounds

Another unrealistic aspect of our solutions has been their lack of variety.
A large proportion of variables at zero is characteristic of optimal solutions to
linear programs, as we have previously remarked. Thus if we want the diet to
be more varied, we must add constraints to that effect. There is no one way to
do so, but as an example we consider the straightforward approach of limiting
the number of servings of any one food that may appear in the diet.

Limits on the number of servings are new parameters of our diet model.
There is one of these parameters corresponding to each food. Thus, continuing
in the AMPL modeling language, we can call these parameters foodLim and index
them over the set of foods:

param foodLim {FOOD} >= 0;

Then a collection of constraints, also indexed over foods, may state that the

A–22 Optimization Models — x2.2

amount of each food to be purchased must be less than or equal to the limit for
that food:

subject to Limit {f in FOOD}: Buy[f] <= foodLim[f];

Simple bound constraints of this sort are usually viewed more naturally as prop-
erties of the variables, however. Indeed, we have already seen how the variables’
lower bounds (>= 0) are conveniently included in the AMPL var Buy declaration.
Analogous upper bounds are readily added:

var Buy {f in FOOD} integer >= 0, <= foodLim[f];

(Notice that now the index f has to be defined in this declaration, so that a
separate limit foodLim[f] can be specified for each food f.) Some solvers can
take advantage of constraints, like Limit, that express simple upper bounds.
But this is not something that you need be concerned with; AMPL automatically
recognizes simple bound constraints and flags them for the solver. You can use
whichever of the above alternatives you prefer to write.

Because it is possible to have too much of “nutrients” like calories and car-
bohydrates in the diet, it also makes sense to add some limits to the constraints.
In AMPL we can define both lower and upper limits on nutrients like this:

param nutrLo {NUTR} >= 0;
param nutrHi {n in NUTR} >= nutrLo[n];

We specify that each upper limit has to be greater than or equal to the corre-
sponding lower limit; when it comes time to solve an instance of the model,
AMPL will report an error if any limit data violate this restriction. The constraint
on the diet now becomes:

subject to Need {n in NUTR}:
nutrLo[n] <= sum {f in FOOD} amt[n,f] * Buy[f] <= nutrHi[n];

This could be written as two separate constraints, but AMPL allows such con-
straints to be combined so long as the lower and upper limits on the constraint
body involve no variables.

To give a specific example, we add parameters foodLim and nutrHi and
modify the Buy and Need declarations as above, and store the revised AMPL
model in file diet1lim.mod. We add to the data listing to try an upper limit of
3 on servings of each food,

param: FOOD: foodCost foodLim :=
’Quarter Pounder’ 1.84 3 ’Fries, small’ .77 3
’McLean Deluxe’ 2.19 3 ’Sausage McMuffin’ 1.29 3
’Big Mac’ 1.84 3 ’1% Lowfat Milk’ .60 3
’Filet-O-Fish’ 1.44 3 ’Orange Juice’ .72 3
’McGrilled Chicken’ 2.29 3 ;

and to place limits on calories and carbohydrates:

Draft of August 26, 2005 A–23

param: NUTR: nutrLo nutrHi :=
Prot 55 Infinity Calc 100 Infinity Cals 2000 3450
VitA 100 Infinity Iron 100 Infinity Carb 350 700
VitC 100 Infinity ;

We store the result in diet1lim.dat. Then here’s the result we get from the
solver that does not enforce integrality:

ampl: model diet1lim.mod;
ampl: data diet1lim.dat;

ampl: option solver minos;
ampl: solve;

MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
16 iterations, objective 15.72082743

ampl: option omit zero rows 1;

ampl: display Buy;

Buy [*] :=
’1% Lowfat Milk’ 3

Filet-O-Fish 0.877155
’Fries, small’ 3

’McLean Deluxe’ 1.57786
’Orange Juice’ 3

’Quarter Pounder’ 2.57185

The diet now contains twice as many foods, though at a total cost of almost a
dollar more — adding constraints can only force the minimum higher!

Again we see the tendency of optimal LP solution toward extremes, with
three of the foods at their lower limit of 0 and three at their upper limit of
3, leaving only the remaining three at fractional values in between. We can no
longer simply round up to a feasible solution, however, because there are now
upper as well as lower bounds (Need.ub as well as Need.lb) for the constraints
to satisfy:

ampl: let {f in FOOD} Buy[f] := ceil(Buy[f]);

ampl: display Need.lb, Need.body, Need.ub;

: Need.lb Need.body Need.ub :=
Calc 100 241 Infinity
Cals 2000 3870 3450
Carb 350 384 700
Iron 100 122 Infinity
Prot 55 185 Infinity
VitA 100 113 Infinity
VitC 100 455 Infinity

We see that rounding up causes the upper bound on calories to be exceeded. In
fact there is no combination of roundings of this solution that leads to a feasible
solution, though some come close.

The solution in whole number amounts retains 3 servings of those foods
that were at upper limit in the fractional solution, but uses notably different

A–24 Optimization Models — x2.3

amounts of the other foods:

ampl: option solver cplex;
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 16.52
83 MIP simplex iterations
29 branch-and-bound nodes

ampl: display Buy;

Buy [*] :=
’1% Lowfat Milk’ 3

’Big Mac’ 1
’Fries, small’ 3

’McLean Deluxe’ 3
’Orange Juice’ 3

’Quarter Pounder’ 1

Because adding the integrality restriction imposes in effect another kind of con-
straint, the minimum cost increases yet again.

2.3 Alternative objectives

Cost is not the only function of our diet that we might want to minimize. We
might want to look into a diet that is as low as possible in a particular nutrient,
for example. We already have an expression for the amount of any nutrient n
in the diet:

P
f2F anfxf . In AMPL this is sum {f in FOOD} amt[n,f] * Buy[f],

which is readily incorporated into a minimize statement:

minimize TotalNutr {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f];

Adding this statement to the model (file diet1obj.mod) defines a collection
of alternative objectives, one for the total amount of each nutrient. The total-
calories objective is TotalNutr[’Cals’], for example.

By including both the TotalCost and TotalCalories objectives in the model,
we can investigate the tradeoff between them. We can minimize TotalCost and
display TotalNutr[’Cals’], for instance, then minimize TotalNutr[’Cals’]
and display TotalCost. AMPL’s objective statement lets us switch between
one objective and the other:

ampl: model diet1obj.mod;
ampl: data diet1lim.dat;

ampl: objective TotalCost;
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 16.52
83 MIP simplex iterations
29 branch-and-bound nodes

ampl: display TotalNutr[’Cals’];
TotalNutr[’Cals’] = 3350

Draft of August 26, 2005 A–25

ampl: objective TotalNutr[’Cals’];
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 3195
40 MIP simplex iterations
9 branch-and-bound nodes

ampl: display TotalCost;
TotalCost = 17.84

The $16.52 minimum-cost diet, seen already in the preceding section, has a total
of 3350 calories. The minimum-calorie diet has only 3195 calories, but a total
cost of $17.84.

We should not be surprised that the low-calorie diet costs more, since it is
optimized for calories rather than cost. Is there perhaps some other diet that
achieves the same calorie minimum at some lower cost? One way to find out is
to fix calories at 3195 and then minimize cost again. AMPL’s let command does
the job here, by setting the lower limit (nutrLo[’Cals’]) and the upper limit
(nutrHi[’Cals’]) to the same value:

ampl: let nutrLo[’Cals’] := TotalNutr[’Cals’];
ampl: let nutrHi[’Cals’] := TotalNutr[’Cals’];

ampl: objective TotalCost;
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 17.84
15 MIP simplex iterations
0 branch-and-bound nodes

There is indeed no cheaper minimum-calorie solution.
We can infer from these results that no solution minimizes both cost and

calories. There may be other tradeoffs, however. If we relax the upper limit on
calories to 3250, for instance, then we get another solution:

ampl: let nutrHi[’Cals’] := 3250;
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 16.97
31 MIP simplex iterations
2 branch-and-bound nodes

The cost is driven to a value less than $17.14, but not as low as the minimum
possible value of $16.52.

As this example suggests, there may be more to the diet problem than the
minimization of a single objective function. An optimization model is often
best viewed not as a device for finding the optimum, but as a powerful tool for
generating a range of attractive solutions.

A–26 Optimization Models — x2.4

2.4 Penalties for infeasibility

To illustrate another common situation, let’s try making the diet still more
varied, and perhaps a bit healthier. We set up the model as in section 2.2, but
then use AMPL’s let command to reduce the limit on each food to 2 servings,
and the limit on Quarter Pounders to 1 serving. The MINOS solver can be applied
as before:

ampl: model diet1lim.mod;
ampl: data diet1lim.dat;

ampl: let {j in FOOD} foodLim[j] := 2;
ampl: let foodLim[’Quarter Pounder’] := 1;

ampl: solve;
MINOS 5.5: ignoring integrality of 6 variables
MINOS 5.5: infeasible problem. 3 iterations

MINOS performs several “iterations” as previously, but wait — the result mes-
sage now says infeasible problem rather than optimal solution found. A
solution is returned, but it specifies an unacceptable negative amount for one
of the variables:

ampl: display Buy;

Buy [*] :=
’1% Lowfat Milk’ 2

’Big Mac’ 2
Filet-O-Fish 0

’Fries, small’ -0.240385
’McGrilled Chicken’ 2

’McLean Deluxe’ 2
’Orange Juice’ 2

’Quarter Pounder’ 1
’Sausage McMuffin’ 0.75

As its message has suggested, MINOS has determined that there does not exist
any solution — even a fractional solution — that satisfies all of the constraints
in this case. It has only returned the last infeasible solution that it found in its
search for a feasible one.

A no-feasible-solution situation like this is usually a sign of inadequacy in
the model. You are not going to stop eating, after all. If not all constraints
may be met, the model ought to allow for appropriate ones to be relaxed. The
nonnegativity constraints are clearly not candidates for relaxation, but any of
the others may be.

As an example, suppose that we’re willing to relax the nutrient minimums
somewhat. Allowing such a relaxation is an additional decision, so it requires an
additional decision variable in the model. Let’s call this variable Frac, with the
idea that it will represent the fraction of the nutrient lower limits that we are
able to satisfy. Ideally it should be 1, but if necessary it should be some smaller
nonnegative value:

var Frac >= 0, <= 1;

Draft of August 26, 2005 A–27

We now change the nutrient lower limits from nutrLo[n] to Frac * nutrLo[n].
In AMPL our constraints become:

subject to NeedLo {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f] >= Frac * nutrLo[n];

subject to NeedHi {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f] <= nutrHi[n];

(We now have to separate the lower and upper limit constraints, because the
lower limit is expressed in terms of a variable.)

To complete the revised model, we must modify the formulation to force
Frac to be as close to 1 as possible. This can be done through the objective, by
means of what is known as a penalty term. We choose a suitably large parameter
penalty, and add the term penalty * (1-Frac) to the objective function:

param penalty = 1000;

minimize PenalizedTotalCost:
sum {f in FOOD} foodCost[f] * Buy[f] + penalty * (1-Frac);

It can be shown that, so long as penalty is not too small and the nutrient
requirements can be satisfied, the optimal solution will have Frac equal to 1
and hence the penalty term equal to 0; the solution will be the same as if the
penalty had not been introduced. On the other hand, when it is impossible to
satisfy the nutrient requirements, then Frac will have to be less than 1, but
the minimization of the sum of the total cost plus the penalty term will tend to
force Frac as close to 1 as possible. (Some experimentation may be necessary to
determine how large a parameter like penalty ought to be, but a good start is
to choose it so that the penalty part of the objective will be several times greater
than the regular cost part when a significant infeasibility is encountered.)

The revised model is shown in Figure 2–1. Although the variables Buy[j]
are declared integer, the variable Frac is not; this kind of model is known as
a mixed-integer program or MIP. Repeating our previous test, we find that a
feasible solution is now reported even when the additional restrictions of inte-
grality are imposed. Frac is indeed less than 1 in the optimal solution:

ampl: model diet1relax.mod;
ampl: data diet1lim.dat;

ampl: let {f in FOOD} foodLim[f] := 2;
ampl: let foodLim[’Quarter Pounder’] := 1;

ampl: option solver cplex;
ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 57.12
22 MIP simplex iterations
0 branch-and-bound nodes

ampl: display Frac;
Frac = 0.96

Although PenalizedTotalCost is the objective being minimized, the values of
the other objectives TotalNutr[n] can be displayed to see how they compare

A–28 Optimization Models — x2.4

set NUTR; # nutrients
set FOOD; # foods

param nutrLo {NUTR} >= 0;
param nutrHi {n in NUTR} >= nutrLo[i];

requirements for nutrients
param penalty = 1000; # penalty for falling short of requirements

param foodLim {FOOD} >= 0; # limits on food amounts
param foodCost {FOOD} >= 0; # costs of foods
param amt {NUTR,FOOD} >= 0; # amounts of nutrient in each food

var Buy {f in FOOD} integer >= 0, <= foodLim[f];
amounts of foods to be purchased

var Frac >= 0, <= 1; # fraction of nutrient requirement met

minimize PenalizedTotalCost:
sum {f in FOOD} foodCost[f] * Buy[f] + penalty * (1-Frac);

minimize TotalNutr {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f];

subject to NeedLo {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f] >= Frac * nutrLo[n];

subject to NeedHi {n in NUTR}:
sum {f in FOOD} amt[n,f] * Buy[f] <= nutrHi[n];

Figure 2–1. A revised diet model that allows for relaxation of the nutrient require-
ments if necessary to achieve a feasible solution (diet1relax.mod).

with the nutrient minimums at the current solution:

ampl: display TotalNutr, nutrLo;

: TotalNutr nutrLo :=
Calc 214 100
Cals 3430 2000
Carb 336 350
Iron 120 100
Prot 208 55
VitA 97 100
VitC 308 100

We see that a reduced lower limit of only 4% in carbohydrates and 3% in vitamin
A would be sufficient to accommodate the reductions we have made to the food
limits.

Draft of August 26, 2005 A–29

2.5 Application-specific constraints

Let us now return to the large diet problem instance, with its 63 foods and 12
nutrients. We store as diet2orig.mod the AMPL diet model incorporating the
integrality and upper bounds introduced in previous sections of this chapter,
and as diet2orig.dat the corresponding data with Infinity for upper limits
on the food and nutrient amounts. (We’ll leave for an exercise the application
of the additional objectives and the infeasibility penalty in the large instance.)
As you should recall, a bizarre solution is returned:

ampl: model diet2orig.mod;
ampl: data diet2orig.dat;
ampl: solve;

MINOS 5.5: ignoring integrality of 63 variables
MINOS 5.5: optimal solution found.
16 iterations, objective -4.467016456e-14

ampl: option omit zero rows 1;

ampl: display Buy;
Buy [*] :=

’Bacon Bits’ 55
’Barbeque Sauce’ 50

’Hot Mustard Sauce’ 50

The supposedly optimal diet consists of very large numbers of three zero-cost
foods.

We could try to improve the solution, as in the case of the small diet instance,
by putting an upper limit on the amount of each food allowed. But this would
overlook the true cause of the difficulty. The zero-cost foods are condiments,
which can be obtained only in conjunction with purchases of other foods. In
fact there are three kinds of condiments:

. The four “sauce” condiments (including Honey) come only with
what McDonald’s calls Chicken McNuggets. You can get one
sauce package with a 6-piece serving of McNuggets, up to two
with a 9-piece serving, or up to four with a 20-piece serving.

. The five “dressing” condiments come only with salads. You can
get one package with each salad serving.

. Two topping condiments — Croutons and Bacon Bits — also
come only with salads. You can get one package of these with
each salad serving, too.

Each of these restrictions is readily incorporated into the model, as we now
show.

For the Chicken McNuggets constraints, we require sets of the relevant foods
and sauces:

set F NUG within FOOD; # Chicken McNuggets foods
set F NUG SCE within FOOD; # Chicken McNuggets sauces

param amt nug sce {F NUG} > 0;
Limit on sauces per McNuggets serving

A–30 Optimization Models — x2.5

For each food fnug in F NUG, we are allowed up to a total of amt nug sce[fnug]
sauce packages. Hence the total allowance for sauce packages is sum {fnug
in F NUG} amt nug sce[fnug] * Buy[fnug]. On the other hand, the total
sauce packages “bought” is given by the expression sum {fsce in F NUG SCE}
Buy[fsce]. (An index in AMPL can be, like fnug or fsce, more than one letter.)
The model constrains the total bought to be no more than the allowance:

subject to NuggetSauceLimit:
sum {fsce in F NUG SCE} Buy[fsce]

<= sum {fnug in F NUG} amt nug sce[fnug] * Buy[fnug];

It remains only to add the relevant values to the data file:

param: F NUG: amt nug sce :=
"Chicken McNuggets (6 pcs)" 1
"Chicken McNuggets (9 pcs)" 2
"Chicken McNuggets (20 pcs)" 4 ;

set F NUG SCE :=
"Hot Mustard Sauce" "Barbeque Sauce"
"Sweet ’N Sour Sauce" "Honey" ;

The situation for the salads can be handled in an analogous fashion, as shown
in the completed model, Figure 2–2.

To finish off the model we add two further ad hoc constraints that are rel-
evant to our notion of a good diet. We allow for the specification of a certain
number of drinks, by defining the subset of FOODS that we consider to be drinks,
and a parameter indicating the desired number:

set DRINKS within FOOD; # Drinks
param drinkNum > 0; # Number of drinks required in diet

The constraint says simply that the total purchases of all drinks must equal the
specified number:

subject to DrinkLimit:
sum {fd in DRINKS} Buy[fd] = drinkNum;

For a one-day diet, we can reasonably think of dividing the foods among three
meals, with one drink at each. Thus we add param drinkNum := 3 to the data.

Finally, in a good diet, not more than a certain fraction of calories are from
fat. This requires one more parameter, the fraction:

param fracCalFat >= 0, <= 1;

The constraint says that the sum of calories from fat in all foods purchased
must not exceed this number times the sum of calories in all foods purchased:

subject to CalFatLimit:
sum {f in FOOD} amt[’CalFat’,f] * Buy[f]

<= fracCalFat * sum {f in FOOD} amt[’Cal’,f] * Buy[f];

This is the one place in the model where a constraint is so special as to merit
references to particular set members. Elsewhere we have stated the constraints

Draft of August 26, 2005 A–31

more generally in terms of indexing over sets, so that the general form of each
constraint is clear and changes can be made through updates to the data file. We
also avoid placing particular numerical values in the model, in favor of symbolic
parameters like drinkNum and fracCalFat whose values can be read from the
data. Specific set members or data values belong in the model only when they
are a fundamental aspect of the model that is not subject to change.

Figure 2–2 shows the completed model. It has become quite a bit longer and
more complex than our original diet model of Figure 1–4, but that’s generally
the price to be paid for making a model realistic.

It remains only to try solving the enhanced model, with the complete data.
As an example, here are the results we obtain with an upper limit of 2 on serv-
ings of all foods except condiments, and with at most 30% of calories from fat:

ampl: model diet2.mod
ampl: data diet2.dat

ampl: solve;

CPLEX 8.1.0: optimal integer solution; objective 9.06
866 MIP simplex iterations
507 branch-and-bound nodes

ampl: option omit zero rows 1;

ampl: display Buy;
Buy [*] :=

Cheerios 1
Cheeseburger 1

’Chocolate Shake’ 1
’Cinnamon Raisin Danish’ 1

Croutons 1
’English Muffin’ 1

’H-C Orange Drink (large)’ 1
Hamburger 2

’Orange Juice’ 1
’Side Salad’ 1

The reported number of “iterations” has gone up by about a factor of 10 com-
pared to our CPLEX run in section 2.2, reflecting the greater difficulty of solving
this larger problem. It is not unusual to find that the work of solving an integer
program increases faster than the size of the data.

At this point our solution is beginning to look like three meals. One possi-
bility would be:

Orange Juice H-C Orange Drink (lg) Chocolate Shake
Cheerios 2 Hamburgers Cheeseburger
Cinn. Raisin Danish English Muffin Side Salad w/ Croutons

Examination of this result might suggest further ad hoc constraints — perhaps
on the number of “breakfast foods.”

The additional constraints developed in this chapter may seem obvious at
this point. That is mainly a reflection of your knowledge of diets and fast-
food restaurants, however. If you did not know, say, how the condiments were
meant to be used, then you would have no way of knowing how to formulate

A–32 Optimization Models — x2.5

set NUTR; # nutrients
set FOOD; # foods

set F NUG within FOOD; # Chicken McNuggets foods
set F NUG SCE within FOOD; # Chicken McNuggets sauces

param amt nug sce {F NUG} > 0;
Limit on sauces per serving

set F SAL within FOOD; # Salads
set F SAL DRE within FOOD; # Salad dressings
set F SAL TOP within FOOD; # Salad toppings

param amt sal dre {F SAL} > 0;
param amt sal top {F SAL} > 0;

Limits on dressings & toppings per serving

set DRINKS within FOOD; # Drinks
param drinkNum > 0; # Number of drinks required in diet

param fracCalFat >= 0, <= 1;
Fraction of calories that may be from fat

param nutrLo {NUTR} >= 0;
param nutrHi {n in NUTR} >= nutrLo[n];

requirements for nutrients

param foodLim {FOOD} >= 0; # limits on food amounts
param foodCost {FOOD} >= 0; # costs of foods
param amt {NUTR,FOOD} >= 0; # amounts of nutrient in each food

var Buy {f in FOOD} integer >= 0, <= foodLim[f];
amounts of foods to be purchased

minimize TotalCost: sum {f in FOOD} foodCost[f] * Buy[f];

subject to Need {n in NUTR}:
nutrLo[n] <= sum {f in FOOD} amt[n,f] * Buy[f] <= nutrHi[n];

subject to NuggetSauceLimit:
sum {fsce in F NUG SCE} Buy[fsce]

<= sum {fnug in F NUG} amt nug sce[fnug] * Buy[fnug];

subject to SaladDressingLimit:
sum {fdre in F SAL DRE} Buy[fdre]

<= sum {fsal in F SAL} amt sal dre[fsal] * Buy[fsal];

subject to SaladToppingLimit:
sum {ftop in F SAL TOP} Buy[ftop]

<= sum {fsal in F SAL} amt sal top[fsal] * Buy[fsal];

subject to DrinkLimit:
sum {fd in DRINKS} Buy[fd] = drinkNum;

subject to CalFatLimit:
sum {f in FOOD} amt[’CalFat’,f] * Buy[f]

<= fracCalFat * sum {f in FOOD} amt[’Cal’,f] * Buy[f];

Figure 2–2. The AMPL statement of the refined diet model, incorporating the improve-
ments introduced in Sections 2.1, 2.2, and 2.5 of this chapter (diet2.mod).

Draft of August 26, 2005 A–33

a constraint like NuggetSauceLimit. Every realistic modeling project involves
learning the situation to be modeled as well as constructing the mathematical
formulation; in fact learning the situation is often the harder part of the exer-
cise.

