1) p 20, Example, resistência (resistance)

$$
Q=R I^{2} t
$$

Modulus for worst case (always adding):

$$
\begin{gathered}
\Delta Q=\left|I^{2} t\right| \Delta R+|2 R I t| \Delta I+\left|R I^{2}\right| \Delta t \\
\frac{\Delta Q}{Q}=\frac{\Delta R}{R}+2 \frac{\Delta I}{I}+\frac{\Delta t}{t} \\
R=100 \pm 1 \Omega \\
I=1,00 \pm 0,01 \mathrm{~A} \\
t=100 \pm 1 \mathrm{~s} \\
Q=100 \times 1^{2} \times 100=10000 \mathrm{~J} \\
\Delta Q / Q \leq 1 / 100+2 \times 0,01 / 1+1 / 100=4 / 100=4 \%
\end{gathered}
$$

2) http://en.wikipedia.org/wiki/Error_propagation

$$
\begin{aligned}
\Delta X & =\left|\frac{\partial f}{\partial A}\right| \cdot \Delta A+\left|\frac{\partial f}{\partial B}\right| \cdot \Delta B+\left|\frac{\partial f}{\partial C}\right| \cdot \Delta C+\cdots \\
\sigma_{X}^{2} & =\left(\frac{\partial f}{\partial A} \sigma_{A}\right)^{2}+\left(\frac{\partial f}{\partial B} \sigma_{B}\right)^{2}+\left(\frac{\partial f}{\partial C} \sigma_{C}\right)^{2}+\cdots
\end{aligned}
$$

Example 1: $y=f(\theta)=\arctan (\theta)$

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} \theta}=\frac{1}{1+\theta^{2}} \\
& \Delta y=\frac{1}{1+\theta^{2}} \Delta \theta
\end{aligned}
$$

Example 2: $R=V / I$

$$
\begin{aligned}
& (\Delta R)^{2}=\left(\frac{\partial R}{\partial V} \Delta V\right)^{2}+\left(\frac{\partial R}{\partial I} \Delta I\right)^{2} \\
& (\Delta R)^{2}=\left(\frac{1}{I} \Delta V\right)^{2}+\left(-\frac{V}{I^{2}} \Delta I\right)^{2}
\end{aligned}
$$

This can be simplified by dividing both terms by R^{2} :

$$
\left(\frac{\Delta R}{R}\right)^{2}=\left(\frac{\Delta V}{V}\right)^{2}+\left(\frac{\Delta I}{I}\right)^{2}
$$

3) p 22, Example, resistência (resistance)

$$
Q=R I^{2} t
$$

$$
\begin{aligned}
& (\Delta Q)^{2}=\left(\frac{\partial Q}{\partial R} \Delta R\right)^{2}+\left(\frac{\partial Q}{\partial I} \Delta I\right)^{2}+\left(\frac{\partial Q}{\partial t} \Delta t\right)^{2} \\
& (\Delta Q)^{2}=\left(I^{2} t \Delta R\right)^{2}+(2 R I t \Delta I)^{2}+\left(R I^{2} \Delta t\right)^{2}
\end{aligned}
$$

This can be simplified (as before) by dividing by Q^{2} :

$$
\left(\frac{\Delta Q}{Q}\right)^{2}=\left(\frac{\Delta R}{R}\right)^{2}+2^{2}\left(\frac{\Delta I}{I}\right)^{2}+\left(\frac{\Delta t}{t}\right)^{2}
$$

With the data given, $Q=10000 \mathrm{~J}$:

$$
\begin{gathered}
\left(\frac{\Delta Q}{Q}\right)^{2}=\left(\frac{1}{100}\right)^{2}+2^{2}\left(\frac{0.01}{1}\right)^{2}+\left(\frac{1}{100}\right)^{2}= \\
=10^{-4}+4 \times 10^{-4}+10^{-4}=6 \times 10^{-4} \\
\Delta Q=10000 \times \sqrt{6} \times 10^{-2}=10^{4} \times 2,45 \times 10^{-2}=245 \mathrm{~J}
\end{gathered}
$$

Suppose we adopt

$$
\begin{gathered}
\Delta X=2 \sigma_{X} \\
\sigma_{Q}=\frac{\Delta Q}{2}=\frac{245}{2}=122 \mathrm{~J}
\end{gathered}
$$

Working with ΔX or σ_{X} gives the same conclusions, as they are related by a factor [in this case 2 , which comes from $\Phi^{\text {inv }}(95 \%)$, i.e., NORMSINV $((1+\mathbf{0}, 95) / 2)$, or other].

