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The “Transportation Problem” is briefly presented, together with other problems that can be 
converted to it and thus solved by the same technique:  the production scheduling;  the transshipment 
problem;  and the assignment problem 
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1. Fundamentals and scope 
In the supply chain environment, several problems related to transportation 

and others apparently unrelated can be formulated and solved by the technique used 
for the typical transportation problem, frequently simply denoted by the initials TP1.  
Besides the TP proper, we shall address:  the (simple) production scheduling;  the 
transshipment problem;  and the assignment problem (AP).   These problems can be 
solved by their own algorithms:  the TP, the production scheduling and the 
transshipment, by the “stepping-stone” method;  and the AP by the Hungarian 
method.  As all these problems are particular cases of Linear Programming (LP), the 
problems will be presented and then formulated as LP problems.  Indeed, with the 
current availability of high quality LP software, it looks unnecessary to go into the 
details of those other methods. 

The general goal is to “transport” (whatever that may be) goods to the 
customers at minimum global cost of transportation, according to the unit costs of 
transportation (certainly according to distance, etc.) from the sources to the 
destinations. 

The problems mentioned are dealt with in the following sections, mainly 
based on examples. 

2. The Transportation Problem 
The Transportation Problem (TP) arises from the need of programming the 

optimal distribution of a single product from given sources (supply) to given 
destinations (demand). 

The product is available in m sources, with known quantities (also said 
capacities), ai, i = 1..m (the dots denoting a range2), and is needed in n destinations, 
with known quantities (or capacities), bj, j = 1..n, and it will be sent directly from the 
sources to the destinations at unit costs, cij, all these values being the known data.  
The objective is to find the quantities to be transported, xij, at minimum global cost, 

                                                 
1 Initialisms (such as TP, LP, OVNI) and acronyms (Interpol) are nowadays frequent (see, 

e.g., http://en.wikipedia.org/wiki/Acronym_and_initialism). 
2 This synthetic notation means that the variable takes all the integer values from the first to the last, 

both included. 
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usually in a given time period, such as a week.  The problem can thus be formulated 
according to the model of Eq. {1}. 
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The physical (whole) units of x, a and b  can be, e.g., kg (or m3, bags, etc.), 
and c in $ / kg (with $ a generic money unit, such as dollar, euro).  The scheme in 
Figure 1 can make the problem clear. 

 
Figure 1 — Transportation Problem:  from 3 factories to 5 warehouses. 

Eq. {1} is, of course, in all its components (including the last one, of 
non-negativity of the variables), an instance of Linear Programming (LP).  The 
notation “[max]” ([min], [opt]) means that the maximum of both sides is required, 
and not that the maximum of z, the objective function, is equal to the right-hand side 
(otherwise not yet known). 

It is remarkable that the TP can be envisaged as an integer programming 
problem.  The x’s will always be, namely in the optimum, multiples of the greatest 
common divisor of the set of a’s and b’s.  So, if these are integers, the x’s will be 
integers;  if, e.g., these are multiples of 7, so will they be, etc..  If the problem is 
stated with “decimals”, as 4,7, the x’s will be multiples of 0,1, so, with appropriate 
multiplication by a suitable constant, the results will be integer. 
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Any problem having the above structure can be considered a TP, whatever 
may be the subject under analysis. 

EXAMPLE 

A company, as in Figure 1, has 3 production centres, factories F, G and H, in 
given locations (different or even coincident) with production capacities of 100, 120 
and 120 ton (per day), respectively, of a certain product with which it must supply 5 
warehouses, P, Q, R, S and T, needing 40, 50, 70, 90 and 90 ton (per day), 
respectively.  The unit costs of transportation, the matrix C, are those in Table 1.  
Determine the most economical transportation plan, matrix X. 

Table 1 — Costs of transportation ($ / ton) from 
the factories to the warehouses 

 P Q R S T  
F 4 1 2 6 9 100 
G 6 4 3 5 7 120 
H 5 2 6 4 8 120 
 40 50 70 90 90  

RESOLUTION 

Introduce the transportation matrix, X, in Eq. {2}, the values of whose 
elements must be found.  (Notice that z, in Eq. {1}, does not result from a product of 
matrices !) 
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The problem could be solved by the adequate “stepping-stone” method (which 
is very efficient), but its formulation leads directly to the LP in Eq, {3}. 
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A TP has really m + n – 1 independent constraints (not m + n), as one of the 
constraints shown above is superfluous (dependent).  This is due to the nature of the 
TP, in which total supply must equal total demand. 
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The fact that the current solvers, such as Excel or Excel/Cplex, natively accept 
the TP in table form makes the constraints in Eq. {3} readily available for solution.  
(This would not be the case with other common solvers such as Lindo3, in which all 
the m.n variables and m + n – 1 equations have to be explicitly inserted.) 

The solution is given in Table 2, with a minimum global cost of z* = 1 400 $ 
(per day, the period considered).  In this particular problem, there are two (multiple) 
solutions, the other differing in x11 = 10, x12= 50, x31 = 30 and x32 = 0. 

Table 2 — Quantities to be transported (ton) from 
the factories to the warehouses 

 P Q R S T  
F 40 20 40    
G   30  90 120 
H  30  90  120 
 40 50 70 90 90  

n 

The TP is, naturally, “balanced”, i.e., the total supply is equal to the total 
demand.  In cases where there is excess supply, the problem can be readily converted 
to a TP by creating (at cost 0) a fictitious destination;  or if there is excess demand, a 
fictitious source.  So, product could be left “at home” or, possibly, bought from some 
competitor to guarantee the supply to the customer, respectively. 

3. The production scheduling 
The (simple) production scheduling problem will be presented through the 

example in Hillier & Lieberman [2006, pp 330–331]4. 

EXAMPLE 

Table 3 — Production scheduling data for Northern Airplane Co. 

Month Scheduled 
installations 

Max. 
production 

Unit cost of 
production 

Unit cost of 
storage 

1 10 25 1,08 0,015 
2 15 35 1,11 0,015 
3 25 30 1,10 0,015 
4 20 10 1,13 0,015 

The “transportation” in the production scheduling is not in space, but in time, 
between months in this esample.  Surely, production cannot, however, be made in a 
certain month to be supplied in a previous month, so that the corresponding unit costs 
must be prohibited, by making them “very large”, say, M (the classical “big M”), 
infinity, or, for computing purposes, sufficiently large (in this problem, e.g., 100).  
The data of Table 3 become those in Table 4, adding the storage costs and introducing 
a fictitious fifth month for balancing. 

                                                 
3 Free (student) limited version available from http://www.lindo.com . 
4 See http://web.ist.utl.pt/mcasquilho/acad/or/TP/HL.ProdSched.pdf . 
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In order to “guess” a sufficiently large M, try some “reasonably” large value, 
i.e., at least large compared to the other cost values in the problem.  If this value is 
effective in the solution (prohibiting the related x’s), it is a good choice, but, if it is 
not effective (too small), try a greater new value.  If the value is “never” sufficiently 
large, then, the problem has no physical solution (is impossible), although it always 
has a mathematical one. 

Table 4 — TP-like data for the Northern Airplane Co. problem 

Month 1 2 3 4 (5) Supply 
1 1,080 1,095 1,110 1,125 0 25 
2 M 1,110 1,125 1,140 0 35 
3 M M 1,100 1,115 0 30 
4 M M M 1.130 0 10 

Demand 10 15 25 20 30 (100) 

The solution has a (minimum) global cost of 77,3 $ with the production 
schedule given in Table 5. 

Table 5 — Production schedule for the Northern Airplane Co. problem 

Month 1 2 3 4 (5) Supply 
1 10 10 5 0 0 25 
2 — 5 0 0 30 35 
3 — — 20 10 0 30 
4 — — — 10 0 10 

Demand 10 15 25 20 30 (100) 

4. The transshipment problem and the 
assignment problem 

The transshipment problem and the assignment problem (AP) can be 
considered problems reducible to TP’s.  The transshipment is typically treated like a 
TP, whereas the AP has the Hungarian algorithm, which is very efficient.  
Notwithstanding, this algorithm will not be presented, as the AP is a particular LP and 
is appropriately solved by the usual LP software. 

The method to reduce a transshipment problem to a TP is simply to consider 
that the transshipment points are supply points or demand points or both, by inserting 
them on the supply side or the demand side (or both).  Upon inserting these 
transhipments as referred, each individual capacity must be “corrected” by adding to 
it the original global capacity. 

The AP is a particular case of the TP, having a square cost matrix and being 
soluble by considering all the values of supply as 1 and all the values of demand also 
as 1. 

EXAMPLE, TRANSSHIPMENT 

Refer to Problem 9.35 from Bronson & Naadimuthu [1997BRO], represented 
in Figure 2. 

                                                 
5 See http://web.ist.utl.pt/mcasquilho/acad/or/TP/BronsonNaad97_transsh.pdf . 
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RESOLUTION 

In order to convert the transshipment to a TP, identify:  (a) every pure supply 
point (producing only), usually labelled with a positive quantity, such as Point 1 with 
+95 units;  (b) every pure demand point (receiving only), usually labelled with a 
negative quantity, such as Point 5 with –30 units;  and (c) every mixed point 
(producing or receiving), labelled with a positive (if net producer) or negative (if net 
receiver) quantity, such as Point 3 with +15 units.  Make the original TP balanced, 
which results here in a dummy destination (say, Point 7), and register the original 
capacity of the TP, Q (here Q = 180). 

 
Figure 2 — Transshipment problem:  sources (1 and 2), destinations (5 and 6), 

and transshipment points (3 and 4). 

The cost matrix becomes the one in Table 6.  (The number of times Q is 
inserted on the supply side and on the demand side is, of course, the same, thus 
maintaining the equilibrium necessary to a TP.)  The solution is in Table 7. 

Table 6 — Cost matrix for the transshipment problem 

 3 4 5 6 (7) Supply 
1 3 M 8 M 0 95 
2 2 7 M M 0 70 
3 0 3 4 4 0 15+Q 
4 M 0 M 2 0 Q 

Demand Q 30+Q 30 45 75 (180+2Q)

So:  from Point 1, 20 units go to Point 3, and 75 stay home;  from Point 2, 70 
units go to Point 3;  from Point 3, 30 go to Point 4, etc.;  and Point 4 just receives 30 
(from Point 3), with its quantity (equal to Q) meaning it was not used as a 
transshipment point. 
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Table 7 — Solution to the transshipment problem 

 3 4 5 6 (7) Supply 
1 20 — 0 — 75 95 
2 70 0 — — 0 70 
3 90 30 30 45 0 15+Q 
4 — 180 — 0 0 Q 

Demand Q 30+Q 30 45 75 (180+2Q) 

EXAMPLE, ASSIGNMENT 

Suppose n tasks are to be accomplished by n workers and the workers have 
the abilities for every task as given in Table 8. 

Table 8 — Ability of each worker for each task 

 1 2 3 4 
1 15 16 14 14 
2 14 14 13 15 
3 13 15 13 14 
4 15 16 14 14 

These “positive” abilities are converted to “costs”, replacing each element by 
its difference to their maximum (here, 16).  After that, solve the AP as a TP with each 
supply equal to 1 and each demand also equal to 1.  The solution to this example is 
in Table 9. 

Table 9 — Assignments (solution) 

 1 2 3 4 
1 1 0 0 0 
2 0 0 0 1 
3 0 0 1 0 
4 0 1 0 0 

So, Worker 1 does Task 1, Worker 2 does Task 4, etc. (i.e., 1-1, 2-4, 3-3, 4-2), 
at a minimum global cost of 5 cost units.  This problem has multiple solutions, 
another being 1-2, 2-4, 3-3, 4-1. 

As this problem has, obviously, always n elements of value 1 (the 
assignments) and the remaining n2 – n of value zero, its optimum solution is very 
degenerate if, as was done, it is considered a TP (degenerate in relation to the 

1−+ nm  possible positive cells in a TP).  This is an argument in favour of the 
Hungarian method, but the strength of that method is not significant when common 
software is used. 

4. Conclusions 
In the supply chain, several problems related to transportation can be 

formulated and solved by the technique used for the typical transportation problem 
(TP), with its own very efficient algorithm (stepping-stone):  the (simple) production 
scheduling;  the transshipment problem;  and the assignment problem (AP).   The AP 
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can be solved by its own algorithm, but the availability of software for Linear 
Programming makes it practical to solve them as TP’s, after convenient simple 
conversions, other algorithms becoming unnecessary 
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