Algorithms Non-Lecture I: Linear Programming

The greatest flood has the soonest ebb;

the sorest tempest the most sudden calm;

the hottest love the coldest end; and

from the deepest desire oftentimes ensues the deadliest hate.

— Socrates

Th’ extremes of glory and of shame,
Like east and west, become the same.

— Samuel Butler, Hudibras Part I, Canto | (c. 1670)
Extremes meet, and there is no better example
than the haughtiness of humility.

— Ralph Waldo Emerson, “Greatness”,
in Letters and Social Aims (1876)

*I Linear Programming

The maximum flow/minimum cut problem is a special case of a very general class of problems called
linear programming. Many other optimization problems fall into this class, including minimum spanning
trees and shortest paths, as well as several common problems in scheduling, logistics, and economics.
Linear programming was used implicitly by Fourier in the early 1800s, but it was first formalized
and applied to problems in economics in the 1930s by Leonid Kantorovich. Kantorivich’s work was
hidden behind the Iron Curtain (where it was largely ignored) and therefore unknown in the West.
Linear programming was rediscovered and applied to shipping problems in the early 1940s by Tjalling
Koopmans. The first complete algorithm to solve linear programming problems, called the simplex method,
was published by George Dantzig in 1947. Koopmans first proposed the name “linear programming" in a
discussion with Dantzig in 1948. Kantorovich and Koopmans shared the 1975 Nobel Prize in Economics
“for their contributions to the theory of optimum allocation of resources”. Dantzig did not; his work was
apparently too pure. Koopmans wrote to Kantorovich suggesting that they refuse the prize in protest
of Dantzig’s exclusion, but Kantorovich saw the prize as a vindication of his use of mathematics in
economics, which his Soviet colleagues had written off as “a means for apologists of capitalism”.

A linear programming problem asks for a vector x € IR¢ that maximizes (or equivalently, minimizes)
a given linear function, among all vectors x that satisfy a given set of linear inequalities. The general
form of a linear programming problem is the following:

d

maximize Z CjX;
j=1
d

subject to Zaijxj <b; foreachi=1..p

—_

.

a;jxj=>b; foreachi=p+1..p+gq

M- 1M

~
Il
-

ajjxj=>b; foreachi=p+q+1..n

Here, the input consists of a matrix A= (a;;) € R4 a column vector b € R", and a row vector ¢ € RY.
Each coordinate of the vector x is called a variable. Each of the linear inequalities is called a constraint.
The function x — c - x is called the objective function. I will always use d to denote the number of
variables, also known as the dimension of the problem. The number of constraints is usually denoted n.

Algorithms Non-Lecture I: Linear Programming

A linear programming problem is said to be in canonical form® if it has the following structure:

d
maximize chxj
j=1
d
subject to Zaijxj <b; foreachi=1..n
j=1

x;j =20 foreachj=1..d

We can express this canonical form more compactly as follows. For two vectors x = (x;, Xs,...,Xg) and
¥y =(1,Y2--->Yq), the expression x > y means that x; > y; for every index i.

max c-Xx
s.t.Ax<b
x>0

Any linear programming problem can be converted into canonical form as follows:

e For each variable x;, add the equality constraint x; = x;r —Xx; and the inequalities x;r >0 and

- >0.
xJ_O

X

ijXj = b; and

e Replace any equality constraint » jaijx; = b; with two inequality constraints > ;0 X;

Z] al'jx]' S bi'

e Replace any upper bound Zj a;jx;j = b; with the equivalent lower bound > j—a;jX; < —b;.
This conversion potentially double the number of variables and the number of constraints; fortunately, it
is rarely necessary in practice.

Another useful format for linear programming problems is slack form?, in which every inequality is

of the form x; = 0:

max c-Xx
s.t.Ax=0>
x>0

It’s fairly easy to convert any linear programming problem into slack form. Slack form is especially
useful in executing the simplex algorithm (which we’ll see in the next lecture).

I.1 The Geometry of Linear Programming

A point x € R? is feasible with respect to some linear programming problem if it satisfies all the linear
constraints. The set of all feasible points is called the feasible region for that linear program. The
feasible region has a particularly nice geometric structure that lends some useful intuition to the linear
programming algorithms we’ll see later.

Any linear equation in d variables defines a hyperplane in R?; think of a line when d = 2, or a plane
when d = 3. This hyperplane divides R? into two halfspaces; each halfspace is the set of points that
satisfy some linear inequality. Thus, the set of feasible points is the intersection of several hyperplanes

LConfusingly, some authors call this standard form.
2Confusingly, some authors call this standard form.

Algorithms Non-Lecture I: Linear Programming

(one for each equality constraint) and halfspaces (one for each inequality constraint). The intersection
of a finite number of hyperplanes and halfspaces is called a polyhedron. It’s not hard to verify that any
halfspace, and therefore any polyhedron, is convex—if a polyhedron contains two points x and y, then it
contains the entire line segment Xy .

A two-dimensional polyhedron (white) defined by 10 linear inequalities.

By rotating IR? (or choosing a coordinate frame) so that the objective function points downward, we
can express any linear programming problem in the following geometric form:

Find the lowest point in a given polyhedron.

With this geometry in hand, we can easily picture two pathological cases where a given linear
programming problem has no solution. The first possibility is that there are no feasible points; in this
case the problem is called infeasible. For example, the following LP problem is infeasible:

maximize x — y
subjectto 2x+y <1
x+y=2
x,y=0

>

N
\

An infeasible linear programming problem; arrows indicate the constraints.

The second possibility is that there are feasible points at which the objective function is arbitrarily
large; in this case, we call the problem unbounded. The same polyhedron could be unbounded for some
objective functions but not others, or it could be unbounded for every objective function.

A two-dimensional polyhedron (white) that is unbounded downward but bounded upward.

Algorithms Non-Lecture I: Linear Programming

1.2 Example 1: Shortest Paths

We can compute the length of the shortest path from s to t in a weighted directed graph by solving the
following very simple linear programming problem.

maximize d,
subject to d, =0
d,—d,<{,,, foreveryedgeu—v

Here, {,_,, is the length of the edge u—v. Each variable d, represents a tentative shortest-path distance
from s to v. The constraints mirror the requirement that every edge in the graph must be relaxed.
These relaxation constraints imply that in any feasible solution, d, is at most the shortest path distance
from s to v. Thus, somewhat counterintuitively, we are correctly maximizing the objective function to
compute the shortest path! In the optimal solution, the objective function d, is the actual shortest-path
distance from s to t, but for any vertex v that is not on the shortest path from s to t, d, may be an
underestimate of the true distance from s to v. However, we can obtain the true distances from s to
every other vertex by modifying the objective function:

maximize Z d,
v
subject to d,=0
d,—d,<{,,, foreveryedgeu—v

There is another formulation of shortest paths as an LP minimization problem using an indicator
variable x,_,, for each edge u—v.

minimize E sy Xy

u—v

subject to Z Xyos — Z Xeow =1
u w
qu—% - thew =-1
u w
Z Xysy — Z X,_w =0 forevery vertex v #s,t
u w

X,y >0 for every edge u—v

Intuitively, x,_,, = 1 means u—v lies on the shortest path from s to t, and x,_,, = 0 means u—v does
not lie on this shortest path. The constraints merely state that the path should start at s, end at ¢, and
either pass through or avoid every other vertex v. Any path from s to t—in particular, the shortest
path—clearly implies a feasible point for this linear program.

However, there are other feasible solutions, possibly even optimal solutions, with non-integral values
that do not represent paths. Nevertheless, there is always an optimal solution in which every x, is either
0 or 1 and the edges e with x, = 1 comprise the shortest path. (This fact is by no means obvious, but a
proof is beyond the scope of these notes.) Moreover, in any optimal solution, even if not every x, is an
integer, the objective function gives the shortest path distance!

1.3 Example 2: Maximum Flows and Minimum Cuts

Recall that the input to the maximum (s, t)-flow problem consists of a weighted directed graph G = (V, E),
two special vertices s and t, and a function assigning a non-negative capacity c, to each edge e. Our task

4

Algorithms Non-Lecture I: Linear Programming

is to choose the flow f, across each edge e, as follows:

maximize Zfsﬁw — quﬁs
w u

subject to vaﬁw — quﬁv =0 for every vertex v #s, t
w u

fusy < ¢y, for every edge u—v

fusv =0 for every edge u—v

Similarly, the minimum cut problem can be formulated using ‘indicator’ variables similarly to the
shortest path problem. We have a variable S, for each vertex v, indicating whether ve Sorv e T, and a
variable X,,_,, for each edge u—v, indicating whether u € S and v € T, where (S, T) is some (s, t)-cut.’

minimize E Cussy " Xussy

u—v
subjectto X,_.,+S,—S,>0 forevery edge u—v
X,y =0 for every edge u—v

S;=1

S;=0

Like the minimization LP for shortest paths, there can be optimal solutions that assign fractional values
to the variables. Nevertheless, the minimum value for the objective function is the cost of the minimum
cut, and there is an optimal solution for which every variable is either O or 1, representing an actual
minimum cut. No, this is not obvious; in particular, my claim is not a proof!

I.4 Linear Programming Duality

Each of these pairs of linear programming problems is related by a transformation called duality. For
any linear programming problem, there is a corresponding dual linear program that can be obtained by
a mechanical translation, essentially by swapping the constraints and the variables. The translation is
simplest when the LP is in canonical form:

Primal (II) Dual (II)
max c-x min y-b
st. Ax<b s.t. yYA>c¢
x=0 y=0

We can also write the dual linear program in exactly the same canonical form as the primal, by swapping
the coefficient vector ¢ and the objective vector b, negating both vectors, and replacing the constraint

matrix A with its negative transpose.*
Primal (II) Dual (II)
max c-Xx max —b' -yT
s.t. Ax< b st —ATyT< —c
x>0 y'>0

3These two linear programs are not quite syntactic duals; I've added two redundant variables S, and S, to the min-cut
program to increase readability.

“*For the notational purists: In these formulations, x and b are column vectors, and y and c are row vectors. This is a
somewhat nonstandard choice. Yes, that means the dot in ¢ - x is redundant. Sue me.

Algorithms Non-Lecture I: Linear Programming

Written in this form, it should be immediately clear that duality is an involution: The dual of the dual
linear program 1I is identical to the primal linear program II. The choice of which LP to call the ‘primal’
and which to call the ‘dual’ is totally arbitrary.”

The Fundamental Theorem of Linear Programming. A linear program Il has an optimal solution x*
if and only if the dual linear program 11 has an optimal solution y* such that c - x* = y*Ax* = y* - b.

The weak form of this theorem is trivial to prove.

Weak Duality Theorem. If x is a feasible solution for a canonical linear program I1 and y is a feasible
solution for its dual 1, thenc-x < yAx <y -b.

Proof: Because x is feasible for IT, we have Ax < b. Since y is positive, we can multiply both sides of
the inequality to obtain yAx < y - b. Conversely, y is feasible for LI and x is positive, so yAx > c-x. O

It immediately follows that if ¢ - x = y - b, then x and y are optimal solutions to their respective
linear programs. This is in fact a fairly common way to prove that we have the optimal value for a linear
program.

1.5 Duality Example

Before I prove the stronger duality theorem, let me first provide some intuition about where this duality
thing comes from in the first place.® Consider the following linear programming problem:

maximize 4x;+ X9+ 3x3
subjectto x; +4x, <2
3X1 - X9 + X3 S 4

X1, X2, X3 =20

Let o* denote the optimum objective value for this LP The feasible solution x = (1,0, 0) gives us a lower
bound o* > 4. A different feasible solution x = (0, 0, 3) gives us a better lower bound o* > 9. We could
play this game all day, finding different feasible solutions and getting ever larger lower bounds. How do
we know when we’re done? Is there a way to prove an upper bound on o*?

In fact, there is. Let’s multiply each of the constraints in our LP by a new non-negative scalar value y;:

maximize 4x;+ X9+ 3x3
subject to y;(x1 +4x,)<2xn
Y2(Bx1 — xo+ x3) <4y,
X1,X9,X3=>0

Because each y; is non-negative, we do not reverse any of the inequalities. Any feasible solution
(x1, x4, x5) must satisfy both of these inequalities, so it must also satisfy their sum:

(1 +3y2)x1 + (4y1 — y2)xX3 + Yox3 < 2y1 + 4.

>For historical reasons, maximization LPs tend to be called ‘primal’ and minimization LPs tend to be called ‘dual’. This is a
pointless religious tradition, nothing more. Duality is a relationship between LP problems, not a type of LP problem.

5This example is taken from Robert Vanderbei’s excellent textbook Linear Programming: Foundations and Extensions
[Springer, 2001], but the idea appears earlier in Jens Clausen’s 1997 paper ‘Teaching Duality in Linear Programming: The
Multiplier Approach’.

Algorithms Non-Lecture I: Linear Programming

Now suppose that each y; is larger than the ith coefficient of the objective function:
Y1+3y2 24, 4y1—y221, y2=3.
This assumption lets us derive an upper bound on the objective value of any feasible solution:
4x1+ x5+ 3x3 < (y1+3y2)x1 +(4y1 — y2)xXo + yax3 < 2y1+4y,. (%)

In particular, by plugging in the optimal solution (x7, x5, x3) for the original LB we obtain the following
upper bound on o*:
0" = 4x]+x;+3x; < 2y, +4y,.

Now it’s natural to ask how tight we can make this upper bound. How small can we make the
expression 2y; + 4y, without violating any of the inequalities we used to prove the upper bound? This
is just another linear programming problem.

minimize 2y; +4y,
subjectto y;+3y,>4

41— y2z21
Y223

Y1,¥220

In fact, this is precisely the dual of our original linear program! Moreover, inequality () is just an
instantiation of the Weak Duality Theorem.

1.6 Strong Duality

The Fundamental Theorem can be rephrased in the following form:

Strong Duality Theorem. If x* is an optimal solution for a canonical linear program 11, then there is
an optimal solution y* for its dual 11, such that ¢ - x* = y*Ax* = y* - b.

Proof (Sketch): I'll prove the theorem only for non-degenerate linear programs, in which (a) the
optimal solution (if one exists) is a unique vertex of the feasible region, and (b) at most d constraint
planes pass through any point. These non-degeneracy assumptions are relatively easy to enforce in
practice and can be removed from the proof at the expense of some technical detail. I will also prove the
theorem only for the case n > d; the argument for under-constrained LPs is similar (if not simpler).

Let x* be the optimal solution for the linear program IT; non-degeneracy implies that this solution
is unique, and that exactly d of the n linear constraints are satisfied with equality. Without loss of
generality (by permuting the rows of A), we can assume that these are the first d constraints.

So let A, be the d x d matrix containing the first d rows of A, and let A, denote the other n — d rows.
Similarly, partition b into its first d coordinates b, and everything else b,. Thus, we have partitioned the
inequality Ax* < b into a system of equations A, x* = b, and a system of strict inequalities A, x* < b,.

Now let y* = (¥, y*) where y* = cA_! and y* = 0. We easily verify that y* - b =c - x™*:

y*b =yl bty b, = y-b, = cA;'b, = c-x*.

(The existence of the inverse matrix A] ' follows from our non-degeneracy assumption.) Similarly, it’s
easy to verify that y*A> c:
YA = yIAL+ yIAL = yIAL = c.

Algorithms Non-Lecture I: Linear Programming

Once we prove that y* is non-negative, and therefore feasible, the Weak Duality Theorem implies
the result. We chose y = 0. As we will see below, the optimality of x* implies the strict inequality
¥ > 0—we had to use optimality somewhere! This is the hardest part of the proof.

The key insight is to give a geometric interpretation to the vector y = cA;!. Each row of the
linear system A, x* = b, describes a hyperplane a; - x* = b; in RY. The vector a; is normal to this
hyperplane and points out of the feasible region. The vectors ay,...,a, are linearly independent (by
non-degeneracy) and thus describe a coordinate frame for the vector space R?. The definition of Yy can
be rewritten as follows:

d
c=Yy.A, Znyai.
i=1

In other words, y; lists the coefficients of the objective vector c in the coordinate frame aq,...,ay.

The point x* lies on exactly d constraint hyperplanes; any d — 1 of these hyperplanes determine a
line through x*. For each 1 <i < d, let £; denote the line that lies on all but the ith constraint plane,
and let v; denote a vector based at x* that points into the halfspace a;x < b; along the line ¢;. This
vector lies along an edge of the feasible polytope. For all j # i, we have a; - v; = 0. Thus, we can write

j
Awv;=(0,...,0, a;-v;, 0,...,0)T
where the scalar q; - v; appears in the ith coordinate. It follows that

c-vi = yiAv; =y (a; - vp).

The optimality of x* implies that ¢ - v; < 0, and because v; points into the feasible region while a; points
out, we have a; - v; < 0. We conclude that y; > 0. We’re done! O

Exercises

1. (a) Describe precisely how to dualize a linear program written in slack form:

max c-Xx
s.t.Ax="»>
x=0

(b) Describe precisely how to dualize a linear program written in general form:

maximize CiX;

M=
A
—

~
Il
-

M=
=

~.

3

IA
<

subject to foreachi=1..p

~.
Il
—

1~
8
—.
=
~
I
S

foreachi=p+1..p+q

—~.
I
—

M=
a

=

(Y2

b, foreachi=p+q+1..n

—~.
Il
—_

In both cases, keep the number of dual variables as small as possible.

Algorithms Non-Lecture I: Linear Programming

2. A matrix A = (a;;) is skew-symmetric if and only if a;; = —a;; for all indices i # j; in particular,
every skew-symmetric matrix is square. A canonical linear program max{c - x | Ax < b;x > 0} is
self-dual if the matrix A is skew-symmetric and the objective vector c is equal to the constraint
vector b.

(a) Prove any self-dual linear program II is equivalent to its dual program LI.

(b) Show that any linear program IT with d variables and n constraints can be transformed into a
self-dual linear program with n 4 d variables and n 4 d constraints. The optimal solution to
the self-dual program should include both the optimal solution for IT (in d of the variables)
and the optimal solution for the dual program II (in the other n variables).

3. (@) Model the maximum-cardinality bipartite matching problem as a linear programming prob-
lem. The input is a bipartite graph G = (UUV; E), where E C U X V; the output is the largest
matching in G. Your linear program should have one variable for each edge.

(b) Now dualize the linear program from part (a). What do the dual variables represent? What
does the objective function represent? What problem is this!?

4. An integer program is a linear program with the additional constraint that the variables must take
only integer values.

(a) Prove that deciding whether an integer program has a feasible solution is NP-complete.

(b) Prove that finding the optimal feasible solution to an integer program is NP-hard.

[Hint: Almost any NP-hard decision problem can be formulated as an integer program. Pick your
favorite.]

*5. Helly’s theorem states that for any collection of convex bodies in RY, if every d + 1 of them
intersect, then there is a point lying in the intersection of all of them. Prove Helly’s theorem for
the special case where the convex bodies are halfspaces. Equivalently, show that if a system of
linear inequalities Ax < b does not have a solution, then we can select d + 1 of the inequalities
such that the resulting subsystem also does not have a solution. [Hint: Construct a dual LP from
the system by choosing a 0 cost vector. |

(© Copyright 2009 Jeff Erickson. Released under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Free distribution is strongly encouraged; commercial distribution is expressly forbidden. See http://www.cs.uiuc.edu/~jeffe/teaching/algorithms for the most recent revision.

9

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.cs.uiuc.edu/~jeffe/teaching/algorithms

	Linear Programming
	The Geometry of Linear Programming
	Example 1: Shortest Paths
	Example 2: Maximum Flows and Minimum Cuts
	Linear Programming Duality
	Duality Example
	Strong Duality

