Mobile Networks and Applications manuscript No.
(will be inserted by the editor)

The Feasibility of Navigation Algorithms on Smartphones ughg J2ME

André C. Santos- Luis Tarrataca - Joao M. P. Cardoso

Received: date / Accepted: date

Abstract Embedded systems are considered one of the af Introduction
eas with more potential for future innovations. Two embed-

ded fields that will most certainly take a primary role in Autonomous navigation is an important aspect for mobile
future innovations are mobile robotics and mobile computrohotics and for mobile devices with the goal of helping the
ing. Mobile robots and smartphones are growing in numbegiser to navigate in certain environments. A mobile device
and fUnCtionalitieS, becoming apresence in our dally life. such as a Smartphone can be used to guide the user in mu-
this paper, we study the current feasibility of a smartphongeums, shopping centers, exhibitions, city tours, and emer
to execute navigation algorithms and provide autonomougency scenarios when a catastrophe occurs; to control more

control, e.g., for a mobile robot. We tested four navigationeffectively home appliances like vacuum cleaners; to &ssis
problems: Mapping, Localization, Simultaneous Localizaimpaired people, etc.

tion and Mapping, and Path Planning. We selected repre-
sentative algorithms for the navigation problems, devetbp de
them in J2ME, and pgrformed tests_ on the f'eld'_ Result pite their recognized complexity, those algorithms haote n
show the current mobile Java capacity for executing comg

. . . een fully analyzed in the context of smartphones. Thus, thi
putationally demanding algorithms and reveal the real pos- A
- . o paper presents a performance study of four navigation algo-
sibility of using smartphones for autonomous navigation.

rithms when implemented using J2ME technology for mo-
bile devices. To test those algorithms on the field, we use a
system composed by a mobile robot and two smartphones.

Currently, most navigation problems require solutions
pendent of computationally demanding algorithms. De-
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In this system, a smartphone executes the navigation algo-
rithms and sends control instructions to the mobile robet us
ing Bluetooth. A second smartphone acts as an intelligent
visual sensor, communicating processed visual informatio
to the former smartphone. A schematic of the system orga-
nization is presented in Figulré 1.
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Fig. 1 Organization of the system components.



By developing and studying J2ME implementations of20] is a more computationally demanding task, but benefits
navigation algorithms on smartphones, we hope to be corfrom the fact that there is no need for an artificial preparati
tributing to a clear understanding about the current capabiof the environment.
ities of high-end smartphones and J2ME, and possibly to
highlight future improvements on both.

The remainder of this paper is organized as follows: Sec2.2 Localization
tion[2 gives an overview of navigation algorithms; Seckibn 3
presents the experimental setup used, followed by Sddtionl4calization is the process of estimating where the robot is
with the algorithms implemented; Sectibh 5 shows experifelatively to some model of the environment, and using the

mental results and Sectibh 6 presents the main conclusiondvailable sensor measurements. As the robot keeps moving,
the estimation of its position drifts and changes, and has to

be kept updated through active computation [15]. These up-
2 Autonomous Navigation dates are performed based on the recognition of special fea-

tures in landmarks, sensor data and probabilistic models.
Autonomous navigation has been widely focused by the mo- | ocalization uncertainty rises from the sensing of the
bile robotics aree [15]. Navigation is defined as the procesgbot, because of the indirect estimation process. The mea-
or activity of accurately ascertaining one’s position,mla surements besides being noisy, because of real-worldisenso
ning and following a route. In robotics, navigation refess t characteristics, may not be available at all times. Based on
the way a robot acquires a perception of the environmenhe uncertainty characteristics of the localization peot)
where it is immersed in, finds its way and is able to movesimilarly to other important mobile robotics problems, lo-
itself in that environment[15]. Navigation is a common ne-calization has been tackled by probabilistic methads [23].
cessity and requirement for almost any mobile robot. Amongst the most commonly used are Markov Localiza-

Leonard and Durrant-Whyte [13] briefly describe the gertion [5] and Particle Filterg]7].

eral problem of mobile robot navigation by three questions:
"Where am | going?”, "Where am 1?” and "How do | get
there?”, each one relative to a navigation subproblem: Map2.3 Simultaneous Localization and Mapping (SLAM)
ping, Localization and Path Planning, respectively.

SLAM [21] involves both localization and mapping and con-

stitutes a technique used by autonomous robots to build up
2.1 Mapping a map within an unknown environment while at the same

time keeping track of their current position. This appro@ch
The mapping problem exists when the robot starts withougomplex since it involves both localization and mapping si-
a map of the environment where it is immersed in and inmyjtaneously, both with uncertainties associated. On@mai
crementally builds one as it navigates. While in movementgoncern in SLAM is keeping the uncertainty controlled, for
the robot senses the environment and identifies key featur@gth robot position and landmark position, in order to dimin
which allow it to register information of its surroundings. jsh errors as much as possible. For this double uncertainty,
The main concern for the mapping problem is how the mos. AM normally uses methods based on Extended Kalman
bile robot does perceive the environment. There are mangijters (EKF) [9,27] and Particle Filter5][7]. There are<ur
sensors used for mapping, being the most common songgntly further developments on the SLAM technique, being

digital cameras and range lasers. The complexity of the magEastSLAM [16], an optimization worth mentioning (which
ping problem is the result of a different number of factorsjs pased on EKF and Particle Filters).

[23], being the most important: size of the environmentsaoi
in perception and actuation, and perceptual ambiguity.

Mapping approaches based on images captured by a -4 Path Planning
sual sensor (e.g., digital camera), have been mostly accom-
plished through the extraction of natural features from thd*ath Planning is the process of looking ahead at the out-
environment or through the identification of special artifi-comes of possible actions, and searching for the best se-
cial landmarks. Artificial landmarks mainly consist of bli  quence that will direct the robot to a desired goal location
color or pattern-based features. Solid-color landmarB$ [1 [15]. It involves finding a path from the robot’s current leca
are in most cases easily identifiable, but can sometimes li®n to the destination. The cost of planning is proportlona
blend into the environment and become less detectable. ko the size and complexity of the environment. The big-
contrast, patterns|[1, 8] are less blurred with the backggou ger the distance and the larger the number of obstacles, the
environment and can also be easily identified. An approachigher the cost of the overall planning. Path Planning tech-
based on natural landmarks existent in the environment [14iques for navigation can be divided into local path plagnin



and global path planning. They mainly differ on the quan-the control instructions are passed to the robot via the mid-
tity of information of the environment they need to possessdleware. Raw data from sensing by the robot is acquired by
Local techniques only need information of the environmenthe middleware via &luetooth interface. A block diagram
that is near to the robot, while global techniques use full in representation of the middleware is presented in Figure 3.
formation of the environment.

There are many different approaches to path planning, ¢
they try to solve the problem using different techniqueso Tw
examples of Path Planning techniques are the Atrtificial Pc .
tential Field [10] and the technique based on Ant Colony [4]. | | ClientApplication

€) Bluetooth

3 Prototype

Our prototype consists of a mobile robot, a Lego Mind-
storms NXH kit, coupled with two smartphones (we have Fig. 3 NXT Middleware Platform.
used the Nokia Ndband the Nokia N?ﬁ». One smartphone

is coupled to the mobile robot and positioned so its built-in

o . The core functionality of the mobile robot middleware
camera faces the front of the robot, enabling it to act as-anin L - ! .
. . ) consists in providing abstractions f8tuetooth communi-
telligent image sensor (see Figliie 2). The other smartphoné

e : . . . . _Cation and also access to the mobile robot’s sensors and ac-
which is the main processing unit, responsible for exegutin . . : ) L
L . ~__ tuators. The main operations supported include: estaibgjsh
the navigation algorithms, does not need to be physicall

. yand ceasing connections; moving forward, backward and ro-
coupled to the mobile robot. The robot and the two smart: 9 9

: i . tating; and data acquisition from the available sensors. A
phones communicate with each other Blaetooth, requir- ) ! : - .
; - . code snippet is provided in Figuré 4. The middleware com-
ing always to be located within communication range. . )
ponent was developed in the Java programming language

and was built on top of the 1eJOS NXJ firmwalrel[22].

1 MobileClientNXT nxtClient = new
MobileClientNXT Bl uetoothAddress);
nxtClient.connect();
nxtClient.forwardyel ocity);
nxtClient.rotatedngle);
nxtClient.stop();
nxtClient.disconnect();

o U b~ WDN

Fig. 2 Prototype mobile robot with a smartphone.

Fig. 4 Example middleware client code snippet.

Development for the smartphones was done in Java u
ing its Micro Edition version (JZN&. The choice of 22ME
development was mainly due to Java's known portabilityin order to tackle the autonomous navigation problem, we
among the most common mobile phone manufacturers. Depproached mapping, localization, simultaneous locitiza
velopment for the mobile robot was also done using a subgpq mapping, and also path planning, each with a method
set of Java supported by the JVM present in the custorBhosen to be adapted to a smartphone constrained environ-
firmware 1eJOS NXJ[22], for the Lego’s NXT Brick. ment. For mapping, we based our technique on visual color
identification of artificial landmarks. For localization,ew
used the patrticle filter probabilistic approach. For sig-
ous localization and mapping, we used an Extended Kalman

) _ . . . Filter (EKF) approach. For path planning, we focused on the
A middleware component is responsible for the mteractlorbotemial fields technique.

between the smartphones and the mobile robot. The naviga-
tion algorithms are executed in the central smartphone and

¥ Navigation Algorithms Considered

3.1 NXT Middleware

! hittp://mindstorns . lego . con/ 4.1 Visual Landmark Recognition

2 lttp://www.nseries . com/products/n80/ . . .
3 hittp://www.nseries.com/products/n95/ For real-time mapping we rely on feature extraction by the

4 http://java.sun.com/javame/technology/ visual sensor. With the objective of keeping the detection
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and recognition of the landmarks as fast as possible, the ap- Both distanced) and orientatior{8) measures are cal-
proach implemented in this work uses solid-color cylindri-culated from the visual sensor to the landmark and are based
cal artificial landmarks. The approach developed is similaon a method proposed by [28]. The landmark distance and
to the method used by|[3]. In our approach, the visual syserientation information can be inferred from the landmark’
tem detects a landmark, recognizes its color, and calaulatsize and position in the image (see Equatidds (2) &hd (3)),
its distance and orientation to the visual sensor. by knowing the width(x'), height(y’) and center point of

Color segmentation represents the first step for detectinte landmark(X_andmarkcenter), @nd having previously per-
alandmark on each captured image by the smartphone buifiermed measurements for camera calibratigm(and| are
in camera. Previously, the landmark color features wete-gatscaling and adjustment factors).
ered and analyzed, providing a way to empirically produce 1 1 dy+d
a set of rules in the RGB color space for detecting the coldy =kyx = e =k x = d=—">~ ()

y X 2

ors used in the artificial landmarks. These rules detect th
presence of a landmark in an image, thus allowing the cor-
responding landmark classification based on its color, E.g.  In Figure[6 we present the pseudocode for a mapping al-
for a green landmark we use the rules presented in Equ&orithm that uses visual landmark recognition. The mobile
tion (@), whereR, G andB correspond to the red, green and robot has to explore all map positions in order to try to ac-
blue color Components of the RGB color space. The Va|uguire the map for the whole environment. At each |0cati0n,
X is an adjustment value, used to increase the green cold€ mobile robot needs to capture an image, to perform the

component relatively to the red and blue components. landmark recognition and to build the map with the new in-
formation obtained.

= M X X_andmarkCenter 1| 3

(G >130) and(G > R+ X) and(G > B+ X) 1)
. Name : Mapping Algorithm

The color segmentation process transforms the captured Output: Environment Map
image into a binary, black and white image, as can be seen for all possible positions do
in Figure[®. White color pixels indicate the presence of the CaptureImage ();

. . LandmarkRecognition ();

green range color and black pixels the absence of it. BuildMap ();
end

Fig. 6 Pseudocode for the Mapping algorithm.
4.2 Particle Filter
For localization, we use a Particle Filter method, based on

Fig. 5 Image captured with a green landmark (left image); binary im the one presented in_[19]. The environment is represented
age after the application of the color segmentation (middige); and 55 51 gccupancy grid map, where each grid cell matches an
landmark boundary detection after the application of thagennoise . . .
reduction filter (right image). area of the real environment at a specific ratio. Each grid cel
can be assigned with estimation probabilities of the mobile
robot’s position or with a possible presence of an obstacle.
Reducing the noise present in an image is a necessary The Particle Filter method can be divided into three main
step for the elimination of salt and pepper noise, caused bstages: Prediction stage which involves a motion and noise
the color segmentation stage. The noise may negatively itmodel for movement; Update stage which concentrates on
fluence results in future image processing stages and thersensing the environment and altering the particles retevan
fore needs to be removed or at least reduced. The filter imwveight value; and a Resample stage where the particle popu-
plemented uses a>x33 scanning window, that analyzes all lation is managed. At any given time a position estimate can
the landmark pixels present in the image. The window checkse acquired using different techniques.
if the pixels surrounding the current scanned pixel mostly The Prediction stage involves two different models. A
belong to the landmark or to the background. If the neighmotion model, responsible for the robot’s path plannersThi
borhood pixels are mostly backgrourigd 50%) then the model is responsible for providing at each step a path for the
pixel is most likely noise and is erased (see Fidure 5). mobile robot’s movement. In this work, two motion models
For a more accurate calculations of distance and orierwere developed: an explorer type model which visits all free
tation, we use a minimum rectangular boundary containingpcations in the map, and a point-to-point model which is a
the shape detected. This technique is used to help cope wiitedefined obstacle-free path from one location in the envi-
some small variations in the shape’s perspective, that camnment to another. A noise model, responsible for reflect-
vary due to the angle from which the image was acquired. ing odometry errors, is added to the robot’s motion and its

a b~ wWN PP




implementation is based on the model provided.in [19]. The Name Particle Filter Algorithm
odometry errors considered were divided into rotation er- Input : A set of Particles att =0
rors and translation errors. Both errors were experimintal (& =x.w:j=1...M)
established from the real odometry errors from the mobile 1 W=w;:j=1...M;

robot used. Translation and rotation with noise are accom- Wh”i Exploring 0 do
plished using a pseudo-random value, drawn as a sample - N

4 if ESS (W) < B M then
from a Gaussian distribution. 5 Index =Resample (W);
The Update stage is represented by a measurement model © § = S(Index);
which provides, on each observation of the environment, ; fonrdj — 1toM do
necessary information for a function that updates the par- 4 | r§+1: f“(rﬁ’a);
ticles weights. In this implementation, a particle’s weigh 10 end
considered to be a numeric valuegreater than 0. An ob- 11 s =Sense ();

servation consists on sensing the environment. Sensing is 12 | for j\;Hllto '\v/\lfdo -
done by using a simulated observation from the information %3 | Wi = W (s ),

. . . . 14 end
presenF in the internal map or by using the visual landmark for j = 1toM do
recognition method presented earlier. . wit
L+ = - "
Resampling occurs when a considerable amount of parti- 44 v SM WL

cles within the particle population have weight values thelo 17 end

athreshold and therefore have low contribution to the dvera 18 end

estimation of the robot’s position. The resampling process

recognizes particles with small weight valuyesthreshol d)

and replaces them with a random particle, whose weight

value is higher than the resampling threshgtd hreshold).

This random replacement minimizes the problem of diver4.3 Potential Fields

sity loss. When all particles have weights below the defined

threshold then a new random set of particles is generated. For path planning we use the Potential Fields appraach [10].
In our approach, at a certain timethe position estimate This approach is amply used for path planning and collision

is given by the best particle, i.e., the one in the the currer@voidance due to its mathematical simplicity and elegance,

particle set having the maximum weight value. There couldProviding acceptable and quick results/[12] in real-time-na

have also been used estimations of the robot's positiousirigation. This method is based upon the concept of attractive

a weighted mean considering all particles or a robust meand repulsive forces, where the goal is seen as a global min-

The robust mean is in fact the weighted mean limited by 4mum potential value (attractive force), and all obstaeies

small window around the best particle. high valued potential fields (repulsive force). The movemen
of the robot is then defined by the potential values presentin

The pseudocode for the Particle Filter algorithm is pre-itS path, moving ideally from high to low potentials. Exam-

sented in Figurgl7. The ESS function used in Figure 7 rep'Ies of potential field functions are: Khatib’s FIRAS func-

resents the Effective Sample Size and can be calculated b . . .
Equation [#). The coefficient of variatiqiv?) can be cal- l§)P(/>n [1Q], Superquadratic potential functidn_[26], and Har

. : : monic potential function [11].
culated by EquatiorL{5). The variabliesandi represent the - . I
total num{)e?of palgcl)es and thi& particle repspectively The pseudocode of the algorithm for the potential fields
Recall thatw represents a particle’s weiaht ' " is depicted in Figurl8. Our approach uses as basis the poten-
P P gnt. tial field functions presented byl|[6]. The potential field ¢un
tions used are defined as follovi;qq () denotes the total
- 4 scalar potential fieldia: (p) the attractive scalar potential
+ oV field; Urep(p) the repulsive scalar potential fielBota (p)
the total vector potential force which is equal to the negati
var(w(i)) 1M gradient () of the total potential fieldFa (p) the attractive
o = L)) = Z(M x w(i) —1)? (5)  vector potential forcefrep(p) the repulsive vector potential
i=

Fig. 7 Particle Filter Algorithm (adapted from
source:[[19]).

Esg— M

= ——
E= (e (i force; andp the position|x, y] of the robot.
Urotal (P) = Upit(P) + Urep(P) (6)
In the algorithm, lines 4- 7 are responsible for the Re-
% g Fae(P) = ~OUpu(p) )

sample phase; lines-810 are relative to the Prediction phase;
lines 11— 14 are for the Update phase; and lines-157 are ~ Frep(P) = —UUrep(P) (8)
used to normalize the weights of the particles.



Frotal (P) = Fatt(P) + Frep(P) EKF is a very complex computational task. Its compu-
U ou tational complexity scales quadratically with the numbler o
= —OUrota (P) = — [W’ d_y} (9 Jandmarks (features) in the map. EKF requires Jacobian cal-

culations and heavily involves matrix operations. Althbug
improvements over EKF have been proposed (e.g., the Fast-

Input : Robot Position (p), Goal Position (gp), SLAM [16] optimization), we adopt the EKF as a reference

Obstacle Positions (op[]) and representative solution.
Output: Directional Action Vector
1 while NotInGoal Position do 5 Experimental Results
2 Fait < AttractivePotentialForce (Ip, gp);
j ERZDN:REZTT ;‘;:;“entlamorce (tp. op(l): In this section, we present and discuss experimental sesult
5 Velocity « DetermineVelocity (Frotal); for representative approaches to the navigation probléms o
6 Angle — DetermineAngle (Frotal); mapping, localization, SLAM and path planning. Here, we
7 | UpdateRobotPosition (Velocity, Angle) ; evaluate the performance of the algorithms developed, by
8 end comparing executions between the used smartphones and a
Fig. 8 Potential Fields approach. desktop PC (equipped with an AMD Athlon 64 X2 Dual

Core Processor at 2.20 GHz with 1GB of RAM), and an-
- — alyzing the feasibility of using smartphones for real-time
The most difficult problem for the Potential Field method yzing ority ng P

autonomous navigation. A first study of performance was

knowrt1 af‘ the local mlnllQmaa hasEbeen adgresse(;. usllngvegbne with profiling results gathered from the Sun Java Wire-
cape techniques (e.g., Random Escape, Perpendicular Y&ss Toolkil PC MIDFH (Mobile Information Device Pro-
tor Escapel[25], Virtual Obstacle Concept Escapeé [17]). |

. g e) emulator. Next, we conducted several experiments on
order_ to prov!de a smoother rpbot movement, a Io_okahea{g:e field (environment shown in Figue 9).
function was implemented which prevents the mobile robot
from falling into local minima locations by detecting them i
advance. Other recognized problems and limitations of this
method include: difficulty in considering different obdtac
geometry, e.g., concave shaped obstacles; obstacle ggpupi
and closely positioned obstacles; and goals non-reachable
with obstacles nearby. Note, however, that the implemen-
tation studied in this work is considered representatil«, a
though being kept as simple as possible.

4.4 Extended Kalman Filter (EKF)

The most complex problem in mobile navigation is the si-
multaneous localization and mapping (SLAM). In this case,
the robot builds the map of the environment, while it tries to
localize itself on the map. Thus, the robot starts by neitheFig. 9 Field environment for testing of the navigation algorithms
having the map of the environment nor its localization.

One of the most well-known approaches to SLAM is . .
k . Complementary to the evaluation of the algorithms, an
the use of the Extended Kalman Filter (EKF) algorithm [9, .
assessment of the computational power for the two smart-

21]. We evaluate here the use of an EKF implementation .
) . : hones used was also conducted by analyzing both camera
based on the C implementation proposed.in [2]. The J2M :
.and low-level operations.

implementation uses float data types and emulates the in-
put robot’s position information from an internal odometer
and a set of landmarks from sensors. As output, it producegs 1 Smartphone Performance
improved robots position estimations and a stochastic map
based on landmarks (features). Those features are represdAME grants access to a phone’s camera through the Mo-
tations of physical objects such as corners, walls, etc.  bile Media API (MMAP) library, which provides audio,
A feature extractor generates the distance, the orienta-s yi-:7/5ava. sun. con/products/s jwtoolkit/
tion, and the signature of an observed landmark relative t0 6 nttp: //java. sun. com/products/midp/
the robot’s locak — y coordinates. 7 lhttp://java.sun.com/products/mmapi/
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video and other multimedia support to resource constrainegossible to meet real-time requirements, and showing the
devices. Applications which rely on image acquisition andneed for fast video acquisition in order to access individua
processing, to be successful, need the underlying device feames at high rates. Also noteworthy and without apparent
be able to execute heavy algorithms as well as acquire imustification is the fact that both models present an acquisi
ages at a significant acquisition rate. Factors like image pr tion time drop for the 646 480 resolution.
cessing and camera performance in J2ME should be care- Regarding J2ME processing performance in the N80 and
fully analyzed as they carry possible bottleneck implimasi  N95, we measured the processor’s execution time for basic
for the feasibility of applications that use them. low-level operations to determine the overall speed and to
Considering the evaluated smarpthones, the Nokia N9Rmlentify the fastest and slowest operations. Operaticstede
boasts a Texas Instrument's OMAP2420 chipset, contrastonsidered integer data types and consisted on: access an ar
ing with the Nokia N80 which features an OMAP1710. Theray; increment a variable; add two variables; use bit siift o
former, OMAP2420, features an ARM1136 processor corerators to multiply and divide by a power of two; and com-
clocked at 330 MHz whilst the latter, OMAP1710, featurespare two variables (equal, less or equal, less).
an ARM926TEJ clocked at 220 MHz. The results presented in Figlird 11 reveal average execu-
Considering camera performance it is important to notion times for each operation, obtained by measuring indi-
tice that current MMAPI implementations do not support thevidual repetitive runs.
access to frames in video capture mode, preventing a stream-
oriented video acquisition. Nevertheless, MMAPI enabl

. - EN95 M N8O
video snapshot acquisition. MMAPI also allows the acce
i : ) 1000.00
to RGB pixel values from an image in order to procet
with data processing. These correspond to the steps reqgt z
in order to execute some useful computation over a gi E 100.00
image, and as such the combined total time can be in =
preted as representing the acquisition time [24]. Fijute £
illustrates the average acquisition times obtained foritlek g 1000
N80 and N95 models. °© l jl
1.00 -
-- N95 —8—N80 < . P
é‘z"" @z“ ,_)o(o ‘_;0& £° ;\\':;° N %o?o
12000 11120 *\?. & ¢ X s
3 & L o
» & A\ &‘0 &
9181 yd v Y v
% 10000 7
£ - 7514 7571 ,—‘~\ , Fig. 11 Operation times regarding some low-level operations.
g 8000 o e < 6868
i 4
S 6000 ) ) o
= 1333 3999 4164 For the operations considered, division is the slowest op-
2 . . .
5 4000 2900 | 296 " eration in both smartphone models followed respectively by
5 | " -t . .
< 2000 array accesses, comparison operators and finally the other
o arithmetic operations. Although the N80 and N95 feature

different base ARM processors and one expected to see bet-
ter performance from the latter, it was still surprising é&s
that regarding the less or equal operation the N95 was more
Fig. 10 Image acquisition time for different image resolutions. than three times slower than the N80. Regarding the remain-
ing operations it is possible to see a clear performance-supe

It should be noted that the N80 and N95 smartphoneE.lorlty from the N95.
boast different cameras, respectively with 3 and 5 megapix-
els, and also with unique sets of characteristics, suchtas au
focus and red-eye reduction, that could not be directly mas.2 Mapping
nipulated using the API. In order to provide accurate result
regarding camera performance, it would have been impoMe show here mapping experiments that test the application
tant to control such features. We were unable to achieve inof the Visual Landmark Recognition method while trying to
age resolutions superior to 883600, since higher resolu- map the environment presented in Figuke 9. Tests executed
tions requests generated a media exception. indicated good identification of the landmark colors, ad wel
Both models present relatively high acquisition timesas possible problems due to illumination variations, which
even for such low resolutions as 1820, making it im-  were the main sources for the incorrect identifications.

160x120 200x150 320x240 400x300 640x480 800x600

Image Resolution



Figure[I2 presents profiling results for capturing an im-
age and applying the landmark recognition stages. As can
be seen, most of the time was consumed on two stages: 51%
of the execution time was spent on color segmentation, and
21% on camera image capture.

" Cameralmage———— Others A
Capture 11%
27% / ’
6
= Distance and 10 5
-/ Orientation 1 4

14

W=

12

Calculation
5%

Color
14 1

Segmentation \ ® |mage Noise
S1% Reduction Fig. 13 Mapping results with estimated landmark positions.

6%

Fig. 12 Contribution to the overall execution time of each step eisso ) . . . .
ated to the Visual Landmark Recognition algorithm. The visual sensing revealed itself as time demanding

and cannot, without further optimizations, be used to nav-

o ) igate mobile robots at high speed. Nevertheless, consigleri
~ Table[1 compares the execution time obtained when rung gjo\wer motion, this solution was able to provide a mecha-
ning the algorithms on the PC, on a Nokia N80, and 0nism for mobile robot mapping.

a Nokia N95. Obviously, the PC is the fastest to execute

the application. Comparing the two smartphones, execution

time is slower in the Nokia N95 compared to the N80. Asg 3 |_gcalization

seen in previous testing, the N95 has a more complex built-

in camera with higher resolution, making it slower whengxperiments for Localization were conducted considering

capturing an image with J2ME. only a global localization approach based on the Partidie Fi
ter method.

Table 1 Execution time measurements for the Visual Landmark . For profiling the Particle Fllter|mplementat|(_)n,we con-

Recognition method. sidered a total number of, @00 particles and using the en-

vironment in Figuré&_T4.

PC Nokia N80 | Nokia N95
[ Execution timglms) | 45300 | 3,07940 5,82430

Using a single captured image and considering a good
landmark detection and color segmentation process, the dis
tance calculation revealed quite accurate presenting an av
erage relative error of.82%. The angle orientation mea-

surement revealed reasonably accurate with an average rel-

ative error of 1006%. When testing on-the-field, the robot’s

physical movement and variable lighting conditions préven

the method from achieving its best results. Although this so | I

lution cannot be considered a very reliable method for ac-_ _ ] _ _

curate mapping purposes in real-time moble robot navigal il OScuna 0 mep o Paree Fter (GGG i o

tion, it presents typical mapping tasks and it is used here as

a benchmark for studying the performance obtained by the

two smartphones used. Also, we consider that the robot position estimation is
Figure[I3 shows the achieved mapping accuracy usingnly performed at the end of the mobile robot’s predefined

Visual Landmark Recognition on the environment presentedchovement. Figure_15 presents the percentages of execution

in Figure[9. The grid depicts the obstacles as black coloretime of the main phases of the Particle Filter method. Ta-

cells, obstacle estimates calculated in the cells markéd wi ble[2 presents the execution time comparison when running

an "X”, and the path taken by the mobile robot is presentedhe implemented localization approach on a PC, on a Nokia

marked with numbers. N80, and on a Nokia N95.




____—— " Prediction The random initialization of the particles is a character-
P:;;e istic that makes the method difficult to predict, by provid-
ing very different results on different runs of the algomith
= Other since areas in the environment can be highly populated with
2% \ particles while others deprived from them (see experiments
— #1 to #5 in TabléB). One possible solution to this problem
is the increase of the number of particles, but with high ad-
Resample—" ditional computational costs. Figule]16 shows the elapsed
thse time for each loop iteration considering three sets of parti
9% cles (100, 1000, and 10000) for five sizes of the occupancy
———— = Update Phase grid (50x 40, 64x 64, 128x 128, 256x 256, and 50& 400).
41% These measurements are related to the execution of the par-

Fig. 15 Contribution to the overall execution time of each phaséeft ticle filter algorithm with the Nokia N95.
Particle Filter.

W50x40 (1) ™ 64x64(2) M128x128(3) M 256x256 (4) M 500x400 (5)
1000000

Table 2 Execution time measurements for the Particle Filter method

PC Nokia N80 | Nokia N95
|Time(ms) 78.00 | 3,61800 1,72500

100000

According to the experiments, the phase responsible fc
the highest percentage of execution time was the Predictic
phase with 48%. The Update phase followed with 41%. Fi
nally, and considering the number of particles used and the 1000
distribution within the environment, the Resample phas& to
9% of the total execution time. The last 2% is spent by aux 100 |
iliary tasks and by the attainment of the pose estimate (ce 100 1000 10000
culating the best particle). # particles

Our next experience uses the Particle Filter method t@ig. 16 Particle Filter iteration elapse time for a variable numbgr
localize the mobile robot in the environment presented imparticles and map size.

Figure[9. The localization approach is implemented as a dis-
tributed system, were the Particle Filter approach is ebegtu ) .
on a Nokia’s N95 smartphone, considerin®Q0 particles; For a 500< 400 map and using 1000 particles, the al-

and the measurement model as a visual sensor with the |anggrithm requires ¥s to perform the particle filter stages.
mark recognition method, running on the Nokia N80 This result makes evidence that the smartphone is able to

effectively use the particle filter algorithm in real-timer f

Results for five executions of this field experiment are . ) . ) L
presented in Tablgl 3. Consider that the positions are givef P> of this or lower dimension and using a significant num-

asx—y coordinates an@ orientation:[x;y; 8]. The robot’'s ber of particles.
real position at the end of the predefined patfYi®; 90].

10000

Elapsed time (ms)

5.4 Simultaneous Localization and Mapping

Table 3 Estimations for the same real positiof7;0;90]) for tests

on-the-field using the Particle Filter method. As previously referred we tested an EKF solution to deal
Experiment| Best Particle Positior] with the SLAM problem. The EKF uses heavily 2-D matrix
#1 [4,0;90] operations such as multiplications, transpositions, f&tg-
#2 [7;0,90] ure[1T shows the execution time of each iteration of the main
zj 515(1)3 gg% loop of the EKF varying the number of features (landmarks).
#5 0; 11 180] As can be seen, the number of features influences tremen-

dously the execution time (a quadratically increase with th
number of features, as expected) and may impose unaccept-

By analyzing Tablé13, we can observe that one of theable delays between successive readings of sensor data. De-
experiments estimated the robot to be at its exact physicabite the heavy use of 2-D matrixes and operations between
location. In the other four experiments, three were reddyiv. matrixes, the EKF implementation was very stable for the
close to the robot’s real position, and the last one was verjwo smartphones used in the experiments. Once again the
far from it. N95 model achieved better performance than the N80.
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-4-N80 -#®-N95 2624.9 the PC presents the lowest execution time, followed by the
v . . .
773.93." Nokia N95 and finally by the Nokia N8O.
1000 7

126732
z 12453, o
@ 100 5505 ‘_4419&957 Table 4 Time measurements for the Potential Fields algorithm.
-E 25.53 32.04 _.0" 104.33 . .
- 14.73 oome==2""""c1 49 PC Nokia N80 | Nokia N95
2 e-""Tm-""T3307 Avg. Step Timg(ms) | 1100 377.00 27875
§ 10 ¥~ 1555 Total Time(ms) | 7,66460 | 25344275 | 187,88275
o 8.02

1 T T T T T T
30 50 100 150 200 300 1000
# features |l| ®

Fig. 17 EKF execution time for a variable number of features. ‘

trix multiplications (92% of the overall execution time is
typically spent by this operation). Figurel18 illustratbs t

contribution of the more significant functions of the EKF
@

=T

The profiling results show the heavy impact of the ma- I

when not considering the 92% spent by the matrix multi-
plications. The most time consuming function of the second
group are the matrix subtractions (30%), followed by matrix
prediction (14%), addition of features (14%), transposisi
(13%), and realloc 2D (12%).

Fig. 19 Environment used for Potential Fields profiling (map size of
EKF Main add feature 600x 500, with robot initial location at the bottom left and tarépra-
2% 14% tion at the top right).

\
update
2% When performing experiments on-the-field, the robot re-
\ \m.t states  vVealed some strange orientation changes when avoiding ob-
2% stacles. This fact was never very noticeable in the simula-

tions performed. We concluded that, even in the absence of
local minima locations, some raw directional vectors cdanno

Math.abs tcomp
3% 1% _

get_observation_— 4
2%

realloc2D_— 4
12%

Matrix
Transpose " Vatri be directly applied for the robot’s movement. Some of these
13% \Subtfaz'.;on dir_ectional vectors force the robot to perform expensive ro
30% tations that need to be smoothen beforehand.

predict
14%

Fig. 18 Contribution of the EKF functions regarding the 8% of the
overall execution time (the remainder 92% is spent with matulti-
plications).
5.6 Summary

5.5 Path Planning Globally, the experiments revealed a considerable robust-

ness of the current JVM available in the mobile devices used
The next experiments analyze the Potential Fields. For thiand the potential for those devices to execute complex nav-
particular implementation, we used a lookahead value of tgation algorithms. However, the current state of the J2ME
for local minima detection and the Virtual Obstacle Concepplatform makes it difficult to provide more efficient imple-
escape technique. This preemptive detection is respensibinentations of the algorithms used, especially when video
for about 79% of the overall execution time, while the po-acquisition is needed, which can be seen by the execution
tential calculations for the effective next movementodesp times presented. Nevertheless, the execution of complex al
the remaining 21% of the total time. Table 4 shows the exegorithms is possible and there is still room for further im-
cution time for the path presented in Figliré 19. As expectechrovements (e.g., code optimizations).
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6 Conclusions

The work presented in this paper focused on a study of the?
viability to accomplish autonomous navigation with smart-

phones and J2ME. Tests with well known navigation al-10.

gorithms (e.g., potential fields, particle filter, and exted
Kalman filter) have been performed. To achieve realistic ex-

periments, we use a mobile robot controlled by a smart-""

phone, which is able to execute complex and computation-

ally intensive navigation algorithms and communicate with12.

the robot viaBluetooth. The other smartphone is used as an
intelligent visual sensor.

The mobile implementation of the algorithms revealedis.

high consistency and robustness. The experiments on-the-
field show that it is feasible to execute navigation algonish

in high-end smartphones, especially with soft real-time re
quirements. The current processing capabilities of smart-

phones and J2ME can fully fulfill acceptable time require-15.

ments in environments where the smartphone might be usel%
to assist user navigation (e.g., tourist exploring an utifam
city, customer looking for a store at a shopping center).

From the experiments performed for visually recogniz-17-

ing a landmark, it is clear that future enhancements of J2ME
should include the capability to acquire video streamind an

to access individual frames. The current implementation igs.

required to perform single image capture, which is too slow
for most requirements needing real-time video processing.

19.
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