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Abstract Rotating machines are frequently subject to a wide range of rough
conditions, resulting in mechanical failures and performance degradation. Thus,
it is important to apply proper failure detection and recognition techniques,
such as machine learning algorithms, to prevent these issues early. In industrial
environments, little data exists regarding failure conditions, which hinders the
training stage of the classification algorithms responsible for classifying the
failures. Therefore, this work proposes a hybrid method of data augmentation
to increase the number of minority class instances in order to improve classi-
fier performance. The approach combines the synthetic minority over-sampling
and the additive white Gaussian noise techniques to create a set of artificial
signals. The results show that the proposal is able to achieve better results than
applying those techniques separately and also when using an undersampling
strategy. For comparison purposes, four machine learning classification meth-
ods were analyzed alongside our data augmentation proposal, namely, support
vector machines, K-nearest neighbors, random forest and stacked sparse au-
toencoder. The proposed hybrid data augmentation method associated with
stacked sparse autoencoder outperformed the other models obtaining an ac-
curacy of 100% and a processing time of 0.13 s.

Keywords Data augmentation · Combined failures recognition · Imbalance ·
Misalignment · Rotating Machines · Predictive maintenance.

1 Introduction

Rotating machines are widely employed in modern industry. However, they
are frequently subject to a wide range of conditions, such as frequent load
changes and high speeds (Qian et al., 2019) that result in performance degra-
dation and mechanical failures (Li et al., 2020b). Consequently, a key industry
issue is to provide system e↵ectiveness and reliability through accurate fault
diagnosis (Yu et al., 2019). These allow for unexpected failures and unsched-
uled downtime to be minimized, saving unnecessary extra costs.

Applications involving fast and intelligent fault diagnosis methods are of
significant interest, as can be seen in the works (Li et al., 2019; Wang et al.,
2020; Martins et al., 2021). A variety of sensors have also been employed
to measure dynamic responses (Goyal et al., 2019). A possible non-invasive
solution to e↵ectively measure the di↵erent levels of degradation is through
vibration signal estimation. Note that failure recognition and detection from
mechanical vibration analysis enables proper maintenance measures at early

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
email: rhramirez@oceanica.ufrj.br
ORCID: 0000-0003-4768-3243

Diego B. Haddad
Federal Center for Technological Education of Rio de Janeiro, Rio de Janeiro, Brazil.
email: diego.haddad@cefet-rj.br
ORCID: 0000-0002-7634-5481

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Hybrid data augmentation method 3

stages (Glowacz, 2018). The most frequent failures that a↵ect the useful life
of rotating machines are imbalance and misalignment (Bai et al., 2019; Guan
et al., 2017).

Misalignment is usually due to improper installation, thermal variation,
asymmetric loads, amongst others (Hujare and Karnik, 2018). These result in
increased loads on bearings and couplings, the parts connected to the shaft.
Misalignment usually worsens with continuous operation and requires peri-
odical monitoring in order to be corrected (Verma et al., 2014). One possi-
ble strategy for determining misalignment is to employ vibration spectrum
analysis. This is a reliable method that also enables the identification of im-
balance faults. Various methodologies have been applied in the literature ad-
dressing this issue, such as (Klausen et al., 2018; Djagarov et al., 2019). For
instance, (Yamamoto et al., 2016) proposed using an intelligent algorithm em-
bedded in a Field Programmable Gate Array (FPGA) to correct imbalance
faults. The work (Djagarov et al., 2019) designed a Supervisory Control and
Data Acquisition (SCADA) system for monitoring electric motor failures in
ships.

Other references, such as (William and Ho↵man, 2011; Yu, 2019), success-
fully applied signal processing methods to fault detection. Recently, many au-
thors, such as (Srinivas et al., 2019; Dekhane et al., 2020), have addressed the
problem of measuring, identifying, and quantifying combined faults in rotating
machines. Machine learning and statistical techniques also exist for tackling
these issues, namely (Yang et al., 2019; Zhang et al., 2020a).

A review on data-driven fault severity assessment in rolling bearings was
presented in (Cerrada, 2018). The work mentions a series of techniques that can
be employed to assess the state of an electric engine based on digital signal pro-
cessing and intelligent algorithms, namely: artificial neural networks, support
vector machines, clustering, Markov models, fuzzy logic, linear discriminant
analysis, Gaussian mixture models and probabilistic based approaches. One
possible way for developing prognostic systems is to consider the remaining
useful life of an asset, which can be estimated by fault classification tech-
niques (Si et al., 2011). Fault classification can be divided into model-based
approaches (Srinivas et al., 2019; Wang and Jiang, 2018) and data-driven
methods (Dekhane et al., 2020; Li et al., 2017), the latter being the focus of
this paper. Typically, statistical data-driven approaches for fault classification
apply stages such as (i) data acquisition; (ii) feature extraction; (iii) fault
identification; and (iv) fault severity estimation (Martins et al., 2019). Ma-
chine learning techniques are susceptible to su↵er from overfitting issues. This
is especially true in the case of learning from rare events (Oh and Jeong, 2020).
Data augmentation schemes can be employed to reduce this issue (Li et al.,
2020c).

In (Jin et al., 2021) a technique is presented based on deep learning to
identify vibration signals composed of simple and combined failures related
to bearing faults. The dataset used in this paper is composed of eight classes
composed of three simple failures, four combined failures and one class corre-
sponding to normal operating conditions. The algorithm employs active learn-
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4 Diońısio H. C. S. S. Martins* et al.

ing in order to overcome a lack of labeled instances. The article also proposes
an automatic way of extracting features to reduce the intervention of a spe-
cialist in the initial choice of the feature set. The authors also apply a feature
selection technique to choose the most relevant ones and thus reduce the num-
ber of input signals in the classifier. The algorithm achieved 100% accuracy,
outperforming convolutional neural networks and long short-term memory al-
gorithms.

In (Xiao et al., 2021) a system was designed based on deep learning using
a denoising autoencoder to solve the problem of noisy domain shift in failure
identification. This work made use of two datasets consisting of acoustic sig-
nals, one referring to gear faults and the other to motor faults. Noisy data
was generated through additive white Gaussian noise (AWGN) and binary
masking. Classification-wise, the proposed algorithm performed well even in
the face of contaminated signals with high noise levels. The training time of
the proposed algorithm was also lower when compared to other deep learning
algorithms.

In (Shao et al., 2017) the authors propose an Auxiliary Classifier Gen-
erative Adversarial Network (ACGAN) to create new and realistic synthetic
observations directly from sensor data. The method is applied for fault detec-
tion and classification in rotating machines. The authors made use of a rotor
kit with one accelerometer for data gathering. Six conditions were simulated:
normal, stator winding defect, imbalanced rotor, bearing defect, broken bar,
and bowed rotor. The minor class had 100 samples, while the rest of the classes
had 200 instances. Di↵erent training data settings using real data and gener-
ated data were used to produce 12 di↵erent scenarios. The baseline scenario
employed 200 samples of real data alongside zero instances of generated data
and achieved an accuracy of 99.80%. When 200 samples were used from real
data in conjunction with 200 generated samples the system produced 99.93%
accuracy. Classification accuracy reached 100% when 200 real samples were
used alongside 600 generated ones.

In the work of (Rashid and Louis, 2019), AWGN was used to augment
the positioning and movement data which were collected from GPS and gy-
roscope devices. The sensors were installed in heavy-duty vehicles to evaluate
the optimal usage of civil construction equipment through deep learning meth-
ods. The goal of the authors was to reduce costs in civil constructions. The
idea of creating a new dataset using data augmentation techniques can also
be found in (Rochac et al., 2019). The authors applied AWGN to develop
several new training data from an original limited set consisting of infrared
camera images and further train di↵erent deep learning models. The authors
gave special attention to the signal-to-noise ratio (SNR), experimenting with
ten di↵erent SNR values to demonstrate the respective influence on accuracy.
These results were then compared to those obtained using Synthetic Minority
Oversampling Technique (SMOTE) (Chawla et al., 2002). In the latter, the au-
thors performed experiments using SMOTE to enlarge the minority class after
having undersampled the majority classes in order to analyze performance in
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Hybrid data augmentation method 5

the ROC space. The experiments were performed with three di↵erent classifier
algorithms.

In (Arslan et al., 2019), a dataset of humidity, temperature, light intensity,
and air quality was preprocessed through AWGN and SMOTE data augmen-
tation techniques and further used to train a classifier algorithm. The results
suggested a better accuracy when using SMOTE than AWGN for this config-
uration. The work (Fernández et al., 2018) presents a literature review and
approaches some of the relevant aspects of the SMOTE technique. In (Wang,
2008) the authors successfully increased classification accuracy by combining
SMOTE and a Biased-SVM when applied to four other imbalanced datasets
available at the UC Irvine (UCI) machine learning repository. The results
suggested that classifier sensitivity to minority classes was improved by the
SMOTE algorithm. It is also possible to create variations of the SMOTE tech-
nique as proposed by (Li et al., 2011). Instead of selecting the K-nearest
neighbors (K-NN), the authors selected three real random samples to create
a triangle. The triangle is then filled with a defined quantity of lines, and each
of these lines will finally contain a defined synthetic amount of data points.
This process was entitled Random-SMOTE, whose objective was to pursue
a more uniform distribution of synthetic items throughout the minority class
space. In (Ali et al., 2019) the influence on the model accuracy was analyzed
after SMOTE was applied to enlarge the minority class of a vibration dataset.
The results were comparable to the previous works, which used AWGN as the
augmentation approach. The authors used a multilayer perceptron (MLP) to
classify the rotating machine faults.

Variational Autoencoder is an additional data augmentation technique
based on deep learning. The method allows for the reconstruction of the cre-
ated examples in the data space. However, the approach is known for pro-
ducing distorted reconstruction when the signal is noisy (Burks et al., 2019).
The method is also di�cult to train due to the required hyperparameter tun-
ing process and the high execution computational cost (Asadi et al., 2009;
Shorten and Khoshgoftaar, 2019), which requires the use of clusters and/or
GPUs.

Generative artificial neural network is another deep learning method that
has been used for data augmentation in several areas. However, the use of the
technique has some limitations, namely: (i) it requires a large amount of origi-
nal data to carry out training (Yu et al., 2021), which is not always possible, as
is the case of this research; (ii) it is subject to instability and non-convergence
of the algorithm in cases where the generator produces large outputs; and
(iii) it generates examples that are not consistent with the physical nature of
the real data (Shorten and Khoshgoftaar, 2019; Miko lajczyk and Grochowski,
2018).

As mentioned in the previous paragraphs, the performance of deep learn-
ing techniques is susceptible to su↵er from a lack of training examples in what
concerns failure conditions. Therefore, it is pertinent to propose a data aug-
mentation method for those classes whose instances are lacking, which is: (i)
stable when using parameter adjustment methodology; and (ii) does not re-
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6 Diońısio H. C. S. S. Martins* et al.

quire high-performance computational resources. The main contributions of
this paper are summarized below:

1. Most of the research focusing on fault diagnosis in rotating machines only
considers the identification of single faults. However, in this work, the ob-
jective is to identify and di↵erentiate single failures from combined failures.
These are situations that can occur in industrial environments. Further-
more, this task is more complex than the identification of isolated faults.

2. Compute the influence in classifier performance of preprocessing approaches
such as features normalization, undersampling, and data augmentation us-
ing white noise and SMOTE.

3. Develop a novel hybrid data augmentation method using SMOTE and
AWGN to increase the number of minority classes instances with the ob-
jective of improving classifier performance.

This paper is structured as follows. Section 2 presents a description of the
proposed methodology, detailing the dataset as well as the feature extraction
process. A theoretical foundation regarding the main concepts treated in this
research is briefly explained in Section 3. Section 4 describes the e↵ectiveness
of the proposed method. The concluding remarks are reported in Section 5.

2 Case Study

Industrial rotating machines are usually involved in production processes.
Production stoppage might cause significant financial losses and even damage
the equipment. This makes it unfeasible to cause failures in these apparatuses
for study purposes. An adequate study of the problems a↵ecting this type
of machines requires a large dataset covering di↵erent types and severities of
breakdowns. Creating such a dataset can be very time consuming and even
impossible for the most critical operating conditions.

In this sense, two approaches can be taken, namely: (i) place the rotating
machine on a test bench for the purpose of inserting faults and recording
the corresponding vibration signatures; and (ii) employ bench simulators of
rotating machines. The former is impractical given the potentially high cost
of the machine and elevated execution time associated with preparing and
assembling the failures. As a consequence, laboratory tests are more expensive.
The second approach enables the insertion of failures in a more convenient way,
which results in time and execution savings (Villa et al., 2012).

As a result, the experimental bench Alignment Balance Vibration Trainer
(ABVT) was employed in this study to produce simple and combined faults.
This experimental bench is composed of a 0.25 hp DC motor, two rolling
bearings, a thin shaft, a sliding surface, a rigid coupling, and an inertia disc
positioned in the center hug configuration (between the rolling bearings), as
shown in Figure 1. The simulation bench was used in an environment with a
controlled temperature in the range of 22 °C to 27 °C. Before starting to record
and monitor the signals, the engine was in operation for 10 minutes to ensure
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Hybrid data augmentation method 7

that it was properly prepared. Signals that presented vibration values outside
the expected range were discarded and replaced with a new recording. The
module used to record the vibration and tachometer signals was the signal
acquisition module (NI 9234), manufactured by National Instruments. This
module converts the analog signals from the sensors into digital voltage or
current signals. The main features of the module sensor are 24-bit resolution, a
maximum sampling frequency of 51.2 kHz, 102 dB dynamic range, anti-aliasing
filter, operating temperature range of [-40, 70] °C, and signal conditioning
for piezoelectric sensors. The Labview™ software was used to implement the
interface between the acquisition module and the computer. This interface
enables viewing the signals of each channel during the acquisition step to
avoid recording errors.

Motor
Rigid

coupling

Tachometer

Accelerometer

Sliding surface
Internal bearing

Rotor shaft

Inertia disc

External
bearing

Fig. 1 ABVT Experimental bench.

The scenarios studied in this research are: (i) normal behavior; (ii) im-
balanced rotor; (iii) imbalance rotor with added horizontal misalignment; and
(iv) imbalance rotor with added vertical misalignment. Imbalance is provoked
in the ABVT by fixing screws on the inertia disc. Vertical misalignment is
produced by adding metal plates at the base of the DC motor. Horizontal
misalignment is inserted by shifting the base of the motor and measuring ro-
tational speed using a digital tachometer, as shown in Figure 2.

The vibration signals were acquired and stored. Because the acceleration
signals are quite noisy, which can negatively a↵ect the fault diagnosis stage,
they were filtered by a bandpass Hamming window whose cuto↵ frequencies
are 10 Hz and 1000 Hz. Subsequently, the discriminative characteristics of the
signals were extracted as a means of reducing the amount of input information
to be presented to the classifiers. The last step was to compare the classification
performance behavior of four algorithms. This allowed us to better grasp of
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8 Diońısio H. C. S. S. Martins* et al.

(a) Insertion of imbalance. (b) Insertion of horizontal misalignment.

(c) Insertion of vertical misalignment

Fig. 2 Faults insertion.

the e↵ectiveness of the proposed hybrid data augmentation method against
AWGN and SMOTE.

2.1 Dataset

Table 1 presents the details of the dataset produced, which consists of 238
signals. These were recorded by changing the motor rotational speed using 2
Hz steps in the range f 2 [16, 60] Hz. The maximum frequency employed is due
to the operating limits of the simulation bench. The imbalance values listed
in Table 1 indicate the masses (in grams (g)) that were placed on the inertia
disc. The horizontal and vertical misalignments measures are in millimeters
(mm) and correspond to the movement of the motor base when compared to
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Hybrid data augmentation method 9

its initial position. The ‘Label’ column indicates the class that describes each
scenario.

The vibration signals were measured at the internal bearing, which is closer
to the DC motor. Digital data was acquired at the sampling frequency of 50
kHz for 3 seconds. Three uniaxial piezoelectric accelerometers, manufactured
by IMI Sensors, were employed to obtain vibration signals in perpendicular
directions: axial, horizontal, and vertical. The main characteristics of this sen-
sor are: sensitivity (100 mV/g (20%) ); frequency range ([0.27, 1000] Hz); and
acceleration measurement range ([-50, 50] g, in this case g is approximately
9.8 m/s2). In order to measure the rotational speed of the shaft motor, the
tachometer MT-190 was used, which is produced by Monarch Instrument.

Table 1 Dataset description.

Scenarios
Signals Details

Quantity Speed (Hz) Label
Normal 115 [16, 60] No
Imbalance (6 g) 23 [16, 60] I
Imbalance (20 g) 18 [16, 50] I
Imbalance (6 g) + hor. misalignment (1 mm) 23 [16, 60] IHM
Imbalance (20 g) + hor. misalignment (1 mm) 18 [16, 50] IHM
Imbalance (6 g) + ver. misalignment (1.27 mm) 23 [16, 60] IVM
Imbalance (20 g) + ver. misalignment (1.27 mm) 18 [16, 50] IVM

2.2 Feature extraction

One of the main preprocessing steps in fault diagnosis is feature extraction
of the vibration signals (Razavi-Far et al., 2017; Xu et al., 2019). The fault sig-
nature can be understood as a set of symptoms associated with a defect, and
these are directly related to certain features from the vibration signals (Cer-
rada, 2018). Feature extraction also reduces the amount of information to be
used as input to the classifier. For contextualization, in this research, if this
preprocessing step were not to be used, the classifier would receive 150,000
samples referring to each of the sensors used. This would unnecessarily increase
the computational cost of the classification task and impair its accuracy due
to the excess of information (Bramer, 2007). In this work, features are used in
time and frequency domains (Pandya et al., 2013; Dhamande and Chaudhari,
2018), as shown in Table 2 where:

– x(n) is the time domain vibration signal;

– N is the length of the time domain vibration signal;
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10 Diońısio H. C. S. S. Martins* et al.

– E denotes the expected value operator;

– p(zn) corresponds to the probability of x(n) being equal to the possible
values of sequence zn;

– s(k) is the vibration signal spectrum obtained by the application of Fast
Fourier transform (FFT) in x(n);

– K is the number of samples of s(k);

– p(zk) corresponds to the probability of x(k) being equal to the possible
values of sequence zk;

– Rf is the rotational speed frequency obtained by the FFT of the tachome-
ter;

– Am(Rf ) denotes the maximum value of s(k) at the Rf of the rotating ma-
chine;

– N/A stands for not applicable;

with the exception of the Rf indicator, which represents only a single fea-
ture, each one of the remaining indicators in Table 2 is calculated for the
axial, horizontal, and vertical directions. This results in 48 time-domain and
60 frequency-domain features, thus producing a feature vector with 109 ele-
ments.

2.3 Features normalization

In statistical studies, normalization is used to standardize data and to op-
timize data processing (Suarez-Alvarez et al., 2012). In machine learning, nor-
malization plays a significant role when attributes can hinder data processing
(e.g., redundant or extreme values). Normalization is a way to standardize and
minimize problems that originate from such dispersions or redundancies. The
process allows for (Walpole and Myers, 2012): (i) e↵ective data processing; and
(ii) ignoring inconsistent data. Normalization can improve the performance of
classifiers such as SVM, K-NN, and RF (Canbaz and Polat, 2019; Sikder et al.,
2019).

Preliminary simulations in the dataset employed in this work show that
Minimum-Maximum (min-max) normalization performs better than Z nor-
malization. Thus, in the simulations, only the min-max normalization was
applied. This technique, respectively presented in Equation (1), normalizes
the values through their minimum and maximum values, separating them at
fixed intervals to provide more e↵ective processing (Polat, 2020).
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Table 2 Extracted features at time and frequency domains, with ↵K ,
p

K(K�1))
K�2 .

Feature Time Frequency

Maximum T1 = max (x(n)) F1 = max (s(k))

Minimum T2 = min (x(n)) F2 = min (s(k))

Mean value T3 =
PN

n=1
x(n)
N F3 =

Pk
k=1

s(k)
K

Variance T4 =
PN

n=1
(x(n)�T3)

2

N�1 F4 =
PK

k=1
(s(k)�F3)

2

K�1

Standard deviation T5 =
p
T4 F5 =

p
F4

Root mean square T6 =
qPN

n=1
(x(n))2

N F6 =
qPK

k=1
(s(k))2

K

Kurtuosis T7 = E[x(n)�T3]
(T5)4

F7 = E[s(k)�F3]
(F5)4

Unbiased skewness T8 =
p

N(N�1))
N�2

E[(x(n)�T3)
3]

E[(x(n)�T3)2]3/2
F8 = ↵K

E[(s(k)�F3)
3]

E[(s(k)�F3)2]3/2

Signal energy T9 =
PN

n=1
|x(n)|2

N F9 =
PK

k=1
|s(k)|2

K

Amplitude range T10 = T1 � T2 F10 = F1 � F2

Entropy T11=�
PN

n=1p(zn) log2 p(zn) F11=�
PK

k=1p(zk) log2 p(zk)

Crest factor T12 = max|x(n)|
T6

F12 = max|s(k)|
F6

Shape factor T13 = T6PN
n=1

|x(n)|
N

F13 = F6PK
k=1

|s(k)|
K

Impulse factor T14 = T1PN
n=1

|x(n)|
N

F14 = F1PK
k=1

|s(k)|
K

Margin factor T15 = max |x(n)|✓PN
n=1

p
|x(n)|
N

◆2 F15 = max |s(k)|✓PK
k=1

p
|s(k)|
K

◆2

Defect factor T16 = T1 � T6 F16 = F1 � F6

Rotational frequency N/A F17 = Rf

Amplitude at Rf N/A F18 = Am(Rf )

Amplitude at 2Rf N/A F19 = Am(2Rf )

Amplitude at 3Rf N/A F20 = Am(3Rf )

Amplitude at 4Rf N/A F21 = Am(4Rf )

fenorm =
fe�min (fe)

max (fe)�min (fe)
, (1)

where fe is the original feature vector, min(fe) is the lowest value of vector fe,
max (fe) is the highest value of fe and fenorm is the normalized fe vector.

3 Theoretical foundations

This section presents the theoretical background for the development of
the hybrid approach, namely: Section 3.1 presents an explanation of rotating
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12 Diońısio H. C. S. S. Martins* et al.

systems and a respective dynamic model; Section 3.2 describes the imbalance
whilst Section 3.3 details the misalignment e↵ects; Section 3.4 presents the
data augmentation methodology and Section 3.5 elaborates on the classifica-
tion methods employed.

3.1 Mechanical Model of rotating machines

In general, a rotor-coupling-bearing system is represented by a second-order
di↵erential equation as described by (Desouki et al., 2020):

Mq̈+Cq̇+Kq = f(t), (2)

where M is the mass matrix, C is the damping matrix, and K is the sti↵ness
matrix. The vector of generalized coordinates is given by q, with its first and
second derivatives with respect to time t given by q̇ and q̈, respectively. While,
the external forces are represented by the vector f(t).

Imbalance and misalignment are the main sources of vibration in rotat-
ing machinery. The vibration caused by these phenomena may destroy critical
parts of the machine, depending on its amplitude. Considering those phenom-
ena responsible for the excitation forces perceived in the coupling of the driver
and driven shafts, the vector of external forces is given by (Desouki et al.,
2020):

f(t) = fimb(t) + fmis(t), (3)

where fimb(t) is the component due to imbalance and fmis(t) is the component
caused by parallel or angular misalignment, or even a composition of them,
and t is time (Wang and Jiang, 2018; Xu and Marangoni, 1994; Wang and
Gong, 2019).

3.2 Imbalance in rotating machines

According to (Desouki et al., 2020), imbalance occurs when the center of
mass of a rotating assembly does not coincide with the center of rotation. The
ISO 21940-1:2016 defines imbalance as a resulting condition of force transmis-
sion or vibration movement through the bearings as a result of the action of
centrifugal forces (ISO, 2016). The issue is usually attributed to deformations,
asymmetries, imperfections in the raw material, and assembly errors caused
by an eccentric concentrated mass. The imbalance force is described by:

fimb(t) = mr!
2
, (4)

where m is the unbalancing mass, r is the distance from the mass center of
gravity to the rotation axis, and ! is the angular velocity. Imbalance in rotat-
ing machines can be identified by applying signal processing techniques. This
fault presents amplitude in the fundamental frequency of the rotational speed,

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Hybrid data augmentation method 13

which is much higher than the amplitudes of other harmonics in the radial di-
rection. This issue provokes high vibration amplitudes, which causes stresses
in structural supports and can eventually lead to their complete failure (Bloch
and Geitner, 2005).

3.3 Misalignment in rotating machines

The alignment condition on rotating machines is given by the relative po-
sition of the connected shafts. If their centerlines are coincident, forming a
straight line, the rotating machine is considered aligned. Otherwise, there is
misalignment, which is usually classified as parallel or o↵set misalignment,
angular misalignment, or more commonly, a combination of both (Hujare and
Karnik, 2018). The misalignment produces forces and moments, inducing ra-
dial and axial vibrations in the system, which can be represented by:

fmis(t) = Kc�e, (5)

where Kc is the couplings sti↵ness matrix and �e is the vector of misalign-
ments, composed by parallel and angular displacement (Wang and Jiang, 2018;
Wang and Gong, 2019). It should be said that the study of rotor misalignment
has been limited to a qualitative understanding of the phenomenon. This has
been mostly based on experiments with scarcely successful attempts to develop
an e↵ective mathematical model that allows for a quantitative evaluation of
this defect (Desouki et al., 2020; Sinha et al., 2004; Lal and Tiwari, 2018).

3.4 Data augmentation

A common issue that occurs while working with supervised data is trying
to learn from imbalanced data. This usually happens due to the underrepre-
sentation of a set of classes, i.e. when an uneven number of instances are used
to train the machine learning algorithm (Fernández et al., 2018). These are
called minority classes. This situation leads to biased models where model ac-
curacy decreases as the imbalance ratio increases. In real-world conditions, it
is to be expected to have more instances representing normal conditions than
those deemed to be abnormal or defective (Chawla et al., 2002). Learning
from imbalanced data has thus become an integral part of machine learning
techniques (Fernández et al., 2018).

In (Fernández et al., 2018) resampling methods were presented covering
undersampling and oversampling. The undersampling techniques refer to the
random elimination of samples from the majority classes to make them smaller
and size comparable to the smallest ones. However, this approach leads to some
problems since: (i) important instances may be discarded, resulting in a lack of
data a↵ecting class characterization; (ii) higher imbalance ratio, the number of
samples that will be discarded, which may reduce the ability for generalization;
and (iii) the reduction of the training set provokes a variance increase of
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14 Diońısio H. C. S. S. Martins* et al.

the classifier (Chawla et al., 2002; Dal Pozzolo et al., 2015). In contrast, the
oversampling method relies on increasing the instances of minority classes in
order to make them comparable in size to the largest ones. The candidate
samples are replicated based on some weight criteria.

More elaborate techniques are commonly referred to as data augmentation
techniques (Fernández et al., 2018; Chawla et al., 2002), and these will be
the focus of the following sections. Namely: Section 3.4.1 presents the AWGN
method; Section 3.4.2 describes the SMOTE approach; the details for the
hybrid data augmentation method proposed in this work can be found in
Section 3.4.3.

3.4.1 Additive white gaussian noise technique

AWGN can be used in the data augmentation process, which is applied to
the data space instead of the feature space, as opposed to SMOTE (Fernández
et al., 2018). Figure 3 represents the AWGN method where a zero-mean Gaus-
sian noise is added to the input vibration signal (McClaning and Vito, 2000;
de Lima et al., 2013) to create a new vibration signal. The Signal-to-Noise ra-
tio (SNR), respectively presented in Equation (6), reflects the relation between
the input signal average power (Psignal) and the average noise power Pnoise in
dB.

SNRdB = 10 log

✓
Psignal

Pnoise

◆
, (6)

Due to the random character of the added noise (Diniz et al., 2010), the original
input signal can be transformed as many times as needed to make the resulting
polluted signal comparable in size to those of the larger classes. This can be
performed by adding random noise to each new copy of the vibration signal. In
this research, we employed SNRdB = 15 dB to create the noisy signal versions.

Signal to
Noise ratio

X
Gaussian

random noise
generator

Vibration signal

+
Noisy vibration signal

Fig. 3 AWGN signal addition scheme.

3.4.2 Synthetic minority oversampling technique

SMOTE was initially proposed in (Chawla et al., 2002) as an option to
increase the proportion of minority classes in datasets. Its approach consists
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Hybrid data augmentation method 15

in creating fictitious or synthetic observations in between two real observations.
As commented in (Fernández et al., 2018; Chawla et al., 2002) this is a process
applied to the feature space instead of the data space as occurs when using
other oversampling methods.

Feature 1

Fe
at

ur
e 

2

Fig. 4 Minority class feature space is represented in a simplified two dimensions scheme.
The blue circles correspond to the real observation, the orange circles are the synthetics ob-
servations, the blue arrows are the real features vector and the blue arrows are the synthetics
features vector.

Figure 4 presents a two-dimensional representation of the creation of the
synthetic observations and the respective feature vectors. This technique can
be applied to a multidimensional feature space. It is possible to create as many
synthetic points as needed to make the minority class dataset size comparable
or equal to the larger ones. A synthetic observation might be created between:
i) two real observations; ii) a real observation and a synthetic one; and iii)
between two previously created synthetic observations.

According to (Chawla et al., 2002), a synthetic observation can be con-
structed as follows: a given real feature vector, samplei is randomly taken
from the minority class dataset. In addition, one of the K nearest neighbors
of a sample is randomly chosen. Subsequently, the di↵erence, Di between each
respective feature of both vectors is calculated, and the new synthetic vector
is created by summing each of feature c of the randomly chosen i samples to
its corresponding Di.G, where G is a factor randomly chosen in the interval
[0 < G < 1] for each di↵erent feature c. This results in the construction of a
synthetic vector between a sample and a neighbor. The aforementioned process
is precisely detailed in Algorithm 1.
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16 Diońısio H. C. S. S. Martins* et al.

Algorithm 1: SMOTE algorithm

% Function syntax: [Od] = smote(Id, S,K)
% Id: minority class array.
% S: number of synthetic observations to add to Id.
% K: quantity of nearest neighbors
% Od: augmented class array.

L Quantity of observations or lines of Id
C  Quantity of features or columns of Id
Od Id

for sc  1 to S do
i Randomly chosen observation of Od

n Randomly chosen value of the K nearest neighbors
indexes vector, using the standard K-NN algorithm, given i.
% The code block below adds a new line to Od containing one new
synthetic observation.
L L+ sc

for cc  1 to C do
Di (Od(n, cc)�Od(i, cc))
G Randomly chosen value in the interval [0 < G < 1]
Od(L, cc) (Od(sc, cc) + (Di.G))

end for
end for

3.4.3 Proposed hybrid data augmentation method

The use of SMOTE and AWGN techniques in an isolated manner to cre-
ate additional instances of the minority classes are able to increase classifier
performance. However, these methods can also increase overfitting (Zur et al.,
2004; Santos et al., 2018), which is not desirable. Furthermore, SMOTE also
has the potential to disseminate noisy information when new instances are
created in unwanted positions (Cheng et al., 2019).

In order to increase the number of vibration signals and avoid overfitting,
we propose a hybrid method combining SMOTE and AWGN. The purpose of
applying this method is to create a set of artificial signals that have higher ran-
domness than when applying techniques in an isolated manner. These would
translate into a more robust and generalist classification model, thus decreas-
ing the bias when compared with any one of the two data augmentation tech-
niques employed. Two versions can be devised for the hybrid method. Namely,
a first version (version 1) can be developed consisting in expanding only the
number of instances of the minority classes without making changes to the
majority classes. This procedure is illustrated in Figure 5, where:

– Ma represents the number of majority class instances;

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Hybrid data augmentation method 17

– Mi1 represents the number of minority class instances obtained by feature
extraction without using data augmentation techniques;

– Mi2 represents the number of minority class instances obtained from ap-
plying SMOTE;

– Mi3 represents the number of minority class instances obtained from ap-
plying AWGN.

In the first approach,Ma,Mi1 ,Mi2 andMi3 contain, respectively, 115, 41, 37
and 37 instances each. Also, note that the quantity of Ma instances is equal
to the sum of Mi1, Mi2 and Mi3.

The second version of the method (version 2), presented in Figure 6, in-
creases the number of minority class instances by x units using the AWGN
technique and also modifies x signals of the majority class by adding Gaussian
white noise. This way, the insertion of white noise does not become a discrim-
inating feature between minority and majority classes. Figure 6 presents the
overall details of the second approach where:

– Ma1 represents the number of majority class instances;

– Ma2 represents the number of instances modified by AWGN;

– Mi1 represents the number of minority class instances without using data
augmentation techniques;

– Mi2 represents the number of minority class instances resulting from ap-
plying SMOTE;

– Mi3 represents the number of minority class instances resulting from ap-
plying AWGN.

In the second approach, Ma1 , Ma2 , Mi1 , Mi2 and Mi3 contain, respectively,
78, 37, 41, 37, 37 instances each. Also, the sum of Ma1 and Ma2 is equal to the
sum of Mi1 , Mi2 and Mi3 .

3.5 Classification methods

This paper compares four machine learning classification methods, namely
Support Vector Machines (SVM),K-Nearest Neighbors (K-NN), Random For-
est (RF) and Stacked Sparse Autoencoder (SSAE). These are, respectively,
briefly described in Section 3.5.1, Section 3.5.2, Section 3.5.3 and Section 3.5.4.

3.5.1 Support Vector Machines

Support Vector Machines (SVM) is a machine learning method with a
set of linear indicator functions that divides the feature space into two re-
gions (Vapnik, 2013; Ziani et al., 2017). The method maps the original data
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Dataset

Minority
class

Majority
class

Feature
extraction

Feature
extraction

AWGN

Smote

Feature
matrix

with Mi1
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matrix
with Ma
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Feature
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with Mi2
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Feature
extraction

Feature
matrix

with Mi3
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Fig. 5 Proposed hybrid method version 1.
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Fig. 6 Proposed hybrid method version 2.
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Hybrid data augmentation method 19

in higher dimensional feature space (compared to the original one) using the
training dataset. A hyperplane with a better discriminatory capacity is then
constructed. This capacity depends on the kernel function employed, with the
most common ones being the sigmoid, the radial basis, and the linear func-
tions (Choubin et al., 2019). Usually, the radial basis function kernel tends to
match the performance of the linear one (Chang et al., 2010). However, in the
exploratory experiments performed in this work, the linear kernel delivered
the best results. As a result, it was the one chosen for the rest of the evalua-
tions. The linear kernel SVM also exhibits good results in the works presented
in (Elangovan et al., 2011; Ruiz-Gonzalez et al., 2014).

3.5.2 K-Nearest Neighbors

K-Nearest Neighbors (K-NN) is one of the most used non-parametric
methods (Yoon and Friel, 2013). This is essentially due to its simplicity of
implementation. It is used to classify and cluster the nearest data vectors,
with proximity being measured by some defined metric, the most common of
which is the euclidean distance (also used in this work). K-NN is designed
with the concept of the classification being decided by determining the major-
ity class amongst its K closest neighbors (Xing and Bei, 2020).

3.5.3 Random Forest

Random Forest (RF) is a method of ensemble learning inspired by decision
tree learning (Breiman, 2001). The method combines di↵erent decision tree
predictors (with each one being statistically independent of the remaining
ones) and outputs the most common predicted class. The method uses a variety
of binary-ruled decisions to indicate a split in each tree (Görgens et al., 2015).
Feature bagging is performed for each tree, where a random subset of the
features is selected in the learning process. RF is ranked as one of the best
classification methods (Fernández-Delgado et al., 2014), and its popularity
growth is associated with the automation and simplicity of the algorithmic
training procedure. As a result, system developers with little experience in
machine learning can build classification systems with good discriminatory
capacity (Fletcher and Reddy, 2016).

3.5.4 Stacked Sparse Autoencoder

AE is a deep learning algorithm consisting of neural networks whose objec-
tive is to encode and reconstruct, with the smallest possible error, the input
itself in the output. It consists of two parts: an encoder and a decoder. The
encoder is responsible for compressing the original data space into a new rep-
resentation space, called latent space. The function of the decoder is to recon-
struct the input data from the data representation in the latent space (Shao
et al., 2017). The training step of the AE is unsupervised because the data la-
bels are not provided (Li et al., 2020a). The AE can be used in several manners,
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namely: (i) to perform feature reduction; (ii) to denoise data; (iii) to perform
data augmentation; (iv) or classify data, as is the case in this paper (Fu et al.,
2019).

A Stacked AE is a complex structure composed of a series of concatenated
layers. The output of each layer is connected as an input to the next layer. In
this structure, each layer is trained as an AE with the objective of reducing
the error. After all layers are trained, a fine-tuning step is performed. For the
classification step, the decoder layer is removed and a softmax layer is added.
Due to a large number of neurons in the hidden layers, the sparse constraint is
used to capture high-level representations of the data, thus its name, Stacked
Sparse Autoencoder (SSAE) (Aouedi et al., 2020).

4 Results and Discussion

The main goal of this work is to identify the four classes described in
Table 1, namely, No (Normal), I (Imbalance), IHM (Imbalance + Horizontal
Misalignment) and IVM (Imbalance + Vertical Misalignment). In this section,
the results of applying four types of classifiers are compared: SVM, K-NN, RF
and SSAE in 14 di↵erent cases, which are described in Table 3.

Table 3: Cases description.

Case ID Description
C1 Employs original dataset.
C2 Under samples majority class (No), using only 41 of the 115

available signals, so that this class has the same number of
signals as the minority classes (I, IHM and IVM).

C3 Over samples minority classes (I, IHM and IVM) using
SMOTE, causing these classes to have 115 instances, which
is the same number of majority class examples (No).

C4 Over samples minority classes (I, IHM and IVM) using
AWGN with SNR = 15 dB, causing these classes to have
115 instances, which is the same number of examples of the
majority class (No).

C5 Over samples minority classes (I, IHM and IVM) using
AWGN with SNR = 15 dB, causing these classes to have
115 instances, which is the same number of examples of the
majority class (No). In addition, white noise is added to all
majority class examples, in order to reduce the risk of noise
addition becoming a discriminatory feature. Amount of No
instances is not changed.

Continues on next page
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Table 3 – continued from previous page
Case ID Description

C6 Over samples minority classes (I, IHM and IVM) using ver-
sion 1 of the hybrid method, causing these classes to have
115 instances, which is the same number of examples of the
majority class (No).

C7 Over samples minority classes (I, IHM and IVM) using ver-
sion 2 of the hybrid method, causing these classes to have
115 instances, which is the same number of examples of the
majority class (No). In addition, white noise is added to
randomly selected majority class examples, in order to re-
duce the risk of noise addition becoming a discriminatory
feature. Amount of No instances is not changed.

C8 Application of features normalization plus C1 procedures.

C9 Application of features normalization plus C2 procedures.

C10 Application of features normalization plus C3 procedures.

C11 Application of features normalization plus C4 procedures.

C12 Application of features normalization plus C5 procedures.

C13 Application of features normalization plus C6 procedures.

C14 Application of features normalization plus C7 procedures.

As the dataset used in this research has low cardinality, it is not recom-
mended to use the holdout technique, which separates the data into training
and test sets. In these circumstances, classifier training can result in overfit-
ting issues, causing bias in the result (Aggarwal et al., 2018). As a result, we
opted to instead apply 5-fold cross-validation, which is a stochastic partition
method for training and test data. This results in a more robust and accurate
prediction model (Dinov, 2018). The procedure iteratively goes through every
possible training and test set combination evaluating the respective perfor-
mance. This procedure is illustrated in Figure 7.

The classifiers have adjustable parameters whose selection was oriented by
maximizing the highest average of intraclass relative hits. This is calculated
through the sum of the correct answers of the main diagonal of the confu-
sion matrix divided by the number of classes. The following sentences de-
scribe how the hyperparameter tuning for each classifier was performed. SVM
training was performed by testing di↵erent values of the regularization term
C 2 {2�5

, 2�3
, 2�1

, ..., 213, 215} using the linear kernel function. The training
of the RF consisted of tuning the number of trees. During the training stage,
the number of trees was varied from 1 to 50. The division rule used to form
the nodes of the trees of RF was the Gini diversity criterion. The minimum
number of observations per leaf used by the classifier was 1. In what concerns
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Fig. 7 K-fold representation.

the K-NN classifier, the number of neighbors was varied from 1 to 100 using
the Euclidean distance to select the best value of K. Based on (Zhang et al.,
2020b), the following hyperparameters were used to train SSAE with softmax
classification: (i) three hidden layers consisting of, respectively, 100, 50, and
20 neurons; (ii) weight decay coe�cient equal to 0.0001; (iii) sparsity penalty
coe�cient of 0.001; and (iv) sparsity factor set to 0.2. Seven metrics were used
to measure the performance of the classifiers: classification time for one exam-
ple (T), precision (P), recall (R), specificity (S), F1 Score (F1), accuracy (A),
and standard deviation (SD) (Rehman et al., 2020; Kankar et al., 2011).

The following sections are organized as follows: Section 4.1 presents the
results for the SVM classifier; Section 4.2 details the performance of the K-
NN method; Section 4.3 describes the data obtained for the RF algorithm;
and Section 4.4 lists the results for the SSAE approach.

4.1 SVM Results

Table 4 presents the SVM results for the dataset without using normal-
ization. The data shows that using the undersampling technique (C2) worsens
SVM performance when compared against the baseline C1. The SMOTE data-
augmentation (C3) technique causes a decrease in accuracy when compared
to that of C1. However, the other metrics evaluated are improved. The ap-
plication of AWGN in C4 and in all classes (C5) improves precision, recall,
specificity, and F1-score when compared to C1. On the other hand, the ap-
plication of these techniques worsens processing time, accuracy, and standard
deviation. The application of the proposed hybrid method, version 1 (C6) and
version 2 (C7), improves SVM performance in all the evaluated items except
the processing time compared when compared against C1.

Table 5 presents the results concerning feature normalization and show-
cases a significant improvement in SVM performance when compared with
the described results in Table 4. Namely, all data augmentation techniques
applied improved classifier performance when compared with the baseline re-
sults of C8. Amongst the results presented, the best performing one is C14

which refers to the application of the second version of the hybrid method.
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Table 4 SVM applied to the dataset without features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C1 0.25 90.57 90.56 96.92 91.11 93.50 1.98
C2 0.26 86.25 85.48 94.98 85.87 85.48 3.99
C3 0.23 91.75 91.75 97.28 91.79 91.82 1.81
C4 0.31 91.53 91.53 97.20 91.54 91.55 2.96
C5 0.34 91.71 91.71 97.27 91.73 91.75 3.13
C6 0.30 93.64 93.64 97.89 93.65 93.67 1.70
C7 0.29 93.76 93.76 97.92 93.75 93.74 1.70

Table 5 SVM applied to the dataset with features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C8 0.35 96.46 95.25 99.00 95.85 96.73 5.83
C9 0.31 96.05 96.01 98.68 96.03 95.55 5.83
C10 0.31 99.77 99.77 99.92 99.77 99.77 0.51
C11 0.31 99.79 99.79 99.93 99.79 99.79 0.47
C12 0.32 99.79 99.79 99.93 99.79 99.79 0.47
C13 0.30 99.20 99.18 99.73 99.19 99.18 1.41
C14 0.25 99.84 99.84 99.95 99.84 99.84 0.36

4.2 K-NN Results

Table 6 reports the K-NN classifier results without using feature normal-
ization. The application of undersampling (C2) improves K-NN performance
in what concerns precision, recall, F1-score, and standard deviation. On the
other hand, accuracy and specificity results are reduced when compared to
the baseline (C1). In addition, the application of oversampling techniques
(C3, C4, C5, C6, C7) caused an improvement when compared to: (i) the base-
line results (C1); and (ii) the undersampling approach (C2). The techniques
that exhibited the best results made use of AWGN (C4 and C5).

Table 6 K-NN applied to the dataset without features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C1 0.02 57.23 57.17 86.26 57.20 67.88 9.53
C2 0.03 62.03 61.56 83.47 61.80 61.56 5.02
C3 0.03 89.59 89.35 96.22 89.47 89.35 2.29
C4 0.03 95.91 95.71 98.56 95.81 95.71 2.59
C5 0.02 95.47 95.28 98.40 95.37 95.28 1.14
C6 0.02 88.08 87.94 95.68 88.01 87.94 3.47
C7 0.03 91.47 91.39 96.96 91.43 91.39 2.69

Table 7 reports K-NN results for normalized features. As can be verified,
the application of feature normalization improved the performance in all eval-
uated cases when compared to the results without normalization shown in
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Table 6. The application of undersampling (C2) improved precision, recall, F1
score and standard deviation when compared against C1.

The application of data augmentation techniques (C10, C11, C12, C13, C14)
improved K-NN performance. The technique which presented the best result
was the second version of the hybrid method (C14), which resulted in an im-
provement of 20.92% in precision, 21.19% in recall, 5.35% in specificity, 15.26%
in accuracy, 21.06% in F1-score and a reduction of 6.21% in standard deviation
without requiring an increase in processing time against the baseline (C8).

Table 7 K-NN applied to the dataset with features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C8 0.04 78.56 78.27 94.47 78.41 84.20 7.41
C9 0.03 81.64 81.69 93.38 81.67 81.69 7.19
C10 0.04 98.26 98.25 99.41 98.26 98.25 0.62
C11 0.04 99.01 99.00 99.67 99.01 99.00 1.00
C12 0.04 98.23 98.19 99.39 98.21 98.19 1.70
C13 0.05 98.29 98.25 99.41 98.27 98.25 2.04
C14 0.04 99.48 99.46 99.82 99.47 99.46 1.20

4.3 RF Results

Table 8 presents RF results without feature normalization. The use of un-
dersampling (C2) increases performance when compared against C1. Applica-
tion of oversampling causes an improvement in performance (C3, C4, C5, C6, C7).
The best performance was derived from AWGN application in all classes (C5)
and the second version of the hybrid proposal (C7). The latter achieved the
best results, producing an improvement of 7.71% in precision, 11.46% in recall,
2.81% in specificity, 9.63% in F1-score, 8.27% in accuracy, 2.93% reduction in
standard deviation, and a processing time of 0.07 s when compared against C1.

Table 8 RF applied to the dataset without features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C1 0.72 91.61 87.86 96.96 89.69 91.05 3.90
C2 0.75 96.04 96.04 98.66 96.04 96.04 4.61
C3 0.79 97.74 97.71 99.23 97.72 97.71 1.94
C4 0.71 99.08 99.06 99.69 99.07 99.06 1.00
C5 0.60 99.21 99.19 99.73 99.20 99.19 1.38
C6 0.46 99.12 99.12 99.71 99.12 99.12 1.03
C7 0.65 99.32 99.32 99.77 99.32 99.32 0.97

Table 9 shows RF results using feature normalization. The data demon-
strate an improvement in RF performance for C8 and C10 when compared
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with, respectively, C1 and C3 of Table 8. However, RF performance for C9, C11,

C12, C13, C14 was reduced when compared against, respectively, C2, C4, C5, C6,

C7 of Table 8. The results of Table 9 also show that the application of data
augmentation techniques (C10, C11, C12, C13, C14) improved RF performance
when compared to C8. The most e↵ective techniques were: (i) SMOTE (C10);
and (ii) AWGN applied to all classes (C12) using normalized features.

Table 9 RF applied to the dataset with features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C8 0.47 96.30 95.01 98.95 95.65 96.56 3.57
C9 0.35 94.00 93.84 97.90 93.94 93.84 4.48
C10 0.63 99.06 99.05 99.68 99.05 99.05 1.02
C11 0.43 98.57 98.55 99.51 98.56 98.55 2.13
C12 0.43 99.12 99.10 99.70 99.11 99.10 0.92
C13 0.60 96.68 96.64 98.86 96.65 96.64 2.12
C14 0.39 98.49 98.49 99.49 98.49 98.49 1.86

4.4 SSAE Results

Table 10 reports SSAE results without feature normalization. The use of
undersampling (C2) reduced the specificity, F1-score, and accuracy when com-
pared against C1. Application of oversampling (C3, C4, C5, C6, C7) caused an
improvement in precision, recall, F1-score, and standard deviation. The best
performance was derived from the AWGN application in minority classes (C4).

Table 10 SSAE applied to the dataset without features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C1 0.45 40.56 44.63 80.83 44.59 59.09 7.38
C2 0.47 40.73 45.47 74.35 42.97 45.47 6.79
C3 0.41 50.71 49.54 76.29 50.12 49.54 3.98
C4 0.37 53.68 54.07 78.58 53.87 54.07 5.54
C5 0.46 52.34 53.45 78.31 52.89 53.45 1.87
C6 0.33 49.43 49.17 74.97 49.30 49.17 5.72
C7 0.55 50.47 51.58 77.12 51.02 51.57 0.54

Table 11 presents the results concerning feature normalization and show-
cases a significant improvement in SSAE performance when compared with
the described results in Table 10. The use of undersampling (C2) reduced the
performance when compared against C1. The application of data augmen-
tation techniques (C10, C11, C12, C13, C14) improved SSAE performance. The
technique which presented the best result was the second version of the hy-
brid method (C14), which resulted in an improvement of 4.42% in precision,
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5.12% in recall, 1.07% in specificity, 4.77% in accuracy, 3.53% in F1-score, a
reduction of 3.10% in standard deviation and reduced the processing time in
0.45 seconds against the baseline (C8).

Table 11 SSAE applied to the dataset with features normalization.

Cases T (s) P (%) R (%) S (%) F1 (%) A (%) SD (%)
C8 0.58 95.58 94.88 98.93 95.23 96.47 3.10
C9 0.35 90.28 90.06 96.48 90.17 90.06 7.70
C10 0.63 99.06 99.05 99.68 99.05 99.05 1.02
C11 0.45 99.84 99.84 99.95 99.84 99.84 0.36
C12 0.44 99.69 99.68 99.89 99.68 99.68 0.43
C13 0.28 99.69 99.68 99.89 99.68 99.68 0.43
C14 0.13 100 100 100 100 100 0

4.5 Discussion

The results also demonstrate that feature normalization is a relevant step
for the K-NN, SVM, and SSAE methods, as these methods are sensitive to
di↵erent feature scales. Avoiding the characteristics that have low values when
compared to other ones has little influence on the decision of these classifiers.
The application of the AWGN and SMOTE techniques improves the results
of the four classifiers analyzed when compared to the baseline results. This is
due to the small number of examples of faulty classes available in the original
data sets, which hinders the individual training stages. The scarcity of machine
failure signals is a frequent occurrence in real industrial environments, making
the case for data augmentation approaches.

By analyzing the results it is possible to conclude that the SVM classi-
fier achieved the best behavior when using the original dataset for both the
normalized and non-normalized approaches (C1 and C8). Application of under-
sampling increased the performance of (i) K-NN when applied to normalized
features; and (ii) RF when non-normalized features were used. RF perfor-
mance through normalization only improved when the original dataset was
employed (C8) and when using SMOTE (C10). The K-NN technique was able
to deliver the fastest classification times. Overall:

– SVM exhibited the best results when using the second version of the hybrid
method applied to the normalized features;

– K-NN exhibited the best results when using the second version of the hy-
brid method applied to normalized features;

– RF exhibited the best results when using the second version of the hybrid
method applied to non-normalized features;
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– SSAE exhibited the best results when using the second version of the hy-
brid method applied to the normalized features.

Version 2 of the proposed hybrid method is the data augmentation tech-
nique that resulted in the best performance, surpassing the application of the
AWGN and SMOTE techniques individually. This shows the e↵ectiveness of
the approach when identifying combined failures in rotating machines. The
hybrid proposal was able to produce new data examples with greater ran-
domness than when using only AWGN or SMOTE. Consequently, the models
generated from the hybrid approach are more generalist, resulting in an im-
provement in classifier performance. Figure 8 presents a radar plot comparing
the performance of these classifiers.
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Fig. 8 Radar plot of the best classifiers: SVM using hybrid method version 2 applied to
normalized features, K-NN using hybrid method version 2 applied to normalized features
and; RF using hybrid method version 2 applied to non-normalized features; SSAE using
hybrid method version 2 applied to normalized features.

Overall, the SSAE classifier stood out, outperforming the other ones, ex-
cept for classification time where K-NN performed better. As a result, in the
context of this research, the SSAE with feature normalization alongside the
second version of the hybrid data augmentation proposal exhibits the best per-
formance. In addition, it is also important to emphasize that the less time a
classifier takes to identify a test example, the less complex the generated clas-
sifier model will be (Qin et al., 2021). Classification time can be a determining
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factor for online fault diagnosis when deploying a classifier in an industrial
setting. The data obtained show that the K-NN algorithm is recommended
due to its processing speed and for exhibiting good performance among the
four classifiers examined.

5 Conclusions

In this paper, a hybrid data augmentation method based on AWGN and
SMOTE techniques were proposed to diagnose combined faults in rotating
machines, which is a more complex task than identifying isolated failures.
In industrial rotating machines, little data is available regarding faults when
compared to normal operation, which leads to an imbalanced dataset. Conse-
quently, it is necessary to use data augmentation techniques to increase the
number of minority classes examples to improve classifier performance.

To validate the generalization and e↵ectiveness of the proposed method,
a comparison with 4 classifiers was performed considering 14 di↵erent cases.
Each one of these tested a specific configuration such as using the original
dataset, undersampling the majority class, applying feature normalization,
utilizing AWGN, employing SMOTE and our hybrid proposal. The results
obtained show that the latter surpassed the other approaches used in this
paper. This resulted in more generalist classifier models, which improved their
performance.

The best result was achieved by combining the hybrid data augmentation
with the SSAE algorithm using normalized features. This method was able to
achieve a processing time of 0.13 seconds whilst attaining 100% of accuracy.
However, if the classifier is to be deployed in industrial applications where
execution time is crucial then the K-NN classifier is a good option due to
its compromise of high processing speed (0.04 seconds) and elevated accuracy
(99.46%). Overall, the proposed hybrid data augmentation method is e↵ective
in improving classifier performance.

For future work, it is our intention to: (i) add the classes of horizontal
and vertical misalignment separately; and (ii) the combined failure of hori-
zontal misalignment associated with vertical misalignment. The addition of
these classes will require a reevaluation of classifier performance. We also in-
tend to use techniques such as genetic algorithms and minimum-redundancy
maximum-relevancy to select the best features in order to perform dimension-
ality reduction. This procedure has the potential to improve classifier perfor-
mance and avoid overfitting.
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36 Diońısio H. C. S. S. Martins* et al.

Yu G (2019) A concentrated time–frequency analysis tool for bearing
fault diagnosis. IEEE Transactions on Instrumentation and Measurement
69(2):371–381, DOI https://doi.org/10.1109/TIM.2019.2901514

Yu K, Lin TR, Ma H, Li H, Zeng J (2019) A combined polynomial chirplet
transform and synchroextracting technique for analyzing nonstationary sig-
nals of rotating machinery. IEEE Transactions on Instrumentation and Mea-
surement 69(4):1505–1518, DOI https://doi.org/10.1109/TIM.2019.2913058

Yu K, Lin TR, Ma H, Li X, Li X (2021) A multi-stage semi-supervised learn-
ing approach for intelligent fault diagnosis of rolling bearing using data aug-
mentation and metric learning. Mechanical Systems and Signal Processing
146(1):107043, DOI https://doi.org/10.1016/j.ymssp.2020.107043

Zhang S, Zhang S, Wang B, Habetler TG (2020a) Deep learning algo-
rithms for bearing fault diagnostics—a comprehensive review. IEEE Access
8(1):29857–29881, DOI https://doi.org/10.1109/ACCESS.2020.2972859

Zhang Y, Li X, Gao L, Chen W, Li P (2020b) Intelligent fault diagnosis of
rotating machinery using a new ensemble deep auto-encoder method. Mea-
surement 151(1):107232, DOI https://doi.org/10.1016/j.measurement.2019.
107232

Ziani R, Felkaoui A, Zegadi R (2017) Bearing fault diagnosis using multiclass
support vector machines with binary particle swarm optimization and regu-
larized fisher’s criterion. Journal of Intelligent Manufacturing 28(2):405–417,
DOI https://doi.org/10.1007/s10845-014-0987-3

Zur R, Jiang Y, Metz C (2004) Comparison of two methods of adding jitter to
artificial neural network training. International Congress Series 1268(1):886–
889, DOI https://doi.org/10.1016/j.ics.2004.03.238

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


