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Abstract
The current COVID-19 pandemic is affecting different countries in different ways. The
assortment of reporting techniques alongside other issues, such as underreporting
and budgetary constraints, makes predicting the spread and lethality of the virus a
challenging task. This work attempts to gain a better understanding of how COVID-19
will affect one of the least studied countries, namely Brazil. Currently, several Brazilian
states are in a state of lock-down. However, there is political pressure for this type of
measures to be lifted. This work considers the impact that such a termination would
have on how the virus evolves locally. This was done by extending the SEIR model
with an on / off strategy. Given the simplicity of SEIR we also attempted to gain more
insight by developing a neural regressor. We chose to employ features that current
clinical studies have pinpointed has having a connection to the lethality of COVID-19.
We discuss how this data can be processed in order to obtain a robust assessment.
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1 Introduction
The Coronavirus Disease 2019, whose aetiological agent is known as Severe Acute Res-
piratory Syndrome Coronavirus 2 (SARS-CoV-2) [1], has been dubbed COVID-19 by the
World Health Organization (WHO). The virus has been spreading worldwide and was
effectively classified as a pandemic by the WHO [2]. The first cases were reported to the
Chinese bureau of WHO in December 2019 in Wuhan City, Hubei Province of China [3].
Given that the pandemic is still quite recent, several efforts are underway to try to predict
its evolution, namely in terms of spread, infection rates, mortality, amongst other dimen-
sions [4–8].

However, by checking interactive web-based dashboards (e.g., [9]) it has become clear
that, globally, reporting methods appear to differ substantially from country to country.
Possible factors for such divergences may include lack of testing facilities, monetary con-
straints, geographical scale, under-reporting and even political unwillingness to divulge
the true scale. Given the reliability issues related to the reported data, there is no con-
sensus over the mortality rates associated to COVID-19 (e.g., [10]). For example, while
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[11] argues that the rates are overestimated, [12] argue otherwise. Consequently, some
have started to question whether the COVID-19 epidemic can be managed on the basis
of daily data [13].

Understandably, most of the studies have focused on the contagion scenarios in Europe
and China. To our knowledge, there appears to be a lack of COVID-19 related research
focusing on south America, more specifically Brazil, home of approximately 211 million
people, the world’s fifth-largest country by area and currently the world’s 8th largest econ-
omy. Brazil-specific predictions incorporating government introduced mitigation strate-
gies were made available in [14] for the states of São Paulo and Rio de Janeiro. These rep-
resent the two largest economic units of the union and also concentrate a significant part
of the population. However, the true local scale is difficult to assess. In part, this is due
to under-reporting of cases owing to chronic test shortages [15]. Furthermore, the offi-
cial figures only include deaths reported by hospitals. A more detailed analysis of current
research is presented in Sect. 2.

The set of guiding questions behind this work can be stated as follows: it is common
knowledge that political leadership in Brazil has at times conveyed contradictory mes-
sages on how best to tackle the crisis. Some argue for the necessity of mitigation measures,
whilst others defend that these will result in insurmountable damage to the economy. As a
result, can public trust in civil servants affect the epidemic? Given the current set of Brazil-
ian public policies aiming at mitigation, how will this affect the local spread of COVID-19?
What would be the effects of more relaxed non-pharmaceutical measures? Sect. 3 exploits
these questions by proposing carefully designed quarantine strategies based on the avail-
ability of hospitalisation beds and evaluating these strategies in the long-term by means
of a traditional SEIR epidemic model.

Furthermore, is it possible to predict how COVID-19 will affect Brazil based on what is
happening in other countries? What features should be considered? Are there any pecu-
liarities to Brazil? E.g. How is Brazil different from high-contagion scenarios such as Eu-
rope and the USA? How does the quality of the Brazilian health system affect the epidemic?
Finally, given what we know so far about the underlying clinical conditions affecting mor-
tality rate, how does Brazil fare? We attempt to provide an answer to these questions in
Sect. 4 by employing publicly-available data alongside a neural regressor. The main con-
clusions of this work are presented in Sect. 5. A preliminary version of our findings was
reported in [16].

2 Related work
COVID-19’s human-to-human transmission is via droplets or by direct contact with an
infected person [17]. An early estimate of the epidemic size in Wuhan, China, was pre-
sented in [18]. The forecast was based on the number of cases exported to international
destinations. Several incubation periods have been cited in the literature, namely, 5.2 days
[19] to 6.4 days [20]. Furthermore, estimates of the basic reproduction number R0, a mea-
sure describing the average number of secondary cases resulting from an infected person,
also vary widely. For example, the intervals [2.24 – –3.58] and [1.4 – –3.8] appear in [17]
and [21], respectively.

Currently, there are multiple ongoing clinical trials worldwide to assess the effective-
ness and safety of certain drugs such as chloroquine, arbidol, remdesivir, and favipiravir
[22]. In vitro data has suggested that chloroquine inhibits virus replication [23], although
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clinical testing has failed to provide such a strong case so far. Also, clinical studies suggest
the apparent efficacy of chloroquine phosphate in the treatment of pneumonia following
COVID-19 infection [24]. However, as [25] carefully points out there is a delicate margin
between a therapeutic and a toxic dose. The study reinforces the need for further trials to
help validate the claims and design future guidelines.

Given the current lack of proven pharmaceutical solutions, most governments around
the world have pursued public policies promoting social distancing, e.g.: closures of
schools and universities, remote work when possible, travel restrictions, public gatherings
bans, amongst other measures. Additional measures hinge on early detection and isola-
tion, contact tracing, and the use of personal protective equipment [21]. These measures
have been referred to as non-pharmaceutical interventions and a number of studies have
been performed in order to assess the effectiveness of these strategies.

Perhaps some of the best known scientific reports coming out are the COVID-19 series
produced by Imperial College. One of these is [4], which then projected 510,000 deaths
in Great Britain and 2.2 million in the United States of America, in the case of an un-
mitigated epidemic. The authors also projected alternative scenarios in which these num-
bers would be revised down to, respectively 250,000 deaths and 1.1–1.2 million. They also
draw attention to the fact that there is a lag between the introduction of mitigation and
the corresponding decrease in hospitalization cases. At the time, their work also strongly
emphasized that even for their most optimistic scenario, the number of sick people would
far outstrip the available hospital capacity.

Subsequently, [5] presented an estimation of the number of infections and the impact of
non-pharmaceutical interventions. This was done by using a semi-mechanistic Bayesian
hierarchical model to attempt to infer the impact on 11 European countries. One of their
key findings is that the decrease in the number of daily deaths being reported from Italy
is in accordance with a significant impact from strict measures introduced weeks be-
forehand. The authors estimate that (i) between 7 and 43 million individuals, respec-
tively 1.88% and 11.43% of the population, had been infected up to March 28th; and that
(ii) 59,000 deaths had been averted through non-pharmaceutical interventions.

In [6] the authors analyse different mortality scenarios, from the absence of mitigation
measures to policies designed to suppress transmission. They estimate: (i) 7.0 billion in-
fections and 40 million deaths without mitigation; (ii) 4.5 billion infections and 20 million
deaths with mitigation strategies focused on protecting elderly groups and preserving so-
cial distancing; (iii) that healthcare systems would be unable to cope even in the latter
scenario. Consequently, the work strongly emphasizes the need for public health mea-
sures leading to a reduction in transmission rates, in order to avoid the collapse of global
health systems.

A recent study proposed a fairly detailed dynamic model to describe the virus spread
in China [7]. A drawback is that the model requires 12 parameters that are approximated
from real-world data. We argue that such an approximation may lead to highly unreliable
estimates given the poor quality and the reliability issues connected to the data made avail-
able. Regardless, their main findings, namely that R0 quickly decreases with containment
measures and that short quarantines do not suffice to stop the epidemics, hold true and
do not depend on the quality of the data, see also [26].

A simpler SIR (susceptible-infected-recovered) model was applied to data from the UK
and Italy [8]. The study suggests that (i) the epidemics originated at least a month before
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the first reported death and (ii) that two to three months of control measures would halt
the epidemic. Although the former finding has been used to justify herd immunity strate-
gies, that is hardly in keeping with the reported mortality rates worldwide. To illustrate
the point, let us assume a mortality rate of 1% in the UK. Then, the reported figure of 167
deaths per million as of April 14 (e.g., worldometers.info), would suggest the contagion
of approximately 1.67% of the population. Hence, while the models are useful to guide
decision, a holistic and exhaustive analysis is needed to avoid biased assessments.

A model-based analysis aimed at trying to predict mortality rates was described in [27].
The authors were able to produce age-stratified estimates of the infection fatality ratio.
Their findings also estimated the mean duration from symptoms onset to fatality to be
17.8 days, whilst time from symptoms to discharge was calculated as 24.7 days. The overall
fatality rate was estimated at 1.38%. However, older age groups were more afflicted. Fatality
increased to 6.4% among individuals aged 60 or older and reached 13.4% of those aged 80
or older.

A study compiled and analyzed data from 1099 Chinese patients with confirmed diag-
nose of COVID-19 [28]. Patients most at risk of: (i) being admitted to an intensive care
unit; (ii) requiring ventilator; or (iii) death included people aged 60 or older and also those
with coexisting disorders such chronic obstructive pulmonary disease, diabetes, hyper-
tension, coronary heart disease, cerebrovascular conditions, hepatitis B, cancer, chronic
renal disease and compromised immune systems. Some authors have also attempted to
correlate mortality rates to the Bacillus Calmette-Guérin (BCG) childhood vaccination
against tuberculosis [29]. The authors found a significant negative correlation between
the establishment of universal BCG vaccination and mortality rate.

2.1 Lock-down release
After mitigating the first wave of the disease, the attention turns to finding efficient exit
strategies [e.g., 26, 30, 31]. While it is perhaps consensual that a gradual and controlled exit
strategy is to be preferred, gradual strategies require careful planning and coordination,
as well as deft policy implementation. These attributes, however, may not be sufficient to
avoid multiple waves that trigger cyclic on-off lock-down strategies [26]. Hence, a long-
term analysis of multiple waves, as presented in Sect. 3, is essential; and it is particularly
so when data is lacking and unreliable and policy making is uncoordinated, a scenario that
renders multiple waves increasingly likely.

Some works have investigated optimal lock-down release strategies in [30, 31] under
different performance measures. Whilst the objective in [30] is to speed-up lockdown re-
laxation within the limits of the healthcare system, [31] suggests a function to model the
compromise between healthcare and economic issues. We argue that the search for an
adequate compromise in such a complex and multifaceted problem is a very challenging
task in itself, which also involves policy making and societal issues. But it is beyond the
scope of this article.

Instead, we choose to model simple on-off policies to provide insight into the long-term
management of multiple waves should such a management prove necessary. We start with
simple on-off policies because they are simple and easy to understand and arguably eas-
ier to enforce. The choice is also practically motivated by our case study in Brazil, where
mixed messages from the government response have been reported and the lack of com-
pliance often meant that mild lock-down relaxations lead to uncontrolled spread of the

http://worldometers.info
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disease. Such a reality renders the fall-back option of returning to full lock-down more
likely than a conscious and coordinated strategy of gradual return to everyday activities.

For the sake of completeness we also consider gradual lock-down release strategies in
Sect. 3.1, inspired by the results in [30, 31]. Similarly to the on-off policies, they are de-
signed to keep the utilisation of hospital beds within prescribed limits, enforcing full lock-
down whenever an upper bound is reached and starting the release upon reaching a lower
limit. The release, however, is gradual and proceeds with a prescribed linear or exponen-
tial rate. The results show that gradual release strategies tend to reduce the full-lockdown
intervals, but they do not prevent multiple waves.

3 SEIR model with on/off strategy
Following the trend in the literature [e.g., 4, 5], we used the classical compartmental SEIR
(susceptible, exposed, infected, removed) model to describe the virus spread. We argue
that, given the uncertainty in the data, a simple but interpretable model can be more useful
to provide insights for decision making. The proposed model considers a mean incubation
period of 7 days [20] and a mean time to outcome (recovery or death) of 21 days, in line
with [27]. We use SEIR instead of the simpler SIR model [8] because, in contrast to the
latter, it includes the incubation period and allows us to replicate the delayed response
to interventions in the system. To model the same spread, [32] employed a more detailed
approach, whilst [8] made use of a simplified SIR model.

In order to capture the long-term behaviour, we simulated the system for a period of two
years. Figure 1 depicts the dynamics. Notice the steep increase in the infected population,
characteristic of the pandemic. Observe also that the proportion of infected individuals
peaks around 50% of the population, which would overload any health system in the world.

The Brazilian health system has experienced a period of decreased investment and
counts with around 2 hospital beds per thousand citizens [33]. To protect this system,
some states in the federation are enforcing a lock-down strategy, albeit sometimes chal-
lenged by the federal government. This paper proposes a parametric on-off strategy
whereby lock-down would be enforced when the number of hospitalisations due to the
epidemic approaches the total number of hospital beds, and removed when the occupa-
tion recedes to a lower threshold. For the sake of simulation, we assume a hospitalisation
rate of 10% [e.g., 27]. Hence, the lock-down and relaxation thresholds can be alternatively
set in terms of the total number of infected patients. Our simulations do not consider the

Figure 1 SEIR dynamics for Brazil
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Figure 2 SEIR dynamics for 25% and 75% thresholds

Figure 3 SEIR dynamics for 25% and 75% thresholds, zoom

development of curative medication or of an effective vaccine in a two-year horizon. Nat-
urally, should any of these developments occur, the control strategies would have to be
completely reformulated.

The first strategy is reported in Fig. 2 and corresponds to activating lock-down when-
ever the number of infections overcomes 1.5% of the population, which corresponds to an
occupation of 1.5 beds per thousand inhabitants (75% of the beds). Conversely, the lock-
down is relaxed when the bed occupation reaches 25%, or infection decreases below 0.5%
of the population. Notice that after two years, nearly 40% of the population will have been
infected and therefore be possibly immune. When one considers the results later described
in Sect. 4, this also means the death of around one to three percent of the population (2.9%
to 8% of the infected population).

Figure 3 details the evolution of the infected and exposed populations. Observe that,
even though the control policy is set for a 1.5% threshold, the number of infected indi-
viduals exceeds 2% in the peaks because exposed individuals become infected after the
onset of the lock-down. Moreover, the peaks decrease over time, as the susceptible pop-
ulation goes down. Notice also that the lock-down periods alternate with comparatively
small relaxation intervals.

Figure 4 depicts the populations for a 50%–100% strategy. Lock-down is enforced when
hospital beds are full and relaxed when less than half are occupied. With respect to the
25%–75% policy, we observe an increase in the infected population, with about 60% of the
population being infected after two years. This is due to the increased occupation in the
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Figure 4 SEIR dynamics for 50% and 100% thresholds

Figure 5 SEIR dynamics for 50% and 100% thresholds, zoom

health system. Unfortunately, in view of the results that will be presented Sect. 4, the result
implies the death of 1.5% to 4.6% of the population.

However, as detailed in Fig. 5, the number of required beds is in excess of 3 per thousand
inhabitants in the early peaks, signalling that a significant expansion of the health system
would be needed. Another insight of the simulations is that the relaxations have to be
carefully studied and the thresholds carefully calibrated in order to avoid the collapse of
the health system.

3.1 Gradual release strategies
We expand our analysis by introducing gradual release policies with the same upper and
lower threshold parameters as the on-off strategies. The difference here is that the release
is gradual and can occur at a linear or exponential rate. For the sake of simulation, the linear
release rate is set to 1

90 , meaning that total release would be achieved within three months.
While the analysis is not intended to be exhaustive, it does provide insights regarding
the long-term consequences of gradual releases. Specific analysis for local realities can be
implemented making use of the R code provided as Additional file 1.

Figure 6 depicts the dynamics resulting from the 25%–75% policy under linear release.
Comparing with the corresponding on-off policy (Fig. 2), we notice an increase in the
length of periods between full lockdowns. This is to be expected since a gradual release
implies lower transmission levels. Observe, however, that the gradual release does not
avoid subsequent peaks that enforce full lock-downs; indeed, even though the level of
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Figure 6 25%–75% strategy with linear release

Figure 7 25%–75% strategy with linear release-zoom

Figure 8 60%–90% strategy with linear release

release before the next full lockdown increases over time, it never substantially surpasses
50%. That may be due to the reduced hospital capacity.

Figure 7 shows that the gradual release improves the quality of the control, reducing the
infection peaks. Because the peaks are less pronounced, a lower percentage of people will
have been infected at the end of two years—around 30% as opposed to 45% for the pure
on-off strategy, see Figs. 2 and 6. It is worth reinforcing that, depending on the perceived
compromise between economy and healthcare, either policy could be advocated.

Figures 8–9 illustrate a linear release policy for 60% and 90% thresholds. Because of
the increased hospital utilisation with respect to the last example, the number of infected
(recovered) individuals at the end of the two-year window approaches 50%. Moreover, we
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Figure 9 60%–90% strategy with linear release, zoom

Figure 10 Block diagram of the architecture of a single neural predictor (i.e., a single model)

also notice a more pronounced reduction in the length of the full lockdown intervals, with
similar lock-down release levels over time.

We also conducted tests with an exponential release with half life of 30 days, in which
u(t) = 1 – e–0.231t–t0 is the level of lock-down t units of time after the end of the last full
lock-down (at t0). The results are very similar to those of the corresponding linear release
strategies and are omitted for the sake of brevity. The results seem to suggest that, regard-
less of the release strategies, cycles of lock-down and release may be necessary to curb the
disease. Therefore, a careful analysis of such cycles is essential.

4 Neural prediction of the Brazilian case fatality rate
The death toll due to COVID-19 in different scenarios is one of the most important quanti-
ties to forecast. It can be inferred from the number of infected individuals when the overall
case fatality rate (CFR) is known. Unfortunately, the reported Brazilian CFR is not reliable,
due in part to insufficient testing [15]. Bearing that in mind, we propose a model to pre-
dict the Brazilian CFR based on information acquired from COVID-19 data repositories
worldwide.

The proposed model utilises a committee of neural predictors, each with the architec-
ture depicted in Fig. 10. The committee is able to combine individual weak predictors in
order to produce an improved overall regression [34]. Given the variation of the data, and
considering the reliability issues surrounding multiple data sources, we use the median of
the weak predictors to hedge against outliers [34, 35]. Figure 11 illustrates the committee
strategy. This paper utilises a committee of N = 3 distinct regressors and the median op-
erator. Thus, the final committee estimate y, from a set {y1, y2, . . . , yN } of estimates (one for
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Figure 11 Block diagram of the proposed committee machine. Note that the combination step is the
median operator, and that the confidence interval can be computed using variability statistics derived from
the “Model Selection” procedure

Table 1 Input features utilized for the CFR neural regressor. Sources: LT (Legatum Institute), WBDI
(World Bank Development Indicators), WHO (World Health Organization Global Estimates 2016), ILO
(International Labour Organization), WEF (World Economic Forum), WJP (World Justice Project)

Variable Indicator Source

x1 Obesity LT / WHO
x2 Smoking LT / WHO
x3 Healthcare coverage LT / ILO
x4 Raised blood pressure LT / WHO
x5 Public trust in politicians LT / WEF
x6 Enforcement of regulations LT / WJP
x7 Population over age 65 (%) WBDI
x8 Fatalities of cardiovascular diseases (%) WHO

each individual regressor) is computed from

y = median{y1, y2, . . . , yN }. (1)

Note that the CFR strongly depends on several risk factors, which can be related to either
individual or societal features. Among the former, one finds chronic medical conditions
(especially diabetes [36], cardio-cerebrovascular diseases [37], hypertension [38] and res-
piratory system diseases [1]), pregnancy [39], obesity [40] and advanced age [38]. We can
argue that social factors that influence the CFR have attracted less attention, although
their impact cannot be dismissed as negligible. Among these factors, one may emphasise:
shortage of medical protection in developing countries [41], risk perception by the com-
munity [42], political commitment to allocate resources in order to reduce disaster risks
[43], disaster risk governance [44], appropriate allocation of humanitarian response and
development activity [45], participatory approaches that change risk management [46],
and institutional differences [47]. It is a challenging task to incorporate such factors in a re-
gression model, mainly due to the absence of reliable metrics for the majority of countries
that have experienced COVID-19 dissemination. Fortunately, there are some quantitative
features available for the countries of interest that are correlated with the aforementioned
factors (e.g., it is expected that the indicator “Enforcement of regulations”, provided by the
Legatum Institute, is correlated with institutional differences among different countries).
Overall, a total of eight features (Table 1) were selected as inputs to the neural predictors,
namely [48]:

• Obesity: Percentage of the adult population who have obesity;
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• Smoking: Percentage of the 15+ population who currently smoke any tobacco product
on a regular basis;

• Healthcare coverage: Percentage of population without healthcare coverage, either
through private insurance, or state-provided coverage (regardless of whether they are
able to effectively access healthcare through that coverage);

• Raised blood pressure: Percentage of the 18+ population with raised blood pressure;
• Public Trust in Politicians: Expert survey (1–7 scale), of how the ethical standards of

politicians are rated;
• Regulation Enforcement: Composite measure of whether government regulations,

such as labour, environmental, public health, commercial, and consumer protection
regulations, are effectively enforced; expert survey (0–1 scale);

• Population over age 65: Percentage of the adult population who are 65+;
• Cardiovascular fatalities: Percentage of the adult population whose fatalities are a

result of cardiovascular diseases.
Some of the features employed, namely: Obesity, Smoking, Raised blood pressure, Popu-

lation over 65 and Cardiovascular fatalities were chosen in accordance with what the liter-
ature presents as risk factors, namely: [1, 37, 38, 40]. The remaining features were chosen
to try to incorporate societal dynamics that can impact healthcare services [41, 43, 44].
Variable x5 was chosen given the large number of corruption scandals involving Brazilian
politicians. As a consequence, there is a significant amount of mistrust among the Brazil-
ian population regarding its politicians and their ability to effectively handle public-health
crises. There is also the perceived notion that regulations are poorly enforced in Brazil
(variable x6), which is of significant importance in the context of a pandemic.

Since some countries that present a small number of confirmed COVID-19 cases often
have distorted CFRs, the analysis has excluded countries whose number of COVID-19
cases is lower than 200. After this pruning procedure, 75 countries still remain (which
does not take into account Brazilian data), resulting in the following matrix of input data
X ∈R

10×75

X �
[

x(1) x(2) · · · x(75)
]

, (2)

where x(k) � [x1(k) x2(k) · · · x8(k)]T contains the eight features of the k-th country (see
Table 1).

Since the available data is unreliable, a careful data processing should be performed to
guarantee a robust CFR prediction for the Brazilian case. The first processing procedure is
executed to enhance the neural network accuracy (and to speed up training) by reducing
the internal co-variate characteristics of the data [49]. In this first step, each entry of the
matrix X is manipulated in order to obtain a normalised matrix X̃ , whose elements are
computed as

x̃i,j =
xi,j – μ̂i

σ̂i
, (3)

where μ̂i (resp. σ̂i) is the average (resp. standard deviation) of the i-th row of X . The chosen
neural regressor is the logistic feed-forward neuron, whose output, for a set of adjustable
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Figure 12 Ilustration of the k-fold procedure. In this paper, the performance is evaluated from the
computation of the mean absolute error between the estimated CFR and the one computed from WOI data

parameters wi, ∀i ∈ {0, 1, . . . , m}, is described as

ym(j) =
1

1 + exp[–w0 –
∑m

i=1 wix̂i,j]
, (4)

where x̂i,j is distinct from x̃i,j because of the feature extraction procedure. For a specific
number m of principal components, there exists the respective neural estimate ym(j). Note
that the neural regressor presents m + 1 weights, since it also has a bias parameter. Be-
cause the neural architecture contains only one neuron, it is mathematically equivalent
to the standard logistic regression. Feature extraction is an advisable step due to the in-
sufficient number of training samples to enforce proper constraints in the neural network
parameters; the desired estimation is considered a mathematical ill-posed problem [50].
This implies that over-fitting issues should be mitigated. One tool used for this purpose
is Principal Component Analysis (PCA), which aims to obtain the most compact repre-
sentation of a high-dimensional dataset in terms of the least square reconstruction error
[51]. Loosely speaking, it can be described as an unsupervised linear dimensionality re-
duction technique that presents robust feature extraction properties [51]. The number m
of principal components was selected by k-fold cross validation (a kind of model selec-
tion technique), in which the data set instances are randomly divided into k disjoint folds
with approximately equal size, and every fold is in turn used to test the model trained
from the remaining k – 1 folds [52], as depicted in Fig. 12. The proposed committee re-
gressor utilises the three neural regressors (each with a specific number m of principal
components) that obtain the better performance in the set of 75 countries (which does
not include Brazilian data).

Using k = 10 folds and training the neural networks with the backpropagation algorithm
under the mean quadratic error cost function, the mean absolute error (MAE) for each
number of principal components is presented in Table 2. The MAE represents the mean
absolute error computed by the differences between current CFR data for each country
(obtained from WOIa) and the CFR estimated by a regressor. Algorithm 1 presents a pseu-
docode of the procedure that evaluates the MAE for a specific number m of principal
components and assuming k folds in the k-fold cross validation.

Observe that architectures with one to three principal components perform better.
These are selected in our study and provide the estimates in Table 3. Observe that the
point-wise estimate (i.e., obtained from the median of the estimates) of the neural com-
mittee for the Brazilian CFR is CFR = 0.029. Due to data inaccuracies and to the large dif-
ferences in the estimated losses in human lives, the variability of such an estimate should
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Table 2 Computed MAE (using the k-fold strategy with k = 10) for different numbersm of principal
components. In bold: the three values ofm that obtained better performance

m MAE

1 0.0187
2 0.0188
3 0.0189
4 0.0192
5 0.0194
6 0.0194
7 0.0196
8 0.0199

Algorithm 1 Evaluating MAE
1: procedure MAEComputation(X , d, m, k)
2: Compute X̃ using (3)
3: X̂ ← PCA(X̃, m) � Compute m principal components
4: I ← {1, 2, . . . , 75} � I is a set of indices
5: Partition I into k disjoint subsets {I1,I1, . . . ,Ik}
6: for i = 1, . . . , k do
7: Ji ← I – Ii � Eliminate subset Ii

8: X̂ i ← X̂(:,Ji)
9: di ← d(Ji)

10: Regressor R(m, i) ← train{X̂ i, di}
11: X i ← X̂(:,Ii)
12: di ← d(Ii)
13: MAEi ← test(R(m, i), X i, di) � Test for subset Ii

14: end for
15: MAE ← 1

k
∑k

i=1 MAEi

16: end procedure

Table 3 The estimated Brazilian CFR with respect to the number of principal components. The
median estimated is presented in boldface

m Estimated CFR

1 0.0286
2 0.0299
3 0.0290

be taken into account. In this context, it is more appropriate to adopt a prediction interval,
which depends on the variability of the estimator. Since such a variability can be estimated
by the k-fold cross-validation, one may compute the upper bound CFRα

up of a confidence
interval of α% [53]. Such an upper bound is CFR68.27

up = 0.0545 (resp. CFR95
up = 0.0799) for

a confidence interval of 68.27% (resp. 95%). The median prediction is in line with the offi-
cial statistics as of April 14 2020 (5.7%—www.worldometers.info). This suggests that either
(i) the underreporting in death cases is similar to the underreporting in the overall cases,
or (ii) the testing and reporting biases are captured by the selected variables in the model.

The weights with respect to each feature of the first principal components are described
in Table 4. Such a table shows that variables x3, x4 and x6 (i.e., healthcare coverage, raised
blood pressure and enforcement of regulations) have more relevance in the first three prin-

http://www.worldometers.info
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Table 4 Weight of each input variable in the first four principal components. The three most relevant
weights of each principal component are emphasized in bold

Variable PC1 PC2 PC3 PC4

x1 0.0108 –0.0562 –0.1899 –0.2419
x2 –0.0066 –0.4152 0.2447 –0.2238
x3 0.8342 0.0150 –0.3281 –0.1498
x4 0.5694 0.0761 0.6638 0.4199
x5 –0.1176 1.1189 0.1200 –0.4809
x6 0.2586 0.2200 0.9944 –0.4558
x7 0.0665 0.2309 –0.1545 1.3105
x8 0.1264 –0.1882 0.1256 0.0881

Table 5 Eigenvalues of the PCA decomposition. The first three principal components are able to
retain 76.62% of the input features energy

Index Eigenvalue

1 3.0100
2 1.9256
3 1.1121
4 0.5845
5 0.4940
6 0.3882
7 0.2349
8 0.1441

cipal components, which indicates that they incorporate important information about the
profile of each country. The eigenvalues of the PCA decomposition are shown in Table 5,
which reveals the energy concentration in the first three principal components.

5 Conclusions
Given the wide assortment of afflictions currently plaguing public available data over
COVID-19, it is a challenging task to make reliable predictions concerning the spread
and lethality of COVID-19. Consequently, data may be inaccurate and must be utilized
with caution, which restricts the reliability of forecasting models constructed with them.
It was already demonstrated that an inaccurate confirmed-case data induces nonidenti-
fiability in the model calibrations, which helps to explain the wide range of forecasting
variations [54]. For example, underreporting mild cases implies a reduction on the mor-
tality rate [42, 55]. Unfortunately, such inconsistencies in reporting COVID-19 cases are
a serious problem, which might sabotage the mitigation of its harmful effects and com-
plicate the outbreak response [56]. Additional uncertainties derive from the fact that key
characteristics of the transmissibility of COVID-19 (such as whether its transmission can
occur before symptom onset) are currently unknown [57].

Yet, despite the apparent gaps in knowledge, it is still possible to gain invaluable insight.
Namely, by combining the existing SEIR model with on/off lock-down policies one can see
that the impact of the virus will be spread through multiple waves of decreasing amplitude.
The results suggest that this trend persists even if the lock-down release is gradual. Such a
scenario would effectively mean that there would exist multiple waves requiring flattening
over time, in the absence of effective medication, an appropriate vaccine or the develop-
ment of herd immunity.

Current epidemiological models such as SEIR are relatively simple, but robust prediction
is dependent on reliable data. As a result, we developed a neural regressor that considers
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features that the current literature also deems as important factors in the fatality rate of
COVID-19. This allows for non-linear extrapolations. Again, the issue of data unreliability
surfaces. Through careful data processing alongside PCA and k-fold cross validation we
believe that it is possible to obtain a more robust CFR prediction for Brazil, and possibly
for countries with similar characteristics.

6 Summary points
The following is a set of highlights of our paper:

• COVID-19 analysis focused on Brazil;
• COVID-19 SEIR Model with on / off lockdown strategy analysis
• Neural regressor with features that clinical studies present strong corroboration with

COVID-19 fatality rate.
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