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Abstract—The choice of a fixed step size in adaptive filtering
algorithms implies a conflict between the convergence rate and
the steady-state performance. In order to address this trade-off
more effectively, variable step-size schemes have been proposed.
The efficiency evaluation of such techniques requires comparisons
of the resulting step size values with theoretical optimum values
obtained from a statistical analysis of the adaptive algorithm
convergence. The analysis generally employs statistical approxi-
mations, the most critical being the assumption of independence
between the input signal and the filter coefficients. In this work
it is argued that such a comparison can be misleading because
the supposedly optimal step-size sequence sometimes induces
divergence in the first phase of learning. This occurs most
often when the input signal is colored and/or heavy-tailed. This
instability trend can be explained by a convergence analysis that
does not employ the independence hypothesis. In addition, the use
of this exact analysis implies an optimal step-size sequence that
can be significantly different from that obtained with standard
analysis methods. This approach can be used to improve the
design process of variable step size adaptive filtering algorithms.

Index Terms—Adaptive Filtering, Variable Step Size, Exact
Expectation Analysis.

I. INTRODUCTION

A
N adaptive filtering scheme can be interpreted as a

recursive and nonlinear estimator that stores in a vector

w(k) ∈ R
N , where k is the iteration index, estimates of an

optimal (and unknown) vector w⋆ ∈ R
N . It is expected that

the mean-square deviation (MSD), defined as

ξ(k) , E

[

‖w(k)−w⋆‖
2
]

, (1)

where E [·] is the expectation operator, will be progressively

reduced in the transient phase until it attains the steady-state

baseline. In supervised settings, which is the focus of this

paper, a reference signal d(k) is assumed to be available

(sometimes by ingenious ways). It is also assumed that such a

signal can be described by the affine-in-parameter data model

d(k) , xT (k)w⋆ + ν(k), (2)
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where ν(k) accounts for measurement noise and/or modeling

errors, and x(k) ,
[

x(k) x(k − 1) . . . x(k −N + 1)
]T

is the currently memory input data, assuming a tapped delay

line filtering structure. The discrepancy between the output of

the filter y(k) , wT (k)x(k) and the reference signal d(k) is

the error signal

e(k) , d(k)− y(k), (3)

which normally feeds the estimation procedure.

One of the most popular adaptive algorithms is the least

mean squares (LMS), which adopts a stochastic gradient of

the mean squared error (MSE) function ϑ(k) , E
[

e2(k)
]

,

giving place to the recursive update equation

w(k + 1) = w(k) + βx(k)e(k), (4)

where β is the step size or learning factor. In general, small

values of β produce good steady-state performance and small

probability of divergence, while large step sizes lead to fast

convergence and superior tracking ability [1]. Such a trade-off

can be alleviated by a proper control policy that adjusts a time-

variant step size β(k) in a data-dependent manner [2]–[7]. In

order to evaluate the robustness of a variable step size (VSS)

scheme, it is necessary to compare the resulting β(k) values

to an optimal step-size sequence derived from a theoretical

analysis [8]. The commonly employed convergence analysis

uses the independence assumption (IA), which states that the

deviation vector

w̃(k) , w⋆ −w(k) (5)

is statistically independent of x(k) [9], with the resulting step

sizes denoted in this paper by βIA(k).

Section II raises some questions about the optimality of the

sequence βIA(k), especially due to the fact that sometimes

divergence is observed in practice. In Section III, such a

phenomenon is theoretically explained by an exact analysis

(EA), which does not employ IA [10]–[12]. Section IV devises

a method to avoid divergence by providing an alternative

step-size optimal sequence βEA(k). Section V displays the

ensemble-average learning curves (EALCs) obtained with

βIA(k) and βEA(k), showing that the EA step-size sequence

leads to better performance than what is obtained with the

IA one, and that such fact has implications on the design of

new VSS adaptive algorithms. Section VI presents concluding

remarks.
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II. CLASSICAL THEORETICAL STEP-SIZE SEQUENCE

Let us assume that the input signal x(k) is stationary, so that

the autocorrelation matrices of the input and weight vectors

are Rx , E
[

x(k)xT (k)
]

and Rw̃(k) , E
[

w̃(k)w̃T (k)
]

,

respectively. Thus, the MSD and MSE can be written as

ξ(k) = Tr [Rw̃(k)] , (6)

ϑ(k) ≈ σ2

ν + Tr [RxRw̃(k)] . (7)

where Tr(A) denotes the trace of matrix A. The above

approximation employs IA and a new hypothesis, named

noise independence assumption (NIA), which assumes that

the measurement noise ν(k) is an independent and identically

distributed (i.i.d.) random sequence with zero mean and sta-

tistically independent of the input signal x(k).
Eqs. (6) and (7) explain the relevance of determining Rw̃(k)

in most analyses. Normally, the adopted approach intends to

establish a recursion for Rw̃(k + 1) in terms of Rw̃(k).
Depending on the employed assumptions, different recursions

can be obtained. For example, for a zero-mean Gaussian input

and under IA and NIA conditions, such a recursion for a fixed

step size can be written as [8]

Rw̃(k + 1) = Rw̃(k)− β [RxRw̃(k) +Rw̃(k)Rx] (8)

+β2
{

RxTr [RxRw̃(k)] + 2RxRw̃(k)Rx + σ2

νRx

}

,

where σ2

ν is the variance of the measurement noise, which is

assumed white and Gaussian.

Depending on the chosen assumptions and the metric to be

optimized (MSD or MSE), different theoretical step sizes can

be derived. Employing (8) and minimizing ϑ(k+1) yields [9]

βIA(k) =
Tr

[

R
2

x
Rw̃(k)

]

Tr
[

R
2

x

]

Tr [RxRw̃(k)] + 2Tr
[

R
3

x
Rw̃(k)

]

+ σ2
νTr

[

R
2

x

] ,

(9)

where it can be observed that the learning factor βIA(k) tends

to attain large values in the transient response, in order to

achieve a high convergence rate [13]. Such a fact should raise

concerns, because the IA is accurate solely when the step

size is small [14], [15]. Additionally, the assessment of VSS

techniques using EALCs could be misleading, since the results

depend strongly on the number of independent repeated ex-

periments, here denoted as K. This argument can be clarified

through an example case. Let σ2

ν = 10−6 and w⋆ be an ideal

vector filled with 1’s. Fig. 1 presents some EALCs with the

IA theoretic sequence1 βIA(k) designed for the minimization

of ξ(k). Note that EALCs evaluated with small values of K,

e.g., K = 10, present a reasonable learning behavior, which

may hinder the fact that divergence in the first phase of the

learning process indeed occurs in some experiments (see the

curves with K = 1, whose experiments were chosen in order

to illustrate this issue). The impact of such a divergence, which

occurs with low probability, is captured by EALCs for large

values of K, e.g., K = 104. The importance of employing

a large number of simulations in order to reasonably assess

the mean-square behavior of adaptive filtering algorithms with

1Such a sequence was computed using the statistical properties of the input
signal, e.g., autocorrelation function and probability distribution.

constant step sizes is highlighted in [16]. Fig. 1 shows that

such a concern is also relevant to VSS schemes.
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Fig. 1. MSD evolution of the LMS algorithm using the time-variant step-size
sequence βIA(k) for K independent experiments (for K = 1, an experiment
with divergence trend was selected): (a) unitary variance white Laplacian input
signals (N = 5); (b) colored Gaussian input signals, obtained by filtering a
unitary variance white Gaussian signal using H(z) = 1+0.8z−1 +0.2z−2

(N = 3).

III. EXACT EXPECTATION ANALYSIS

In order to accurately analyze the behavior of a VSS adap-

tive filter that employs IA-based optimal step-size sequences,

it is necessary to avoid the independence assumption. This is

an important feature of the so-called exact expectation anal-

ysis [11], [12], which consists of a recursive and systematic

procedure that creates a state vector y(EA)(k) containing the

necessary information to derive the mean-square deviation

evolution of the adaptive coefficients. The exact analysis

approach assumes the following M -length FIR filter data

model for x(k) [12]:

x(k) =
M−1
∑

m=0

bmu(k −m), (10)

where u(k) is an i.i.d. zero-mean sequence, whose statistical

moments are given by γn , E [un(k)]. By a straightforward
manipulation of Eq. (4) with variable step size β(k), the
recursion for each deviation error coefficient in terms of u(k)
can be written as

w̃i(k + 1) = w̃i(k)− β(k)

M−1
∑

m=0

bmu(k − i−m) ·

·

{

ν(k) +

N−1
∑

j=0

[

M−1
∑

n=0

bnu(k − j − n)

]

w̃j(k)

}

, (11)

where w̃i(k), for i ∈ {0, 1, . . . , N − 1}, is the ith element

of w̃(k). Eq. (11) is an exact difference equation that should

be squared for each value of i, before the application of the

expectation operator E [·], in order to provide second order

statistical information about the deviations. If IA is employed,

terms such as E
[

u2(k − 1)w̃0(k)w̃1(k)
]

can be approximated

as

E
[

u2(k − 1)w̃0(k)w̃1(k)
]

≈ γ2E [w̃0(k)w̃1(k)] , (12)

whereas in the case of exact analysis new recursive equations

are required. For example, the evaluation of Eq. (12) requires

multiplying w̃0(k+1) by w̃1(k+1), using Eq. (11), followed

by the multiplication of the resulting terms by u2(k) before

the application of the operator E[·]. The improved recursive

equations may provide new terms that will in their turn

require new equations. The recursion procedure eventually
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TABLE I
LENGTH OF STATE VECTORS y(IA)(k) AND y(EA)(k) FOR SEVERAL

COMBINATIONS OF N AND M .

N M L (IA) L (EA)

1 1 1 1

1 2 1 3

1 3 1 19

1 4 1 152

1 5 1 1341

1 6 1 12546

1 7 1 122213

2 1 2 5

2 2 3 48

2 3 3 394

2 4 3 3517

2 5 3 33130

3 1 3 37

3 2 6 698

3 3 6 6409

3 4 6 60957

4 1 4 330

4 2 10 9578

4 3 10 94697

5 1 5 3046

5 2 15 127638

6 1 6 28181

7 1 7 262134

8 1 8 2438009

halts, since the correlation between x(k1) and x(k2) is zero for

|k1 − k2| > M , which is guaranteed by the model in Eq. (10).

Note that the exact analysis still employs NAI, which allows

the cancellation of terms such as E
[

ν(k)u2(k − 1)w̃2

1
(k)

]

.

The recursive procedure generates terms (like the one in Eq.

(12)) that are progressively stored in a state vector y(EA)(k) ∈
R

L, where L is a function of N and M , which can be updated

by the linear state equation system

y(EA)(k + 1) = A(EA)(k)y(EA)(k) + b(EA)(k). (13)

The elements a
(EA)
i,j (k) of A(EA)(k) ∈ R

L×L and b
(EA)
i (k)

of b(EA)(k) ∈ R
L are functions of β(k), γn, bm and σ2

ν .

Originally, A(EA)(k) and b(EA)(k) were time invariant [11],

[12], which is not the case in this work due to the use of

variable step size.

The application of IA allows the simplification of terms

such as Eq. (12), which in general yields a simpler model,

that is,

y(IA)(k + 1) = A(IA)(k)y(IA)(k) + b(IA)(k), (14)

with A(IA)(k) and b(IA)(k) having sizes much smaller than

A(EA)(k) and b(EA)(k).

A C++ program was developed to execute symbolic oper-

ations, in order to efficiently derive the algebraic equations

of models in Eqs. (13) and (14) and evaluate numerically the

transition matrices A(EA)(k) and A(IA)(k) for every determin-

istic step-size sequence β(k). Table I displays, for different

combinations of N and M , the respective values of L obtained

with the C++ code for both IA and EA analyses2.

From the respective theoretical analysis, convergence of

the VSS adaptive algorithm is predicted if all the eigen-

values of the transition matrices have magnitudes less than

unity [17], [18]. Therefore, only the largest magnitude eigen-

value
∣

∣λ(EA)
max [β(k)]

∣

∣ or
∣

∣λ(IA)
max [β(k)]

∣

∣ of A(EA)(k) or A(IA)(k)
needs to be calculated, to enable one to decide whether the

use of a deterministic step-size sequence β(k) may cause

instability. The largest magnitude eigenvalue of a matrix can

be computed using the power method [19].

Fig. 2 presents the evolutions of
∣

∣λ(EA)
max [βIA(k)]

∣

∣ and
∣

∣λ(IA)
max [βIA(k)]

∣

∣ over the iterations for the configurations de-

picted in Fig. 1. The IA analysis predicts that the learning

process is stable in all iterations, which is not in agreement

with the experimental results presented in Fig. 1, where diver-

gence is observed in the transient phase. Such a phenomenon

is explained by the exact analysis, which indicates that the

stability bound of the step size is indeed violated by βIA(k)
in the first learning phase. The low probability of divergence

is not contradictory to the instability predicted by the exact

analysis, due to the fact that mean-square instability may imply

that the deviation in some experiments assume very large

values before converging to a small steady-state baseline [20].
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Fig. 2. Evolutions of the largest magnitude eigenvalues of the transition
matrices A(EA) and A(IA) for step-size sequence βIA(k): (a) configuration of
Fig. 1(a); (b) configuration of Fig. 1(b).

IV. EXACT EXPECTATION STEP-SIZE SEQUENCE

In the previous sections the risks involved in employing

the optimum step-size sequence βIA(k) derived from the IA

analysis were described. In this section, a design procedure is

proposed for the construction of an optimal step-size sequence

that is aware of the correlations between the adaptive coeffi-

cients and past input samples. This awareness is guaranteed by

using the exact analysis model in Eq. (13) for the evaluation

of the MSD3. Note that ξ(k) =
∑N−1

i=0
E
[

w̃2

i (k)
]

involves

only a subset of elements of the y(EA)(k + 1) vector, that is,

y
(EA)
j (k+1) with j ∈ I, where I = {i0, i1, . . . , iN−1} contains

the indexes of such elements. From Eqs. (3), (4), (11) and (13),

we obtain

ξ(k + 1) =

N−1
∑

j=0

[

L−1
∑

l=0

a
(EA)
ij ,l

(k)y(EA)
l (k) + b

(EA)
ij

(k)

]

, (15)

2For the exact analysis, the values of L which have already been reported in
the literature are shown in boldface. In [12], the reported number of equations
L for (N,M) = (3, 3) was 6449. We believe that the difference from our
value presented in Table I is due to a typo.

3Similar reasoning can be employed for the MSE.
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where a
(EA)
ij ,l

(k) and b
(EA)
ij

(k) are functions of β(k). At iteration

k, the value of the step size that minimizes ξ(k + 1) can be

obtained by differentiating Eq. (15) with respect to β(k) and

equating it to zero, which leads to

N−1
∑

j=0

[

L−1
∑

l=0

∂a
(EA)
ij ,l

(k)

∂β(k)
y

(EA)
l (k) +

∂b
(EA)
ij

(k)

∂β(k)

]

= 0. (16)

Since a
(EA)
ij ,l

(k) and b
(EA)
ij

(k) depend quadratically on β(k),
solving Eq. (16) is a simple task. Note that βIA(k) can be

computed in a similar manner using a
(IA)
ij ,l

(k) and b
(IA)
ij

(k) in

the above equation.

Fig. 3 shows the evolutions of the sequences βEA(k) and

βIA(k) for the configurations of Fig. 1. The exact analysis

suggests the use of more conservative step size values in the

first training phase when compared to the IA sequence. As the

iterations evolve, both sequences converge to the same values,

which can be explained by the fact that the IA is accurate for

small step sizes.

Fig. 4 shows the evolution of
∣

∣λ(EA)
max (k)

∣

∣ when the exact

analysis is employed to derive the optimal step-size sequence.

The stability upper bound is not violated in general, except in

3 only iterations (in Fig. 4(a)) and in 1 iteration in Fig. 4(b).

Such violations are due to the fact that βEA(k) was designed

to minimize the sum of a subset of y(EA)(k) elements, without

considering the global stability of the system of Eq. (13).

Contrary to what occurs in the IA analysis, it is easy to correct

such atypical cases, since A(EA)(k) is known and its largest

magnitude eigenvalue (in terms of β(k)) can be computed,

thereby allowing the reduction of the values of βEA(k) if a

stability issue is detected. This case is not addressed in this

paper, since even with very large values of K (e.g., K = 107)

no divergence was experimentally observed, which is in agree-

ment with the instantaneous MSD minimization undertaken

by the solution of Eq. (16). Whereas the oscillatory behavior

of βEA(k) at the beginning of Fig. 4(a) cannot be emulated

by a practical data-dependent VSS algorithm, a proper design

may reduce the differences between the theoretical curve and

the actual one, which can be accomplished by establishing

an actual step-size sequence with values at approximately the

center of the oscillations.
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Fig. 3. Evolutions of the step-size sequences βEA(k) and βIA(k): (a)
configuration of Fig. 1(a); (b) configuration of Fig. 1(b).

V. EVALUATION OF THE PROPOSED STEP-SIZE SEQUENCE

The final test for a candidate sequence consists in applying

it to an actual learning configuration. Using the same features

of the theoretical scenarios depicted in Fig. 1, Fig. 5 shows

the MSD evolution of the VSS LMS algorithm using βIA(k)
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Fig. 4. Evolution of the largest magnitude eigenvalue of the transition matrix
A(EA) for step-size sequence βEA(k): (a) configuration of Fig. 1(a); (b)
configuration of Fig. 1(b).

and βEA(k) as step-size sequences for K = 108 experiments.

Note that the exact analysis-based theoretic sequence presents

better stability and satisfactory convergence properties.
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Fig. 5. Resulting MSD (dB) for the step-size sequences βIA(k) and βEA(k):
(a) configuration of Fig. 1(a); (b) configuration of Fig. 1(b).

The learning plane is a simultaneous theoretical represen-

tation of the cost function and step size evolutions, and is

useful for the design of VSS algorithms [8]. Fig. 6 presents the

learning plane of both configurations considered in this paper

(see Fig. 1). Note that there is a large difference between the

two theoretical curves, which means that the proposed step-

size sequence may influence both evaluation and design of

new VSS algorithms [8].

0.02 0.04 0.06 0.08 0.1

-60

-40

-20

0

β

M
S

D
(d

B
)

(a)

EA

IA

0.02 0.04 0.06 0.08 0.1 0.12

-60

-40

-20

0

β

M
S

D
(d

B
)

(b)

EA

IA

Fig. 6. Resulting MSD (dB) for the step-size sequences βIA(k) and βEA(k):
(a) configuration of Fig. 1(a); (b) configuration of Fig. 1(b).

VI. CONCLUSION

In this work, it is shown that the use of the optimal de-

terministic step-size sequence derived using the independence

assumption is prone to cause divergence, especially for colored

and/or heavy-tailed input signals, as verified experimentally

and theoretically. An alternative step-size sequence, based on

the exact expectation analysis technique, is advanced, which

can lead to new VSS adaptive filters with improved learning

performance.
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