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Abstract. The growing processing capabilities of mobile devices cou-
pled with portable and wearable sensors have enabled the development
of context-aware services tailored to the user environment and its daily
activities. The problem of determining the user context at each particu-
lar point in time is one of the main challenges in this area. In this paper,
we describe the approach pursued in the UPCASE project, which makes
use of sensors available in the mobile device as well as sensors externally
connected via Bluetooth. We describe the system architecture from raw
data acquisition to feature extraction and context inference. As a proof of
concept, the inference of contexts is based on a decision tree to learn and
identify contexts automatically and dynamically at runtime. Preliminary
results suggest that this is a promising approach for context inference in
several application scenarios.
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wearable sensors, decision trees.

1 Introduction

There is a growing desire of telecommunication operators to increase traffic vol-
ume even further by offering value-added services to customers in addition to
traditional voice and data communication. These services can be enabled or
disabled depending on the specific user context. For example, when caught in
rush-hour traffic, a service could automatically estimate the delay for the user
to reach a child’s school. In case of excessive delay, it would notify an alternate
adult for pick-up. Other examples include anti-theft or near-emergency services.
Using sensors it might be possible to determine whether an elderly has fallen at
home and has been immobile for some time thus triggering an emergency call.
To enable such kind of services, mobile devices must be able to clearly iden-
tify specific contexts the user goes through [12, 27]. For this purpose, mobile
devices must include sensors that yield data such as position, lighting or sound

* This work was partially funded by PT Inovagao S.A.
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conditions from which user contexts can be determined. Accurate context in-
ference, however, is notoriously difficult as there exist various sources of data
signals with possibly very distinct patterns which need to be captured and pro-
cessed in a timely fashion. Furthermore, the amount of raw sensor data can
overwhelm the resources of even the most sophisticated mobile devices. A pos-
sible solution would require each mobile device to acquire and transmit sensor
data to a centralized server for processing. Although conceptually simple, this
centralized solution is infeasible. It would require constant communication with
a centralized server as most sensors need to operate in real-time. This in turn
would require excessive computing power for each device to constantly transmit
a possible high volume of sensor data. On the server side fusing sensor data from
millions of devices would require a tremendous computing power. Instead, each
mobile unit should be able to infer user context by processing data originat-
ing from its sensors and possibly from communicating with network services to
obtain additional information such as traffic or weather conditions.

In this paper, we describe the architecture and operation of a proof-of-concept
system for context inference based on a smartphone augmented with an ar-
ray of sensors connected via Bluetooth?. This system is part of the UPCASE
project (User-Programmable Context-Aware Services), an industry-funded R&D
project. The architecture of the system consists of three main layers: (1) the ac-
quisition layer which is concerned with sensor data acquisition and preprocessing,
(2) the feature extraction layer which assigns specific categories to the prepro-
cessed sensor data, and (3) the context inference layer which uses decision-tree
induction techniques to uncover the user context.

This paper is organized as follows. We begin with an overview of related
work and describe the developed system. Next, we present the various sensors
used in connection with the smartphone and the experimental results of context
inference in a simple scenario of daily activities. Lastly, we describe two poten-
tial scenarios of application of the system developed in identifying meaningful
contexts, namely in elderly care and emergency management scenarios.

2 Background and Related Work

Context identification as been recognized as an enabling technology for proactive
applications and context-aware computing [4, 11]. Sensor networks can be used
to capture intelligence (see, e.g., the e-SENSE? project [17]), providing sensing
capabilities from the environment and opening opportunities for context-aware
computing.

Early context-aware applications were predominantly based on user location
defined as typical user places (e.g., ”at home”, ”in a museum”, ”in a shopping
center”). Projects such as GUIDE [3] and Cyberguide [1] addressed the use of
information about location and situation to guide the user when visiting touristic

2 The Official Bluetooth Technology Info Site (www.bluetooth.com /bluetooth).
3 http://www.ist-esense.org/
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city spots. Recently, researchers have studied techniques to identify a richer set
of contexts or activities. These include simple user activities (e.g., ”walking”,
"running”, ”standing”), environment characteristics (e.g., "cold”, "warm”), or
even emotional condition of the user (e.g., "happy”, ?sad”, "nervous”).

In the SenSay [23] project, researchers developed a smartphone prototype
able to exploit the user context to improve its usability. For example, if the user
is occupied and wishes not to be interrupted, the smartphone can answer/reply
automatically using an SMS. The SenSay prototype uses a smartphone and a
sensor unit consisting of a 3-axis accelerometer, two microphones (one to capture
sound from the environment and the other to capture voice from the user), and a
light sensor. The prototype makes use of simple techniques such as performing an
average of sensor readings over a given window and applying a numeric threshold
to identify each activity.

Generally, the identification of contexts is done in stages. Processing raw data
from sensors may require a wide variety of techniques such as noise reduction,
mean and variance calculation, time- and frequency-domain transformations, es-
timation of time series or sensor fusion. Data collected from sensors is catalogued
(a process known as feature extraction) and the context-inference stage makes
use of features rather than raw data. Context inference has been addressed us-
ing different techniques such as Kohonen Self-Organizing Maps (KSOMs) [14],
k-Nearest Neighbor [15], Neural Networks [20], and Hidden Markov Models
(HMMs) [24]. Some approaches even combine several of these techniques, as
in [13].

Regarding the inference of user activities such as ”walking” or ”"running”,
they use a plethora of approaches, ranging from simple processing steps and
threshold operations [8, 22, 27] to the use of neural networks as the clustering
algorithm [20]; or even using non-supervised time-series segmentation [9]. As an
example, the work presented in [12] infers activities such as "walking”, ”run-
ning”, "standing”, and ”sitting” with a single 3-axis accelerometer claiming an
accuracy of 96%.

In our approach, we extract signal features using techniques similar to those
described in [22, 27]. For context inference we combine signal-processing and
machine-learning techniques, using decision trees [18] to fuse features and deter-
mine user activities. All data preprocessing and context inference is performed on
the mobile device. The results are sent to a server in order to monitor activities,
thus allowing for more advanced and possibly non-local context inferences.

3 The UPCASE Project

The UPCASE project aims at uncovering user contexts using a set of sensors
connected to the user’s mobile phone. These sensors can be embedded into per-
sonal clothes or items such as backpacks or purses. Sensors include accelerome-
ters, light, sound, and temperature sensors, and also virtual sensors to acquire
information such as time of day or approximate location via external services.
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A goal of the project includes the development of robust algorithmic ap-
proaches to accurately determine user context. Specifically, we include supervised-
based learning techniques. During a training phase the system collects a suffi-
cient number of data samples for context derivation using decision-tree based
techniques. After this training phase the system operates autonomously and
unobtrusively automatically deriving contexts.

3.1 System sensors and prototype

Figure 1(a) depicts the main system components used in the prototype we have
developed: the mobile device, a sensor node, and a set of sensors. The black box
contains the batteries (the 1-Euro coin is shown to provide an idea of scale).
Figure 1(b) depicts an experimental setup where the components are embed-
ded in a backpack used for testing purposes. In this early prototype, we have
deliberately not concealed the sensors to experiment with sensor sensitivity to
environment conditions. The prototype has been tested on a backpack and also
on a vest, ensuring that the sensors experience the same conditions as the user.
The only requirement is that some sensors must be exposed to allow for more
correct sound, temperature and light measurements.

Fig. 1. The system components (a) and an experimental setup in a backpack (b).

The system prototype comprises a Sony Ericsson W910i smartphone? and
a BlueSentry external sensor node®. A sound sensor®, a temperature sensor?,
and a light sensor® are wired to the sensor node. The BlueSentry sensor node
communicates with the smartphone via Bluetooth to provide sensor readings,
thus avoiding the need for physical connection between the two. In addition

4 http://www.sonyericsson.com/cws/products/mobilephones/overview /w910i
5 http://www.rovingnetworks.com/bluesentry.htm

6 http://www.inexglobal.com/products.php?model=zxsound

7 http://www.phidgets.com/products.php?product_id=1124

8 http://www.phidgets.com/products.php?product_id=1127
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to these, there are two other sensors being used: the internal accelerometer of
the smartphone and a virtual time sensor to provide the time of day. It is also
possible to connect a second accelerometer to the BlueSentry node.

3.2 System sensors and prototype

The overall system architecture is presented in figure 2. The application layer has
been developed using Java ME platform?, a technology that is widely used due to
its recognized portability across many mobile phone devices. At the lowest level,
the sensors gather data from the environment and provide it as raw analog signals
to the sensor node, which in turn converts them to digital and transmits the
digital representations to the mobile phone via Bluetooth. The mobile phone runs
a proprietary operating system (OS) which supports the execution of Java code.
We have developed a MIDP (Mobile Information Device Profile) application that
acquires raw sensor data from the BlueSentry node and supports the extraction
of features to be used in the upper layers of the system architecture.

Context Server
(e.g., High-Level Context

\ Identification Engine)

\ -
\\
\l\ Context

Publisher

Context Rules
and
Associated
Activities

Pre-defined
Sensors
(XML)

Sensors Data Acquisition

JSR 256 Mobile
Sensor API

JSR 82
Bluetooth API MIDP

Context
Examples

Java Virtual Machine (J2ME)

Operating System (e.g., Symbian)

Mobile Device (e.g., Smartphone, PDA)

Fig. 2. The UPCASE system architecture.

9 http://java.sun.com/javame/
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At runtime, there are three main stages: a sensor acquisition stage, a pre-
processing stage, and a context inference stage. Sensor data acquired from the
available sensors are fed to the preprocessing stage, which is responsible for
extracting signal features. The inference stage gathers these features and iden-
tifies the context that is associated with them according to a set of rules. These
rules are either pre-defined or derived by a learning phase. This synergy between
stages can be seen as a process that maps low-level sensor data into higher-level
context information. Both the preprocessing and the context inference stage can
be configured by specifying the available sensors and the default context rules.
In addition, it is possible to add new sensors or replace existing ones by means of
an XML configuration file, thus providing an easy and simple way of managing
the set of system sensors.

The upper section of the figure depicts the context-inference stage and the
system interaction with external resources, such as a centralized server. Each
mobile device, upon having recognized a specific context, can (contingent on user
permission) publish it on a server to trigger other actions or custom services,
or to provide statistical data about user behavior that can be used to generate
other services or improve the performance of existing ones. A server can take
advantage of historical data to improve the accuracy of context information.

3.3 Sensor data acquisition

We make use of JSR-256 Mobile Sensor API'® whenever it is supported by the
mobile device. The JSR-256 API allows developers to retrieve data not only
from embedded sensors but also from sensors connected via infrared, bluetooth
and GPRS. When the JSR-256 is not supported, we use the JSR-82 Bluetooth
API'. At the moment we are using JSR-256 for the internal accelerometer in
the Sony Ericsson W910i device, and JSR-82 for all other data acquisition.

Sensor data are acquired at a fixed rate. At regular intervals, the device sends
a request to the sensor node in order to retrieve data from the sensors connected
to that node. The sensor readings are buffered in the smartphone to be fed later
to the preprocessing stage. It is worth noting that sensors may have different
acquisition rates. The difference in sampling frequency may force the acquisition
to run at the slowest rate, or at individual rates for each sensor. Currently we
are using the same acquisition rate for all sensors.

3.4 Preprocessing

The preprocessing stage converts raw sensor data into a set of features. This con-
version is performed by means of threshold operations that map sensor data into
a finite set of categories. Rather than using instant values, the system captures
a sequence of sensor readings and then preprocesses them in order to minimize
jitter and to provide a more accurate categorization. The preprocessing may

10 http://jcp.org/en/jsr/detail?7id=256
' http://jcp.org/en/jsr/detail?id=82
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involve averaging, filtering or transforming values, depending on the particular
sensor the data come from.

Table 1. Categorization of the sensor values acquired.

[Sensor[ Category [Value range| [ Sensor [ Category | Value range
very silent | 0% - 20% very cold —50°- 0°
silent 20% - 40% cold 0°- 15°
sound [ moderate | 40% - 60% temperature mild 15°- 25°
loud 60% - 80% hot 25°- 30°
very loud | 80% - 100% very hot 30°- 150°
very dark 0 - 200 dawn Oh - 5h
dark 200 - 400 morning 6h - 11h
light normal 400 - 600 time afternoon 12h - 17h
bright 600 - 800 night 18h - 23h
very bright] 800 - 1000 not moving variance-based
accelerometer| moving variance-based
moving fast|variance- and FFT-based

Table 1 presents the categories for each sensor, as well as the range of values
for each category. Clearly, a limited number of categories places some limits on
the total number of contexts that can be identified. However, a too large number
of categories can also divide the perception of the environment in too many
different states. According to the user contexts to be identified and according to
the specific application domain, the categories of sensor values may have to be
adjusted. In general, however, most applications will make use of only a limited
set of contexts and the above categories, we believe, are enough to handle many
practical situations.

For some sensors, the raw sensor value can be mapped directly to a category,
while other sensors such as the accelerometer need more elaborated preprocess-
ing. For each sensor there is a fixed buffer window. For the temperature, light
and sound sensors, the category is found by applying threshold operations to
the mean value inside the buffer, making context inference less prone to sensor
noise.

For the 3-axis accelerometer, the system calculates the variance for each
axis along a time-framed window (last 16 data samples). Those three variances
obtained are compared to a threshold in order to identify "moving” and ”not
moving” activities. When movement is detected, the system performs an FFT
over the last 32 data samples and the amplitudes of the harmonics representing
frequencies within the range of "running” activities (currently 0.5 to 2 Hz) are
added up. If the resulting value is greater than a specific threshold value a
“running” context is signaled. Otherwise, a ”"walking” context is determined.

4 Context Inference in the UPCASE Project

At any given moment, the set of sensor readings will have some relationship with
user activity of the surrounding environment. The purpose of context inference
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is to discover this relationship so that when a similar set of readings occur, the
device will recognize the same context. While different contexts can lead to the
same set of sensor readings the converse is also true: different readings may cor-
respond to the same context, as there will be naturally some variation in sensor
values. Context inference must therefore identify the range of measurements that
typically corresponds to each context.

4.1 Context inference with decision trees

Decision trees are structures that fit the purpose of induction and are fast to
build and process, which makes them attractive for implementation on mobile
devices. Provided with a set of training examples, decision tree induction attains
a classification of contexts according to a set of sensor readings. Our implemen-
tation is based on the ID3 algorithm [19], which uses information entropy to
build the smallest tree that can correctly identify all the branches.

The decision tree is first built from a set of default context rules. These initial
rules are represented in XML so that they can be provided as a different starting
point for different user profiles (e.g., student pack, sports pack, professional
pack). The tree is then updated as the user trains the system with new contexts.
As the system is being trained, the whole tree is recomputed and updated with
the learned contexts.

Accelerometer

fast

Cold

Walking Walking Running Running
outside inside inside outside

Meeting

Sleeping Resting

Fig. 3. Example of an induced decision tree.

Figure 3 depicts an example of an induced decision tree using five sensors,
namely: time, sound, accelerometer, light and temperature. The tree has paths
from root to leaf nodes that provide the rules for context identification based on
identified features. In this example the accelerometer provides the most distinc-
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tive feature, followed by temperature and sounds sensors, and only then by light
and time sensors.

Learned contexts can be renamed or deleted, as the system provides means
for the user to manage existing contexts. This way the user can erase a learned
context and train the system again, or simply remove an unused context. We
are studying ways to allow the user to correct only some rules without having
to completely re-train the system. In any case, recomputing the decision tree is
sufficiently fast for not being noticeable by the user.

The context identified via the decision tree is stored in a buffer which gathers
a finite number of contexts and returns the context that has been recorded
more often within a certain time window. This avoids momentaneous conditions
that would make the context change unexpectedly. Together with sensor data
buffering, this provides another layer that minimizes errors due to faulty sensor
readings or to activities that were detected for only a brief moment within a
different context.

4.2 Application layer

Figure 4 provides some screenshots of the UPCASE application running on the
smartphone. The application presents a simple yet effective user interface, al-
lowing different modes chosen from a list of available options. It includes the
possibility of editing existing contexts and printing the decision tree for debug-
ging purposes. Figure 4(c) presents an example of the initial configuration for the
continuous context-learning mode which acquires sensor data during a period of
time when a certain context is active. In figure 4(a) we can see the different sen-
sor readings and the identified context, as well as a confidence value calculated
as the percentage of total records for the displayed context within the buffer
window. A suggestive icon is also presented to the user.

« Silent T &R - | = i
el Select Mode Context List
& Very Bright e
; m;"”g ® Manual Learning : Working ]
® Auto Learning Driving
ul © Execution l @ Sleeping
@ List Contexts L W Exercising

@ Rename Context

@ Print Tree

® Test Mode

Run Selec. Editar

(a) (b) (c)

Exercising (100%)

elete  Marcar

Fig. 4. The UPCASE application in operation mode (a), in selection mode (b), in
learning mode (c), and in context-editing mode (d).
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4.3 Learning mode

The decision tree shown in figure 3 can be induced from a set of examples
collected during a training period. When the user sets a context and a learning
period as in figure 4(c), the system collects sensor readings during that period
and classifies the readings as examples for a specified context. It then uses these
examples to update the decision tree. Figure 5 presents the sensor readings
collected for four different contexts in a simple test scenario. The results are
shown for a period of ten minutes, where the system acquired approximately
300 examples for each context.

Sound Sensor Sound Sensor Sound Sensor Sound Sensor
Very Loud Very Loud Very loud Very Loud
o o o Loud S | U | -
Moderate .. - | | Woderate . Moderate 1 - - Moderate
Stem | Stent | i Stemt | | M | | Sient
Veysitent verysient | L Verysient VerySilent
Time Time Time Time
Light Sensor Light Sensor Light Sensor Light Sensor
Very Bright Very Bright Very Bright Very Bright
Bright Bright Bright Bright
Normal Normal Normal Normal
Dark Dark Dark Dark
Very Dark Very Dark Very Dark Very Dark
Time Time Time Time
Temperature Sensor Temperature Sensor Temperature Sensor Temperature Sensor
Veywor Very Hot Very Hot Very Hot
Hot Hot Hot ot
wiid 1 wild witd g
cold cold cold cold
Very Cold Very Cold Very cold Very cold
Time Time Time Time
Accelerometer Accelerometer Accelerometer Accelerometer
Moving Moving Moving Moving
Fast Fast Fast Fast
Moving Moving Moving Moving
Not Not Not Not
Moving Moving Moving Moving
Time Time Time Time
Time Sensor Time Sensor Time Sensor Time Sensor
Night Night Night Night
Aternoon Aternaon Aternaon Aternoon
Morning Moring Morming Morning
Dawn . Dawn — Dawn Time Dawn e
(2) (b) (c) (d)

Fig. 5. Sensor readings for different contexts: sleeping (a), working (b), exercising (c)
and driving (d).

As can be seen in figure 5, the sound sensor exhibits the highest variability
which can be explained by the fact that this sensor is particularly sensitive. The
light sensor shows no variation as the data for this experiment were captured in
constant lighting conditions. As a result, light will not become a discriminator
in the induced decision tree. A similar situation occurs with the temperature
sensor, where the Mild category is present in all contexts. The accelerometer
provides useful information, as some contexts can be distinguished in terms of
movement. Lastly, the time sensor allows the derivation of the most distinctive
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feature, as it provides a constant value within each context, and a different value
for three out of four contexts. Figure 6 depicts the induced decision tree for this

testing scenario.

Very

y Silent
silent

Working

Afternoon

Sound

Moderate

Time

awn orning

Sleeping

Walking

Loud

Accelerometer

Moving
fast

Moving

Very
loud

Driving

Not
oving

Driving

Working

Fig. 6. Induced decision tree from the readings shown in figure 5.

4.4 Context server

The context can be uploaded, upon user permission, to a centralized server at
the network operator over http and conforming to the REST API[5]. This has
several advantages. First, it is possible to enable, disable or change the behavior
of value-added services that depend on user context. Second, user context can
be augmented with information available at the network level, such as traffic
conditions or special services available at the user location. Last, the publication
and availability of user contexts open the way for advanced social networking
services and other applications.

5 Case-study Scenarios

In this section we describe two potential scenarios of the application of the
UPCASE system for context detection and exploitation. Both cases require ad-
ditional sensors while still relying on the context-detection techniques described
in this paper. The applications exploit not only the ability of the system to
identify user contexts, but also of making context information available to other
users via a context server.

5.1 Elderly care

Devising support technologies for elderly care is an active area of research [16,
25] where applications have traditionally focused on monitoring the location
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and risk-prone activities of elderly persons. These applications usually require
multiple sensors [10], or the user to carry appropriate sensors, for example for
automatic fall detection [7].

For elderly people that have an active life but still inspire some care, a general-
purpose, inexpensive system such as the one developed in the UPCASE project
can help a family member keep track of their daily activities. Such approach is
not intended to limit the activity of an elderly person, but simply to provide an
up-to-date account of the elderly person’s activities. For example, if a person is
resting or performing some activity at home, family members can be reassured
of the person’s well-being; on the other hand, knowing that the person is driving
or inside a car makes them aware of activities that inspire more care. In general,
such context-aware systems can enable family members to promptly respond to
any situation that requires attention, while allowing elderly people the freedom
they desire.

In this scenario, as well as in medical applications, there are additional sensors
such as heart-rate monitors or blood-pressure sensors. Contexts can be published
in the context server, and family members can retrieve them using any Web-
enabled device. We are currently developing this scenario in connection with
wearable sensor systems equipped with physiological sensors such as ECG, heart
rate, oxygen, posture, and body temperature.

5.2 Emergency management

Emergency management is the discipline that deals with preparing for, prevent-
ing, responding to, and recovering from emergency situations [6]. Under extreme
conditions, it is essential to be able to: make accurate decisions; coordinate a
number of team members and to keep track and dynamically allocate available
resources. These and other emergency-related challenges can be addressed by
having appropriate information systems in place [21].

Sensor-based and context-aware systems can play a key role in preventing
and also in responding to emergency situations. These systems usually make
use of front-end and back-end components in order to coordinate team members
on the field [2, 26]. A key requirement of any emergency response system is its
ability to know the state of readiness of the allocated workforce. For a given
situation, team members that are both on duty and off-duty may have to be
called in. Knowing the context of each staff member can help determine which
members are more or readily available to promptly respond to the situation.
For example, it may be the case that only active, or free members, or members
currently driving, or in any other specific context, should be called to the scene,
thereby substantially reducing the emergency total response time.

The scenario can be supported by the UPCASE system, as sensors can be
easily merged into the members outfit. In the background, a server receives
context information from the smartphones and stores it in a database where all
contexts are kept up-to-date. In an emergency situation, the database can be
queried to quickly obtain a list of all team members in a specific context.
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6 Conclusion

Being able to gather information about user context is a key enabling factor
for a new generation of context-aware services and applications. In this paper
we addressed the problem of distinguishing between a number of daily activ-
ity contexts by means of a prototype proof-of-concept system developed in the
context of the UPCASE project. The system prototype is based on a set of
general-purpose, inexpensive sensors connected to a regular smartphone via a
Bluetooth-enabled sensor node. It is small enough to be embedded in clothes or
other personal objects, and it operates in an unobtrusive manner after an ini-
tial training period. Context inference is based on decision tree induction, which
provides a simple and lightweight procedure that can be implemented in devices
with limited processing capabilities. The approach is effective in a number of
applications, and we hope it will spur the interest in similar methods to identify
and make use of contexts in mobile applications.
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