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Introduction Continuous tree evaluation Gap analysis
A diverse number of relevant computational problems can be specified through For £ — 0" the amplitudes of the nodes belonging to an extended graph of the Minimum aab:
NAND tree evaluation, e.g. from calculating the value of boolean expressions to tree, H, recurse down the tree in accordance with NAND logic [Farhi et al., 2008]. gap:
determining the outcome of games. Practical computation does not allow for T — 400
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capable of evaluating decision trees in O(N% 7). Quantum computation allows for 0 0 -+ -1 0 1 " A )
tree evaluation methods capable of running in O(v/N) time [Farhi et al., 2008] in B C ) . _
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continuous-time. Discrete methods exist using N21°(1) queries [Childs et al., 2009]
for balanced and approximately balanced trees and arbitrary formulas depth d can be A | 0 E 1 0 |
calculated using O(v/N log®~! N) queries [Ambainis, 2007]. e " 1o — asb
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Recently, advances in practical quantum annealers has led to a renewed interest in s I e

the range of pOtentlaI appllcatlons of adiabatic quantum computation. In this work we Fig 1: Extended graph of a N = 2 binary Tab 1: Relationships between inputs and amplitude ratios for £ — 0.

consider how to tackle evaluation of NAND trees in an adiabatic context. Namely, is it tree. s 04/
possible to devise adiabatic methods based on the existing formulations for tree e !
evaluation? What are the main advantages and disadvantages associated of such a |
procedure? N (¥ B a— R

Fig 4. Numerical results for the average gap condition for Fig 5: The fit for Javg(s) for based on: (i)

all inputs consisting of 2, 4, 8 and 16 bits. functions @ + b5, a + b2 and a + b~ 35, where ¢ and b are

= = _ _ constants and s is the variable; and (ii) the average data
The ad Iabat IC M Odel Hamiltonian spectrum: points for the dimensions considered.
o _ E(s) E(s) Performing local adiabatic evolution results in time:
Schrodinger equation: | | L log (abt1)— 1 log (at-1)
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Time-dependent Hamiltonian: map a state to an energy landscape

Adiabatic theorem: =
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H(s)|l; s >= El(sl_)y; § = | ? 1. Hard computational problems appear to have exponentially small gaps, and tree
oemae stime - — — — = s evaluation is no exception.
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Eo(s) = E1(s) = -+ = En—1(s) o o 2. Not clear, or trivial, how to perform an adequate mapping for quantum adiabatic
Fig 2: H(s) = sHyg + (1 — s)H for a randomly generated Fig 3: H(s) = sHy + (1 — s)H? for a randomly generated

Omin = Ming<s<1(£1(s) — Eo(s)) 3 f gmin > 0 NAND tree (V — 4). NAND tree (N — 4). tree evaluation. Different Hamiltonian formulation may produce a gap yielding an
execution time closer to the limit of O(v/N).
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A quantum system with a time-dependent Hamiltonian that is initially in a certain The ground-state of H does not convey information about the value of the
energy level tends to stay at the same level, provided that the Hamiltonian is evolved tree. H* results in a remapping of the spectrum, but does H* exhibit the same References
slowly enough. behaviour as H?
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