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Introduction
1

A diverse number of relevant computational problems can be specified through 
NAND tree evaluation, e.g. from calculating the value of boolean expressions to 
determining the outcome of games.

Classical tree evaluation requires O(N) time whilst randomized algorithms are 
capable of evaluating decision trees in O(N0.753).  Quantum computation allows for 
tree evaluation methods capable of running in O(

p
N) time [Farhi et al., 2008] in 

continuous-time. Discrete methods exist using N 1
2+o(1) queries [Childs et al., 2009] 

for balanced and approximately balanced trees and arbitrary formulas depth d can be 
calculated using O(

p
N log

d�1 N) queries [Ambainis, 2007].

Recently, advances in practical quantum annealers has led to a renewed interest in 
the range of potential applications of adiabatic quantum computation. In this work we 
consider how to tackle evaluation of NAND trees in an adiabatic context. Namely, is it 
possible to devise adiabatic methods based on the existing formulations for tree 
evaluation? What are the main advantages and disadvantages associated of such a 
procedure?
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Continuous tree evaluation
3

For E ! 0+ the amplitudes of the nodes belonging to an extended graph of the 
tree, H, recurse down the tree in accordance with NAND logic [Farhi et al., 2008].
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Tab 1: Relationships between inputs and amplitude ratios for E ! 0+.
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Fig 1: Extended graph of a N = 2 binary 
tree.

The adiabatic model
2

i~ d
dt | (t) >= H(t)| (t) >

Schrödinger equation:

Time-dependent Hamiltonian: map a state to an energy landscape

Adiabatic theorem:
eigenvector l at time s

H(s)|l; s >= El(s)|l; s >
eigenvalue at time s

E0(s)  E1(s)  · · ·  EN�1(s)

gmin = min0s1(E1(s)� E0(s))

A quantum system with a time-dependent Hamiltonian that is initially in a certain 
energy level tends to stay at the same level, provided that the Hamiltonian is evolved 
slowly enough.

limT!+1 | < l = 0; s = 1|| (T ) > | = 1

If gmin > 0

Adiabatic computation:

eH(s) = (1� s)H0 + sHP

An initial Hamiltonian with an easy to prepare ground-state

Problem-specific Hamiltonian whose ground-state encodes 
a solution to a problem

Evolve the system according to the adiabatic theorem. Start with 
Hamiltonian HP with an easy to prepare ground-state. Finish with the ground-
state of HP  encoding the solution to a problem P .

Adiabatic tree spectrum
4

The ground-state of H does not convey information about the value of the 
tree. H2 results in a remapping of the spectrum, but does H2 exhibit the same 
behaviour as H?
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Fig 2: eH(s) = sH0 + (1� s)H for a randomly generated 
NAND tree (N = 4).
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Fig 3: eH(s) = sH0 + (1� s)H2 for a randomly generated 
NAND tree (N = 4).

Hamiltonian spectrum:

< A|H2|E > =

⇢
(� < B|� < C|� < D|)H|E > = E(�b� c� d)

< A|HE|E > = E < A|H|E > = E2a

, E(�b� c� d) = E2a

, a

d
=

�1

E + b
a + c

a
⇤

Gap analysis
5

Practical computation does not allow for  T ! +1

⌧(s) � || d
ds

eH(s)||2
g(s)2 ⇡ 1

g(s)2 = 1
(E1(s)�E0(s))2

Minimum gap:
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Fig 4: Numerical results for the average gap condition for 
all inputs consisting of 2, 4, 8 and 16 bits.
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F i g 5 : T h e fi t f o r gavg(s) f o r b a s e d o n : ( i ) 
functions a+ b�s, a+ b�

s
2 and a+ b�

s
3, where a and b are 

constants and s is the variable; and (ii) the average data 
points for the dimensions considered.

Performing local adiabatic evolution results in time:

Tree gap analysis:

t =
R
1

0

1

g(s)2 ds =
1

ab+1+log (ab+1)� 1
a+1�log (a+1)

a2
log (b) ) O

⇣
N4

logN2

⌘

performance penalty of N3/(2 logN) 

Conclusions
6

1. Hard computational problems appear to have exponentially small gaps, and tree 
evaluation is no exception.
2. Not clear, or trivial, how to perform an adequate mapping for quantum adiabatic 
tree evaluation. Different Hamiltonian formulation may produce a gap yielding an 
execution time closer to the limit of O(

p
N). 


