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Abstract

Stochastic models that predict adaptive filtering algorithms performance usu-

ally employ several assumptions in order to simplify the analysis. Although

these simplifications facilitate the recursive update of the statistical quantities

of interest, they by themselves may hamper the modeling accuracy. This pa-

per simultaneously avoids for the first time the employment of two ubiquitous

assumptions often adopted in the analysis of the least mean squares (LMS) al-

gorithm. The first of them is the so-called independence assumption, which

presumes statistical independence between adaptive coefficients and input data.

The second one assumes a sufficient-order configuration, in which the lengths of

the unknown plant and the adaptive filter are equal. State equations that char-

acterize both the mean and mean square performance of the deficient-length

configuration without using the independence assumption are provided. The

devised analysis, encompassing both transient and steady-state regimes, is not

restricted neither to white nor to Gaussian input signals and is able to provide

a proper step size upper bound that guarantees stability.

Keywords: Adaptive Filtering, Exact Expectation Analysis, Deficient-Length

Configuration

1. Introduction

Adaptive filtering algorithms are now a widespread technique for a plethora

of applications, such as adaptive equalization, acoustic echo cancellation, and
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system identification (the focus of this paper) [1]. Loosely speaking, they con-

sist of recursive and nonlinear estimators of a set of parameters that extracts

from the input (or excitation) signal x(k) the information of interest by ad-

justing themselves to variations in their environments. The least mean squares

(LMS) [2] is one of the most popular adaptive filters that often benchmarks oth-

ers. Its robustness and low arithmetic complexity order (essentially obtained

due to the fact that its update equation can be described in terms of inner

products) make it suitable for hardware implementation, although some modi-

fications are required in order to employ a pipeline architecture or to obtain a

lower register complexity [3, 4, 5, 6]. Since the gradient noise of the stochastic

LMS procedure increases the mean-squared error (MSE), one popular metric

for the assessment of its learning performance is the MSE itself [7].

The establishment of deterministic or stochastic models for predicting the

performance of adaptive filters is of primary concern, since they provide per-

formance guarantees, guidelines for the designer, stability bounds, rate conver-

gence estimates or even clarify in which sense they present robustness against

perturbations [8, 9, 10]. Due to the nonlinear nature of the learning process,

stochastic analyses often require lengthy manipulations, with most approaches

relying on assumptions in order to maintain the mathematics tractable. One of

the most employed is the so-called independence assumption (IA), which consid-

ers that adaptive weights are statistically independent from current input data.

Alternatively, IA presumes that the sequence of input vectors1 x(k) ∈ R
N are

statistically independent, a common assumption in the field of stochastic ap-

proximations [11] that is strictly valid in some specific cases (e.g., in the syn-

chronous multiuser communication setting [12]).

In this paper, it is assumed that the adaptive algorithm employs a transversal

structure, which imposes a deterministic coherence between successive input

vectors. In such tapped-delay lines, IA is not even approximately true, although

it provides agreement with actual performance in the case of small step sizes [13,

1All vectors of this paper are of column-type.
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14]. In general terms, such a hypothesis cannot be invoked when the adaptive

filter is present in the adaptation loop [15].

Note that the length of the ideal transfer function to identify can surpass the

adaptive filter length N . In practice, system identification tasks may operate

in such a deficient-length setting, especially when the unknown plant transfer

function is long [16] or the designer intends to deal with computational limita-

tions [17]. Since dimension adversely affects LMS performance [18, 19], such a

configuration can also arise when an increase of the convergence rate is obtained

by the usage of a time-variant adaptive filter length [20, 21, 22]. This realis-

tic under-modeling configuration is not addressed by the majority of adaptive

filtering analyses [16, 23, 24, 25]. This paper devises for the first time a com-

prehensive stochastic model that quantifies the statistical behavior of the LMS

algorithm learning process under suboptimal operation. The proposed analy-

sis does not employ the almost ubiquitous IA (which is invalid for input-shift

data) and is able to generate time-independent linear state equations which re-

cursively update the statistical quantities of interest. The devised procedure

is able to perform analysis either to weight mean behavior or to mean squared

evolution as well, by furnishing the necessary theoretical joint moments, besides

providing a closed-form solution that describes asymptotic operation. Such an

“exact expectation analysis” [26, 27, 28, 29, 30, 31] permits one to model the

sophisticated learning capability of the deficient-length LMS, providing good

adherence to experimental curves even when a non-infinitesimally small step

size (or learning factor) β is adopted. Additionally, it is able to provide a more

accurate upper bound on the learning factor in order to ensure convergence.

This paper is structured as follows. Section 2 describes the LMS algorithm

operation in the deficient-length setting. Section 3 presents the classical analy-

sis of such a configuration (i.e., one that employs IA), whereas Section 4 details

the proposed exact expectation analysis. Section 5 depicts the results, perform-

ing comparisons between the advanced analysis method and the classical one.

Finally, Section 6 presents the concluding remarks of this paper.
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2. LMS Algorithm

The LMS is a stochastic gradient algorithm whose adjustment can be re-

garded as a feedback process driven by the error signal. It updates the signal-

dependent coefficients vector

w(k) ,
[

w0(k) w1(k) . . . wN−1(k)
]T

(1)

by adding to the previous estimate a change proportional to the negative gra-

dient of the instantaneous squared error signal:

w(k + 1) = w(k)− β∇
w(k)

[

1

2
e2(k)

]

, (2)

where e(k) denotes the prior error at the k-th iteration and β can also be

regarded as a relaxation parameter. Note that (2) consists of a strategy that

recursively converts an instantaneous performance assessment (i.e., the error

signal e(k)) into a parameter adaptation that proceeds as more data becomes

available.

The choice of a fixed step size imposes a trade-off between convergence rate

and steady-state performance. Such a trade-off explicits a fundamental relation-

ship between the amount of data used in obtaining the adaptive solution and its

quality [32], which is related to the overall efficiency of an adaptive scheme [33].

Therefore, the choice of the step size cannot be overstated. It should be fur-

ther noticed that the step size value also influences the divergence probability

and strikes a balance between the amount of gradient noise and lag noise in

nonstationary environments [34].

The error signal incorporates the discrepancy between a noisy measurement

signal d(k) ∈ R and the filter output at the k-th iteration y(k) ∈ R, which

consists of a weighted sum of the elements of the input vector x(k):

e(k) , d(k)− y(k) = d(k)−wT (k)x(k), (3)

where x(k) ,
[

x(k) x(k − 1) . . . x(k −N + 1)
]T

is the input vector at the

k-th iteration.
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Using (2) and (3), it is straightforward to derive the update equation of the

LMS

w(k + 1) = w(k) + βx(k)e(k), (4)

whose related identification convergence rate is strongly dependent on the second-

order moments of the input signal [18]. The LMS intends to estimate a set of

parameters wi(k) (for i ∈ {0, 1, . . . , N − 1}) based on a single realization of the

noisy stochastic process {d(j), x(j)}k−1
j=0 , since the involved statistics are assumed

to be unknown [35]. Such an algorithm is able to operate satisfactorily without

the intervention of the designer in an unknown and possibly time-varying envi-

ronment [36]. The backpropagation algorithm, usually employed to the training

of neural networks, can be regarded as a generalization of the LMS [37].

Note that the stochastic nature of (4) implements a sort of Brownian mo-

tion [9] and is the foundation of the analysis performed herein. Under some mild

conditions, the standard LMS filter of sufficient order performs an unbiased es-

timation, although a weight-drift problem may occur when the input signal does

not satisfy a persistence of excitation condition [38].

Update equation (4) may also be derived using another paradigm, one that

understands the LMS as an exact solver of a deterministic optimization problem

with a linear constraint:

min
w(k+1)

F [w(k+1)] , ‖w(k+1)−w(k)‖2 s.t. ep(k) = (1−β‖x(k)‖2)e(k), (5)

where ep(k) is the posterior error, which is evaluated using the adaptive coeffi-

cients vectors with the pair of data {d(k),x(k)} after the update procedure:

ep(k) , d(k)−wT (k + 1)x(k). (6)

This deterministic paradigm for the derivation of the LMS algorithm clari-

fies in which sense it makes use of the Minimal Disturbance Principle (MDP),

which biases the estimation procedure in order to avoid new adaptive coeffi-

cients vectors w(k + 1) located far from the previous solution [39]. Such an

alternative approach has been revealed to be useful for the generation of new

adaptive filtering algorithms [40, 41, 42, 43].
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Assuming a deficient-length scenario, the reference signal d(k) is henceforth

assumed to be related to x(k) according to the following noisy and linear-in-

the-parameters regression model:

d(k) = xT (k)w⋆ + xT (k)w⋆ + ν(k), (7)

where ν(k) accounts for an additive noise that incorporates measurement in-

accuracies, error modeling, and talkers voice and/or background noise in echo

cancellation applications. Vectors w⋆ ∈ R
N and w⋆ ∈ R

P contain the unknown

coefficients of the plant the adaptive filter intends to emulate.

The crucial parameter that influences the model (7) is the length of the

unknown plant, assumed to be N + P (whereas the adaptive filter presents a

shorter length N), with the vectors x(k), w⋆ and w⋆ defined as

x(k) ,
[

x(k −N) x(k −N − 1) . . . x(k −N − P + 1)
]T

, (8)

w⋆ ,

[

w⋆
0 w⋆

1 . . . w⋆
N−1

]T

, (9)

w⋆ ,

[

w⋆
N w⋆

N+1 . . . w⋆
N+P−1

]T

. (10)

Model (7) may be interpreted as the linearization of more general nonlinear

models (which includes neural networks) around an operating point [9]. Hence-

forth, it is assumed that P > 0, which characterizes a suboptimal operation.

Since the deficient-length LMS presents a learning behavior for correlated inputs

that is distinct from that when the input signal is white [23, 44], the analysis put

forth in this paper is not restricted to an uncorrelated excitation sequence x(k).

3. Classical Statistical Analysis

In this section, an IA-based stochastic analysis of the LMS algorithm under

the suboptimal configuration is concisely described. The seminal reference in

this context is [23], whose formulation differs from the one presented in this

section, although it can be shown that both are equivalent. Note that although
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this section does not contain original contributions, it introduces some crucial

concepts for the next section (such as the noise assumption and the state vec-

tors). As well as the exact expectation analysis addressed in the next section,

the classical analysis method makes use of the following assumption regarding

the noise signal:

Noise Assumption (NA). The zero-mean noise signal ν(k) sequence

is i.i.d. (independent and identically distributed) and is statisti-

cally independent from the input signal.

Remark : note that NA is typical in the context of adaptive filtering analy-

ses [45, 46] and is often satisfied in practice [47].

Both first- and second-order analyses make use of the deviation vector w̃(k)

defined as

w̃(k) , w⋆ −w(k), (11)

whose energy, rigorously speaking, does not converge asymptotically to zero

even in the sufficient-order case due to the ubiquitous presence of the stochastic

additive noise ν(k). Using (3), (4), (7) and (11), the following recursion can be

proven to be valid

w̃(k + 1) =
[

I − βx(k)xT (k)
]

w̃(k)− βx(k)xT (k)w⋆ − βx(k)ν(k), (12)

which is a time-varying forced or nonhomogeneous stochastic difference equa-

tion. The application of the expectation operator E[·] on (12), combined with

some manipulations and simplifications, is the foundation of the following sta-

tistical analyses. Namely, Section 3.1 presents the first-order analysis whilst

Section 3.2 discusses the second-order analysis.

3.1. Mean Weight Behavior

Since the expectation is a linear operation, a recursive update of the average

deviation E [w̃(k)] can be obtained using (12) combined with IA and NA, which

leads to the following compact form

E [w̃(k + 1)] = [I − βRx]E [w̃(k)]− βRxw
⋆, (13)
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where Rx , E
[

x(k)xT (k)
]

and Rx , E
[

x(k)xT (k)
]

are the input autocor-

relation and cross-correlation matrices, respectively. Note that the statistical

dependence between x(k) and w̃(k) is neglected by IA, implying that the adap-

tive coefficients behave on average like the coefficients of the steepest descent

algorithm operating in the same configuration. Additionally, Eq. (13) may also

prove that the deficient-length LMS algorithm is stable in the mean if the step

size satisfies [32, 23]

0 < β <
2

Tr [Rx]
, (14)

where Tr[X] denotes the trace of matrix X, which is an upper bound of its

maximum absolute eigenvalue. The theoretical upper bound in (14) is inversely

proportional to the energy of the input signal, a statement that remains true

in the case of second-order classical analysis [39]. It is worth noting that re-

cursion (13) can be rewritten according to the following linear state equations

y(IA,1)(k + 1) = A(IA,1)y(IA,1)(k) + b(IA,1), (15)

where the superscript (IA, n) denotes a statistical analysis of n-th order mo-

ments based on IA, A(IA,1)
, I − βRx is the time-invariant transition matrix,

y(IA,1)(k) , E [w̃(k)] is the state vector containing the mean deviation elements

w̃i(k) (for i ∈ {0, 1, . . . , N−1}) and b(IA,1) , −βRxw
⋆ is a constant vector. As-

suming a step size choice that ensures stability, the steady-state solution of (15)

can be found in a closed-form:

y(IA,1)
∞

, lim
k→∞

y(IA,1)(k) =
[

I −A(IA,1)
]

−1

b(IA,1), (16)

which implies an unbiased estimation of w⋆ in the case of an uncorrelated input

signal, since in this case Rx = 0 and b(IA,1) = 0. When the input signal is

colored, the coefficient vector converge in the mean to

E [w(∞)] = w⋆ +R−1
x Rxw

⋆, (17)

which consists of the first N elements of the unknown impulse response w⋆ the

adaptive filter intends to emulate plus a perturbation term.
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3.2. Mean-Square Convergence

The previous first-order analysis presents a restricted significance in terms

of stability, since it is widely known that stable-in-the-mean adaptive filters can

diverge in practice due to an unbounded variance of the weight vector [33]. Such

a fact demands a second-order statistical analysis, in order to derive a theoretical

model for the elements of deviation autocorrelation matrix E
[

w̃(k)w̃T (k)
]

. In

order to accomplish such a task, one may multiply (12) by its transpose, which

leads to

w̃(k + 1)w̃T (k + 1) = w̃(k)w̃T (k)− βw̃(k)w̃T (k)x(k)xT (k)− βw̃(k) (w⋆)T x(k)xT (k)

−βx(k)xT (k)w̃(k)w̃(k) + β2
x(k)xT (k)w̃(k)w̃T (k)x(k)xT (k)

+β2
x(k)x(k)w⋆

w̃
T (k)x(k)xT (k) + β2

x(k)xT (k)ν2(k) (18)

+β2
x(k)xT (k)w̃(k) (w⋆)T x(k)xT (k)− βx(k)xT (k)w⋆

w̃
T (k)

+β2
x(k)xT (k)w⋆ (w)T x(k)xT (k) +O[ν(k)],

where O[ν(k)] contains first-order noise related terms. A popular approach for

performing mean-square analyses consists of deriving a recursion of the elements

of matrix Rw̃(k) , E
[

w̃(k)w̃T (k)
]

or, alternatively, by constructing recursive

equations that update the vector v(k) , E {vec [Rw̃(k)]}, where vec(X) is an

operator (whose output is a column vector) that stacks the columns of X. Con-

sider A⊗B as the Kronecker product between matrices A and B. In the case of

a white input signal2 and using the identity vec[XY Z] =
(

ZT ⊗X
)

vec(Y ),

the classical analysis (i.e., a stochastic model that combines IA and NA) generates

the following recursion:

y(IA,2)(k + 1) = A(IA,2)y(IA,2)(k + 1) + b(IA,2), (19)

where y(IA,2)(k) , v(k), b(IA,2) , β2σ2
νE

{

vec
[

x(k)xT (k)
]}

(where σ2
ν is the

additive noise variance), with the transition matrix A(IA,2) described as

A
(IA,2) , I − βE

[

x(k)xT (k)⊗ I

]

− βE
[

I ⊗ x(k)xT (k)
]

+ β2
E

[

x(k)xT (k)⊗ x(k)xT (k)
]

.

(20)

Note that it is possible to infer from (19) a closed-form estimate for steady-

state regime similar to the one presented in (16). Furthermore, if the absolute

2For the colored input signal configuration, see [23].
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eigenvalues values of matrix are A(IA,2) are upper bounded by the unity, the

classical analysis predicts second-order stability, a much more informative cri-

terion than convergence in the mean. It is worth noting that the designer has

partial control on these eigenvalues, since matrix A(IA,2) depends both on the

step size β as on the filter length as well. The observed discrepancy between

performance predictions derived from (19) and empirical results for large step

sizes can be minored by the employment of the exact expectation analysis, which

is the focus of the next section.

4. Exact Expectation Analysis

Due to their assumptions, classical stochastic analyses focus on second-order

characteristics of the excitation signal, especially on the eigenvalues spread of

the autocorrelation matrix Rx and on its trace. When IA is not employed,

joint moments between input signal samples and adaptive coefficients should

be taken into account, which incorporates more statistical information into the

analysis. Consider in the following that the input x(k) is a finite-time-correlated

stationary signal generated through an M -th order moving average process:

x(k) =
M−1
∑

m=0

bmu(k −m), (21)

where u(k) is a white stationary signal that presents an even-symmetric distri-

bution. The usage of model (21) implies that the proposed stochastic analysis

is not restricted neither to a white nor to a Gaussian input signal x(k), which

are common limitations of most analyses (e.g., [48, 49, 50, 51, 52, 53]).

The exact expectation analysis systematically employs symbolic manipula-

tions of mathematical expressions in order to construct a set of linear update

equations that describe the dynamics of the statistical quantities of interest.

Unfortunately, the derivation of the recursion for a specific state variable may

generate new terms, which by themselves will require the generation of new re-

cursions. The construction procedure eventually halts if the input data presents

a finite-time correlation, which is guaranteed by (21) [26].
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In order to illustrate the identification process of the stochastic state vari-

ables performed by the procedure, consider in the following the configuration

N = P = 1, and M = 2. It is noteworthy to emphasize that this example

showcases the ability of the exact expectation analysis technique to model non-

white input signals. Both mean and mean-square exact expectation analyses

are carried out for this particular setting.

4.1. Mean Convergence

Since in the considered case there is only one adaptive coefficient, recur-

sion (12) degenerates into a scalar identity

w̃0(k + 1) = w̃0(k)− b20u
2(k)w̃0(k)β − 2b0u(k)b1u(k − 1)w̃0(k)β

−b21u2(k − 1)w̃0(k)β − b20u(k − 1)w⋆
0βu(k)

−b0u2(k − 1)w⋆
0βb1 − b1u(k − 2)w⋆

0βb0u(k)

−b21u(k − 2)w⋆
0βu(k − 1)− b0u(k)a0ν(k)β (22)

−b1u(k − 1)a0ν(k)β,

which is a difference equation that does not describe the desired average devia-

tion weight behavior. To proceed further, it is necessary to apply the expectation

operator in (22), which, combined with the employment of NA, leads to

E[w̃0(k+ 1)] = (1− b20βγ2)E[w̃0(k)]− b21βE[u
2(k− 1)w̃0(k)]− βw⋆

0γ2b0b1, (23)

where γn , E [un(k)] and the expected product between the weight error coef-

ficient and input data is not approximated as

E[u2(k − 1)w̃0(k)] ≈ E
[

u2(k − 1)
]

E [w̃0(k)] = γ2E [w̃0(k)] , (24)

because IA is no longer assumed to be valid. Due to this fact, recursion (23) is

not self-contained, due to the emergence of the state variable E[u2(k−1)w̃0(k)],

a nuisance term that requires by itself a specific recursion. This new parameter

is termed as a nuisance element because we are not primarily interested in it (at
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least in this first-order analysis), even though its estimation is a necessary step to

the update of the statistical quantity of interest [54]. Note that in more complex

configurations, the nuisance parameters may compose the large majority of the

state variables. The recursion of the term of (24) can be obtained by multiplying

both sides of (22) by u2(k) before the application of operator E[·], which gives

rise to

E[u2(k)w̃0(k+1)] = (γ2−b20βγ4)E[w̃0(k)]−b21βγ2E[u2(k−1)w̃0(k)]−βw⋆
0b0b1γ

2
2 .

(25)

Since Eqs. (23) and (25) provide the recursions for all required statistical

quantities, they may be used to construct a state space linear model for the

convergence in the mean that does not employ IA:

y(1)(k + 1) = A(1)y(1)(k) + b(1), (26)

where

y(1)(k) ,





E[w̃0(k)]

E[u2(k − 1)w̃0(k)]



 , (27)

A(1)
,





1− βb20γ2 −βb21
γ2 − βb20γ4 −βb21γ2



 , (28)

b(1) ,





−βb0b1w⋆
0γ2

−βb0b1w⋆
0γ

2
2



 . (29)

Since we assumed that the adaptive coefficients are initialized to zero, w̃0(0)

is deterministic and y(1)(0) =
[

w⋆
0 w⋆

0γ2

]T

. As a result, recursion (26) allows

the calculation of y(1)(k) for all k values.

Generally, the eigenvalues of matrix A(1) can be explicitly found:

λ1 =
1− βγ2(b

2
0 + b21)−

√
∆

2
, (30)

λ2 =
1− βγ2(b

2
0 + b21) +

√
∆

2
, (31)
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where

∆ = β2γ2
2(b

4
0 + b41) + b20b

2
1β

2(4γ4 − 2γ2
2)− 2βγ2(b

2
0 − b21) + 1. (32)

Note that a choice of β that ensures |λn| < 1 (for n ∈ {1, 2}) implies that the

algorithm is stable in the mean (under the exact expectation sense). Assuming

such a condition, in the steady state regime, vector y(1)(k) can be obtained by

lim
k→∞

y(1)(k) =
(

I −A(1)
)

−1

b(1). (33)

Then, assuming stability, we can obtain the steady-state mean value of w0(k)

using Eq. (33) as

lim
k→∞

E[w0(k)] =
b0b1w

⋆
0γ2

β b0
2b1

2γ22 +
(

b0
2 + b1

2
)

γ2 − β b0
2b1

2γ4
+ w⋆

0 . (34)

In this generic setup, w0(k) converges to a different value of w⋆
0 . It is worth

noting that when the input signal is white (i.e., b1 = 0), it can be proved (see Eq.

(34)) that the adaptive coefficient w0(k) converges in the mean at steady-state

to w⋆
0 , a result that coincides with the one derived by IA [23].

4.2. Mean-Square Convergence

The prediction of second-order statistics of the deviation coefficient is more

demanding than the previous mean weight analysis, but it is necessary both for

performance and for stability prediction purposes. In the considered setting and

avoiding the simplifications imposed by IA, the MSE can be computed from

E
[

e2(k)
]

= b20γ2E[w̃
2
0(k)] + b21E[u

2(k − 1)w̃2
0(k)] + 2b1w

⋆
0b0E[u

2(k − 1)w̃0(k)]

+2b21w
⋆
0E[u(k − 1)u(k − 2)w̃0(k)] + (b20 + b21)w

⋆
0
2
γ2 + σ2

ν , (35)

which requires four stochastic state variables (more than what is necessary in the

sufficient-order case). The recursion of term w̃2
0(k) may be obtained by squaring

both sides of (22). Since the result is lengthy, it is omitted here. The application

of the operator E [·] in this result permits one to establish the following identity:
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E[w̃2
0(k + 1)] = (b40β

2
γ4 + 1− 2b20γ2β)E[w̃

2
0(k)]

+(6b20β
2
b
2
1γ2 − 2b21β)E[u

2(k − 1)w̃2
0(k)]

+(6b30β
2
w

⋆
0b1γ2 − 2b0w

⋆
0βb1)E[u

2(k − 1)w̃0(k)]

+(6b20β
2
b
2
1w

⋆
0γ2 − 2b21w

⋆
0β)E[u(k − 1)u(k − 2)w̃0(k)]

+b
4
1β

2
E[u4(k − 1)w̃2

0(k)] + 2b31β
2
b0w

⋆
0E[u

4(k − 1)w̃0(k)] (36)

+2b41β
2
w

⋆
0E[u

3(k − 1)u(k − 2)w̃0(k)] + b
4
0w

⋆
0
2
β
2
γ
2
2

+b
2
0w

⋆
0
2
β
2
b
2
1γ4 + b

2
1w

⋆
0
2
β
2
b
2
0γ

2
2 + b

4
1w

⋆
0
2
β
2
γ
2
2 + b

2
0σ

2
νβ

2
γ2 + b

2
1σ

2
νβ

2
γ2.

Eq. (36) introduces new state variables, whose recursion should be derived.

Multiplying the square of w̃0(k+1) (see (22)) by judiciously chosen terms (such

as performed in the derivation of the recursion of E[u2(k−1)w̃0(k)] in Eq. (25))

and applying the expectation operator, one may derive the following relation-

ships:

E[u2(k)w̃2
0(k + 1)] = (b40β

2
γ6 + γ2 − 2b20γ4β)E[w̃

2
0(k)]

+(6b20β
2
b
2
1γ4 − 2b21βγ2)E[u

2(k − 1)w̃2
0(k)]

+(6b30β
2
w

⋆
0b1γ4 − 2b0w

⋆
0βb1γ2)E[u

2(k − 1)w̃0(k)]

+(6b20β
2
b
2
1w

⋆
0γ4 − 2b21w

⋆
0βγ2)E[u(k − 1)u(k − 2)w̃0(k)]

+b
4
1β

2
γ2E[u

4(k − 1)w̃2
0(k)] + 2b31β

2
b0w

⋆
0γ2E[u

4(k − 1)w̃0(k)]

+2b41β
2
w

⋆
0γ2E[u

3(k − 1)u(k − 2)w̃0(k)] + b
4
0w

⋆
0
2
β
2
γ4γ2

+2b20w
⋆
0
2
β
2
b
2
1γ2γ4 + b

4
1w

⋆
0
2
β
2
γ
3
2 + b

2
0σ

2
νβ

2
γ4 + b

2
1σ

2
νβ

2
γ
2
2 , (37)

E[u2(k)w̃0(k + 1)] = −b
2
1βγ2E[u

2(k − 1)w̃0(k)]

+(γ2 − b
2
0βγ4)E[w̃0(k)]− b0w

⋆
0βb1γ

2
2 , (38)

E[u(k)u(k − 1)w̃0(k + 1)] = −2b0b1βγ2E[u
2(k − 1)w̃0(k)]− b

2
0w

⋆
0βγ

2
2 , (39)
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E[u4(k)w̃2
0(k + 1)] = (b40β

2
γ8 + γ4 − 2b20γ6β)E[w̃

2
0(k)]

+(6b20β
2
b
2
1γ6 − 2b21βγ4)E[u

2(k − 1)w̃2
0(k)]

+(6b30β
2
w

⋆
0b1γ6 − 2b0w

⋆
0βb1γ4)E[u

2(k − 1)w̃0(k)]

+(6b20β
2
b
2
1w

⋆
0γ6 − 2b21w

⋆
0βγ4)E[u(k − 1)u(k − 2)w̃0(k)]

+b
4
1β

2
γ4E[u

4(k − 1)w̃2
0(k)]

+2b31β
2
b0w

⋆
0γ4E[u

4(k − 1)w̃0(k)]

+2b41β
2
w

⋆
0γ4E[u

3(k − 1)u(k − 2)w̃0(k)]

+b
4
0w

⋆
0
2
β
2
γ6γ2 + b

2
0w

⋆
0
2
β
2
b
2
1γ

2
4 + b

2
1w

⋆
0
2
β
2
b
2
0γ6γ2

+b
4
1w

⋆
0
2
β
2
γ
2
2γ4 + b

2
0σ

2
νβ

2
γ6 + b

2
1σ

2
νβ

2
γ4γ2, (40)

E[u4(k)w̃0(k + 1)] = −b
2
1βγ4E[u

2(k − 1)w̃0(k)]

+(γ4 − b
2
0βγ6)E[w̃0(k)]− b0w

⋆
0βb1γ4γ2, (41)

E[u3(k)u(k − 1)w̃0(k + 1)] = −2b0b1βγ4E[u
2(k − 1)w̃0(k)]− b

2
0w

⋆
0βγ4γ2. (42)

From initial values of state variable quantities, Eqs. (23) and (36)-(42) char-

acterize the mean square learning behavior of the LMS, which can be concisely

described by a state equations system

y(2)(k + 1) = A(2)y(2)(k) + b(2), (43)

where A(2) is a sparse transition matrix (please refer to Appendix A) with
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dimensions 8× 8 responsible for updating the state vector y(2)(k)

y(2)(k) ,









































E[w̃2
0(k)]

E[u2(k − 1)w̃2
0(k)]

E[u2(k − 1)w̃0(k)]

E[w̃0(k)]

E[u(k − 1)u(k − 2)w̃0(k)]

E[u4(k − 1)w̃2
0(k)]

E[u4(k − 1)w̃0(k)]

E[u3(k − 1)u(k − 2)w̃0(k)]









































, (44)

which also contains all statistical quantities of interest of the first-order analy-

sis (26) and

b
(2) =































b40w
⋆
0
2β2γ2

2 + b20w
⋆
0
2β2b21γ4 + b21w

⋆
0
2β2b20γ

2
2 + b41w

⋆
0
2β2γ2

2 + b20σ2β
2γ2 + b21σ2β

2γ2

b40w
⋆
0
2β2γ4γ2 + 2b20w

⋆
0
2β2b21γ2γ4 + b41w

⋆
0
2β2γ3

2 + b20σ2β
2γ4 + b21σ2β

2γ2
2

−b0w
⋆
0βb1γ

2
2

−b0w
⋆
0βb1γ2

−b20w
⋆
0βγ

2
2

b40w
⋆
0
2β2γ6γ2+b20w

⋆
0
2β2b21γ

2
4+b21w

⋆
0
2β2b20γ6γ2+b41w

⋆
0
2β2γ2

2γ4+b20σ2β
2γ6+b21σ2β

2γ4γ2

−b0w
⋆
0βb1γ4γ2

−b20w
⋆
0βγ4γ2































.

(45)

Similarly to the first-order analysis, in order to calculate recursion (43),

terms such as E[u4(k− 1)w̃0(k)] and E[u(k− 1)u(k− 2)w̃0(k)] are initialized to,

respectively, w⋆
0γ4 and 0.

Model (43) summarizes the second-order learning behavior of the deficient-

length LMS algorithm, and predicts its mean square convergence if the max-

imum absolute eigenvalue |λmax| of matrix A(2) is less than unity. Note that

|λmax| depends on the adjustable step size β and can be efficiently computed

using the power method [55]. Since model (43) takes into account the shift-

structure of the excitation data, it may provide a more accurate step size bound

that guarantees convergence, especially when the input signal is colored or is
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distributed according to a “heavy-tailed” probability density function [26]. Ad-

ditionally, the stationary operation point (i.e., the steady-state regime) can be

computed by a closed-form equation:

lim
k→∞

y(2)(k) =
(

I −A(2)
)

−1

b(2). (46)

The following section describes the computational framework developed to

perform the advanced exact expectation analysis. Comparisons against IA-based

predictions and empirical results are also provided.

5. Results

In this manuscript we chose to develop a C++ code responsible for generat-

ing the required equations of the exact expectation analysis and for simulating

the empirical MSE evolution. Such an option requires a labor-intensive devel-

opment but allows for significant performance gains. Some of the most tangible

advantages include the ability to generate (i) millions of equations, which per-

mits one to model more complex configurations; and (ii) a high number of

Monte Carlo trials (e.g., 109), usually required for computing empirical learning

curves. The use of symbolic/numerical algebra softwares such as Maple™ would

impose drastic reductions on the previous parameters.

Assuming that the resulting state space equation can be stored in computer

memory, the C++ code automatically performs the required algebraic symbolic

operations for generic configurations, i.e., arbitrary values of N , M , and P .

For instance, the code can be employed to generate over 8 × 106 equations for

the first-order exact expectation analysis (for the configuration N = 12 and

M = P = 1). Table 1 presents the number of recursive equations required for

generating the exact mean-weight behavior as a function of different values of N

andM . Note that the number of equations of this analysis rapidly increases with

N and M and remains unaltered as a function of P . Table 2 shows the number

of state variables required for the second-order exact expectation analysis.

The additive noise is assumed to be white Gaussian with variance σ2
ν = 0.01.

The input signal is colored, obtained by filtering a white signal u(k) by the

17



N M # Eqs. N M # Eqs.

1 1 1 3 5 10928

1 2 2 3 6 61178

1 3 7 4 1 50

1 4 31 4 2 451

1 5 152 4 3 2505

1 6 790 4 4 13859

1 7 4271 4 5 77997

1 8 23767 5 1 217

1 9 135221 5 2 2766

2 1 3 5 3 16332

2 2 12 5 4 93561

2 3 55 6 1 954

2 4 273 6 2 17060

2 5 1428 6 3 105927

2 6 7752 7 1 4245

2 7 43263 7 2 105848

3 1 12 8 1 19085

3 2 74 9 1 86528

3 3 379 10 1 395066

3 4 2003 11 1 8373252

Table 1: Number of state equations of the first-order exact expectation analysis.
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N M P # Eqs. N M P # Eqs.

1 5 8 10202 3 3 7 63197

1 6 1 33752 3 3 8 69927

1 6 2 42412 4 2 1 30468

1 6 3 51072 4 2 2 39840

1 6 4 59732 4 2 3 49212

1 6 5 68392 4 2 4 58584

1 6 6 77052 4 2 5 67956

1 6 7 85712 4 2 6 77328

1 6 8 94372 4 2 7 86700

1 7 1 327868 4 2 8 96072

1 7 2 411310 5 1 2 13863

1 7 3 494752 5 1 3 18091

2 4 1 13091 5 1 4 22319

2 4 2 16995 5 1 5 26547

2 4 3 20899 5 1 6 30775

2 4 4 24803 5 1 7 35003

2 4 5 28707 5 1 8 39231

2 4 6 32611 6 1 1 87099

2 4 7 36515 6 1 2 125018

2 4 8 40419 6 1 3 162810

2 5 1 123642 6 1 4 200602

3 3 1 22817 6 1 5 238394

3 3 2 29547 6 1 6 276186

3 3 3 36277 6 1 7 313978

3 3 4 43007 6 1 8 351770

3 3 5 49737 7 1 1 801096

3 3 6 56467 7 1 2 1148761

Table 2: Number of state equations of the second-order exact expectation analysis. Due to

lack of space, only setups that yield more then 104 state equations are considered.
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(a) Configuration 1 with β = 0.004 and an

input signal obtained by filtering a unitary-

variance white Gaussian signal by the trans-

fer function B(z).
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(b) Configuration 1 with β = 0.002 and an

input signal obtained by filtering a unitary-

variance white Laplacian signal by the trans-

fer function B(z).

Figure 1: Mean-weight behavior of the adaptive coefficients for the configuration (N,M,P ) =

(3, 2, 2) as a function of the number of iterations for relatively small β values.

transfer function B(z) = 1−0.9z−1. The ideal transfer function has two possible

configurations, namely:

⋆ Configuration 1

w⋆
i = 1 for i ∈ {0, 1, · · · , N + P − 1}

⋆ Configuration 2

w⋆
i =











1, for i ∈ {0, 1, · · · , N − 1}

0.01, for i ∈ {N,N + 1, · · · , N + P − 1}

Note that Configuration 1 depicts a more challenging undermodeled setting,

related to a worse steady-state mean square error of the adaptive filter.

The remainder of this section is organized as follows: Section 5.1 presents

the results for the first-order analysis; Section 5.2 describes the data gathered

for analyzing stability; and Section 5.3 describes the transient and steady-state

analyses.
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5.1. First-Order Analysis

For small β values the theoretical performance curve obtained from the clas-

sical analysis is close to the empirical one. This fact is widely recognized in the

literature, since a slower dynamic of the adaptive weights reduces their statisti-

cal dependence on recent input samples [56]. It is noteworthy that [13] employs

the matrix perturbation theory in order to show that the actual performance

of an stochastic adaptive filter converges with the one predicted by IA when

β is small. In this configuration, it should be clear that the proposed analy-

sis also provides an accurate prediction for the first-order coefficients evolution.

This behavior is illustrated in Figure 1, which presents the mean-weight behav-

ior for the adaptive coefficients when using Configuration 1. The number of

independent Monte Carlo trials employed was 106.

However, for bigger β values the classical and exact curves diverge, as is

exemplified in Figure 2, where the β value for Figure 2a is 0.08 and 0.035 for

Figure 2b. The rest of the parameters remain equal. It is important to mention

that the proposed analysis adheres well to the simulated curve.
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(a) Configuration 1 with β = 0.08 and an

input signal obtained by filtering a unitary-

variance white Gaussian signal by the trans-

fer function B(z).
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(b) Configuration 1 with β = 0.035 and an

input signal obtained by filtering a unitary-

variance white Laplacian signal by the trans-

fer function B(z).

Figure 2: Mean-weight behavior of the adaptive coefficients for the configuration (N,M,P ) =

(3, 2, 2) as a function of the number of iterations for bigger β values.
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5.2. Stability Analysis

After the computation of transition matrices A(IA,2) and A(2), it is possible

to theoretically obtain the upper bound value of parameter β that ensures stable

operation (i.e., one guaranteeing that the maximum absolute eigenvalue of the

transition matrix is upper bounded by the unity).

For this specific set of results we counted a realization as divergent if the

absolute value of any adaptive coefficient surpasses 10 (i.e., if there exists at

least a single k for which |wi(k)| > 10, for i ∈ {0, . . . , N − 1} we consider

that the trial being evaluated has diverged). Figure 3 presents the results for

Configuration 1 when distinct input signal distributions are employed. Using

the standard analysis, the state space model (19) predicts stability when the

step size is below β
(IA)
max. This upper bound has value 0.186279 for Fig. 3a and

0.129639 for Fig. 3b. The advanced exact expectation analysis, in its turn,

provides tighter upper bounds β
(EA)
max: respectively, 0.0850143 and 0.0398865, for

Figures 3a and 3b. Note that the exact analysis accurately indicates a range for

the values of β that guarantees a negligible probability of divergence.
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(a) Configuration 1 and an in-

put signal obtained by filtering

a unitary-variance white Gaussian

signal by the transfer function

B(z).
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Figure 3: Divergence probability for (N,M,P ) = (3, 2, 2) as a function of β for 105 Monte

Carlo trials and with 1000 iterations for each realization.
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(a) The input signal was obtained by filter-

ing a unitary-variance white Gaussian signal

by the transfer function B(z) and β = 0.115.
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(b) The input signal was obtained by filter-

ing a unitary-variance white Laplacian signal

by the transfer function B(z) and β = 0.045.

Figure 4: MSE evolution (in dB) with (N,M,P ) = (2, 2, 2) as a function of the number of

iterations. The ideal transfer function was chosen according to Configuration 2.

5.3. Transient and Steady-State Analysis

Figure 4 illustrates the results obtained for the MSE evolution for different

input signal distributions (with 109 independent Monte Carlo trials). The ideal

transfer function utilized was the one described in Configuration 2. The MSE

evolution for a more complex setup is depicted in Figure 5. It is also important

to reemphasize that our model also presents better adherence to the empirical

simulations, and that some discrepancies may occur due to the usage of a finite

number of Monte Carlo trials, as elucidated in [57].

Figure 6 describes the data collected for the steady-state MSE when em-

ploying the transfer function described in Configuration 2. Again, our model

shows similar behavior to the empirical data. As expected, for small β values

the three curves coincide. Notice also that for bigger β’s the classical model

underestimates the MSE. The number of Monte Carlo trials was 109 for each

individual data point of both input signal distributions.

6. Conclusions

In this paper, a theoretical stochastic model that avoids the high-level sta-

tistical description performed by classical analyses of the LMS algorithm is
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(a) The input signal was obtained by filter-

ing a unitary-variance white Gaussian sig-

nal and β = 0.145 with tuple (N,M,P ) =

(5, 1, 6).
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(b) The input signal was obtained by filter-

ing a unitary-variance white Laplacian signal

by the transfer function B(z) and β = 0.025

with (N,M,P ) = (3, 2, 4).

Figure 5: MSE evolution (in dB) as a function of the number of iterations. The ideal transfer

function was chosen according to Configuration 2.
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Figure 6: Steady-state MSE (in dB) for the configuration (N,M,P ) = (2, 2, 2) as a function

of β. The ideal transfer function was chosen according to Configuration 2.

advanced. The proposed analysis predicts both learning behavior and stabil-

ity operation more accurately than state-of-the-art approaches that employ the

ubiquitous independence assumption, and is not restricted neither to white nor

to Gaussian input signal distributions.

In general, the advanced method demands a high computational burden,
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except for small-size adaptive filters. Furthermore, we suspect that some statis-

tical couplings are more significant than others. This implies that some random

variables could be considered as independent, whereas the statistical depen-

dence between others should be accounted for. We expect that such a strategy

may provide a “semi-exact” expectation analysis able to address more com-

plex configurations. Please note that this alternative could offer a reasonable

trade-off between the simpler standard approach (i.e., one based on IA) and the

complexity of the exact expectation analysis method.

The devised model is tailored for configurations in which a large step size is

adopted, a crucial setting for applications where faster convergence is required.

In this case, a high β value should be adopted and the standard analysis method

becomes at best unreliable (since its predictions are very distant from the reality)

or even catastrophic, since it may predict stability when in fact the adaptive

filter may diverge most of the time. In such a situation, there is no trade-off

between the alternatives, because only the exact expectation analysis method

will provide accurate results.
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