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Abstract The production system is a theoretical model
of computation relevant to the artificial intelligence field

allowing for problem solving procedures such as hier-

archical tree search. In this work we explore some of

the connections between artificial intelligence and quan-

tum computation by presenting a model for a quantum
production system. Our approach focuses on initially

developing a model for a reversible production system

which is a simple mapping of Bennett’s reversible Tur-

ing machine. We then expand on this result in order to
accommodate for the requirements of quantum compu-

tation. We present the details of how our proposition

can be used alongside Grover’s algorithm in order to

yield a speedup comparatively to its classical counter-

part. We discuss the requirements associated with such
a speedup and how it compares against a similar quan-

tum hierarchical search approach.
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1 Introduction

The artificial intelligence community has since its in-
ception focused on developing algorithmic procedures

capable of modeling problem solving behaviour. Typi-

cally, this process requires the ability to translate into

abstract terms environmental concepts and the set of

appropriate actions that act upon them. This type of
knowledge enables problem-solving agents to consider

the environment and the sequence of actions allowing

for a given goal state to be reached. This process is also

commonly referred to as reasoning [25]. The produc-
tion system is a formalism for describing the theory of

computation. The initial set of ideas for the production

system is due to the influential work of Emil Post [32].

Production system theory describes how to form a se-

quence of actions leading to a desired state. Production
system theory also presents a computational theory of

how humans solve problems [3]. Some of the best known

examples of human cognition-based production systems

include the General Problem Solver [29] [28] [17] [30],
ACT [2] and SOAR [24] [23]. Recently, applications of

quantum computation in artificial intelligence were ex-

amined in [41].
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1.1 Production systems

A production system is composed of condition-action

pairs, i.e. if-then rules, which are also called produc-

tions. A computation is performed with the aid of pro-

ductions through the transformation of an initial state
into a desired state. The state description at any given

time is also referred to as working memory. A rule is

applied when the conditional part is recognized to be

part of a given state. The action describes the respec-

tive problem-solving behaviour. Applying an action re-
sults in the state of the problem instance changing ac-

cordingly. On each cycle of operation, productions are

matched against the working memory of facts. At any

given point, more than one production might be deemed
to be applicable. This subset of productions represents

the conflict set. A conflict resolution strategy is then

employed to this subset in order to determine an ap-

propriate production. Finally, the action of the selected

rule is carried out, changing the state of the problem
instance. The operational cycle is brought to a close

when a goal state is reached or when no more rules can

be triggered. This general architecture is illustrated in

Figure 1.

Control

Recognize Act

Working Memory

Prodution Rules
(Conditon, Action)

C1          A1

C2          A2

Cn          An

Fig. 1: General architecture for a production system

(adapted from [25]).

1.2 On the power of production systems

The first half of the twentieth century saw the begin-

ning of the first efforts to describe intelligence in com-

putational terms. Not surprisingly, some of the first at-

tempts focused on developing abstract models of com-

putation and understanding their computational limits.

Some of the best known models include the Universal

Turing Machine [38] [39], Post’s production system [32],

followed closely by the thematically related Markov al-
gorithms [27] and finally Church’s lambda-calculus [10].

These computational formalisms were later shown to be

equivalent in power [1] [11] [12]. This power equivalency

translated into an ability by all models to compute the
same set of functions. Notice that this is equivalent

to stating that production systems are comparable in

power to a Turing machine.

1.3 Objectives and Problems

In this work we propose an alternative model of quan-

tum computation based on production system theory
with a clear emphasis on problem-solving behaviour.

Traditional approaches such as the quantum Turing

machine are complex mechanisms oriented towards gen-

eral purpose computation. A quantum production sys-

tem model would be more suited to typical artificial
intelligence tasks such as reasoning, inference and hier-

archical search. From the onset it is possible to immedi-

ately pose some questions, namely: How should such a

quantum production systemmodel be developed?What
are the requirements of quantum computation and its

respective impact on the aforementioned model? How

to develop the associated unitary operator? Addition-

ally, what are the performance gains from employing

quantum mechanics and how does such a proposition
compare against similar strategies? Finally, are there

any requirements that should be observed for those im-

provements? By employing such an approach we are

able to (1) provide a detailed explanation of how to de-
velop a quantum production system model; (2) assess

the main differences between our proposition and its

classical analog; and (3) provide an insight into better

describing the power of quantum computation. How-

ever, it is not our intention to present an exact charac-
terization of quantum computational models. Answer-

ing this question would have far-reaching consequences

on complexity theory which are beyond the scope of

this work.

The following sections are organized as follows: Section

2 presents the formal definitions for our proposition of

a quantum production system; Section 3 presents an

assessment comparing the performance of classical pro-
duction systems against our quantum proposition. We

present the concluding remarks of our work in Section

4.
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2 Formal Definitions

In this section we present a modular approach of our

quantum production system proposition. Accordingly,

we choose to start by introducing the set of defini-

tions incorporating traditional production system be-
haviour in Section 2.1. We then build on these no-

tions to discuss reversibility requirements associated

with quantum computation in Section 2.2. These con-

cepts are then employed to enumerate the characteris-
tics of a probabilistic production system in Section 2.3.

The probabilistic model will serve as a basis for our

quantum production system which will extend those

concepts in Section 2.4.

2.1 Classical Production System

Any approach to a general quantum production system

model needs to incorporate powerful computational ab-

stractions, which are not bounded by input length, in
a similar manner to the classical Turing machine [38]

and its quantum counterparts. Accordingly, we choose

to present the following definitions through set theory.

As previously discussed each production system S con-

sists of a set of production rules R and a control system
C alongside a working memory W . The following def-

initions embody the production system behaviour dis-

cussed in Section 1.1.

Definition 1: Let Γ be a finite nonempty set whose el-

ements are referred to as symbols. Additionally, let

Γ ∗ be the set of finite strings over Γ .

Definition 2: The working memoryW is capable of hold-

ing a string belonging to Γ ∗. The working memory

is initialized with a given string, who is also com-

monly referred to as the initial state γi.

Definition 3: The set of production rules R has the

form presented in Expression 1.

{(precondition, action)|precondition, action ∈ Γ}
(1)

Each rules precondition is matched against the con-

tents of the working memory. If the precondition is

met then the action part of the rule can be applied,

changing the contents of the working memory.

Definition 4: The formal definition of a production sys-

tem S is a tuple (Γ, Si, Sg, R, C) where Γ,R are

finite nonempty sets and Si, Sg ⊂ Γ ∗ are, respec-

tively, the set of initial and goal states. The control

function C satisfies Expression 2.

C : Γ → R× Γ × {h, c} (2)

The control system C chooses which of the rules

to apply and terminates the computation when a
goal configuration, γg, of the memory is reached.

If C(γ) = (r, γ′, {h, c}) the interpretation is that,

if the working memory contains symbol γ then it is

substituted by the action γ′ of rule r and the compu-
tation either continues, c, or halts, h. Traditionally,

the computation halts when a goal state γg ∈ Sg is

achieved through a production, and continues oth-

erwise.

2.2 Reversible Requirements

In quantum computation, discrete state evolution of a

closed system is achieved through mathematical maps

known as unitary operators [31]. These maps corre-

spond to injective and surjective functions, i.e. bijec-
tions. Bijections guarantee that every element of the

codomain is mapped by exactly one element of the do-

main [7]. From a computational perspective, the bi-

jection requirement can be obtained by employing re-

versible computation. Classical computation is an ir-
reversible process since at its core the use of many-

to-one binary gates makes it impossible to ensure a

one-to-one and onto mapping. A computation is said

to be reversible if given the outputs we can uniquely
recover the inputs [36] [37]. Irreversible computational

processes can be made reversible by (1) substituting

irreversible logic elements by the adequate reversible

equivalents; or (2) by accounting for the information

that is traditionally lost.

The emphasis in production system theory consists in

determining what state is obtained after applying a

production. We employ forward chaining when mov-

ing from the conditions to the actions, i.e. an action

is applied when all the associated conditions are met.
Conversely, there may be a need for determining which

state preceded the current state, i.e. a sort of backtrace

mechanism from a given state up until another state.

This mechanism allowing one to reverse the actions ap-
plied and thus obtaining the associated conditions is

also commonly referred to as backward chaining. Al-

though this behaviour seems fairly simple and intuitive



4 Lúıs Tarrataca, Andreas Wichert.

it is possible to immediately pose an elaborate ques-

tion regarding the system’s nature, namely what are

the requirements associated with a reversible produc-

tion system?

It is possible to adapt Bennett’s original set of defini-

tions [4] in order to describe the behaviour of a produc-

tion system by a finite set of transition formulas also

referred to as quadruples, in an allusion to the form of

Expression 2. Each quadruple maps the present state
of the working memory to its successor. By introducing

the tuple terminology it becomes simpler to present the

following set of definitions:

Definition 5: A production system can be perceived as
being deterministic if and only if its quadruples have

non-overlapping domains.

Definition 6: A production system is said to be reversible

if and only if its quadruples have non-overlapping
ranges.

Definition 7: A reversible and deterministic production

system can be defined as a set of quadruples no two

of which overlap either in domain or range.

These definitions contrast with Bennett’s more elabo-

rated model where information regarding the internal

states of the control unit before and after the transition,

alongside tape movement with the associated reading
and writing information is maintained. In order to fully

understand the exact impact of such requirements lets

proceed by considering a production system responsible

for sorting strings composed of letters a, b, c, d, and e

based on [40]. The set of production rules is presented
in Table 1. Whenever a substring of the original string

matches a rule’s condition the production is applicable.

Applying a specific rule consists in replacing the orig-

inal substring, i.e. precondition, by the action string.
The sequence of rules that is applied when the work-

ing memory is initialized in state “edcba” is illustrated

in Table 2, with the computation proceeding until the

string is fully sorted.

Bennett [4] points to the fact that any irreversible com-

putation can be made reversible by saving all the infor-

mation that is typically erased. However, this reversible

history needs to be saved into a resource. Reusing this

resource would require the information to be erased or
thrown away, merely postponing the problem. The so-

lution relies on performing a computation, saving the

intermediate information that is typically lost, and then

using this information to backtrack to the original in-
put. Since both forward and backward stages are done

in a reversible manner, the overall process always pre-

serves the original information.

However, before undoing the computation, care has to

be taken in order to ensure that the output is preserved.

This requires copying the output to an output regis-

ter, an operation which has to be performed reversibly.

Once the output copy has been completed it is possi-
ble to proceed with the backward stage, i.e reverse the

consequences of each quadruple application. Eventually,

the computation terminates, the production system re-

turns to its original state and the result of the procedure
is stored in the output medium. In Bennett’s original

work the reversible Turing machine is composed of three

tapes, namely [4]:

– working tape - where the program’s input is initially
stored and computation is performed in order to ob-

tain an output which is later reversed to the original

input;

– history tape - where the information that is tradi-
tionally thrown away is kept, once the program’s

output has been copied the history information is

used in order to revert the working tape to its orig-

inal state;

– output tape - where the program’s output is stored.

By observing Table 2 it is possible to see that in or-

der to ensure that the original input is obtained, the

sequence of rules leading from an initial state γi to a
goal state γg needs to be accounted for. This sequence

of rules can be used in order to “undo” each action.

In doing so it is possible to obtain each precondition

that led to a particular action being applied, up until

an initial state γi ∈ Si. Notice that the quadruples pre-
sented in Expression 2 effectively convey information

about which production is applied when going from a

certain condition to the appropriate action. Addition-

ally, in production system theory there exists a strong
emphasis on the sequence of rules leading up to a target

state. This situation contrasts with the traditional in-

terest of merely knowing the final state of the working

memory. If we allow ourselves to change Bennett’s orig-

inal definitions of the reversible Turing machine then it
becomes possible to obtain a mapping for a reversible

production system. This process can be performed by

requiring that

1. applying a production results in its addition to the
history tape, instead of a new control-unit state.

Since the quadruple and production rules are equiv-

alent concepts we are basically storing the same

transitional information employed by Bennett’s model;

2. once the computation halts it is necessary to copy

the contents of the history tape to the output tape,

this contrasts with the original copying of the work-
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Rule Precondition Action Symbolic

R1 ba ab ba → ab
R2 ca ac ca → ac
R3 da ad da → ad
R4 ea ae ea → ae
R5 cb bc cb → bc
R6 db bd db → bd
R7 eb be eb → be
R8 dc cd dc → cd
R9 ec ce ec → ce
R10 ed de ed → de

Table 1: Rule set for sorting a string composed of letters a, b, c, d, and e (adapted from [25]).

Iteration Number Working Memory Conflict Set Rule Fired Continue?

0 edcba {R1, R5, R8, R10} R1 continue
1 edcab {R2, R8, R10} R2 continue
2 edacb {R5, R3, R10} R3 continue
3 eadcb {R5, R8, R4} R4 continue
4 aedcb {R5, R8, R10} R5 continue
5 aedbc {R6, R10} R6 continue
6 aebdc {R8, R7} R7 continue
7 abedc {R8, R10} R8 continue
8 abecd {R9} R9 continue
9 abced {R10} R10 continue
10 abcde ∅ ∅ halt

Table 2: An example of the sequence of rules applied for sorting a string composed of letters a, b, c, d, and e.

ing tape. In order to do so the history tape’s head

needs to be place at the tape’s beginning. After-

wards, the copy process from the history tape to
the output tape can proceed.

3. upon the copying mechanism’s conclusion, the out-

put tape’s head needs to be placed at the beginning.

This process can be performed by shifting left the

output tape until a blank symbol is found.

Table 3 illustrates this set of ideas for a reversible pro-

duction simple based on the string sorting production
system presented earlier (Table 1 and Table 2). As it

is possible to verify the computation proceeds normally

for iteration 0 through 10, also known as the forward

computation stage. The only alteration to Bennett’s
model consists in adding the productions fired to the

history tape. Once this stage has concluded the history

tape’s head needs to be properly placed at the begin-

ning. This step is carried out in iteration 11. In this

case we opted to represent the position of a tape’s head
by an underbar. The system then proceeds in iteration

12 by copying the contents of the history tape onto the

output tape. Additionally, the output tape’s head is

placed at the beginning in iteration 13. The last stage
of the computation consists in undoing each one of the

applied productions, as illustrated from iteration 14 to

24. For this stage we opted to represent the inverse of a

rule R mapping a precondition A into an action B, i.e.

R : A→ B, by R−1 such that R−1 : B → A. By invert-

ing the rules applied we are for all purposes reversing
the consequences of each associated quadruple.

2.3 Probabilistic Production System

Consider a production system whose control strategy

chooses a rule to apply from set of production rules
based on a probability distribution. This behaviour can

be formalized with a simple reformulation of Expression

2 as illustrated by Expression 3, where C(γ, r, γ′, d) rep-
resents the probability of choosing rule r, substituting
symbol γ with γ′ and making a decision d on whether

to continue or halt the computation if the memory con-

tains γ.

C : Γ ×R× Γ × {h, c} − [0, 1] (3)

Additionally, it would have to be required that ∀γ ∈ Γ

Expression 4 be observed

∑

∀(r,γ′,d)∈R×Γ×{h,c}
C(γ, r, γ′, d) = 1 (4)
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Iteration Memory Rule History Tape Output Tape

0 edcba R1 { } { }
1 edcab R2 {R1} { }
2 edacb R3 {R1, R2} { }
3 eadcb R4 {R1, R2, R3} { }
4 aedcb R5 {R1, R2, R3, R4} { }
5 aedbc R6 {R1, R2, R3, R4, R5} { }
6 aebdc R7 {R1, R2, R3, R4, R5, R6} { }
7 abedc R8 {R1, R2, R3, R4, R5, R6, R7} { }
8 abecd R9 {R1, R2, R3, R4, R5, R6, R7, R8} { }
9 abced R10 {R1, R2, R3, R4, R5, R6, R7, R8, R9} { }
10 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }
11 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} { }
12 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
13 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}
14 abcde ∅ {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

15 abced R10−1 {R1, R2, R3, R4, R5, R6, R7, R8, R9} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

16 abecd R9−1 {R1, R2, R3, R4, R5, R6, R7, R8} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

17 abedc R8−1 {R1, R2, R3, R4, R5, R6, R7} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

18 aebdc R7−1 {R1, R2, R3, R4, R5, R6} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

19 aedbc R6−1 {R1, R2, R3, R4, R5} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

20 aedcb R5−1 {R1, R2, R3, R4} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

21 eadcb R4−1 {R1, R2, R3} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

22 edacb R3−1 {R1, R2} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

23 edcab R2−1 {R1} {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

24 edcba R1−1 { } {R1, R2, R3, R4, R5, R6, R7, R8, R9, R10}

Table 3: Operation of a reversible production system based on the example of Table 2 and Bennett’s model for a

reversible Turing machine. The underbar denotes the position of the head.

This modification to the deterministic production sys-

tem allows the control strategy to yield different states
with probabilities that must sum up to 1. In such a

model, a computation can be perceived has having an

associated probability which is simply the multiplica-

tion of each production’s probability. If the several pos-

sibilities are accounted for the overall computational
process presents a tree form. Figure 2 illustrates a pro-

duction system whose set of production rules is binary,

i.e. {p0, p1}. The root node A depicts the initial state

in which the working memory is initialized. Each depth
layer d is responsible for adding bd nodes to the tree,

where b is the branching factor induced by the produc-

tion set cardinality. For this specific case b = 2. The

remaining tree nodes represent states achieved by ap-

plying the sequence of productions leading up to that
specific element, e.g. state J is achieved by applying

sequence {p0, p1, p0}.

A

B

D E

H I J K

C

F G

L M N O

Fig. 2: Tree structure representing the multiple com-

putational paths of a probabilistic production system.

2.4 Quantum Production System

A suitable model for a probabilistic production sys-
tem enables a mapping between real-valued probabil-

ities and complex-value quantum amplitudes. Specifi-

cally, the complex valued control strategy would need to

behave as illustrated in Expression 5 where C(γ, r, γ′, d)
provides the amplitude if the working memory contains

symbol γ then rule r will be chosen, substituting symbol

γ with γ′ and a decision d made on whether to continue

or halt the computation.

C : Γ ×R× Γ × {h, c} − C (5)

The amplitude value provided would also have to be in
accordance with Expression 6, ∀γ ∈ Γ

∑

∀(r,γ′,d)∈R×Γ×{h,c}
|C(γ, r, γ′, d)|2 = 1 (6)

Is it possible to elaborate on the exact unitary form that

C should take? If we were to develop a classical compu-

tational gate for calculating Expression 2 then it would

have a form as illustrated in Figure 3a. Since multiple

arguments could potentially map onto the same ele-
ment such a strategy would not allow for reversibility.

Theoretically, any irreversible production system can

be made reversible by adding some auxiliary input bits

and through the addition modulo 2 operation [37], a
process formalized in Expression 7 and shown in Figure

3b. Since the inputs are now part of the outputs, this

mechanism allows for a bijection to be obtained.



A Quantum Production Model 7

(a) (b)

Fig. 3: An irreversible control strategy 3a can be made reversible 3b through the introduction of a number of

constants and auxiliary input and output bits.

(γ, b0, b1, b2)
︸ ︷︷ ︸

input vector v1

C→ (γ, r ⊕ b0, γ
′ ⊕ b1, {h, c} ⊕ b2)

︸ ︷︷ ︸

output vector v2

(7)

Notice that the reversible gate can be perceived as act-

ing upon an input vector v1 and delivering v2. If we

adopt a linear algebra perspective alongside the Dirac
notation [15] [16], then such behaviour can be described

as shown in Expression 8, where C is the required uni-

tary operator.

C|v1〉 = |v2〉 (8)

Based on Expression 7 and Expression 8 it becomes

possible to develop a unitary operator C. Accordingly,
C acts upon an input vector v1 conveying specific in-

formation about the argument’s state. From Expres-

sion 7 we can verify that any input vector |v1〉 should

be large enough to accommodate γ, b0, b1 and b2. Since
b0, b1 and b2 will be used for bitwise addition modulo 2

operations with, respectively, r, γ′ and {h, c}, we need

to determine the appropriate dimensions for a binary

encoding of these elements. Assume that:

– α = ⌈log2 |Γ |⌉, represents the number of bits re-

quired to encode the symbol set

– β = ⌈log2 |R|⌉, represents the number of bits re-
quired to encode each one of the productions;

– δ is a single bit used to encode either h or c

If we employ a binary string to represent this infor-
mation, then its length will be α + β + δ bits, thus

allowing for a total of 2α+β+δ combinations. This in-

formation about the input’s state can be conveyed in

a column vector v1 of dimension 2α+β+δ. The general
idea being that the mth possible combination can be

represented by placing a 1 on the mth row of such a

vector. These same principles are still observed by v2.

The unitary operator’s responsibility relies on inter-

preting such information and presenting an adequate
output vector v2. The overall requirements of unitar-

ity alongside the dimensions of input and output vec-

tors imply that unitary operator C will have dimension

2α+β+δ × 2α+β+δ.

A parallel can be established between C’s behaviour

and the truth table concept of classical gates. Truth ta-

bles are classical mechanisms employed to describe logic
gates employed in electronics. The tables list all possi-

ble combinations of the inputs alongside the respective

results [26]. In a similar manner, we can build unitary

operator C by going through all possible combinations
and decoding the information present in each combina-

tion. This procedure is illustrated through pseudo-code

in Procedure 1. Lines 1-3 are employed in order to de-

termine the required number of bits for our encoding

mechanism. These values can also be used to determine
the dimension 2α+β+δ × 2α+β+δ of unitary operator C.

This operator is initialized in line 4 as a matrix with all

entries set to zero.

The cycle for from lines 5-15 is responsible for going

through all possible combinations. Line 6 of the code

obtains a string S which is the binary version of decimal

combination λ, represented as λ(2) to illustrate base-2
encoding. Recall from Expression 3 that each input vec-

tor needs to convey information about γ, b0, b1 and b2.

Accordingly, for each λ we need to parse the different

elements of the string in order to determine those val-
ues. This process is illustrated through lines 7-10 which

are responsible for obtaining the binary substrings. For

any string S, S[i, j] is the contiguous substring of S

that starts at position i and ends at position j of S

[20]. Line 11 is responsible for invoking function map-
BinaryEncoding which maps substring S1 to a symbol

γ ∈ Γ . This function can be easily calculated with the

help of any trivial data structure.

Once the input symbol γ has been determined it is pos-

sible to calculate the transition depicted in Expression
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2. We should be careful to point out that the transi-

tion calculated in Line 12 through function C should

not be confused with the associated unitary operator

C of line 4. The next logical step consists in forming

a binary string represented as w(2) which is simply the
concatenation of elements S1, r(2) ⊕ S2, γ

′
(2) ⊕ S3 and

d(2) ⊕ S4. Again, this step is done by employing the

base-2 version of elements r, γ′ and d. After the conclu-
sion of line 13 we have all the information required to
determine the corresponding mapping, λ can be viewed

as the decimal encoding of the input state, whilst ω can

be interpreted as the new decimal state achieved. This

behaviour can be adequately incorporated into the uni-

tary operator by marking column λ and row ω with a
one, a procedure realized in line 14.

Procedure 1 Pseudo code for building unitary opera-
tor C
1: α = ⌈log2 |Γ |⌉
2: β = ⌈log2 |R|⌉
3: δ = 1
4: C = zeros[2α+β+δ, 2α+β+δ]
5: for all integers λ ∈ [0, 2α+β+δ] do
6: S = λ(2)

7: S1 = S[0, α− 1]
8: S2 = S[α, α+ β − 1]
9: S3 = S[α+ β, 2α+ β − 1]
10: S4 = S[2α+ β, 2α+ β + δ − 1]
11: γ = mapBinaryEncoding( Γ , S1 )
12: C(γ) = (r, γ′, d)
13: ω(2) = S1, r(2) ⊕ S2, γ

′
(2)

⊕ S3, d(2) ⊕ S4

14: Cω,λ = 1
15: end for

Correctness Proof: In order to verify the correctness

of Procedure 1 we need to confirm that operator C

is indeed a bijective mapping. At its core a bijection

performs a simple permutation of all possible input

state combinations. Accordingly, for a collision to oc-
cur, i.e. multiple arguments mapping into the same im-

age, would require that several λ’s produced the same

ω. If the transition function employed in Line 12 is irre-

versible then it is conceivable that different γ’s may pro-
duce the same output vector (r, γ′, d). However, the new
state w besides contemplating output (r, γ′, d) through
the addition modulo 2 elements r(2) ⊕S2, γ

′
(2) ⊕S3 and

d(2) ⊕ S4 also takes into consideration the original in-

put symbol γ allowing for a differentiation of possible
collision states. As a consequence, for a collision to still

occur would require that function mapBinaryEncoding

produced the same γ for different binary strings. This

same binary mapping behaviour can be easily avoided
with proper management of an adequate data struc-

ture thus guaranteeing the correctness of such a proce-

dure.

Notice that unitary operator C is only responsible for

applying a single production of the control strategy.

This represents a best case scenario where a problem’s

solution can be found within the immediate neighbours,

i.e. those nodes that can be reached by applying a single
production. However, the production system norm re-

lies on having to apply a sequence of rules before obtain-

ing a solution state. Our proposition can be easily ex-

tended in order to apply multiple steps. Such an exten-
sion would require developing a logical circuit employ-

ing elementary gates C alongside any necessary output

redirection to the adequate inputs. Algebraically, such a

procedure would require unitary operator composition

acting upon the appropriate inputs, which would con-
tinue to guarantee overall reversibility. Additionally, we

should emphasize that any potential unitary operator

requires the ability to verify if the conditional part of a

rule is met, i.e. to determine if a string contains a sub-
string which can be achieved with simple comparison

operators.

3 Classical vs. Quantum Comparison

Deutsch described a universal model of computation

capable of simulating Turing machines with inherent

quantum properties such as quantum parallelism that
cannot be found in their classical counterparts [13].

However, the number of computational steps required

by Deutsch’s model grew exponentially as a function of

the simulated Turing’s machine running time. Subse-

quently, a more efficient model for a universal quantum
Turing machine was proposed in [6]. In the same work

the authors questioned themselves if a quantum tur-

ing machine can provide any significant advantage over

their classical equivalents. They proceeded by showing
that a quantum turing machine described in [14] is ca-

pable of efficiently solving the Fourier sampling prob-

lem. However, care was also employed in order to em-

phasize that their result did not prove that quantum

Turing machines are more powerful than probabilistic
Turing machines, since the latter can sample from a

distribution within ǫ total variation distance of the de-

sired Fourier distribution [6]. Later, Shor’s algorithm

for fast factorization [33] presented further evidence on
the power of quantum computation.

Naturally, the question arises: how does our quantum

production system proposal fare against its classical

counterpart? Namely, what do we stand to gain by ap-
plying quantum computation? And what are the re-

quirements associated to those improvements? In order

to answer these questions consider a unitary operator
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C which is applied to an initial state x ∈ Si. Addition-

ally, assume that C needs to be applied a total of d

times for a result to be obtained, where d ∈ N is chosen

such that the computation is able to proceed until it

stops. The result of applying C can be represented as
g(x) which in production system theory can be a simple

output of the productions applied. As a consequence,

the quantum register employed needs to convey infor-

mation about the initial state and also be large enough
to accommodate for g(x). We opted to represent this

requirement by employing a unspecified length register

|z〉. Accordingly, we can represent the initial state of the

system by the left-hand side of Expression 9. The right-

hand side represents the result obtained after unitary
evolution.

Cd|x, z〉 = |x, z ⊕ g(x)〉 (9)

In order to gain a quantum advantage over the classical

version we need to employ the superposition principle.

Accordingly, it is possible to initialize register |x〉 as a
superposition, |ψ〉, of all starting states, a procedure il-

lustrated in Expression 10, where Si ⊂ Γ ∗ is the set

of starting states. This procedure is also depicted in

Figure 4, where multiple binary searches are performed
simultaneously, with the dotted line representing initial

nodes that, for reasons of space, are not shown, but are

still present in the superposition. Now consider a sce-

nario where the production system definition only con-

templates a single initial state, i.e. |Si| = 1. Since it is
not possible to explore the high levels of parallelism pro-

vided by the superposition principle, we would therefore

not have any significant advantage over the sequential

procedure by applying |ψn〉. However, if the produc-
tions set cardinality is greater than one, then there exist

several neighbour states which which can be employed

as initial states thus circumventing the problem.

|ψ〉 = 1
√

|Si|
∑

s∈Si

|s〉 (10)

This approach differs from other strategies of hierarchi-

cal search, namely [34] and [35], who, respectively, (1)
evaluate a superposition of all possible tree paths up

to a depth-level d in order to determine if a solution is

present and (2) present an hierarchical decomposition

of the quantum search space through entanglement de-
tection schemes.

The following sections are organized as follows: Section

3.1 presents the main results on Grover’s algorithm.

These concepts will then be extended in Section 3.2

in order to present a system combining our produc-

tion system proposal alongside the quantum search al-

gorithm. Finally, we will conclude in Section 3.3 by dis-

cussing the performance gains achieved over the classi-
cal production system equivalent.

3.1 The quantum search algorithm

Traditionally, production system theory is applied to

problems devoid of an element of structure, and thus
requiring the search space of all possible combinations

to be exhaustively examined. The class NP consists of

those problems whose possible configurations can be

verified in polynomial-time. Grover’s algorithm works
by amplifying the amplitude of the solution states. The

algorithm is able to “mark” a state as a solution by

employing an oracle O which, alongside an adequate

initialization of the answer register in a superposition

state, effectively flips the amplitudes of those states.
This behaviour is illustrated in Expression 11, where |x〉
and |y〉 represent, respectively, an n-bit query register

and a single bit answer register. Function f(x) simply

verifies if x is a solution, as formalized in Expression 12.
The quantum search algorithm [18] is ideally suited for

solving NP problems and allows for a quadratic speedup

relatively to classical algorithms. Classical algorithms

require O(N) time for N -dimensional search spaces,

whilst Grover’s algorithm requires O(
√
N ) time, or in

terms of |x〉’s dimension O(
√
2n ) time.

O : |x〉|y〉 7→ |x〉|y ⊕ f(x)〉 (11)

f(x) =

{
1 if x is a solution

0 otherwise
(12)

The amplification process is achieved by flipping the
amplitude of the solution states and performing a in-

version about the mean of the amplitudes. The over-

all effect of such a procedure, referred to as Grover’s

iterate, induces a higher probability of observing a so-

lution when a measurement is performed over the su-
perposition state. Grover’s algorithm was experimen-

tally demonstrated in [9]. The quantum search algo-

rithm systematically increases the probability of obtain-

ing a solution with each iteration. Upon conclusion a
measurement is performed in a quantum superposition.

The superposition state represents the set of all possi-

ble results. Grover’s approach sparked interest by the
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A

A1 A2

A3 A4 A5 A6

B

B1 B2

B3 B4 B5 B6

Z

Z1 Z2

Z3 Z4 Z5 Z6

Fig. 4: Parallel search with Si = {A,B, · · · , Z} and |ψn〉 = 1√
|Si|

∑

s∈Si
|s〉 . The dotted lines represent the initial

states belonging to superposition |ψn〉

scientific community on whether it would be possible to

devise a faster search algorithm. Subsequently, it was
proved any procedure based on oracles employing total

function evaluation will always require at least Ω(
√
N )

time [5]. Grover and Radhakrishnan [19] considered the

speedup achievable if one was only interested in deter-

mining the first m bits of a n bit solution string. In
practice, their approach proceed with analysing differ-

ent sections of the quantum search space. The authors

prove that it is possible to obtain a speedup, however,

as m grows closer to n the computational gains ob-
tained disappear [19]. This speedup was then improved

in [21] and [22] and an extension to multiple solutions

was presented in [8].

3.2 Oracle Extension

In this section we present an extension to the oracle

operator employed by Grover’s algorithm allowing it

to be combined alongside our quantum production sys-

tem proposal. As a result we need to determine what

happens when two different functions f and g are com-
bined into a single unitary evolution, as illustrated by

Expression 13. In this case we opted to employ three

quantum registers, namely |x〉 which is configured with

the system’s initial state, alongside registers |y〉 and |z〉
where, respectively, the output of functions f(x) and

g(x) is stored. The original amplitude flipping process

is a result of placing register |y〉 in the superposition

state |0〉−|1〉√
2

. Accordingly, we need to verify if the am-

plitude flip still holds with the oracle formulation of
Expression 13 alongside |y〉’s superposition initializa-

tion. This behaviour is shown in Expression 14. From

Expression 15 we are able to conclude that despite the

new oracle formulation the amplitude flipping continues

to occur.

O|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (13)

3.3 Performance Analysis

In order to proceed with our performance analysis lets

consider we have a production system whose definitions

are incorporated into a unitary operator C combining
the results of Expression 9 and Expression 13. Accord-

ingly, C will have the form presented in Expression 16,

where |x〉 is initialized with a superposition of the pro-

duction system starting states. In addition we employ
register |z〉 which has an unspecified length in order to

accommodate for the productions applied, i.e the out-

put growth of function g(x).

By employing such a formulation for our production

system C we are able to employ it alongside Grover’s
algorithm in order to speedup the computation. In our

particular case we are interested in changing f(x)’s def-

inition in order to check if a goal state s ∈ Sg is achieved

after having applied d productions. E.g. consider that
state M shown in Figure 2 is a goal state, then, assum-

ing no backtracking occurs, such state can be reached

by applying productions p1, p0 and p1. As a consequence

we can express such state evolution as C3|A, 0,0〉 =

|x, 1, {p1, p0, p1}〉, where 0 represents a vector of zeros.
Function f new definition is presented in Expression 17.

The state of the system is described by a unit vector in

a Hilbert space H2m = H2n ⊗H2 ⊗H2p .

Cd|x, y, z〉 = |x, y ⊕ f(x), z ⊕ g(x)〉 (16)

f(x) =

{
1 if Cd|x〉 ∈ Sg

0 otherwise
(17)

Grover’s original speedup was dependent on superposi-

tion |ψ〉 and the associated number of possible states.
More concretely, the dimension of the space spanned

is dependent on the dimension of the query register

|x〉 employed. However, by applying an oracle C whose
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O|x〉 |0〉 − |1〉√
2

|z〉 = 1√
2

(|x〉|f(x)〉|z ⊕ g(x)〉 −O|x〉|1⊕ f(x)〉|z ⊕ g(x)〉) (14)

=

{

1√
2
(|x〉|0〉|z ⊕ g(x)〉 − |x〉|1〉|z ⊕ g(x)〉) if f(x) = 0

1√
2
(|x〉|1〉|z ⊕ g(x)〉 − |x〉|0〉|z ⊕ g(x)〉) if f(x) = 1

=

{

|x〉 |0〉−|1〉√
2

|z ⊕ g(x)〉 if f(x) = 0

|x〉 |1〉−|0〉√
2

|z ⊕ g(x)〉 if f(x) = 1

= (−1)f(x)|x〉 |0〉 − |1〉√
2

|z ⊕ g(x)〉 (15)

behaviour mimics that of Expression 16 the elements

present in superposition |ψ〉 will interact with registers

|y〉 and |z〉. Typically, register |y〉 is ignored when eval-

uating the running time, producing an overall super-
position |ξ〉 which will no longer span the original 2n

possible states but 2n+p. From an algebraic perspec-

tive, the interaction process is due to the tensor prod-

uct employed to describe the overall state between |x〉,
|y〉 and |z〉. As a result, it is possible to pose the fol-
lowing question: what can be said about the growth of

|z〉 and its respective impact on overall system perfor-

mance?

Assume that a solution state can always be found after

d computational steps, either by indeed finding a goal
state or by applying an heuristic function to determine

an appropriate state selection. Classically, a sequential

procedure would require C = |Si| × d iterations, one

for each initial state in need of processing. Is it possi-
ble to do any better with our proposition? Answering

this question requires determining appropriate bound-

ary conditions on the exact dimensions of |z〉 for which
it is still possible to obtain a speedup over classical pro-

cedures.

By employing Grover’s algorithm we know that the

search procedure will span the dimension of |ξ〉 which

varies between [2n, 2n+p]. Accordingly, in the very un-

likely best case scenario, we will be able to search all
elements in O(

√

|Si| ) time. With each Grover iterate

we need to apply oracle C a total of d times, which

implies an overall number of invocations equal to Q =
√

|Si| ×d. Therefore, a comparison is required between

the classical and quantum number of iterations, respec-
tively, C and Q, as illustrated in Expression 18. The

ratio presented in Expression 18 allows us to conclude

that C and Q differ by a factor of
√

|Si| , effectively
favoring the quantum proposal.

C

Q
=

|Si|d
√

|Si| d
=

√

|Si| (18)

However, such a ratio does not take into account the

dimension of register |z〉. Therefore, we need to deter-

mine what happens when |z〉 grows and how it affects

overall performance. Let m denote the number of bits
employed by registers |x〉 and |z〉, then the number of

quantum iterations will be Q =
√
2m × k. Accordingly,

Expression 18 can be restated in terms of m, as de-

picted in Expression 19 which effectively conveys the

notion that each additional bit added to |z〉 impacts
the C

Q
ratio negatively by a factor of 1√

2
. If register

|z〉 is composed by p bits this means that the overall

decrease in performance will be p√
2

|Si|√
2n

, where n is

the number of bits required to encode the set of initial

states. This result can be restated as p√
2

√

|Si| if we
consider Grover’s speedup in light of the dimension of

Si.

C

Q
=

|Si|√
2m

(19)

Additionally, we are also interested in determining when

is the number of quantum iterations Q smaller than the

number of classical iterations C, as shown in Expression

20.

Q < C (20)

⇔
√
2m k < |Si|k

⇔ 2m < |Si|2

⇔ m < log2 |Si|2 (21)

Expression 21 needs to be further refined since we are
trying to determine m ∈ N but the right-hand side may

produce a value belonging to R. This output is a conse-

quence of having to deal with initial state sets Si whose

cardinality is not a power of 2. Notice that the measure-
ment of performance we have chosen, respectively, the

ratio C/Q will eventually be 1 when m = log2 |Si|2.
Accordingly, if a larger number of bits is employed it
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effectively yields C/Q < 1 which will no longer trans-

late into a speedup by the quantum version. That being

the case, we choose to restrict our model to those cases

where m < ⌊log2 |Si|2⌋. Furthermore, m should also be

large enough to contain the set of possible binary encod-
ings of Si, i.e. m ≥ ⌈log2 |Si|⌉. The general boundary

conditions are presented in Expression 22.

⌈log2 |Si|⌉ ≤ m ≤ ⌊log2 |Si|2⌋ (22)

Figure 5 illustrates the three-dimensional plot of Ex-

pression 19 as a function of a number of initial nodes in
the range [1, 213] alongside the required boundary con-

ditions described by Expression 22. The plot presents

the characteristic ladder effect associated with employ-

ing logarithmic functions in conjunction with functions

that map real domains to the integer set. As a con-
sequence, a plateau is reached for some combinations

where a number of different cardinality Si sets can be

mapped by the same number of bits, thus presenting

the same C/Q ratio. Relinquishing the floor and ceil-
ing functions allows us to obtain a crude comparison

between the lower and upper limits of Expression 22.

More concretely, we are able to verify that these limits

differ by a log2 |Si| factor. This means that the system,

besides requiring ⌈log2 |Si|⌉ bits for register |x〉, can still
employ an additional log2 |Si| bits to encode g’s output

and in the process still perform better than its classical

counterpart.

Fig. 5: The performance measurement ratio C/Q for

|Si| ∈ [1, 213] illustrating the logarithmic growth

⌈log2 |Si|⌉ ≤ m ≤ ⌊log2 |Si|2⌋ alongside the associated
p√
2

√

|Si| decrease in performance.

3.3.1 On the growth of g’s output

Consider a production system with a constant branch-
ing factor where a set of productions is applied then

there will exist a total of |R|d possible tree paths at

depth level d, who will require ⌈log2 |R|d⌉ bits for an

adequate encoding. Clearly, if ⌈log2 |R|d⌉ ≤ ⌈log2 |Si|⌉
then g’s output can encode the sequence of productions

applied. If this is not the case we may opt to encode an

unspecified number of productions applied according to

some previously chosen strategy. As a consequence, our

proposal may be more appropriate when dealing with
large Si sets since this would automatically imply that

we would have at our disposition a large set of working

bits. Even if this is not the case it is still possible to em-

ploy as initial states the set of nodes that can be found
at a depth d which, as previously mentioned, typically

grow in an exponential fashion.

3.3.2 Comparison with an hierarchical search model

Finally, it is important to compare our quantum pro-

duction system performance against a similar proposal

described in [34]. In their work the authors also employ
Grover’s algorithm alongside an hierarchical search ora-

cle where a superposition consisting of all possible paths

up to depth-level d is evaluated. The authors chose to

build a binary string encoding in a logical fashion the

sequence of actions taken. As a consequence a total of
p1 = d× ⌈log2|R|⌉ bits is required. This approach con-

trasts with the p2 = ⌈log2 |R|d⌉ bits employed to en-

code all possible paths. However, if |R| is a power of

2, then the use of the ceiling functions is no longer re-
quired and it is possible to conclude that p1 = p2 = p.

For that reason, the number of bits m required by our

current proposition will always be bigger than p, since

m = n+ p+1. This implies that the number of Grover

iterations to apply in [34], respectively, O(
√
2p ) will

also be less than the O(
√
2n+p+1 ) time required with

this method. If a ratio is performed between both pro-

cedures then we are able to verify that they differ by a

factor of
√
2p√

2n+p+1
=

√
1

2n+1 in favor of [34]. However,

despite loosing in performance terms, our model differs

significantly in nature. The authors original proposal fo-

cused on exploiting hierarchical search through polyno-
mial time verification of paths, whilst we propose build-

ing a generic mechanism for hierarchical search through

quantum operators.
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4 Conclusions

In this work we presented an artificial intelligence in-

spired quantum computational model based on produc-

tion system theory. Quantum computation is an inher-

ently reversible process and as a consequence the pro-
posed model would also allow for a reversible decision

process. Since production systems share some key char-

acteristics with classical tree search the proposed model

also allows for an hierarchical quantum search mech-
anism. By formalizing the theoretical foundations of

our approach we were able to enumerate the reversible

and quantum requirements of our model. These require-

ments enabled us to present a method focusing on the

construction of the unitary operator associated with
our quantum production system. We then extended our

proposition in order to combine with Grover’s algo-

rithm. Doing so allowed us to adequately study the per-

formance of our system and enumerate those cases in
which our model outperforms its classical counterpart.

Although our proposition is able to compute faster the
p√
2

√

|Si| performance penalty associated with each ad-

ditional bit required is expensive, favoring the choice of

models that rely exclusively on exploiting the class of
problems NP through polynomial time verifications and

superpositions of all possible paths.
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