
Chapter 4 - File Systems

Luis Tarrataca

luis.tarrataca@gmail.com

CEFET-RJ

L. Tarrataca Chapter 4 - File Systems 1 / 161

luis.tarrataca@gmail.com

1 Motivation

2 Files

File Naming

File Structure

File Types

File Access

File Attributes

File Operations

Example Program Using File-System Calls

L. Tarrataca Chapter 4 - File Systems 2 / 161

3 Directories

Hierarchical Directory Systems

Path Names

Directory Operations

L. Tarrataca Chapter 4 - File Systems 3 / 161

4 File System Implementation

File System Layout

Implementing the files

Implementing the files

Implementing the files

Contiguous Allocation

Linked-List Allocation

Linked-List Allocation Using a Table in Memory

I-Nodes

I-Nodes

Implementing Directories

L. Tarrataca Chapter 4 - File Systems 4 / 161

5 File-system Management and Optimization

Disk-space management

Block Size

Keeping track of free blocks

Disk Quotas

File-system performance

Caching

Block read-ahead

Reducing Disk-Arm motion

Defragmenting Disks

L. Tarrataca Chapter 4 - File Systems 5 / 161

6 References

L. Tarrataca Chapter 4 - File Systems 6 / 161

Motivation

Motivation

There are three essential requirements for long-term information storage:

1 It must be possible to store a very large amount of information.

2 The information must survive the termination of the process using it.

3 Multiple processes must be able to access the information at once.

L. Tarrataca Chapter 4 - File Systems 7 / 161

Motivation

How do you find information?

How do you keep one user from reading another user’s data?

How do you know which blocks are free?

L. Tarrataca Chapter 4 - File Systems 8 / 161

Motivation

In your opinion what are some of the most important concepts OS?

L. Tarrataca Chapter 4 - File Systems 9 / 161

Motivation

In your opinion what are some of the most important concepts OS?

• Process? Threads?

• Physical memory? Virtual Memory?

L. Tarrataca Chapter 4 - File Systems 10 / 161

Motivation

In your opinion what are some of the most important concepts OS?

• Process? Threads?

• Physical memory? Virtual Memory?

Today we will learn a new abstraction. Can you guess what it is?

L. Tarrataca Chapter 4 - File Systems 11 / 161

Motivation

In your opinion what are some of the most important concepts OS?

• Process? Threads?

• Physical memory? Virtual Memory?

Today we will learn a new abstraction. Can you guess what it is?

• The file...

L. Tarrataca Chapter 4 - File Systems 12 / 161

Files

Files

First things first:

What is a file? Any ideas?

L. Tarrataca Chapter 4 - File Systems 13 / 161

Files

Files

First things first:

What is a file? Any ideas?

• Files: are logical units of information created by processes:

• Processes / Threads can read existing files and create new ones;

• Information stored in files must be persistent, i.e.:

• not affected by process creation and termination.

L. Tarrataca Chapter 4 - File Systems 14 / 161

Files

Files are managed by the operating system. How they are

• structured...

• named...

• accessed...

• used...

• protected...

• implemented...

• and managed

are major topics in operating system design.

L. Tarrataca Chapter 4 - File Systems 15 / 161

Files

OS part dealing with files is known as the file system:

• The subject of this chapter =)

L. Tarrataca Chapter 4 - File Systems 16 / 161

Files File Naming

File Naming

Exact rules for file naming vary somewhat among OS:

• Current OS allow strings of various lengths as legal file names;

• OS typically support two-part file names: (filename, extension);

L. Tarrataca Chapter 4 - File Systems 17 / 161

Files File Structure

File Structure

Files can be structured in any of several ways (1/3):

Figure: The memory hierarchy (Source:

[Tanenbaum and Bos, 2015])

Files are merely byte sequences:

• Maximum flexibility;

• Unix, Linux, OS X and Windows

use this model;

L. Tarrataca Chapter 4 - File Systems 18 / 161

Files File Structure

File Structure

Files can be structured in any of several ways (2/3):

Figure: Record sequence file structure. (Source:

[Tanenbaum and Bos, 2015])

File is a sequence of fixed-length

records:

• Each record has a certain

number of bytes;

• Read operation returns one

record;

• Write operation overwrites or

appends one record.

L. Tarrataca Chapter 4 - File Systems 19 / 161

Files File Structure

File Structure

Files can be structured in any of several ways (3/3):

Figure: Tree file structure (Source:

[Tanenbaum and Bos, 2015])

File consists of a tree of records:

• Not necessarily all the same

length;

• Each record contains a key field

in a fixed position in the record

• Tree is sorted on the key field:

• Allowing rapid key search;

L. Tarrataca Chapter 4 - File Systems 20 / 161

Files File Types

File Types

OS support several types of files:

• Files: containing user information:

• Containing ASCII characters;

• Or containing binary information:

• Only readable by the computer;

• All programs are binary files;

• Directories: system files for maintaining the structure of the file system;

L. Tarrataca Chapter 4 - File Systems 21 / 161

Files File Access

File Access

When magnetics disks appeared it became possible to:

• Read the bytes or records of a file out of order;

• Or to access records by key rather than by position;

Files whose bytes or records can be read in any order are called

random-access files;

L. Tarrataca Chapter 4 - File Systems 22 / 161

Files File Access

Two methods can be used for specifying where to start reading:

• 1st method: every read gives the position in the file to start reading at;

• 2nd method: seek operations sets current position:

• After a seek, the file can be read sequentially from the now-current position;

• Used in UNIX and Windows;

L. Tarrataca Chapter 4 - File Systems 23 / 161

Files File Attributes

File Attributes

OS keep track of a wide range of information regarding a file:

Can you think of a few attributes that OS maintain regarding a file? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 24 / 161

Files File Attributes

File Attributes

OS keep track of a wide range of information regarding a file:

Figure: Some possible file attributes (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 25 / 161

Files File Operations

File Operations

What are the most common file operations made available by the OS?

Any ideas?

L. Tarrataca Chapter 4 - File Systems 26 / 161

Files File Operations

File Operations

Most common system calls relating to files (1/5):

• Create: file is created with no data;

• Delete: When the file is no longer needed, it has to be deleted to free up

disk space

• Open: Before using a file, a process must open it in order to:

• fetch the attributes and list of disk addresses into main memory for rapid

access on later calls.

L. Tarrataca Chapter 4 - File Systems 27 / 161

Files File Operations

File Operations

Most common system calls relating to files (2/5):

• Close: When all the accesses are finished:

• attributes and disk addresses are no longer needed;

• file should be closed to free up internal table space;

• Read: Data are read from file:

• Bytes come from the current position;

• Caller must specify how many bytes to read and buffer to place data;

L. Tarrataca Chapter 4 - File Systems 28 / 161

Files File Operations

Most common system calls relating to files (3/5):

• Write: Data are written to the file using current position:

• If the current position is the end of the file, the file’s size increases;

• If the current position is in the middle of the file, existing data are overwritten;

L. Tarrataca Chapter 4 - File Systems 29 / 161

Files File Operations

Most common system calls relating to files (4/5):

• Append: restricted form of write. It can add data only to the end of the file;

• Seek: repositions file pointer to a specific place in the file:

• After this call, data can be read from, or written to, that position

L. Tarrataca Chapter 4 - File Systems 30 / 161

Files File Operations

Most common system calls relating to files (5/5):

• Get attributes: read file attributes;

• Set attributes: set some of the attributes;

• Rename: changes the name of an existing file;

L. Tarrataca Chapter 4 - File Systems 31 / 161

Files Example Program Using File-System Calls

Example Program Using File-System Calls

Can you tell what the following program is doing? Any ideas?

L. Tarrataca Chapter 4 - File Systems 32 / 161

Files Example Program Using File-System Calls

L. Tarrataca Chapter 4 - File Systems 33 / 161

Files Example Program Using File-System Calls

Can you tell what the following program is doing? Any ideas?

• Copies one file from its source file to a destination file;

L. Tarrataca Chapter 4 - File Systems 34 / 161

Directories Hierarchical Directory Systems

Hierarchical Directory Systems

First things first:

What is a directory? Any ideas?

L. Tarrataca Chapter 4 - File Systems 35 / 161

Directories Hierarchical Directory Systems

Directories

First things first:

What is a directory? Any ideas?

• File systems normally have directories or folders, which are themselves files:

• Allows the file system to have a hierarchy of files;

• Grouping related files together;

• Tree of directories;

L. Tarrataca Chapter 4 - File Systems 36 / 161

Directories Hierarchical Directory Systems

Figure: A hierarchical directory system. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 37 / 161

Directories Path Names

Path Names

When the file system is organized as a directory tree:

• Some way is needed for specifying file names;

• Usually there are two solutions:

• Absolute Pathname: E.g.: ‘‘/usr/ast/mailbox’’

• Relative Pathname: makes use of the current directory:

• E.g.: current directory is ‘‘/usr/ast’’ which can have file ‘‘mailbox’’

L. Tarrataca Chapter 4 - File Systems 38 / 161

Directories Path Names

Usually, OS also have two special directories:

• Directory . - represents the current directory;

• Directory .. - represents the parent directory;

L. Tarrataca Chapter 4 - File Systems 39 / 161

Directories Directory Operations

Directory Operations

What are the most common directory operations made available by the

OS? Any ideas?

L. Tarrataca Chapter 4 - File Systems 40 / 161

Directories Directory Operations

Directory Operations

What are the most common directory operations made available by the

OS? Any ideas?

Don’t forget that directories are files...

• Therefore the available system calls should be similar;

L. Tarrataca Chapter 4 - File Systems 41 / 161

Directories Directory Operations

Directory Operations

Most common system calls relating to directories (1/3):

• Create: creates an empty directory;

• Delete: removes an empty directory;

• Opendir: to open a directory;

L. Tarrataca Chapter 4 - File Systems 42 / 161

Directories Directory Operations

Directory Operations

Most common system calls relating to directories (2/3):

• Closedir: . When a directory has been read, it should be closed to free up

internal table space.

• Readdir: to list the contents of a directory;

• Rename: to rename an existing directory;

L. Tarrataca Chapter 4 - File Systems 43 / 161

Directories Directory Operations

Directory Operations

Most common system calls relating to directories (3/3):

• Link: creates a link for a file in a given directory;

• Unlink: removes a file present in the directory;

L. Tarrataca Chapter 4 - File Systems 44 / 161

File System Implementation

File System Implementation

Now that we know all the main file system concepts:

How are such concepts implemented in an OS? Any ideas?

• How are files and directories stored?

• How is disk space managed?

• How to make everything work efficiently and reliably?

L. Tarrataca Chapter 4 - File Systems 45 / 161

File System Implementation File System Layout

File systems are stored on disks:

• Most disks can be divided up into one or more partitions:

• with independent file systems on each partition;

• Sector 0 of the disk is called the MBR (Master Boot Record):

• Used to boot the computer;

• End of MBR contains the partition table

L. Tarrataca Chapter 4 - File Systems 46 / 161

File System Implementation File System Layout

Partition Table contains:

• Starting and ending addresses of each partition;

• One of the partitions in the table is marked as active;

• When computer is booted:

• BIOS reads in and executes the MBR program;

• Active partition is located;

• Active partition boot block is read and executed;

• Boot block program loads OS;

L. Tarrataca Chapter 4 - File Systems 47 / 161

File System Implementation File System Layout

Layout of a disk partition varies a lot from file system to file system:

• Usually it goes something like this:

Figure: A possible file-system layout (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 48 / 161

File System Implementation File System Layout

From the previous figure (1/2):

• Superblock: contains all the key parameters about the file system;

• File-system type identification;

• Number of blocks;

• Etc...

• Free space mgmt: information about the file system free blocks;

• E.g.: Bitmap or list of pointers

L. Tarrataca Chapter 4 - File Systems 49 / 161

File System Implementation File System Layout

From the previous figure (2/2):

• I-nodes: array of data structure, one per file, detailing the file;

• Root directory: contains the top of the file-system-tree;

• Files and directories: containing all the real information;

L. Tarrataca Chapter 4 - File Systems 50 / 161

File System Implementation Implementing the files

Implementing the files

How can we implement a file?

L. Tarrataca Chapter 4 - File Systems 51 / 161

File System Implementation Implementing the files

Implementing the files

How can we implement a file?

How is a file represented?

L. Tarrataca Chapter 4 - File Systems 52 / 161

File System Implementation Implementing the files

Implementing the files

How can we implement a file?

How is a file represented?

Using a magnetic disk:

• Tracks;

• Sectors;

• New concept: Block which is a set of sectors;

L. Tarrataca Chapter 4 - File Systems 53 / 161

File System Implementation Implementing the files

Various methods are used in different operating systems:

• Contiguous Allocation

• Linked List Allocation

• Linked-List Allocation Using a Table in Memory

Guess what we will be seeing next? Any ideas? =P

L. Tarrataca Chapter 4 - File Systems 54 / 161

File System Implementation Implementing the files

Contiguous Allocation

Idea: Store each file as a contiguous run of disk blocks:

• E.g.: 50-KB file would be allocated to

• 50 consecutive blocks using a disk with 1-KB blocks:

• 25 consecutive blocks using a disk with 2-KB blocks:

Figure: Contiguous allocation of disk space for seven files (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 55 / 161

File System Implementation Implementing the files

From the previous figure:

• First 40 disk blocks are shown;

• Initially, the disk was empty;

• Then a file A, of length four blocks, was written:

• If file A was 3 1/2 blocks, some space is wasted at the end of the last block;

• After that a three-block file, B, was written;

• In the figure, a total of seven files are shown:

• Each one starting at the block following the end of the previous one.

L. Tarrataca Chapter 4 - File Systems 56 / 161

File System Implementation Implementing the files

In your opinion what are the advantages of contiguous allocation? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 57 / 161

File System Implementation Implementing the files

In your opinion what are the advantages of contiguous allocation? Any

ideas?

Advantage 1: Simple to implement:

• Keeping track of where a file’s blocks are is reduced to:

• remembering disk address of the first block and number of blocks in the file;

L. Tarrataca Chapter 4 - File Systems 58 / 161

File System Implementation Implementing the files

Can you see any other advantage of contiguous allocation? Any ideas?

L. Tarrataca Chapter 4 - File Systems 59 / 161

File System Implementation Implementing the files

Can you see any other advantage of contiguous allocation? Any ideas?

Advantage 2: Read performance:

• Entire file can be read from the disk in a single operation;

• Only one seek is needed for the first block;

• After that, no more seeks or rotational delays are needed:

• data come in at the full bandwidth of the disk;

L. Tarrataca Chapter 4 - File Systems 60 / 161

File System Implementation Implementing the files

In your opinion what are the disadvantages of contiguous allocation?

Any ideas?

L. Tarrataca Chapter 4 - File Systems 61 / 161

File System Implementation Implementing the files

In your opinion what are the disadvantages of contiguous allocation?

Any ideas?

Major disadvantage: over time, disk becomes fragmented

Figure: The state of the disk after files D and F have been removed. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 62 / 161

File System Implementation Implementing the files

From the previous figure:

• Files D and F were removed:

• Respective blocks were then freed;

• Leaving a run of free blocks on the disk;

• Disk would have to be compacted immediately:

• Potentially millions of blocks to compact...

• Disastrous perfomance;

• As a result: disk consists of files and holes;

L. Tarrataca Chapter 4 - File Systems 63 / 161

File System Implementation Implementing the files

Initially: fragmentation is not a problem:

• Each new file can be written at the end of disk:

• following the previous one;

• However, eventually the disk will fill up, then two solutions exist:

• Compact the disk: prohibitively expensive;

• Reuse free space:

• When a new file is created choose a hole big enough;

• Requires maintaining a list of holes;

L. Tarrataca Chapter 4 - File Systems 64 / 161

File System Implementation Implementing the files

Can you see any other disadvantages of contiguous allocation? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 65 / 161

File System Implementation Implementing the files

Can you see any other disadvantages of contiguous allocation? Any

ideas?

Major disadvantage: file size needs to known at time of creation

• This is not always possible to know in advance:

• File size may change with time...

Conclusion: contiguous allocation is problematic...

Can you think of any other type of method for implementing files?

L. Tarrataca Chapter 4 - File Systems 66 / 161

File System Implementation Implementing the files

Linked-List Allocation

Idea: keep each file as a linked list of disk blocks:

Figure: Storing a file as a linked list of disk blocks. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 67 / 161

File System Implementation Implementing the files

From the previous figure:

• First word of each block is used as a pointer to the next one:

• Rest of the block is for data.

• Unlike contiguous allocation:

• Every disk block can be used in this method;

• No space is lost to disk fragmentation:

• This does not mean that fragmentation does not occur!

• Directory entries merely need to store the disk address of the first block:

• Rest can be found starting there.

L. Tarrataca Chapter 4 - File Systems 68 / 161

File System Implementation Implementing the files

Can you see any other disadvantages of Linked-List Allocation? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 69 / 161

File System Implementation Implementing the files

Can you see any other disadvantages of Linked-List Allocation? Any

ideas?

• Contiguous allocation allows for sequentially file reads:

• Very efficient =)

• Linked-list allocation implies random block accesses:

• To get to block n, OS has to:

• Start at the beginning and read n - 1 blocks prior;

• Painfully slow =’(

L. Tarrataca Chapter 4 - File Systems 70 / 161

File System Implementation Implementing the files

Linked-list file implementation is also problematic...

Can you think of any other methods for implementing a file? Any ideas?

L. Tarrataca Chapter 4 - File Systems 71 / 161

File System Implementation Implementing the files

Linked-List Allocation Using a Table in Memory

Disadvantages of the linked-list allocation can be eliminated by:

• Storing the pointer word from each disk block in a table in memory;

L. Tarrataca Chapter 4 - File Systems 72 / 161

File System Implementation Implementing the files

In the previous two figures we have two files:

• File A uses disk blocks 4, 7, 2, 10, and 12;

• File B uses disk blocks 6, 3, 11, and 14;

• Using the table:

• File A: start with block 4 and follow the chain until the end;

• Chain is terminated with a special marker (e.g., -1)

• File B: start with block 6 and follow the chain until the end;

• Chain is terminated with a special marker (e.g., -1)

Such a table in main memory is called a FAT (File Allocation Table);

L. Tarrataca Chapter 4 - File Systems 73 / 161

File System Implementation Implementing the files

Can you see any any advantages with linked-list allocation using a table

in memory? Any ideas?

L. Tarrataca Chapter 4 - File Systems 74 / 161

File System Implementation Implementing the files

Can you see any any advantages with linked-list allocation using a table

in memory? Any ideas?

Random access is much easier, however chain:

• Must still be followed to find a given offset within the file;

Despite this the chain is entirely in memory:

• Can be followed without making any disk references;

L. Tarrataca Chapter 4 - File Systems 75 / 161

File System Implementation Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

L. Tarrataca Chapter 4 - File Systems 76 / 161

File System Implementation Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

• Entire table must be in memory all the time to make it work;

• Example: 1-TB disk and a 1-KB block size:

• Table needs to be 240/210 = 230 entries;

• one for each of the ≈ 1 billion disk blocks

• Each entry needs a minimum of 30 bits:

• In order to properly identify the block;

• Thus the table requires a total of 230 × 30 ≈ 3GB...

• Conclusion: FAT does not scale well to large disks

L. Tarrataca Chapter 4 - File Systems 77 / 161

File System Implementation Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

• When computer is shut down:

• Table must be stored in non-volatile memory;

• This implies disk acesses and writes;

• Table is only used to get the block number:

• Reading / Writing block still requires disk acesses and writes;

L. Tarrataca Chapter 4 - File Systems 78 / 161

File System Implementation Implementing the files

I-Nodes

The previous methods had some problems...

How can we keep track efficiently of which blocks belong to which file?

Any ideas?

L. Tarrataca Chapter 4 - File Systems 79 / 161

File System Implementation Implementing the files

I-Nodes

The previous methods had some problems...

How can we keep track efficiently of which blocks belong to which file?

Any ideas?

Our last method: I-nodes, short for index-node:

• Lists the attributes and disk addresses of the file’s blocks

• Each i-node has a fixed position on the disk;

L. Tarrataca Chapter 4 - File Systems 80 / 161

File System Implementation Implementing the files

I-nodes, short for index-node:

• Lists the attributes and disk addresses of the file’s blocks

• Given i-node, it is then possible to find all the blocks of the file:

Figure: An example i-node. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 81 / 161

File System Implementation Implementing the files

How does this scheme compare against linked files using an in-memory

table? Any ideas?

L. Tarrataca Chapter 4 - File Systems 82 / 161

File System Implementation Implementing the files

How does this scheme compare against linked files using an in-memory

table? Any ideas?

I-node needs be in memory only when the corresponding file is open:

• If each i-node occupies n bytes and k files may be open:

• Array holding the i-nodes for the open files is only kn bytes;

L. Tarrataca Chapter 4 - File Systems 83 / 161

File System Implementation Implementing the files

I-node array is far smaller than space occupied by the file table

approach:

Why do you think this happens? Any ideas?

L. Tarrataca Chapter 4 - File Systems 84 / 161

File System Implementation Implementing the files

I-node array:

• Usually far smaller than the space occupied by the file table approach;

• Reason is simple:

• Table holding all disk blocks is proportional in size to the disk itself;

• If the disk has n blocks, the table needs n entries;

• As disks grow larger, this table grows linearly with them.

• In contrast, i-node scheme requires array size:

• Proportional to the maximum number of files that may be open at once

L. Tarrataca Chapter 4 - File Systems 85 / 161

File System Implementation Implementing the files

Can you see any problem with the i-nodes approach? Any ideas?

L. Tarrataca Chapter 4 - File Systems 86 / 161

File System Implementation Implementing the files

Can you see any problem with the i-nodes approach? Any ideas?

If each i-nodes has room for a fixed number of disk addresses:

what happens when a file grows beyond this limit? Any ideas?

L. Tarrataca Chapter 4 - File Systems 87 / 161

File System Implementation Implementing the files

Can you see any problem with the i-nodes approach? Any ideas?

If each i-nodes has room for a fixed number of disk addresses:

What happens when a file grows beyond this limit? Any ideas?

One solution: reserve the last disk address not for a data block:

• But for the address of a block containing more disk-block addresses;

L. Tarrataca Chapter 4 - File Systems 88 / 161

File System Implementation Implementing the files

What happens when a file grows beyond this limit? Any ideas?

One solution: reserve the last disk address not for a data block:

• but for the address of a block containing more disk-block addresses;

Figure: An example i-node. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 89 / 161

File System Implementation Implementing the files

An even more advanced solution:

1 Two or more such blocks containing disk addresses;

2 Disk blocks pointing to other disk blocks full of addresses;

This is known as indirection blocks.

L. Tarrataca Chapter 4 - File Systems 90 / 161

File System Implementation Implementing the files

Figure: Indirection blocks example (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 91 / 161

File System Implementation Implementing Directories

Implementing Directories

Before a file can be read:

• File must be opened;

• OS uses the path name to locate the directory entry on the disk:

• Directory entry provides information needed to find the disk blocks:

• Depending on the system may be:

• Disk address of the entire file (with contiguous allocation);

• Number of the first block (both linked-list schemes);

• I-Node number;

• Main function of directory system is to:

• Map file name onto the information needed to locate the data.

L. Tarrataca Chapter 4 - File Systems 92 / 161

File System Implementation Implementing Directories

Every file system maintains various file attributes (1/3):

• E.g: file’s owner and creation time;

• These attributes need to be stored somewhere;

• One possibility: store them in the directory entry:

Figure: Simple directory containing fixed-size entries with the disk addresses and attributes in the directory

entry. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 93 / 161

File System Implementation Implementing Directories

Every file system maintains various file attributes (2/3):

Figure: Simple directory containing fixed-size entries with the disk addresses and attributes in the directory

entry. (Source: [Tanenbaum and Bos, 2015])

Directory consists of a list of fixed-size entries, one per file, containing:

• A (fixed-length) file name;

• Attributes:

• Creator, Time, etc.

• File disk blocks

L. Tarrataca Chapter 4 - File Systems 94 / 161

File System Implementation Implementing Directories

Every file system maintains various file attributes (3/3):

• Another possibility: for systems that use i-nodes:

• Store attributes in the i-nodes;

• Each directory entry can be shorter: {File name, I-node number}

Figure: A directory in which each entry just refers to an i-node. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 95 / 161

File System Implementation Implementing Directories

Just for curiosity:

How can we determine the i-node of files and directories in Linux? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 96 / 161

File System Implementation Implementing Directories

Just for curiosity:

How can we determine the i-node of files and directories in Linux? Any

ideas?

• ls -i =)

L. Tarrataca Chapter 4 - File Systems 97 / 161

File System Implementation Implementing Directories

Figure: ‘‘ls -lhi’’ output example

L. Tarrataca Chapter 4 - File Systems 98 / 161

File System Implementation Implementing Directories

But what about the file names lengths impact on the directory structure?

L. Tarrataca Chapter 4 - File Systems 99 / 161

File System Implementation Implementing Directories

But what about the file names lengths impact on the directory structure?

• Simplest approach: limit file-name length to, typically, 255 characters:

• Approach is simple;

• However: wastes a great deal of directory space:

• Each directory entry needs to reserve 255 characters;

• Few files have such long names.

• For efficiency reasons: different structure is desirable.

L. Tarrataca Chapter 4 - File Systems 100 / 161

File System Implementation Implementing Directories

But what about the file names lengths impact on the directory structure?

All modern operating systems support long variable-length file names:

• Idea: Give up the idea that all directory entries are the same size;

L. Tarrataca Chapter 4 - File Systems 101 / 161

File System Implementation Implementing Directories

Idea: Give up the idea that all directory entries are the same size:

Figure: In-line handling of long file names (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 102 / 161

File System Implementation Implementing Directories

From the previous figure:

• Each directory entry contains a fixed portion:

• Starting with the length of the entry;

• Followed by the attributes (fixed-length):

• E.g.: Owner, creation time, protection information, etc...

• Followed by the actual file name:

• However long it may be...

• In this example we have three files:

• project-budget, personnel, and foo.

• Each file name is terminated by a special character:

• Usually 0;

• Represented in the figure by a box with a cross in it ⊠

L. Tarrataca Chapter 4 - File Systems 103 / 161

File System Implementation Implementing Directories

Can you see any problems with the previous approach? Any ideas?

L. Tarrataca Chapter 4 - File Systems 104 / 161

File System Implementation Implementing Directories

Can you see any problems with the previous approach? Any ideas?

When a file is removed:

• a variable-sized gap is introduced into the directory:

• Next file to be entered may not fit

• Problem is essentially the same one we saw with contiguous disk files,

L. Tarrataca Chapter 4 - File Systems 105 / 161

File System Implementation Implementing Directories

Can you see any other problem with the previous approach? Any ideas?

L. Tarrataca Chapter 4 - File Systems 106 / 161

File System Implementation Implementing Directories

Can you see any other problem with the previous approach? Any ideas?

Single directory entry may span multiple pages:

• Page fault may occur while reading a file name;

L. Tarrataca Chapter 4 - File Systems 107 / 161

File System Implementation Implementing Directories

Another way to handle variable-length names (1/2):

• Make directory entries themselves all fixed length;

• Keep the file names together in a heap at the end of the directory:

Figure: Heap handling of long file names (Source: [Tanenbaum and Bos, 2015])L. Tarrataca Chapter 4 - File Systems 108 / 161

File System Implementation Implementing Directories

Can you see any advantage of using the heap method? Any ideas?

L. Tarrataca Chapter 4 - File Systems 109 / 161

File System Implementation Implementing Directories

Can you see any advantage of using the heap method? Any ideas?

When an entry is removed:

• next file entered will always fit there;

Important:

• Heap must be managed;

• Page faults can still occur while processing file names;

L. Tarrataca Chapter 4 - File Systems 110 / 161

File System Implementation Implementing Directories

There is one thing we still have not discussed:

How are directories to be searched? Any ideas?

L. Tarrataca Chapter 4 - File Systems 111 / 161

File System Implementation Implementing Directories

There is one thing we still have not discussed:

How are directories to be searched? Any ideas?

Several possibilities:

• Search linearly from beginning to end for a filename;

• Bad for extremely long directories;

• Search using a hash table in each directory:

• Hashed based on the filename;

• Faster lookup, but more complex administration.

L. Tarrataca Chapter 4 - File Systems 112 / 161

File System Implementation Implementing Directories

Example

Consider the path: /usr/ast/mbox

How does the OS find the i-node information? Any ideas?

L. Tarrataca Chapter 4 - File Systems 113 / 161

File System Implementation Implementing Directories

Example

Consider the path: /usr/ast/mbox

How does the OS find the i-node information? Any ideas?

1 Locate root directory i-node:

• This is always a fixed placed on disk;

• Each directory entry contains: {filename, i-node}

2 I-node is read containing the info for /user/

• Each directory entry contains: {filename, i-node}

3 Next i-node is read containing the info for /user/ast;

• Each directory entry contains: {filename, i-node}

4 Next i-node is read containing the info for /user/ast/mbox

L. Tarrataca Chapter 4 - File Systems 114 / 161

File-system Management and Optimization

File-system Management and Optimization

Making the file system work is one thing:

• Making it work efficiently and robustly in real life is something quite different;

• Guess what we will be seeing next ;)

• Some of the issues involved in managing disks:

• Disk-space management;

• File-system performance;

• Defragmenting disks;

L. Tarrataca Chapter 4 - File Systems 115 / 161

File-system Management and Optimization Disk-space management

Disk-space management

Files are normally stored on disk:

• Disk space management is a major concern to file-system designers.

• Lets have a look at some of the issues influencing file-system design:

• Block Size;

• Keeping Track of Free Blocks;

• Disk quotas

L. Tarrataca Chapter 4 - File Systems 116 / 161

File-system Management and Optimization Disk-space management

Block Size

Two general strategies are possible for storing an n byte file:

• n consecutive bytes of disk space are allocated:

• However, If a file grows, it may have to be moved on the disk;

• Very slow operation...

• File is split up into a number of (not necessarily contiguous) blocks;

• Most file systems chop files up into fixed-size blocks

• Blocks need not to be adjacent;

• File fragmentation may occur;

L. Tarrataca Chapter 4 - File Systems 117 / 161

File-system Management and Optimization Disk-space management

Blocks are an important part of the file system:

• They represent a fixed-length sequence of bytes;

But how can we choose an appropriate block size? Any ideas?

L. Tarrataca Chapter 4 - File Systems 118 / 161

File-system Management and Optimization Disk-space management

Blocks are an important part of the file system:

• They represent a fixed-length sequence of bytes;

But how can we choose an appropriate block size? Any ideas?

• Large block size means:

• small files waste large amounts of disk space;

• Small block size means:

• Most files will span multiple blocks;

• Thus needing multiple seeks and rotation delays to read:

• bad for perfomance;

L. Tarrataca Chapter 4 - File Systems 119 / 161

File-system Management and Optimization Disk-space management

In conclusion:

• If the allocation unit is too large we waste space;

• If the allocation unit is too small we waste time;

Again: But how can we choose an appropriate block size? Any ideas?

Studies have shown that making a good choice requires:

• having some information about the file-size distribution:

L. Tarrataca Chapter 4 - File Systems 120 / 161

File-system Management and Optimization Disk-space management

Studies have shown that making a good choice requires:

• having some information about the file-size distribution:

Figure: Percentage of files smaller than a given size (in bytes) (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 121 / 161

File-system Management and Optimization Disk-space management

From the previous figure:

• For each power-of-two file size:

• Each line lists % of all files ≤ to it for three data sets;

• E.g.: in 2005: ≈ 59% in the 2nd data set were 4KB or smaller

• E.g.: in 2005: ≈ 90% in the 2nd data set were 64KB or smaller

• Median file size was 2475 bytes;

L. Tarrataca Chapter 4 - File Systems 122 / 161

File-system Management and Optimization Disk-space management

What conclusion can we draw from these data? Any ideas?

L. Tarrataca Chapter 4 - File Systems 123 / 161

File-system Management and Optimization Disk-space management

What conclusion can we draw from these data? Any ideas?

• With a 1KB block: ≈ 30%− 50% of all files will fit

• With a 4KB block: ≈ 60%− 70% of all files will fit

L. Tarrataca Chapter 4 - File Systems 124 / 161

File-system Management and Optimization Disk-space management

Example (1/2)

Consider a disk with:

• 1MB per track;

• Rotation time of 8.33 (7200 rpms);

• Average seek time of 5 msec;

• The time in milliseconds to read a block of k bytes is the sum of:

• Seek time;

• Rotational delay;

• Transfer times;

• I.e.: 5 + 4.165 + (k/220)× 8.33

L. Tarrataca Chapter 4 - File Systems 125 / 161

File-system Management and Optimization Disk-space management

Example (2/2)

Data rate for such a disk as function of block size:

Figure: The dashed curve (left-hand scale) give the date rate of a disk. The solid curve (right-hand scale)

gives the disk-space efficiency. All files are 4 KB (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 126 / 161

File-system Management and Optimization Disk-space management

From the previous figure (1/3):

• For simplicity: assume that all files are 4KB

• Solid curve shows the space efficiency as a function of block size;

• Dashed curve shows the data rate as a function of block size;

L. Tarrataca Chapter 4 - File Systems 127 / 161

File-system Management and Optimization Disk-space management

From the previous figure (2/3):

• Dashed curve can be understood as follows:

• Block access time is dominated by the seek time and rotational delay;

• I.e. 5 + 4.165 = 9.165 msec are needed to access a block:

• Therefore, the more data are fetched the better;

• Hence, data rate goes up almost linearly with block size:

• Until the transfers take so long that the transfer time begins to matter;

L. Tarrataca Chapter 4 - File Systems 128 / 161

File-system Management and Optimization Disk-space management

From the previous figure (3/3):

• Solid curve can be understood as follows:

• With 4-KB files:

• Four 1-KB blocks are used;

• Two 2-KB blocks are used;

• One 4-KB blocks are used;

• Half 8-Kb blocks are used (50% efficiency)

• Quarter 16-Kb blocks are used (25% efficiency)

• In reality: some space is always wasted:

• Not all files are an exact multiple of the disk block size;

L. Tarrataca Chapter 4 - File Systems 129 / 161

File-system Management and Optimization Disk-space management

What is the main conclusion you can draw from the previous figure? Any

ideas?

L. Tarrataca Chapter 4 - File Systems 130 / 161

File-system Management and Optimization Disk-space management

What is the main conclusion you can draw from the previous figure? Any

ideas?

Performance and space utilization are inherently in conflict:

• Small blocks are bad for performance, but good for disk utilization;

• For this reason: No reasonable compromise is available!

• Size closest to the two curves is 64 KB but:

• Data rate is only 6.6 MB/sec;

• Space efficiency is about 7%;

• Neither of which is very good;

L. Tarrataca Chapter 4 - File Systems 131 / 161

File-system Management and Optimization Disk-space management

Historically:

• File systems have chosen sizes in the 1-KB to 4-KB range;

• But with disks now exceeding 1 TB:

• Better to increase block size to 64 KB and accept wasted disk space;

• Disk space is hardly in short supply any more;

L. Tarrataca Chapter 4 - File Systems 132 / 161

File-system Management and Optimization Disk-space management

Keeping track of free blocks

Once a block size has been chosen:

How does the OS keep track of free blocks? Any ideas?

L. Tarrataca Chapter 4 - File Systems 133 / 161

File-system Management and Optimization Disk-space management

Keeping track of free blocks

Once a block size has been chosen:

How does the OS keep track of free blocks? Any ideas?

Two methods are widely used:

• Linked-List of disk blocks;

• Bitmap of disk blocks;

L. Tarrataca Chapter 4 - File Systems 134 / 161

File-system Management and Optimization Disk-space management

Lets have a look at the linked-list approach:

Figure: Storing the free list on a linked list. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 135 / 161

File-system Management and Optimization Disk-space management

From the previous figure (1/2):

• Linked list of disk blocks:

• Each block holding as many free disk block numbers as will fit;

• Storage of the list requires three blocks: 16, 17 and 18

• Example: With a 1-KBytes block and a 32-bit disk block number:

• Each list block holds numbers of (210 × 8)/25 = 256 free blocks.

• One of these slots is required for the pointer to the next block:

• As a result: only capable of describing 255 free blocks;

L. Tarrataca Chapter 4 - File Systems 136 / 161

File-system Management and Optimization Disk-space management

From the previous figure (2/2):

• Consider a 1-TB disk:

• Then 240/210 = 230 blocks exist;

• If each block in the list stores the addresses of 255 blocks

• 2
30/(28

− 1) ≈ 4 million blocks will be required for the list;

L. Tarrataca Chapter 4 - File Systems 137 / 161

File-system Management and Optimization Disk-space management

Lets have a look at the bitmap approach:

Figure: Storing the free list on a bitmap. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 138 / 161

File-system Management and Optimization Disk-space management

From the previous figure:

• A disk with n blocks requires a bitmap with n bits:

• Free blocks are represented by 1s in the map;

• Allocated blocks by 0s (or vice versa)

• Consider a 1-TB disk with 1-KB blocks:

• Then 240/210 = 230 bits are required;

• These bits require around 230/(210 ∗ 8) ≈ 130.000 1KB blocks to store;

Why does the value 8 appear in the previous calculation? Any ideas?

L. Tarrataca Chapter 4 - File Systems 139 / 161

File-system Management and Optimization Disk-space management

From the previous figure:

• A disk with n blocks requires a bitmap with n bits:

• Free blocks are represented by 1s in the map;

• Allocated blocks by 0s (or vice versa)

• Consider a 1-TB disk with 1-KB blocks:

• Then 240/210 = 230 bits are required;

• These bits require around 230/(210 ∗ 8) ≈ 130.000 1KB blocks to store;

Why does the value 8 appear in the previous calculation? Any ideas?

• Each block has size 1-KB, i.e.: 1-KByte

• Conclusion: bitmap requires less space than linked-list:

• Uses 1-bit per blocks vs 32-bits...

L. Tarrataca Chapter 4 - File Systems 140 / 161

File-system Management and Optimization Disk-space management

But when is one approach better than the other?

L. Tarrataca Chapter 4 - File Systems 141 / 161

File-system Management and Optimization Disk-space management

But when is one approach better than the other?

• Both approaches require linear search so that is not it....

L. Tarrataca Chapter 4 - File Systems 142 / 161

File-system Management and Optimization Disk-space management

But when is one approach better than the other?

• Both approaches require linear search so that is not it....

• Bitmap approach always requires the same size:

• regardless of how full the disk is...

• Linked-list approach will require less-size as the disk becomes full;

L. Tarrataca Chapter 4 - File Systems 143 / 161

File-system Management and Optimization Disk-space management

Disk Quotas

Multiuser OS often provide a mechanism for enforcing disk quotas:

• Prevents people from monopolising too much space;

• Idea: System administrator assigns each user a maximum space (quota);

• OS makes sure users do not exceed their quota;

How do you think an OS enforces user quotas? Any ideas?

L. Tarrataca Chapter 4 - File Systems 144 / 161

File-system Management and Optimization Disk-space management

How do you think an OS enforces user quotas? Any ideas?

Typical mechanism (1/2):

• When a user opens a file:

• Any increases / decreases in file size will be charged to the owner’s quota;

• OS table contains the quota record for every user with a currently open file:

• Even if the file was opened by someone else

• When a new entry is made in the open-file table:

• Pointer to the owner’s quota record is entered into it

• Making it easy to find various limits;

L. Tarrataca Chapter 4 - File Systems 145 / 161

File-system Management and Optimization Disk-space management

How do you think an OS enforces user quotas? Any ideas?

Typical mechanism (2/2):

• Every time a block is added to a file:

• Total number of blocks charged to the owner is incremented;

• Check is made against both the hard and soft limits:

• Soft limit may be exceeded, but the hard limit may not;

• Appending to a file when the hard block limit has been reached:

• Will result in an error.

L. Tarrataca Chapter 4 - File Systems 146 / 161

File-system Management and Optimization Disk-space management

Figure: Quotas are kept track of on a per-user basis in a quota table. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 147 / 161

File-system Management and Optimization File-system performance

File-system performance

Access to disk is much slower than access to memory:

• Memory access is approximately a million times as fast as disk access.

As a result many file systems have been designed with:

• Various optimizations to improve performance.

• Lets have a look at some:

• Caching;

• Block Read Ahead;

• Reducing disk-arm motion;

L. Tarrataca Chapter 4 - File Systems 148 / 161

File-system Management and Optimization File-system performance

Caching

Technique used to reduce disk accesses: block cache;

• Collection of disk blocks kept in memory for performance reasons;

• Check all read requests to see if block is in cache:

• If block ∈ cache:

• Request can be satisfied without a disk access.

• If block /∈ cache:

• Block is read into cache;

• Then copied to wherever it is needed;

L. Tarrataca Chapter 4 - File Systems 149 / 161

File-system Management and Optimization File-system performance

Typically there are many blocks in the cache:

• Need to quickly determine if a given block is present;

• Use a hash table: hash device and disk address;

• All the blocks with the same hash value are chained together

Figure: The buffer cache data structures. (Source: [Tanenbaum and Bos, 2015])

L. Tarrataca Chapter 4 - File Systems 150 / 161

File-system Management and Optimization File-system performance

When a block has to be loaded into a full cache:

• Some block has to be removed:

• And rewritten to the disk if it has been modified;

• Page-replacement algorithms can be used:

• FIFO, LRU, LFU...

L. Tarrataca Chapter 4 - File Systems 151 / 161

File-system Management and Optimization File-system performance

Block read-ahead

Second technique for improving performance:

• Get blocks into the cache before they are needed to increase the hit rate;

• Many files are read sequentially;

• When the file system (FS) is asked to produce block k in a file:

• FS produces the k block;

• FS also checks if block k + 1 ∈ cache:

• If block /∈ cache FS schedules a read for block k + 1;

• Hoping that when it is needed it will already be in cache;

L. Tarrataca Chapter 4 - File Systems 152 / 161

File-system Management and Optimization File-system performance

Read-ahead strategy works only for files that are read sequentially:

• If a file is being randomly accessed:

• Read ahead does not help!

• In fact: hurts performance:

• Blocks will be read unnecessarily;

• Potentially useful blocks will be removed from cache;

• Modified blocks evicted from cache will have to be written to disk;

• Disk could be reading useful blocks;

L. Tarrataca Chapter 4 - File Systems 153 / 161

File-system Management and Optimization File-system performance

Reducing Disk-Arm motion

Idea: Reduce amount of disk-arm motion:

• By putting blocks that are likely to be accessed in sequence;

• Ideally contiguous, but in close proximity already helps;

• When an output file is written:

• FS has to allocate the blocks one at a time;

• Easy to do using a bitmap;

• Harder to do with a list of free blocks;

• List would need to be sorted;

L. Tarrataca Chapter 4 - File Systems 154 / 161

File-system Management and Optimization File-system performance

Movements are relevant only for magnetic disks:

Do you know any other type of mass storage devices? Any ideas?

L. Tarrataca Chapter 4 - File Systems 155 / 161

File-system Management and Optimization File-system performance

Movements are relevant only for magnetic disks:

Do you know any other type of mass storage devices? Any ideas?

Solid-state disks (SSD):

• No moving parts =);

• These are based on flash technology:

• Random accesses are just as fast as sequential ones;

• Many of the problems of traditional disks go away;

• Unfortunately, new problems emerge =’(

• Each disk block can be written only a limited number of times;

• Great care is taken to spread the wear on the disk evenly.

L. Tarrataca Chapter 4 - File Systems 156 / 161

File-system Management and Optimization Defragmenting Disks

Defragmenting Disks

When the operating system is initially installed:

• Data are installed consecutively at the beginning of the disk;

• All free disk space is in a single contiguous unit following the installed files;

Can you see any problem with this structure as time goes on? Any ideas?

L. Tarrataca Chapter 4 - File Systems 157 / 161

File-system Management and Optimization Defragmenting Disks

Defragmenting Disks

Can you see any problem with this structure as time goes on? Any ideas?

• Files are created and removed:

• Disk becomes full of holes;

• Non-contiguous empty space spread throughout the disk;

• When a new file is created:

• Blocks used for it may be spread all over the disk;

• Giving poor performance.

L. Tarrataca Chapter 4 - File Systems 158 / 161

File-system Management and Optimization Defragmenting Disks

Performance can be restored by:

1 Moving files around to make them contiguous;

2 Putting all free space contiguously;

L. Tarrataca Chapter 4 - File Systems 159 / 161

File-system Management and Optimization Defragmenting Disks

Linux file systems like ext2 and ext3:

• Generally suffer less from defragmentation than Windows:

• Due to the way disk blocks are selected;

• Manual defragmentation is rarely required;

SSDs do not really suffer from fragmentation at all:

• Defragmenting an SSD is counterproductive;

• Not only is there no gain in performance:

• Writing to SSDs wears them out;

• Defragmenting them merely shortens their life.

L. Tarrataca Chapter 4 - File Systems 160 / 161

References

References I

Tanenbaum, A. and Bos, H. (2015).

Modern Operating Systems.

Pearson Education Limited.

L. Tarrataca Chapter 4 - File Systems 161 / 161

	Motivation
	Files
	File Naming
	File Structure
	File Types
	File Access
	File Attributes
	File Operations
	Example Program Using File-System Calls

	Directories
	Hierarchical Directory Systems
	Path Names
	Directory Operations

	File System Implementation
	File System Layout
	Implementing the files
	Implementing the files
	Implementing the files
	Implementing Directories

	File-system Management and Optimization
	Disk-space management
	File-system performance
	Defragmenting Disks

	References

