Chapter 4 - File Systems

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chopterd - Flesystoms  1/16


luis.tarrataca@gmail.com

© Motivation

© Files
File Naming
File Structure
File Types
File Access
File Attributes
File Operations

Example Program Using File-System Callls



© Directories
Hierarchical Directory Systems
Path Names

Directory Operations

3/161



@ File System Implementation
File System Layout
Implementing the files
Implementing the files

Implementing the files
Contiguous Allocation
Linked-List Allocation
Linked-List Allocation Using a Table in Memory
I-Nodes

I-Nodes

Implementing Directories



O File-systemn Management and Optimization
Disk-space management
Block Size
Keeping track of free blocks
Disk Quotas
File-system performance
Caching
Block read-ahead

Reducing Disk-Arm motion

Defragmenting Disks

5/161



0O References

Chapterd - Flesystoms 616



There are three essential requirements for long-term information storage:
© It must be possible to store a very large amount of information.
©® The information must survive the termination of the process using it.

©® Multiple processes must be able to access the information at once.



How do you find information?

How do you keep one user from reading another user’s data?

How do you know which blocks are free?

Chopterd - Flesystoms 816



In your opinion what are some of the most important concepts OS?

Chopterd - Flesystoms 916



In your opinion what are some of the most important concepts OS? '

e Process? Threads?

e Physical memory? Virtual Memory?

Chapterd_Flosysoms  10/161



In your opinion what are some of the most important concepts OS? '

e Process? Threads?

o Physical memory? Virtual Memory?

Today we will learn a new abstraction. Can you guess what it is? '

Chaplerd_Flosysoms 117161



In your opinion what are some of the most important concepts OS? '

e Process? Threads?

o Physical memory? Virtual Memory?

Today we will learn a new abstraction. Can you guess what it is? '

o The file...

Chapterd_Flosysoms  12/161



e

First things first:

What is a file? Any ideas? '

Chapterd_Flosysoms 13161



First things first:

What is a file? Any ideas?

o Files: are logical units of information created by processes:
e Processes / Threads can read existing files and create new ones;
e |nformation stored in files must be persistent, i.e.:

® not affected by process creation and termination.

Chaplerd_Flosysoms 14161



Files are managed by the operating system. How they are

structured...
named...
accessed...
used...
protected...
implemented...

and managed

are major topics in operating system design.

15 /161



OS part dealing with files is known as the file system:

o The subject of this chapter =)



File Naming

Exact rules for file naming vary somewhat among OS:
e Current OS allow strings of various lengths as legal file names;

o OS typically support two-part file names: (filename, extension);

Chapterd_Flesysoms 17161



e

File Structure

Files can be structured in any of several ways (1/3):

1 Byte
re

Files are merely byte sequences:

® Maximum flexibility;

e Unix, Linux, OS X and Windows
use this model;

Figure: The memory hierarchy (Source:
(Tanenbaum and Bos, 2015))

Chaplerd_Flosysoms 18161



e

File Structure

Files can be structured in any of several ways (2/3):

1 Record

|l

File is a sequence of fixed-length
records:

e Each record has a certain
number of bytes;

® Read operation returns one
record;

e Write operation overwrites or
appends one record.

Figure: Record sequence file structure. (Source:
(Tanenbaum and Bos, 2015))

Chapterd_Flosysoms 19161



e

File Structure

Files can be structured in any of several ways (3/3):

[t | Fox || P | File consists of a tree of records:
ﬂ ® Not necessarily all the same
Cat || Cow || Dog || [[Goat || Lion ]| owi || [[rony [ Rat [[worm length;

e Each record contains a key field

[ Hen [ 1bis [[Lams]] in a fixed position in the record
Figure: Tree file structure (Source: e Tree is sorted on the key field:

(Tanenbaum and Bos, 2015, i .
A e Allowing rapid key search;

Chapterd_Flosysoms 20161



- e [

File Types

OS support several types of files:
o Files: containing user information:
o Containing ASCII characters;
e Or containing binary information:
e Only readable by the computer;

e All programs are binary files;

o Directories: system files for maintaining the structure of the file system;

Chapterd_Flosysoms 21161



File Access

When magnetics disks appeared it became possible to:
e Read the bytes or records of a file out of order;
e Or to access records by key rather than by position;

Files whose bytes or records can be read in any order are called
random-access files;

Chaplerd_Flosysoms 22/



Two methods can be used for specifying where to start reading:
o 1¥ method: every read gives the position in the file to start reading at;

o 2" method: seek operations sets current position:
o After a seek, the file can be read sequentially from the now-current position;

e Used in UNIX and Windows;



File Attributes

OS keep track of a wide range of information regarding a file:

Can you think of a few attributes that OS maintain regarding a file? Any

ideas?

Chapterd_Flosysoms 24161



File Attributes

OS keep track of a wide range of information regarding a file:

Attribute

Meaning

Protection

Who can access the file and in what way

Password

Password needed to access the file

Creator

ID of the person who created the file

Owner

Current owner

Read-only flag

0 for read/write; 1 for read only

Hidden flag

0 for normal; 1 for do not display in listings

System flag

0 for normal files; 1 for system file

Archive flag

0 for has been backed up; 1 for needs to be backed up

ASCll/binary flag

0 for ASCII file; 1 for binary file

Random access flag

0 for sequential access only; 1 for random access

Temporary flag

0 for normal; 1 for delete file on process exit

Lock flags

0 for unlocked; nonzero for locked

Record length

Number of bytes in a record

Key position

Offset of the key within each record

Key length

Number of bytes in the key field

Creation time

Date and time the file was created

Time of last access

Date and time the file was last accessed

Time of last change

Date and time the file was last changed

Current size

Number of bytes in the file

Maximum size

Number of bytes the file may grow to

Figure: Some possible file attributes (Source: (Tanenbaum and Bos, 2015))

Chapter 4 - File Systems

25 /161



e Ry 9pocne

File Operations

What are the most common file operations made available by the OS?

Any ideas?

Chapterd_Flosysoms 26161



e Ry 9pocne

File Operations

Most common system calls relating fo files (1/5):
e Create: file is created with no data;

o Delete: When the file is no longer needed, it has to be deleted fo free up
disk space

e Open: Before using a file, a process must open it in order to:

e fetch the attributes and list of disk addresses info main memory for rapid
access on later calls.



e Ry 9pocne

File Operations

Most common system calls relating to files (2/5):
e Close: When all the accesses are finished:
e aftributes and disk addresses are no longer needed;
o file should be closed to free up infernal table space;
e Read: Data are read from file:
e Bytes come from the current position;

o Cadller must specify how many bytes to read and buffer to place data;



EEEEEE———

Most common system calls relating to files (3/5):
o Wirite: Data are written to the file using current position:
e If the current position is the end of the file, the file’s size increases;

e If the current position is in the middle of the file, existing data are overwritten;



EEEEEE———

Most common system calls relating to files (4/5):
e Append: restricted form of write. It can add data only to the end of the file;

o Seek: repositions file pointer o a specific place in the file:

o After this call, data can be read from, or written to, that position



EEEEEE———

Most common system calls relating to files (6/5):
o Get attributes: read file attributes;
o Set attributes: set some of the attributes;

e Rename: changes the name of an existing file;

31/161



Example Program Using File-System Calls

- e ]
Example Program Using File-System Callls

Can you fell what the following program is doing? Any ideas? '

Chaplerd_Flosysoms  32/161



#include <sys/types.h>
#include <fentl.h>

#include <stdlib.h>

#include <unistd.h>

int main(int arge, char *argv{l);
#define BUF _SIZE 4096
#define OUTPUT_MODE 0700

int main(int arge, char *argv{])
{

int in_fd, out_fd, rd_count, wt_count;
char buffer[BUF_SIZE];

if (arge 1= 3) exit(1);

Example Program Using File-System Calls

/= include necessary header files */

/= ANSI prototype */

/= use a buffer size of 4096 bytes =/
/* protection bits for output file */

/* syntax error if arge is not 3 */

/* Qpen the input file and create the output file */

in_fd = open(argv[1], O_RDONLY);
if (in_fd < 0) exit(2);

if (out_fd < 0) exit(3);

/* Copy loop */
while (TRUE) {

rd_count = read(in_fd, buffer, BUF_SIZE); /* read a block of data */
/= if end of file or error, exit loop =/

if (rd_count <= 0) break;

/= open the source file */

/= if it cannot be opened, exit */
out_fd = creat(argv(2], OUTPUT _MODE); /* create the destination file =/
/* if it cannot be created, exit */

wi_count = write(out_fd, buffer, rd_count); /* write data */

if (wt_count <= 0) exit(4);
]

/= Close the files */
close(in_fd);
close(out_fd);
if (rd_count == 0)
exit(0);
else
exit(5);

/% wt_count <= 0 is an error */

/= no error on last read =/

/= error on last read =/

Chapter 4 - File Systems

33 /161



Can you tell what the following program is doing? Any ideas?

o Copies one file from its source file to a destination file;

Chaplerd_Flosysoms 34/



Directories I Di

o ek | v Sy
Hierarchical Directory Systems

First things first:

What is a directory? Any ideas? '

Chaplerd_Flosysoms 35161



Directories ; Di y Sy

Directories

First things first:

What is a directory? Any ideas? '

o File systems normally have directories or folders, which are themselves files:

e Allows the file system to have a hierarchy of files;
e Grouping related files together;

o Tree of directories;

Chaplerd_Flosysoms 36161



User subdirectories

Figure: A hierarchical directory system. (Source: (Tanenbaum and Bos, 2015))

Chaplerd_Flesysoms  37/161



P Nome:

Path Names

When the file system is organized as a directory tree:
e Some way is needed for specifying file names;

o Usually there are two solutions:
o Absolute Pathname: E.g.: **/usr/ast/mailbox’”
o Relative Pathname: makes use of the current directory:

e FE.g.:current directory is **/usr/ast’”* which can have file “*mailbox’’

Chaplerd_Flosysoms 38161



P tames

Usually, OS also have two special directories:
o Directory . - represents the current directory;

o Directory .. - represents the parent directory;

39 /161



Drectay Operatrs

Directory Operations

What are the most commmon directory operations made available by the

OS? Any ideas?

Chaplerd_Flosysoms 40,161



Drectay Operatrs

Directory Operations

What are the most common directory operations made available by the

OS? Any ideas?

Don’t forget that directories are files...

o Therefore the available system calls should be similar;

Chapterd_Flosysoms 41161



Drectay Operatrs

Directory Operations

Most common system calls relating to directories (1/3):
e Create: creates an empty directory;
o Delete: removes an empty directory;

e Opendir: fo open a directory;

Chaplerd_Flosysoms 42,161



Drectay Operatrs

Directory Operations

Most common system calls relating to directories (2/3):

e Closedir: . When a directory has been read, it should be closed to free up
internal table space.

e Readdir: to list the contents of a directory;

e Rename: fo rename an existing directory;

ChaplerdFlosysoms 43161



Drectay Operatrs

Directory Operations

Most common system calls relating to directories (3/3):
o Link: creates a link for a file in a given directory;

o Unlink: removes a file present in the directory;

Chaplerd_Flosysoms 44161



File System Implementation

N 1 e e Al
File System Implementation

Now that we know all the main file system concepts:

How are such concepts implemented in an OS? Any ideas? '

e How are files and directories stored?

e How is disk space managed?

e How to make everything work efficiently and reliably?

Chaplerd_Flosysoms 48 /161



File System Implementation File System Layout

File systems are stored on disks:
e Most disks can be divided up into one or more partitions:
e with independent file systems on each partition;
e Sector 0 of the disk is called the MBR (Master Boot Record):
e Used to boot the computer;

e End of MBR contains the partition table



File System Implementation File System Layout

Partition Table contains:
e Starfing and ending addresses of each partition;
o One of the partitions in the table is marked as active;
o When computer is booted:
e BIOS reads in and executes the MBR program;
e Active partition is located;
o Active partition boot block is read and executed;

e Boot block program loads OS;



File System Implementation File System Layout

Layout of a disk partition varies a lot from file system to file system:

o Usually it goes something like this:

Entire disk
Partition table Disk partition \
[_wer ] | ]
| Boot block | Superblock | Free space mgmt | I-nodes | Root dir | Files and directories

Figure: A possible file-system layout (Source: (Tanenbaum and Bos, 2015))



File System Implementation File System Layout

From the previous figure (1/2):
o Superblock: contains all the key parameters about the file system;
o File-system type identification;
e Number of blocks;
e Etc...
o Free space mgmt: information about the file system free blocks;

e FE.g.: Bitmap or list of pointers



File System Implementation File System Layout

From the previous figure (2/2):
e |-nodes: array of data structure, one per file, detailing the file;
e Root directory: contains the top of the file-system-tree;

» Files and directories: containing all the real information;



GIESECNLTEEETEE  Implementing the files

Implementing the files

How can we implement a file? '

Chapterd_Flosysoms  81/161



File System Implementation Implementing the files

Implementing the files

How can we implement a file? '
How is a file represented? '

Chaplerd_Flosysoms  52/161



GIESECNLTEEETEE  Implementing the files

Implementing the files

How can we implement a file? '
How is a file represented? '

Using a magnetic disk:

o Tracks;
e Sectors;

o New concept: Block which is a set of sectors;

Chaplerd_Flosysoms  53/161



File System Implementation Implementing the files

Various methods are used in different operating systems:
o Contiguous Allocation
o Linked List Allocation

¢ Linked-List Allocation Using a Table in Memory

Guess what we will be seeing next? Any ideas? =P i




File System Implementation Implementing the files

Contiguous Allocation

Idea: Store each file as a contiguous run of disk blocks:
e E.g.: 50-KB file would be allocated to
e 50 consecutive blocks using a disk with 1-KB blocks:

e 25 consecutive blocks using a disk with 2-KB blocks:

File A File C File E File G
(4 blocks) (6 blocks) (12 blocks) (3 blocks)
— A —— (3 al N
(T TTTT T T TTTITI T I T TITITT AT T ITT]..
- I "
File B File D File F
(3 blocks) (5 blocks) (6 blocks)

Figure: Contiguous allocation of disk space for seven files (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETEE  Implementing the files

From the previous figure:

o First 40 disk blocks are shown;

Initially, the disk was empty;

Then afile A, of length four blocks, was written:

o If file A was 3 1/2 blocks, some space is wasted at the end of the last block:

After that a three-block file, B, was written;

In the figure, a total of seven files are shown:

e Each one starting at the block following the end of the previous one.



GIESECNLTEEETEE  Implementing the files

In your opinion what are the advantages of contiguous allocation? Any

ideas?

ChaplerdFlosysoms /161



File System Implementation Implementing the files

In your opinion what are the advantages of contiguous allocation? Any

ideas?

Advantage 1: Simple to implement:

e Keeping track of where a file’s blocks are is reduced to:

e remembering disk address of the first block and number of blocks in the file;



GIESECNLTEEETEE  Implementing the files

Can you see any other advantage of contiguous allocation? Any ideas?

Chaplerd_Flosysoms 59/



GIESECNLTEEETEE  Implementing the files

Can you see any other advantage of contiguous allocation? Any ideas?

Advantage 2: Read performance:
e Entire file can be read from the disk in a single operation;
e Only one seek is needed for the first block;

o After that, no more seeks or rotational delays are needed:

e data come in at the full bandwidth of the disk;



GIESECNLTEEETEE  Implementing the files

In your opinion what are the disadvantages of configuous allocation?

Any ideas?

ChaplerdFlosysoms 61161



File System Implementation Implementing the files

In your opinion what are the disadvantages of contfiguous allocation?

Any ideas?

Major disadvantage: over time, disk becomes fragmented

(File A) (File C) (File E) (File G)
N T [ TT T T T T T 11T P .
- (O S (S —

File B 5 Free blocks

6 Free blocks

Figure: The state of the disk after files D and F have been removed. (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETEE  Implementing the files

From the previous figure:
e Files D and F were removed:
e Respective blocks were then freed;
e Leaving a run of free blocks on the disk;
o Disk would have to be compacted immediately:
e Potentially millions of blocks to compact...
o Disastrous perfomance;

e As a result: disk consists of files and holes;

63 /161



GIESECNLTEEETEE  Implementing the files

Initially: fragmentation is not a problem:
e Each new file can be written at the end of disk:
e following the previous one;
o However, eventually the disk will fill up, then two solutions exist:
e Compact the disk: prohibitively expensive;
® Reuse free space:

® When a new file is created choose a hole big enough;

® Requires maintaining a list of holes;



GIESECNLTEEETEE  Implementing the files

Can you see any other disadvantages of contiguous allocation? Any

ideas?

Chaplerd_Flosysoms 65 /161



File System Implementation Implementing the files

Can you see any other disadvantages of contiguous allocation? Any

ideas?

Major disadvantage: file size needs to known at time of creation
e This is not always possible fo know in advance:

e File size may change with time...

Conclusion: contiguous allocation is problematic...

Can you think of any other type of method for implementing files? i




File System Implementation Implementing the files

Linked-List Allocation

Idea: keep each file as a linked list of disk blocks:

File A

File File File File File
block block block block block
0 1 2 3 4

Physical 4 7 2 10 12
block

File B

File File File File
block block block block
0 1 2 3

Physical 6 3 1 14
block

Figure: Storing a file as a linked list of disk blocks. (Source: (Tanenbaum and Bos, 2015))

ChaplerdFlosysoms  &1/161



GIESECNLTEEETEE  Implementing the files

From the previous figure:
o First word of each block is used as a pointer to the next one:
e Rest of the block is for data.
e Unlike contiguous allocation:
e Every disk block can be used in this method;
e No space is lost to disk fragmentation:
e This does not mean that fragmentation does not occur!
e Directory entries merely need to store the disk address of the first block:

e Rest can be found starting there.



GIESECNLTEEETEE  Implementing the files

Can you see any other disadvantages of Linked-List Allocation? Any

ideas?

Chaplerd_Flosysoms /161



File System Implementation Implementing the files

Can you see any other disadvantages of Linked-List Allocation? Any

ideas?

e Contiguous allocation allows for sequentially file reads:
o Very efficient =)
o Linked-list allocation implies random block accesses:
e To get to block n, OS has to:
e Start at the beginning and read n - 1 blocks prior;

o Painfully slow =’(



GIESECNLTEEETEE  Implementing the files

Linked-list file implementation is also problematic...

Can you think of any other methods for implementing a file? Any ideas?

Chapterd_Flesysoms 717161



File System Implementati Implementing the files

Linked-List Allocation Using a Table in Memory

Disadvantages of the linked-list allocation can be eliminated by:

e Storing the pointer word from each disk block in a table in memory;

<~ File A starts here

<~ File B starts here

Physical
block
0
) 1
File A 2 10
o [ o] 3 7
File File File
block | | block block 4 7
1 2 4 5
Physical 4 7 2 12 6 3
block
File B 7 2
I g B o B o .
File File File
block block block 10 12
0 ! 8 0 14
Physical 6 3 1 14
block 12 A
13
14 -1
15

[~ Unused block

L. Tarrataca Chapter 4 - File Systems

72 /161



GIESECNLTEEETEE  Implementing the files

In the previous two figures we have two files:
e File A uses disk blocks 4,7, 2, 10, and 12;
e File B uses disk blocks 6, 3, 11, and 14;
e Using the table:
e File A: start with block 4 and follow the chain until the end;
® Chain is ferminated with a special marker (e.g., -1)

o File B: start with block 6 and follow the chain until the end;

e Chain is ferminated with a special marker (e.g., -1)

Such a table in main memory is called a FAT (File Allocation Table);



GIESECNLTEEETEE  Implementing the files

Can you see any any advantages with linked-list allocation using a table

in memory? Any ideas?

Chaplerd_Flosysoms 741161



GIESECNLTEEETEE  Implementing the files

Can you see any any advantages with linked-list allocation using a table

in memory? Any ideas?

Random access is much easier, however chain:
o Must still be followed to find a given offset within the file;
Despite this the chain is entirely in memory:

e Can be followed without making any disk references;



GIESECNLTEEETEE  Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

ChaplerdFlosysoms 76161



GIESECNLTEEETEE  Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

o Entire table must be in memory all the time to make it work;
o Example: 1-TB disk and a 1-KB block size:
e Table needs fo be 240 /21° = 230 entries;
® one for each of the & 1 billion disk blocks
e Each entry needs a minimum of 30 bits:
® In order o properly identify the block;
e Thus the table requires a total of 2% x 30 ~ 3GB...

e Conclusion: FAT does not scale well to large disks



File System Implementation Implementing the files

Can you see any any disadvantages with linked-list allocation using a

table in memory? Any ideas?

o When computer is shut down:
o Table must be stored in non-volatile memory;
e This implies disk acesses and writes;

e Table is only used to get the block number:

e Reading / Writing block still requires disk acesses and writes;



GIESECNLTEEETEE  Implementing the files

The previous methods had some problems...

How can we keep track efficiently of which blocks belong to which file?

Any ideas?

ChapterdFlosysoms 79161



GIESECNLTEEETEE  Implementing the files

The previous methods had some problems...

How can we keep track efficiently of which blocks belong to which file?

Any ideas?

Our last method: I-nodes, short for index-node:
o Lists the aftributes and disk addresses of the file’s blocks

e Each i-node has a fixed position on the disk;

Chaplerd_Flosysoms  80/161



GIESECNLTEEETEE  Implementing the files

I-nodes, short for index-node:
o Lists the attributes and disk addresses of the file’s blocks

e Given i-node, it is then possible to find all the blocks of the file:

File Attributes

Address of disk block 0 —

Address of disk block 1 —

Address of disk block 2 —

Address of disk block 3 —

Address of disk block 4 —

Address of disk block 5 Samm—

Address of disk block 6 —_

Address of disk block 7 —

Address of block of pointers

Disk block

containing

additional
disk addresses

Figure: An example i-node. (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETEE  Implementing the files

How does this scheme compare against linked files using an in-memory

table? Any ideas?

Chaplerd_Flosysoms  82/161



File System Implementation Implementing the files

How does this scheme compare against linked files using an in-memory

table? Any ideas?

I-node needs be in memory only when the corresponding file is open:

e If each i-node occupies n bytes and k files may be open:

o Array holding the i-nodes for the open files is only kn bytes;



GIESECNLTEEETEE  Implementing the files

I-node array is far smaller than space occupied by the file table
approach:

Why do you think this happens? Any ideas? '

ChaplerdFlosysoms 84161



GIESECNLTEEETEE  Implementing the files

I-node array:
o Usually far smaller than the space occupied by the file table approach;
e Reason is simple:
e Table holding all disk blocks is proportional in size to the disk itself;

e |f the disk has n blocks, the table needs n entries;

® As disks grow larger, this table grows linearly with them.

e In conftrast, i-node scheme requires array size:

o Proportional to the maximum number of files that may be open at once



GIESECNLTEEETEE  Implementing the files

Can you see any problem with the i-nodes approach? Any ideas?

Chaplerd_Flosysoms 86161



GIESECNLTEEETEE  Implementing the files

Can you see any problem with the i-nodes approach? Any ideas? '

If each i-nodes has room for a fixed number of disk addresses:

what happens when a file grows beyond this limit? Any ideas? '

ChaplerdFlosysoms /161



GIESECNLTEEETEE  Implementing the files

Can you see any problem with the i-nodes approach? Any ideas? '

If each i-nodes has room for a fixed number of disk addresses:

What happens when a file grows beyond this limit? Any ideas? '

One solution: reserve the last disk address not for a data block:

e But for the address of a block containing more disk-block addresses;

Chaplerd_Flosysoms 88161



File System Implementation Implementing the files

What happens when a file grows beyond this limit? Any ideas?

One solution: reserve the last disk address not for a data block:

e but for the address of a block containing more disk-block addresses;

File Attributes

Address of disk block 0

Address of disk block 1

Address of disk block 2

Address of disk block 3

Address of disk block 5

L
e
e
I,

Address of disk block 4 —
el

Address of disk block & —

—

Address of disk block 7

Address of block of peinters

Disk block

containing

additional
disk addresses

Figure: An example i-node. (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETEE  Implementing the files

An even more advanced solution:
© Two or more such blocks containing disk addresses;
@ Disk blocks pointing to other disk blocks full of addresses;

This is known as indirection blocks.



File System Implementation Implementing the files

I-node
Attributes Single
] indirect

2 I7 block
g 37 Double
o indirect
E block
&
a

-L/ o

AN

Addresses of
- data blocks
-
.
i
Triple -
indirect T~ C
4

Figure: Indirection blocks example (Source: (Tanenbaum and Bos, 2015))

L. Tarrataca

Chapter 4 - File Systems

91 /161




File System Implementation Implementing Directories

Implementing Directories

Before a file can be read:
e File must be opened;
o OS uses the path name to locate the directory entry on the disk:
o Directory entry provides information needed to find the disk blocks:
e Depending on the system may be:
e Disk address of the entire file (with contiguous allocation);
e Number of the first block (both linked-list schemes);
® |-Node number;
e Main function of directory system is to:

* Map file name onto the information needed to locate the data.



GIESECNLTEEETENE  Implementing Directories

Every file system maintains various file attributes (1/3):
e E.g:file’s owner and creation time;
e These attributes need to be stored somewhere;

e One possibility: store them in the directory entry:

games i attributes

mail , attributes
news | attributes
work ' attributes

Figure: Simple directory containing fixed-size entries with the disk addresses and attributes in the directory
entry. (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETENE  Implementing Directories

Every file system maintains various file atftributes (2/3):

games i attributes

mail , attributes
news | attributes
work ' attributes

Figure: Simple directory containing fixed-size entries with the disk addresses and attributes in the directory
entry. (Source: (Tanenbaum and Bos, 2015))

Directory consists of a list of fixed-size entries, one per file, containing:
o A (fixed-length) file name;
o Aftributes:
e Creator, Time, etc.

o File disk blocks



GIESECNLTEEETENE  Implementing Directories

Every file system maintains various file attributes (3/3):
o Another possibility: for systems that use i-nodes:
e Store aftributes in the i-nodes;

e Each directory entry can be shorter: {File name, I-node number}

o1 ]
mail | +—

news ] --_______‘_|:|
work |

Data structure
containing the
attributes

Figure: A directory in which each entry just refers to an i-node. (Source: (Tanenbaum and Bos, 2015))



File System Implementation Implementing Directories

Just for curiosity:

How can we determine the i-node of files and directories in Linux? Any

ideas?

Chaplerd_Flosysoms 96161



File System Implementation Implementing Directories

Just for curiosity:

How can we determine the i-node of files and directories in Linux? Any

ideas?

o Is-i=)

Chaplerd_Flosysoms 97161



File System Implementation Implementing Directories

takambp:Chapter 4 Takaf 15 -1lhi

tot=al 45792

30564577 f-rw-r--r--@ 1 Taka staff 8 Chapterd-FileSystems, pdf
SJEEELIAT R-ruwxr-xr-x@ 1 Taka staff 0 A CoreLatexElements, rtf
30346949 Mdrwxr-xr-x 19 Taka staff 8 images

JOEELES2 l-rw-r--r-- Taka staff 0 8 presentation. aux
IO354512 0-rw-r--r-- Taka staff 8 presentation.bbl
SO34TVOFF-rw-r--r-- Taka staff 8 presentation. dvi
30601651 f-rw-r--r-- Taka staff 8 presentation. log
IO34TOTEP-rw-r--r-- Taka staff 0 8 presentation. nav
30601653 f-rw-r--r-- Taka staff 8 presentation.out
SEEE2520R-rw-r--r-- Taka staff 8 presentation, pdf
JO34TOE2 ) -rw-r--r-- Taka staff 8 presentation.ps
JOFS4T0E0-rw-r--r-- Taka staff 8 presentation.snm
SJEEE2ET9 Y- rwxr-xr - Taka staff A presentation. tex
SHEHLIESAN-rw-r--1-- Taka staff 8 presentation. toc
takambp: Chapter 4 Takaf I

=

]

Figure: *'Is -Ihi”* output example

Chapter 4 - File Systems 98 /161



File System Implementation Implementing Directories

But what about the file names lengths impact on the directory structure?

Chapterd_Flosysoms 99161



GIESECNLTEEETENE  Implementing Directories

But what about the file names lengths impact on the directory structure?

o Simplest approach: limit file-name length to, typically, 255 characters:
e Approach is simple;
e However: wastes a great deal of directory space:
e Each directory entry needs to reserve 255 characters;

® Few files have such long names.

o For efficiency reasons: different structure is desirable.



File System Implementation Implementing Directories

But what about the file names lengths impact on the directory structure? D

All modern operating systems support long variable-length file names:

o ldea: Give up the idea that all directory entries are the same size;



GIESECNLTEEETENE  Implementing Directories

Idea: Give up the idea that all directory entries are the same size:

File 1 entry length

File 1 attributes

Entry
for one
file

clo|=
Q|=~| O

®|oT|o|T

t X
File 2 entry length

File 2 attributes

p e r
o n n
! =

File 3 entry length

File 3 attributes

f o [¢] |

Figure: In-ine handling of long file names (Source: (Tanenbaum and Bos, 2015))



GIESECNLTEEETENE  Implementing Directories

From the previous figure:
e Each directory entry contains a fixed portion:
o Starting with the length of the entry;
e Followed by the aftributes (fixed-length):
e E.g.: Owner, creation time, protection information, efc...
e Followed by the actual file name:
e However long it may be...
o |n this example we have three files:
* project-budget, personnel, and foo.
e Each file name is terminated by a special character:
e Usudlly O;

® Represented in the figure by a box with a cross in it X



File System Implementation Implementing Directories

Can you see any problems with the previous approach? Any ideas?

ChaplerdFlesysoms 104161



File System Implementation Implementing Directories

Can you see any problems with the previous approach? Any ideas? i

When a file is removed:

e qa variable-sized gap is infroduced into the directory:

e Next file to be entered may not fit

o Problem is essentially the same one we saw with contiguous disk files,



File System Implementation Implementing Directories

Can you see any other problem with the previous approach? Any ideas?

ChaplerdFlesysoms 106161



File System Implementation Implementing Directories

Can you see any other problem with the previous approach? Any ideas?

Single directory entry may span multiple pages:

e Page fault may occur while reading a file name;



GIESECNLTEEETENE  Implementing Directories

Another way to handle variable-length names (1/2):
° Make directory entries themselves alll fixed length;

o Keep the file names together in a heap at the end of the directory:

- Pointer to file 1's name Entry
for one
File 1 attributes file

Pointer to file 2's name

File 2 attributes

|- Pointer to file 3's name

File 3 attributes

P r o i
e c t -
b u d aq
£ ! X P Heap
e r s <]
n e |
o~ t o o
BJ




File System Implementation Implementing Directories

Can you see any advantage of using the heap method? Any ideas?




File System Implementation Implementing Directories

Can you see any advantage of using the heap method? Any ideas?

When an entry is removed:

e next file entered will always fit there;
Important:

e Heap must be managed;

e Page faults can sfill occur while processing file names;



File System Implementation Implementing Directories

There is one thing we still have not discussed:

How are directories to be searched? Any ideas?




GIESECNLTEEETENE  Implementing Directories

There is one thing we still have not discussed:

How are directories to be searched? Any ideas? i

Several possibilities:

e Search linearly from beginning to end for a filename;
e Bad for extremely long directories;

e Search using a hash table in each directory:
e Hashed based on the filename;

e Faster lookup, but more complex administration.



File System Implementation Implementing Directories

Consider the path: /usr/ast/mbox

How does the OS find the i-node information? Any ideas? '




File System Implementation Implementing Directories

Consider the path: /usr/ast/mbox

How does the OS find the i-node information? Any ideas? i

@ Locate root directory i-node:

o This is always a fixed placed on disk;

e Each directory entry contains: {filename, i-node}
©® |-node is read containing the info for /user/

e Each directory entry contains: {filename, i-node}
©® Next i-node is read containing the info for /user/ast;

e Each directory entry contains: {filename, i-node}

@ Next i-node is read containing the info for /user/ast/mbox



File-system Management and Optimization

File-system Management and Optimization

Making the file system work is one thing:
o Making it work efficiently and robustly in real life is something quite different;
o Guess what we will be seeing next ;)
e Some of the issues involved in managing disks:
e Disk-space management;
® File-system performance;

e Defragmenting disks;



File-system Management and Optimization Disk-space management

Disk-space management

Files are normally stored on disk:
o Disk space management is a major concemn to file-system designers.
e Letfs have a look at some of the issues influencing file-system design:
e Block Size;
e Keeping Track of Free Blocks;

e Disk quotas



File-system Management and Optimization Disk-space management

Block Size

Two general strategies are possible for storing an n byte file:
e n consecutive bytes of disk space are allocated:
e However, If a file grows, it may have to be moved on the disk;
e Very slow operation...
o File is split up info a number of (not necessarily configuous) blocks;
® Most file systems chop files up into fixed-size blocks
e Blocks need not fo be adjacent;

o File fragmentation may occur;



File-system Management and Optfimization  [Jll» /S LI LT

Blocks are an important part of the file system:

o They represent a fixed-length sequence of bytes;

But how can we choose an appropriate block size? Any ideas?




File-system Management and Optfimization  [Jll» /S LI LT

Blocks are an important part of the file system:

o They represent a fixed-length sequence of bytes;

But how can we choose an appropriate block size? Any ideas?

e Large block size means:
e small files waste large amounts of disk space;
e Small block size means:
e Most files will span multiple blocks;
e Thus needing multiple seeks and rotation delays to read:

® bad for perfomance;



File-system Management and Optimization Disk-space management

In conclusion:
o [f the allocation unit is foo large we waste space;

e If the allocation unit is too small we waste time;

Again: But how can we choose an appropriate block size? Any ideas?

Studies have shown that making a good choice requires:

e having some information about the file-size distribution:



File-system Management and Optfimization  [Jll» /S LI LT

Studies have shown that making a good choice requires:

* having some information about the file-size distribution:

(Length | VU 1984 | VU 2005 | Web | | Length | VU 1984 | VU 2005 Web |
1 1.79 138 | 667 | | 16KB 92.53 7892 | 86.79
2 1.88 153 | 767 32 KB g7.21 8587 | 91.65
4 2.01 165 833 64 KB 99.18 90.84 | 94.80
8 2.31 1.80 | 11.30 128 KB 99.84 9373 | 96.93
16 3.32 215 | 11.46 256 KB 99.96 96.12 | 98.48
32 5.13 3.15 | 12.33 512KB | 100.00 97.73 | 98.99
64 8.71 498 | 26.10 1MB | 100.00 9887 | 99.62
128 14.73 8.03 | 28.49 2MB | 100.00 99.44 | 99.80
256 2309 | 1329 | 32.10 4MB | 100.00 9971 | 99.87
~st2 | oas | ove2 3904 | | oMB | 10000 | 995 | soos
1KB 48.05 30.91 | 47.82 16MB | 100.00 9994 | 99.97
2KB 60.87 46.09 | 59.44 32MB | 100.00 99.97 | 99.99
4 KB 75.31 59.13 | 70.64 64MB | 100.00 9999 | 99.99
8KB 84.97 69.96 | 79.69 128MB | 100.00 99.99 | 100.00

Figure: Percentage of files smaller than a given size (in bytes) (Source: (Tanenbaum and Bos, 2015))

L. Tarrataca

Chapter 4 - File Systems

121 / 161




File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure:

e For each power-of-two file size:

o Each line lists % of all files < to it for three data sets;
o E.g.:in 2005: ~ 59% in the 2™ data set were 4KB or smaller
e E.g.:in 2005: = 90% in the 2" data set were 64KB or smaller

o Median file size was 2475 bytes;



File-system Management and Optfimization  [Jll» /S LI LT

What conclusion can we draw from these data? Any ideas?




File-system Management and Optfimization  [Jll» /S LI LT

What conclusion can we draw from these data? Any ideas? '

e With a TKB block: = 30% — 50% of all files will fit

o With a 4KB block: ~ 60% — 70% of all files will fit

ChoplerdFlesysoms 124161



File-system Management and Optimization Disk-space management

Consider a disk with:
e 1MB per frack;
o Rotation time of 8.33 (7200 rpms);
e Average seek time of 5 msec;

e The time in milliseconds to read a block of k bytes is the sum of:
e Seek time;
o Rotational delay:
e Transfer times;

o le:5+4.165+ (k/2%°) x 8.33

ChoplerdFlesysoms 125161



File-system Management and Optimi n Disk-space management

Data rate for such a disk as function of block size:

60 100%
& 80% §
i o
m 40 -
= 60% 3
& 30 8
- 0% o
= 20 2
a w

(]

10 20%

0 0%

1 KB 4KBE 16KB 64KB 256KB 1MB

Figure: The dashed curve (left-hand scale) give the date rate of a disk. The solid curve (right-hand scale)
gives the disk-space efficiency. Al files are 4 KB (Source: (Tanenbaum and Bos, 2015))



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure (1/3):
o For simplicity: assume that all files are 4KB
e Solid curve shows the space efficiency as a function of block size;

o Dashed curve shows the data rate as a function of block size;



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure (2/3):
e Dashed curve can be understood as follows:
e Block access time is dominated by the seek time and rotational delay;
e |le. 5+ 4.165 = 9.165 msec are needed to access a block:
e Therefore, the more data are fetched the better;
e Hence, data rate goes up almost linearly with block size:

e Until the transfers take so long that the transfer fime begins to matter;



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure (3/3):

e Solid curve can be understood as follows:
e With 4-KB files:
® Four 1-KB blocks are used;
® Two 2-KB blocks are used;

® One 4-KB blocks are used;

Half 8-Kb blocks are used (60% efficiency)
® Quarter 16-Kb blocks are used (25% efficiency)
e In redlity: some space is always wasted:

e Not all files are an exact multiple of the disk block size;



File-system Management and Optfimization  [Jll» /S LI LT

What is the main conclusion you can draw from the previous figure? Any

ideas?




File-system Management and Optfimization  [Jll» /S LI LT

What is the main conclusion you can draw from the previous figure? Any
ideas?

Performance and space utilization are inherently in conflict:
e Small blocks are bad for performance, but good for disk utilization;
o For this reason: No reasonable compromise is available!

o Size closest to the two curves is 64 KB but:
e Data rate is only 6.6 MB/sec;
e Space efficiency is about 7%:;

o Neither of which is very good;



File-system Management and Optfimization  [Jll» /S LI LT

Historically:
o File systems have chosen sizes in the 1-KB to 4-KB range;
e But with disks now exceeding 1 TB:
e Better to increase block size to 64 KB and accept wasted disk space;

o Disk space is hardly in short supply any more;



File-system Management and Optfimization  [Jll» /S LI LT

Keeping track of free blocks

Once a block size has been chosen:

How does the OS keep track of free blocks? Any ideas? '

ChoplerdFlesysoms 133161



File-system Management and Optfimization  [Jll» /S LI LT

Keeping track of free blocks

Once a block size has been chosen:

How does the OS keep track of free blocks? Any ideas? '

Two methods are widely used:
o Linked-List of disk blocks;

e Bitmap of disk blocks;

ChaplerdFlesysoms 134161



File-system Management and Optfimization  [Jll» /S LI LT

Lets have a look at the linked-list approach:

Free disk blocks: 16, 17, 18

42 aa 230 /> 86
136 162 234
210 612 897

97 342 422

41 214 140

63 160 223

21 664 223

48 216 160
262 320 126
310 180 142
516 / 482 —/ 141

A 1-KB disk block can hold 256
32-bit disk block numbers

Figure: Storing the free list on a linked list. (Source: (Tanenbaum and Bos, 2015))



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure (1/2):
e Linked list of disk blocks:
e Each block holding as many free disk block numbers as will fit;
e Storage of the list requires three blocks: 16, 17 and 18
o Example: With a 1-KBytes block and a 32-bit disk block number:
e Each list block holds numbers of (2'° x 8) /2% = 256 free blocks.

e One of these slofts is required for the pointer to the next block:

e As aresult: only capable of describing 255 free blocks;



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure (2/2):
e Consider a 1-TB disk:
e Then 2%° /2% = 230 plocks exist;

o |f each block in the list stores the addresses of 255 blocks

e 2°0/(2® — 1) = 4 million blocks will be required for the list:



File-system Management and Optfimization  [Jll» /S LI LT

Lets have a look at the bitmap approach:

1001101101101100
0110110111110111
1010110110110110
0110110110111011
1110111011101111
1101101010001111
0000111011010111
1011101101101111
1100100011101111

0111011101110111
1101111101110111

Figure: Storing the free list on a bitmap. (Source: (Tanenbaum and Bos, 2015))



File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure:
o A disk with n blocks requires a bitmap with n bits:
o Free blocks are represented by 1s in the map;
o Allocated blocks by Os (or vice versa)
o Consider a 1-TB disk with 1-KB blocks:
o Then 2%0/2'% = 2% pits are required;

e These bits require around 2%°/(2'° x 8) a2 130.000 1KB blocks to store;

Why does the value 8 appear in the previous calculation? Any ideas? i




File-system Management and Optfimization  [Jll» /S LI LT

From the previous figure:
o A disk with n blocks requires a bitmap with n bits:
o Free blocks are represented by 1s in the map;
e Allocated blocks by Os (or vice versa)

e Consider a 1-TB disk with 1-KB blocks:

Then 24 /2'% = 2% pits are required:;

These bits require around 2%°/(2'° x 8) a2 130.000 1KB blocks to store;

[ Why does the value 8 appear in the previous calculation? Any ideas? i

Each block has size 1-KB, i.e.: 1-KByte

Conclusion: bitmap requires less space than linked-list:

e Uses 1-bit per blocks vs 32-bits...



File-system Management and Optfimization  [Jll» /S LI LT

But when is one approach better than the other?




File-system Management and Optfimization  [Jll» /S LI LT

But when is one approach better than the other?

e Both approaches require linear search so that is not it....



File-system Management and Optimization Disk-space management

But when is one approach better than the other? i

e Both approaches require linear search so that is not it....

e Bitmap approach always requires the same size:

e regardless of how full the disk is...

o Linked-list approach will require less-size as the disk becomes full;



File-system Management and Optimization Disk-space management

Disk Quotas

Multiuser OS often provide a mechanism for enforcing disk quotas:
® Prevents people from monopolising too much space;

o Idea: System administrator assigns each user a maximum space (quota);

o OS makes sure users do not exceed their quota;

How do you think an OS enforces user quotas? Any ideas? '

ChoplerdFlesysoms 144 161



File-system Management and Optfimization  [Jll» /S LI LT

How do you think an OS enforces user quotas? Any ideas?

Typical mechanism (1/2):
e When a user opens a file:
o Any increases / decreases in file size will be charged to the owner’s quota;
e OS table contains the quota record for every user with a currently open file:
e Even if the file was opened by someone else
o When a new entry is made in the open-file table:
e Pointer to the owner’s quota record is entered into it

e Making it easy to find various limits;



File-system Management and Optimization Disk-space management

How do you think an OS enforces user quotas? Any ideas? '

Typical mechanism (2/2):

e Every time a block is added to a file:
o Total number of blocks charged to the owner is incremented;
o Check is made against both the hard and soft limits:
e Soft limit may be exceeded, but the hard limit may not;
e Appending to a file when the hard block limit has been reached:

e Wil result in an error.



File-system Management and Optimization Disk-space management

Open file table Quota table
Attributes Soft block limit
disk addresses Hard block limit
User=8 Current # of blocks
Quota pointer — # Block warnings left Quota
> record
Soft file limit for user 8
Hard file limit
Current # of files

‘I‘ T # File warnings left

I I

Figure: Quotas are kept frack of on a per-user basis in a quota table. (Source: (Tanenbaum and Bos, 2015))




File-system Management and Optfimization IS EY WL T T T

File-system performance

Access to disk is much slower than access to memory:
o Memory access is approximately a million times as fast as disk access.
As a result many file systems have been designed with:
e Various optimizations to improve performance.
e Lets have a look at some:
e Caching;
e Block Read Ahead;

e Reducing disk-arm motion;



File-system Management and Optimization File-system performance

Caching

Technigue used to reduce disk accesses: block cache;
e Collection of disk blocks kept in memory for performance reasons;
e Check all read requests to see if block is in cache:
e |f block € cache:
® Request can be satisfied without a disk access.
e If block ¢ cache:
® Block is read info cache;

e Then copied to wherever it is needed;



File-system Management and Optimization File-system performance

Typically there are many blocks in the cache:
* Need fo quickly determine if a given block is present;
e Use a hash table: hash device and disk address;

o All the blocks with the same hash value are chained together

Hash table Front (LRU) Rear (MRU)

Figure: The buffer cache data structures. (Source: (Tanenbaum and Bos, 2015))



File-system Management and Optfimization IS EY WL T T T

When a block has to be loaded into a full cache:

e Some block has to be removed:

o And rewritten to the disk if it has been modified;

e Page-replacement algorithms can be used:

e FIFO, LRU, LFU...



File-system Management and Optfimization IS EY WL T T T

Block read-ahead

Second technique for improving performance:
o Get blocks into the cache before they are needed to increase the hit rate;
o Many files are read sequentially;

e When the file system (FS) is asked to produce block k in a file:
o FS produces the k block;
e FS also checks if block k + 1 € cache:
e If block ¢ cache FS schedules a read for block k + 1;

e Hoping that when it is needed it will already be in cache;



File-system Management and Optimization File-system performance

Read-ahead strategy works only for files that are read sequentially:
e [f afile is being randomly accessed:
* Read ahead does not help!
e |n fact: hurts performance:
® Blocks will be read unnecessarily;
e Potentially useful blocks will be removed from cache;
® Modified blocks evicted from cache will have to be written to disk;

® Disk could be reading useful blocks;



File-system Management and Optfimization IS EY WL T T T

Reducing Disk-Arm motion

Idea: Reduce amount of disk-arm motion:
e By putting blocks that are likely to be accessed in sequence;
e |dedlly contiguous, but in close proximity already helps;
o When an output file is written:
e FS has fo dllocate the blocks one at a time;
e Easy to do using a bitmap;
e Harder fo do with a list of free blocks;

e List would need to be sorted;



File-system Management and Optfimization IS EY WL T T T

Movements are relevant only for magnetic disks:

Do you know any other type of mass storage devices? Any ideas?

ChoplerdFlesysoms 165161



File-system Management and Optimization File-system performance

Movements are relevant only for magnetic disks:

Do you know any other type of mass storage devices? Any ideas? i

Solid-state disks (SSD):
e No moving parts =);
o These are based on flash fechnology:
o Random accesses are just as fast as sequential ones;
e Many of the problems of fraditional disks go away;
e Unfortunately, new problems emerge ='(

® Each disk block can be written only a limited number of fimes;

e Great care is taken to spread the wear on the disk evenly.



GIEESEE N LT TN ERe TS Defragmenting Disks

Defragmenting Disks

When the operating system is initially installed:

o Data are installed consecutively at the beginning of the disk;

o All free disk space is in a single contiguous unit following the installed files;

Can you see any problem with this structure as time goes on? Any ideas? '




Defragmenting Disks

Can you see any problem with this structure as time goes on? Any ideas?

e Files are created and removed:
e Disk becomes full of holes;
@ Non-contiguous empty space spread throughout the disk;
e When a new file is created:
e Blocks used for it may be spread all over the disk;

® Giving poor performance.



File-system Management and Optimization Defragmenting Disks

Performance can be restored by:
© Moving files around to make them contiguous;

@ Putting all free space contiguously;



File-system Management and Optimization Defragmenting Disks

Linux file systems like ext2 and ext3:

o Generally suffer less from defragmentation than Windows:
o Due to the way disk blocks are selected;
o Manual defragmentation is rarely required;
SSDs do not really suffer from fragmentation at all:
o Defragmenting an SSD is counterproductive;
e Not only is there no gain in performance:
e Writing to SSDs wears them out;

e Defragmenting them merely shortens their life.



References

References |

@ Tanenbaum, A. and Bos, H. (2015).
Modern Operating Systems.

Pearson Education Limited.



	Motivation
	Files
	File Naming
	File Structure
	File Types
	File Access
	File Attributes
	File Operations
	Example Program Using File-System Calls

	Directories
	Hierarchical Directory Systems
	Path Names
	Directory Operations

	File System Implementation
	File System Layout
	Implementing the files
	Implementing the files
	Implementing the files
	Implementing Directories

	File-system Management and Optimization
	Disk-space management
	File-system performance
	Defragmenting Disks

	References

