Chapter 14 - Processor Structure and Function

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter 14 - Processor Sruchre and Funciion

1/17

luis.tarrataca@gmail.com

Table of Contents |

© Processor Organization

@ Register Organization

User-visible Registers
General-purpose registers
Data registers
Address Registers

Condition Codes

Control and Status Registers

Chapter 14 Processor Sructue andfunction 2/117

Table of Contents |

© Instruction Cycle

@ Pipelining
Instruction Stages
Simplifications
Possible pipeline disruptions
Design issues
Pipeline Performance
Pipeline Hazards

Pipeline Hazards
Resource Hazards

Data Hazards

Chapter 14 Processor Sructue andfunction /117

Table of Contents I

Control Hazards

Chapter 14 Processor Sructue andFunction 4117

Processor Organization

Processor Organization

Remember this?

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction cycle state diagram (Source: (Stallings, 2015))

Chapter 14 Processor Sructue andFunction 8/117

Processor Organization

Requirements placed on the processor:
® Fetch instruction: reads an instruction from memory;

® |nterpret instruction: determines what action fo perform;

Fetch data: if necessary read data from memory or an /O module.

Process data: If necessary perform arithmetic / logical operation on data.

Wirite data: If necessary write data fo memory or an I/O module.

Luis Tarrataca Chapter 14 - Processor Structure and Function 6/117

Processor Organization

To do these things the processor needs fo:

® Store some data temporarily

® Remember the location of the next instruction;
While an instruction is being executed:

® |n other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?

Chapter 14 Processor Sructue andFunction 7117

Processor Organization

To do these things the processor needs fo:

® store some data temporarily

® remember the location of the next instruction;
while an instruction is being executed:

® |n other words, the processor needs a small internal memory.

Guess what this memory is called? Any idea?

® Registers =)

Chapter 14 Processor Sructue andFunction /117

Processor Organization

We also need other components:

Registers (-

ALU

Control |

Control Data Address
bus bus bus

e
System
bus

Figure: CPU with the system BUS (Source: (Stallings, 2015))

Chapter 14 Processor Sructue andfunction 9117

Processor Organization

We will talk about it in Chapter 19, but:;

What do you think the control unit does? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 10,117

Processor Organization

Major components of the processor:

® Arithmetic and Logic Unit (ALU):
® Performs computation or processing of data

¢ Control Unit:
® Moves data and instructions in and out of the processor;
® Also controls the operation of the ALU:;

® Registers:
® Used as internal memory;

® System Bus:

® Acting as a pathway between processor, memory and I/O module(s);

Luis Tarrataca Chapter 14 - Processor Structure and Function 1mn/nz

Processor Organization

A more detailed view:

Arithmetic and logic unit

4—>‘ Status flags

. Registers
4—*{ Shifter >
4—»‘ Complementer

Internal CPU bus

Arithmetic
and
Boolean
logic
Control
unit
Control
paths

Figure: Internal structure of the CPU(Source: (Stallings, 2015))

Luis Tarrataca Chapter 14 - Processor Structure and Function 12/ 117

Processor Organization

Besides the usual elements the previous figure also includes:
® |nternal CPU bus:

® Needed to fransfer data between the various registers and the ALU;

® Logic control paths;

® Needed to specify which operations to perform;

Luis Tarrataca Chapter 14 - Processor Structure and Function 13/117

Register Organization

Register Organization

Registers in the processor perform two roles:
® User-visible registers:
® Used as infernal memory by the assembly language programmer;

® Control and status registers:
® Used to control the operation of the processor;

® Used to check the status of the processor / ALU;

Lets have a look at each one of these =)

Chapter 14 - Processor Sructue andfunclion 14/ 117

Register Organization User-visible Registers

User-visible Registers

May be referenced by the programmer, categorized info:
® General purpose
® Data
® Address

® Condition codes

What do you think each one of these does? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 16117

Register Organization User-visible Registers

General-purpose registers

Can be assigned to a variety of functions by the programmer:
® Memory reference & backup;
® Register reference & backup;
® Data reference & backup;

® These are the ones you use in the laboratory =)

Chapter 14 - Processor Sructue andfunclion 16,117

Register Organization User-visible Registers

Data registers

May be used only to hold data and cannot hold addresses:
® Must be able to hold values of most data types;

® Some machines allow two contiguous registers to be used:

® For holding double-length values.

Chapter 14 - Processor Sructue andfunclion 17117

Register Organization User-visible Registers

Address Registers

Used to hold addresses, e.g.:
® Stack Pointer
® Program Counter
® Index Registers

Must be at least long enough to hold the largest address.

Chapter 14 - Processor Sructue andfunclion 18117

Register Organization User-visible Registers

Condition Codes

Hold condition codes (a.k.a. flags):
® Flags are bits set by processor as the result of operations
® F.g.: an arithmetic operation may produce:
® g positive result;
® a negative result;
® azero result;
® an overflow result.

Condition code bits are collected into one or more control registers:

Chapter 14 - Processor Sructue andfunclion 19117

Register Organization User-visible Registers

In some machines:

® |nterruption results in all user-visible registers being saved;

® These are then restored on return;

® Allows each subroufine to use the user-visible registers independently;
On other machines:

® responsibility of the programmer to:

® Save the contents of user- visible registers prior o a subroutine call;

Luis Tarrataca Chapter 14 - Processor Structure and Function 20/ 117

Register Organization User-visible Registers

Regarding the previous slide:

What are the advantages / disadvantages of using one method instead

of the other? Any ideas?

Guess what is the method used by the P3 simulator? =P '

Chapter 14 - Processor Sructue andfunclion 21117

Register Organization Control and Status Registers

Control and Status Registers

Employed to control the operation of the processor:

® Mostly not visible to the user;

Do you know any registers of this type? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 22/117

Register Organization Control and Status Registers

Control and Status Registers

Do you know any registers of this type? Any ideas? '

® Program counter (PC): Contains instruction address to be fetched;
® Instruction Register (IR): Contains last instruction fetched;
® Memory address register (MAR): Contains memory location address;
® Memory buffer register (MBR): Contains:
® Word of data to be written to memory;

® Word of data read from memory.

Chapter 14 - Processor Sructue andfunclion 23117

Register Organization Control and Status Registers

In general terms:
® Processor updates PC after each instruction fetch;
® A branch or skip instruction will also modify the contents of the PC;
® The fetched instruction is loaded into an IR

® Data are exchanged with memory using the MAR and MBR, e.g.:
® MAR connects directly to the address bus

® MBR connects directly to the data bus

Luis Tarrataca Chapter 14 - Processor Structure and Function 24/ 117

Register Organization Control and Status Registers

The four registers just mentioned are used for:
® Data movement between processor and memory;
® Within the processor, data must be presented to the ALU for processing:
® ALU may have direct access to the MBR and user-visible registers;
® Alternatively:
® There may be additional buffering registers within ALU;
® These registers serve as input and output registers for the ALU;

® These registers exchange data with the MBR and user-visible registers.

Luis Tarrataca Chapter 14 - Processor Structure and Function 25/117

Register Organization Control and Status Registers

Many processors include a program status word (PSW) register:
® Contains condition codes plus other status information
® Common fields or flags include the following:
® Sign: Sign bit of the result of the last arithmetic operation;
® Zero: when the result is O;
® Carry: Set if an operation resulted in a carry/borrow bit;
® Equal: Set if a logical compare result is equality.
® Overflow: Used to indicate arithmetic overflow.

® |nterrupt Enable/Disable: Used to enable or disable interrupts.

Luis Tarrataca Chapter 14 - Processor Structure and Function

26 /117

Instruction Cycle

Instruction Cycle

Lets go back to this:

Indirection Indirection

Multiple
operands

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction cycle state diagram (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 27117

Instruction Cycle

Now that we know more about the inner workings of:
° CPU;
® Registers;

® Bus

What is the information flow during the fetch cycle? '
What is the information flow during the execute cycle? '
What is the information flow during the interruption cycle? '

Chapter 14 - Processor Sructue andfunclion 28117

Instruction Cycle

Lets start with the first question:

What is the information flow during the fetch cycle? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 29117

Instruction Cycle

The flow of data during the instruction fetch cycle:

CPU

Memory

vV

I
TTE

I

IR C:MBRQ.‘_.

Address Data Control
bus bus bus

MBR = Memory buffer register
MAR = Memory address register
IR = Instruction register

PC = Program counter

Figure: Data Flow: FetchCycle(Source: (Stallings, 2015))

Luis Tarrataca Chapter 14 - Processor Structure and Function

30/ 117

Instruction Cycle

The flow of data during the instruction fetch cycle:
@ PC contains the address of the next instruction to be fetched;
@ Address is moved to the MAR and placed on the address bus;
©® Control unit requests a memory read;

@ Result is:
® placed on the data bus;
® copied into the MBR;

® then moved to the IR.

O Meanwnhile, the PC is incremented by 1;

Luis Tarrataca Chapter 14 - Processor Structure and Function

31/17

Instruction Cycle

Once the fetch cycle is over, control unit examines IR:
© to determine if it contains an operand specifier using indirect addressing;

@ If so, an indirect cycle is performed:

CPU

S MAR

Memory

ALY

Control
unit

MBR(I‘_’i

Address Data Control
bus bus bus

Ll
v 19

Figure: Data flow: indirect cycle (Source: (Stallings, 2015))

Luis Tarrataca Chapter 14 - Processor Structure and Function 32/17

Instruction Cycle

The indirect addressing cycle:
® Bits of the MBR containing the address are transferred to the MAR;

® Control unit then requests a memory read:

® to get the desired address of the operand into the MBR.

Luis Tarrataca Chapter 14 - Processor Structure and Function 33/117

Instruction Cycle

What is the information flow during the execute cycle? Any ideas?

Chapter 14 - Processor Sructue andfunclion 34117

Instruction Cycle

The execute cycle takes many forms:
® Depending on the operation to be performed...

® May involve:
® Transferring data among registers
® Read or write from memory or I/O

® And/or the invocation of the ALU.

Chapter 14 - Processor Sruchre and Funciion

35/117

Instruction Cycle

What is the information flow during the interruption cycle? Any ideas?

Chapter 14 - Processor Sructue andfunclion 36/ 117

Instruction Cycle

Then comes the interrupt cycle:

CPU
PC MAR > =p
ﬁ > Memory
Control [
Unit =
I———>MBR I =

Address Data Control
bus bus bus

Figure: DataFlow: InterruptCycle (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 37117

Instruction Cycle

The interruption cycle:
® Contents of the PC must be saved;
® Thus the contents of the PC are
® Transferred to the MBR to be written into memory.

® Special memory location is loaded into the MAR:

® E.g.:stack pointer (SP)

® PC is loaded with the address of the interrupt routine.

Luis Tarrataca Chapter 14 - Processor Structure and Function

38 /117

Instruction Cycle

Now that we have seen how:

® Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

® Always a fun topic =)

Chapter 14 - Processor Sructue andfunclion 39117

Instruction Cycle

Now that we have seen how:

® Processor organization and function relate to the instruction cycle:

Lets have a look at how to improve performance

® Always a fun topic =)

What are some of the techniques to increase processor performance?

Chapter 14 - Processor Sructue andfunclion 40/ 117

Instruction Cycle

Some examples:

® Increase Frequency (Hz). Why?

Chapter 14 - Processor Sructue andfunclion 41/ 117

Instruction Cycle

Some examples:

® Increase Frequency (Hz). Why?

® Faster number of clock ticks per unit of time.

Chapter 14 - Processor Sructue andfunclion 41/ 117

Instruction Cycle

Some examples:

® Increase Frequency (Hz). Why?

® Faster number of clock ticks per unit of time.

® Cache-levels. Why?

Chapter 14 - Processor Sructue andfunclion 41/ 117

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?

® Reduce number of read / writes from high latency memory.

Chapter 14 - Processor Sruchre and Funciion

a4/ 17

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?
® Reduce number of read / writes from high latency memory.

® Multi-core architecture. Why?

Chapter 14 - Processor Sruchre and Funciion

41 /17

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?
® Reduce number of read / writes from high latency memory.
® Multi-core architecture. Why?

® Parallelize instruction set;

Luis Tarrataca Chapter 14 - Processor Structure and Function

41 /17

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?

® Reduce number of read / writes from high latency memory.

Multi-core architecture. Why?

® Parallelize instruction set;

® Physical size of the processor. Why?

Luis Tarrataca Chapter 14 - Processor Structure and Function

41 /17

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?

® Reduce number of read / writes from high latency memory.

Multi-core architecture. Why?
® Parallelize instruction set;
® Physical size of the processor. Why?

@ Electrical signals fravel shorter distances;

Luis Tarrataca Chapter 14 - Processor Structure and Function

41 /17

Instruction Cycle

Some examples:
® Increase Frequency (Hz). Why?
® Faster number of clock ticks per unit of time.
® Cache-levels. Why?

® Reduce number of read / writes from high latency memory.

Multi-core architecture. Why?
® Parallelize instruction set;
® Physical size of the processor. Why?
@ Electrical signals fravel shorter distances;

® Transistor switch time decreases.

Luis Tarrataca Chapter 14 - Processor Structure and Function

41 /17

Instruction Cycle

Instruction Pipelining

Rest of the presentation focus will be on pipeline strategies!
® Another method to improve performance =)

® Relates directly to:
® |nstruction cycle;

® Processor organization / function;

First, what is a pipeline? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 42,117

Pipelining

Similar to an assembly line in a manufacturing plant.
® Product goes through various stages of production;

® Products at various stages can be worked on simultaneously;

Figure: (Source: Wikipedia)

Luis Tarrataca Chapter 14 - Processor Structure and Function 43 /117

Equivalent concept in computation: pipelining
® New inputs are accepted at one end...

® .before previously accepted inputs appear as outputs at the other end.

In practice, what does this mean? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 44117

Instruction Stages

Instruction complete, Return for string
fetcth next instruction or vector data

Figure: Instruction Cycle State Diagram (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 48 /117

Several Pipelining opportunities exist. Any ideas?

® After fetching data from memory for one instruction:

Chapter 14 - Processor Sructue andfunclion 46117

Several Pipelining opportunities exist. Any ideas?

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;

Chapter 14 - Processor Sructue andfunclion 46117

Several Pipelining opportunities exist. Any ideas? '

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;

® After writing data to memory for one instruction:

Chapter 14 - Processor Sructue andfunclion 46117

Several Pipelining opportunities exist. Any ideas? '

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;

® After writing data to memory for one instruction:

® Begin writing memory for another instruction;

Chapter 14 - Processor Sructue andfunclion 46117

Several Pipelining opportunities exist. Any ideas? '

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;
® After writing data to memory for one instruction:

® Begin writing memory for another instruction;

® Affer executing operators from memory for one instruction:

Chapter 14 - Processor Sructue andfunclion 46117

Several Pipelining opportunities exist. Any ideas? '

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;
® After writing data to memory for one instruction:
® Begin writing memory for another instruction;
® Affer executing operators from memory for one instruction:

® Begin executing operators for another instruction

Luis Tarrataca Chapter 14 - Processor Structure and Function 46 / 117

Several Pipelining opportunities exist. Any ideas? '

® After fetching data from memory for one instruction:

® Begin fetching memory data for another instruction;

® After writing data to memory for one instruction:
® Begin writing memory for another instruction;

® Affer executing operators from memory for one instruction:
® Begin executing operators for another instruction

® andso on...

Luis Tarrataca Chapter 14 - Processor Structure and Function 46 / 117

Consider the following instruction stages:
® Fefch instruction (Fl): Read the next instruction info a buffer;

® Decode instruction (DI): Determine the opcode;

Calculate operands (CO): Calculate the address of each operand.

Fetch operands (FO): Fetch each operand from memory;

Execute instruction (El): Perform the indicated operation;

Wirite operand (WO): Store the result in memory.

Luis Tarrataca Chapter 14 - Processor Structure and Function 47 / 117

With this decomposition:
® Various stages will be of nearly equal duration.

® Rest of the slides assume equal duration.

Chapter 14 - Processor Sructue andfunclion 48117

Equal duration assumption allows for the following pipeline:

Time

1 2 3 4 5 6 7 8 9 (10 | 11 [12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI |WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI (CO|FO | EI |WO
Instruction 4 FI | DI |CO | FO | EI WO
Instruction 5 FI | DI | CO | FO | EI | WO
Instruction 6 FI | DI (| CO | FO | EI | WO
Instruction 7 FI | DI (CO | FO | EI |WO
Instruction 8 FI | DI | CO | FO | EI | WO
Instruction 9 FI | DI | CO | FO | EI | WO

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

Luis Tarrataca

Chapter 14 - Processor Structure and Function

49 /117

What is the total number of time units required without the pipeline?

1 2 3 4 5 6 7 8 9 (10 (11 |12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI [WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI |CO|FO | EI |[WO
Instruction 4 FI | DI | CO | FO | EI (WO
Instruction 5 FI | DI [CO | FO | EI (WO
Instruction 6 FI | DI | CO | FO | EI |WO
Instruction 7 FI | DI | CO | FO | EI | WO
Instruction 8 FI | DI | CO | FO | EI | WO
Instruction 9 FI | DI | CO | FO | EI |WO

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 50/ 117

What is the total number of time units required without the pipeline?

1 2 3 4 5 6 7 8 9 (10 (11 |12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI [WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI |CO|FO | EI |[WO
Instruction 4 FI | DI | CO | FO | EI (WO
Instruction 5 FI | DI [CO | FO | EI (WO
Instruction 6 FI | DI | CO | FO | EI |WO
Instruction 7 FI | DI | CO | FO | EI | WO
Instruction 8 FI | DI | CO | FO | EI | WO
Instruction 9 FI | DI | CO | FO | EI |WO

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

® 9 instructions, each with 6 fime units implies 54 time units;

Chapter 14 - Processor Sructue andfunclion 81,117

What is the total number of time units required with the pipeline?

1 2 3 4 5 6 7 8 9 (10 (11 |12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI [WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI |CO|FO | EI |[WO
Instruction 4 FI | DI | CO | FO | EI (WO
Instruction 5 FI | DI [CO | FO | EI (WO
Instruction 6 FI | DI | CO | FO | EI |WO
Instruction 7 FI | DI | CO | FO | EI | WO
Instruction 8 FI | DI | CO | FO | EI | WO
Instruction 9 FI | DI | CO | FO | EI |WO

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 82/117

What is the total number of time units required with the pipeline?

Time

1 (2 (34|56 |7 |89 (1011|1213 14
Instruction1 | FI | DI | CO | FO | EI |WO
Instruction 2 FI | DI | CO | FO | EI | WO
Instruction 3 FI | DI |CO|FO | EI |[WO
Instruction 4 FI | DI (CO | FO | EI | WO
Instruction 5 FI | DI | CO | FO | EI (WO
Instruction 6 FI | DI [CO | FO | EI WO
Instruction 7 FI | DI |CO | FO | EI | WO
Instruction 8 FI | DI | CO| FO | EI | WO
Instruction 9 FI | DI | CO | FO | EI (WO

Figure: Timing Diagram for a 6-stage instruction Pipeline Operation (Source: (Stallings, 2015))

® 14 time units;

Chapter 14 - Processor Sructue andfunclion 83117

What was the total number of time units required before the pipeline? '

® 9 instructions, each with 6 time units implies 54 time units;

What is the total number of time units required after the pipeline? '

* 9™ instruction will start executing at time unit 9 and will last 6 time units;

® Totaltime:9+6—1=14

® Performance ratio: 54/14 = 3.85 faster

Chapter 14 - Processor Sructue andfunclion 84117

Previous example yielded a 3.85 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas?

Chapter 14 - Processor Sructue andfunclion 85 /117

Previous example yielded a 3.85 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas? '

[] No“. ='(

Why do you think these speedup are not always obtainable? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 86117

Previous example yielded a 3.85 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas? '

[] No“. ='(

Why do you think these speedup are not always obtainable? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 87117

Previous example yielded a 3.85 performance speedup:

Do we always obtain such a meaningful speedup? Any ideas? '

[} No“. =l(

Why do you think these speedup are not always obtainable? Any ideas? '

Can you see any simplifications that might have been performed? Any

ideas?

Chapter 14 - Processor Sructue andfunclion 88117

Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):

® Each stage lasts an equal amount of time:

Chapter 14 - Processor Sructue andfunclion 89117

Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):
® Each stage lasts an equal amount of time:

¢ Simplification: not so in practice;

Chapter 14 - Processor Sructue andfunclion 89117

Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):
® Each stage lasts an equal amount of time:
¢ Simplification: not so in practice;

® Each operation always goes through the six stages:

Chapter 14 - Processor Sruchre and Funciion

59 /117

Pipelining Simplifications

Simplifications

Pipeline example assumed several things (1/3):
® Each stage lasts an equal amount of time:
¢ Simplification: not so in practice;
® Each operation always goes through the six stages:

¢ Simplification: not so in practice;

Chapter 14 - Processor Sructue andfunclion 89117

Pipeline example assumed several things (2/3):

® No memory-bus conflicts. What does this mean?

Chapter 14 - Processor Sructue andfunclion 60117

Pipeline example assumed several things (2/3):

® No memory-bus conflicts. What does this mean?

® Fl, FO and WO stage involve a memory access;

Chapter 14 - Processor Sructue andfunclion 60117

Pipeline example assumed several things (2/3):

® No memory-bus conflicts. What does this mean?
® Fl, FO and WO stage involve a memory access;

® Diagram implies that all these accesses can occur simultaneously;

Luis Tarrataca Chapter 14 - Processor Structure and Function

60/ 117

Pipeline example assumed several things (2/3):
® No memory-bus conflicts. What does this mean?
® Fl, FO and WO stage involve a memory access;
® Diagram implies that all these accesses can occur simultaneously:

® Most memory systems will not permit that.

Luis Tarrataca Chapter 14 - Processor Structure and Function

60/ 117

Pipeline example assumed several things (2/3):
® No memory-bus conflicts. What does this mean?
® Fl, FO and WO stage involve a memory access;
® Diagram implies that all these accesses can occur simultaneously:
® Most memory systems will not permit that.

® However it may still be possible to do. How?

Luis Tarrataca Chapter 14 - Processor Structure and Function

60/ 117

Pipeline example assumed several things (2/3):
® No memory-bus conflicts. What does this mean?
® Fl, FO and WO stage involve a memory access;
® Diagram implies that all these accesses can occur simultaneously:
® Most memory systems will not permit that.
® However it may still be possible to do. How?

® Desired value may be in cache;

Luis Tarrataca Chapter 14 - Processor Structure and Function

60/ 117

Pipeline example assumed several things (2/3):
® No memory-bus conflicts. What does this mean?
® Fl, FO and WO stage involve a memory access;
® Diagram implies that all these accesses can occur simultaneously:
® Most memory systems will not permit that.
® However it may still be possible to do. How?
® Desired value may be in cache;

® FO and WO stages may not be performed (NULL values).

Luis Tarrataca Chapter 14 - Processor Structure and Function 60/ 117

Pipeline example assumed several things (3/3):

® No memory-data conflicts. What does this mean?

Chapter 14 - Processor Sructue andfunclion 61117

Pipeline example assumed several things (3/3):

® No memory-data conflicts. What does this mean?

® Several instructions can act on the same region of memory;

Chapter 14 - Processor Sruchre and Funciion

61/117

Pipeline example assumed several things (3/3):

® No memory-data conflicts. What does this mean?
® Severadl instructions can act on the same region of memory;

® Up to the compiler and OS to detect and avoid these cases.

Luis Tarrataca Chapter 14 - Processor Structure and Function

61/117

Pipeline example assumed several things (3/3):
® No memory-data conflicts. What does this mean?
® Several instructions can act on the same region of memory;

® Up to the compiler and OS to detect and avoid these cases.

® Most of the time memory conflicts will not slow down the pipeline:

Luis Tarrataca Chapter 14 - Processor Structure and Function

61/117

Pipeline example assumed several things (3/3):
® No memory-data conflicts. What does this mean?
® Severadl instructions can act on the same region of memory;
® Up to the compiler and OS to detect and avoid these cases.
® Most of the time memory conflicts will not slow down the pipeline:

® Strategy exists to mitigate this type of conflicts...

Luis Tarrataca Chapter 14 - Processor Structure and Function 61/ 117

Pipelining Possible pipeline disruptions

Possible pipeline disruptions

Lets have a look at events that may disrupt the pipeline:

Can you see any type of events that can disrupt the pipeline?

Any ideas?

Chapter 14 - Processor Sructue andfunclion 62/117

What happens if we have a conditional instruction and jump to another

instruction?

Chapter 14 - Processor Sructue andfunclion 63117

What happens if we have a conditional instruction and jump to another

instruction?

® Conditional branch instruction can invalidate several instruction fetches!

Chapter 14 - Processor Sructue andfunclion 64117

® Conditional branch instruction can invalidate several instruction fetches!

Time Branch penalty

1 2 3 4 5 6 7 8 9 (10 |11 |12 | 13 | 14
Instruction1 | FI | DI | CO | FO | EI | WO
Instruction 2 FI | DI | CO| FO | EI | WO
Instruction 3 FI | DI | CO| FO | EI | WO
Instruction 4 FI | DI | CO | FO
Instruction 5 FI | DI | CO
Instruction 6 FI | DI
Instruction 7 FI
Instruction 15 FI | DI | CO | FO | EI | WO
Instruction 16 FI | DI | CO| FO | EI (WO

Figure: Effect of a Conditional Branch on Instruction Pipeline Operation. Instruction 3 is a conditional branc
to instruction 15 (Source: (Stallings, 2015))

Luis Tarrataca Chapter 14 - Processor Structure and Function 65/ 117

® There is no way for the pipeline to determine the conditional branch:
® Pipeline continues to load the next instructions as if no branching will occur;
® If no jump happens then we get the full benefit of the pipeline;

® Otherwise, we need to reload the pipeline with the subsequent instructions.

Luis Tarrataca Chapter 14 - Processor Structure and Function 66 /117

Can you think of any other mechanism that can disrupt the pipeline?

Chapter 14 - Processor Sructue andfunclion 67/117

Can you think of any other mechanism that can disrupt the pipeline?

® The need to process hardware interruptions.

Chapter 14 - Processor Sructue andfunclion 68117

Possible pipeline disruptions

Figure: Six-Stage CPU Instruction Pipeline (Source: (Stallings, 2015))

Chapter 14 - Processor Sructue andfunclion 69117

Pipelining Design issues

Design Issues

Instruction pipelining is a powerful technique for enhancing performance
® Requires careful design for optimum results with reasonable complexity.
® Elements to consider:
® Overhead of guaranteeing that the pipeline functions properly:
® Moving data from buffer to buffer;
® Preparing the system to fransition to the next stage(s):

® Control logic required increases enormously with the number of stages;

Chapter 14 - Processor Sructue andfunclion 70/ 117

Pipelining Pipeline Performance

Pipeline Performance

Lets consider other issues:

How much time is required to move a set of instructions one stage through

the pipeline? Any ideas?

Chapter 14 - Processor Sructue andfunclion 71117

Pipelining Pipeline Performance

Pipeline Performance

Cycle time 7 of an instruction pipeline is the tfime needed to:

® Advance a set of instructions one stage through the pipeline:

T=max[r]+d=7m+d, 1<i<k
where:

® 7, = fime delay of the circuitry in the i stage of the pipeline
® 7., = maximum stage delay;
® k =number of stages in the instruction pipeline;

® d = delay needed to advance signals/data from one stage to the next.

Chapter 14 - Processor Sructue andfunclion 72,117

Pipelining Pipeline Performance

Pipeline Performance

Now that we know what the cycle time 7 is:

How much time is required to execute n instructions in a pipeline with k

stages? Any ideas?

Chapter 14 - Processor Sructue andfunclion 73117

Pipelining Pipeline Performance

Let Ty, be:

® Time required for a pipeline with k stages to execute n instructions

Tkn=[k+(n=1)]r

Explanation:
® k cycles stages to complete the execution of the first instruction;
® Remaining n — 1 instructions require n — 1 cycle stages.

® All these cycle stage take fime 7

Luis Tarrataca Chapter 14 - Processor Structure and Function 74 /117

Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a

pipeline? Any ideas?

Chapter 14 - Processor Sructue andfunclion 76 /117

Pipelining Pipeline Performance

Now that we know how much time is required for a pipeline:

How does a system with several stages compares with one without a
pipeline? Any ideas?

What is the instruction cycle time for a non-pipeline processor? Any
ideas?

Chapter 14 - Processor Sructue andfunclion 76117

Pipelining Pipeline Performance

What is the instruction cycle time for a non-pipeline processor? '

Assume for the non-pipelined processor the following:

® |nstruction cycle time is k X 7:

® Each instruction contains k stages of 7 time;
¢ Let T,, be the time without pipeline:

® For ninstructions the total time is n X k X 7

® Tup = NkT

Chapter 14 - Processor Sructue andfunclion 77117

Comparison of Ty, and Ty p:

12

]
2
&

® Tun=I[k+(n=1)]T §
&

® Tup = NkT

¢ Speedup 0 T T T T ‘ T

g — Im _ __nk 1 2 4 8 16 k) 64 128
k — Tk,n - k+(n—'|) Number of instructions (log scale)

Figure: Number of instructions (log scale). (Source:
(Stallings, 2015))

What are the main conclusions that you can draw from this comparison?

Chapter 14 - Processor Sructue andfunclion 78117

Pipelining Pipeline Performance

What are the main conclusions that you can draw from this comparison?

® Increase number of pipeline stages: increase speedup potential
® When n — oo we have a k-fold speedup;
® However:

® Speedup increases costs;

® Delays between stages increases;

® Stages to flush also increase in case of a disruption;

Chapter 14 - Processor Sructue andfunclion 79117

Pipelining Pipeline Hazards

Pipeline Hazards

Besides disruption pipelines are also susceptible to hazards:

What are pipeline hazards? Any ideas? '

® Hazard in portuguese should be similar to perigo;

Chapter 14 - Processor Sructue andfunclion 80/ 117

Pipelining Pipeline Hazards

Pipeline Hazards

What are pipeline hazards? '

® Hazards do not permit continued pipeline execution;
® There are three types of hazards:

® Resource;

® Data;

® Control.

Chapter 14 - Processor Sructue andfunclion 81117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

® Resource Hazards:

What are resource hazards? Any ideas '

Chapter 14 - Processor Sructue andfunclion 82,117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

® Resource Hazards:

What are resource hazards? Any ideas '

® When two (or more) instructions in the pipeline need the same resource;

Chapter 14 - Processor Sructue andfunclion 82,117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (1/3)

® Resource Hazards:

What are resource hazards? Any ideas '

® When two (or more) instructions in the pipeline need the same resource;

® Resource examples: bus, memory, cache, etc...

Chapter 14 - Processor Sructue andfunclion 82,117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

® Data Hazards:

What are data hazards? Any ideas '

Chapter 14 - Processor Sructue andfunclion 83117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (2/3)

® Data Hazards:

What are data hazards? Any ideas '

® When there is a conflict in the access of an operand location;

Chapter 14 - Processor Sructue andfunclion 83117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

® Control Hazards:

What are control hazards? Any ideas '

Chapter 14 - Processor Sructue andfunclion 84117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

® Control Hazards:

What are control hazards? Any ideas '

® When a wrong decision is made on a branch prediction;

Chapter 14 - Processor Sructue andfunclion 84117

Pipelining Pipeline Hazards

Pipeline Hazards

Occur when conditions do not permit continued pipeline execution (3/3)

® Control Hazards:

What are control hazards? Any ideas '

® When a wrong decision is made on a branch prediction;

® |nstructions must be discarded.

Chapter 14 - Processor Sructue andfunclion 84117

Pipelining Pipeline Hazards

Pipeline Hazards Main Points

Occur when conditions do not permit continued pipeline execution, e.g.:

® Resource Hazards:
® When two (or more) instructions in the pipeline need the same resource;
® Resource examples: bus, memory, cache, efc...

® Data Hazards:
® When there is a conflict in the access of an operand location;

® Control Hazards:
® When a wrong decision is made on a branch prediction;
® |nstructions must be discarded.

Lets have a look at how to solve (or minimize) each one of the previous
hazards

Chapter 14 - Processor Sructue andfunclion 85 /117

Pipelining Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:

What can be done to solve this issue? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 86117

Pipeline Hazards

Resource Hazards

When two (or more) instructions in the pipeline need the same resource:
® |nstructions must be executed in serial for a portion of the pipeline.

® Example: IFs, FOs and WOs must be performed one at a time.

Clock cycle
1 2 3 4 5 6 7 8 9

Il | FI | DI | FO | EI (WO

=
§ 2 FI | DI | FO | EI | WO
N Idle | FI | DI | FO | EI WO
4 FI | DI | FO | EI |WO

Figure: Example of Resource Hazard. (Source: (Stallings, 2015))

® We need to idle the instruction causing the hazard.

Chapter 14 - Processor Sructue andfunclion 87117

Pipelining Pipeline Hazards

Data Hazards

Occurs when there is a conflict in the access of an operand location:
® Two sequential instructions access the same memory / register:
® No pipeline — no problem:
® If the two instructions are executed in strict sequence, no problem occurs.
® Pipeline — maybe a problem:
® Depending on the way the operand is updated;

® |ets have a look at this update problem;

Chapter 14 - Processor Sructue andfunclion 88117

Pipeline Hazards

Data Hazards

Clock cycle
1 2 3 4 5 6 7 8 9 10

ADD EAX,EBX | §I | DI | FO | EI (WO
ADD EAX, EBX /* EAX = EAX + EBX
SUB ECX,EAX FI | DI | Idle |FO|EI |WO
SUB ECX, EAX /* ECX = ECX — EAX
3 FI DI | FO | EI |WO
Figure: Example of data hazard. (Source: 14 FI | DI | FO | EI | WO

(Stallings, 2015))
Figure: The corresponding pipeline for the data

hazard. (Source: (Stallings, 2015))

® ADD instruction does not update register EAX until the end of stage 5;

® SUB instruction needs that value at FO (stage 3, clock cycle 4);

What can be done to solve this problem? Any ideas?

Chapter 14 - Processor Sructue andfunclion 89117

Pipeline Hazards

Data Hazards

Clock cycle
1 2 3 4 5 6 7 8 9 10
ADD EAX,EBX | gr
ADD EAX, EBX /* EAX = EAX + EBX PLIFO) EX WO
SUB ECX,EAX FI | DI Idle FO | EI (WO
SUB ECX, EAX /* ECX = ECX — EAX
3 FI DI | FO | EI | WO
Figure: Example of data hazard. (Source: %] FI | DI | FO | EI | WO

(Stallings, 2015))
Figure: The corresponding pipeline for the data

hazard. (Source: (Stallings, 2015))

® ADD instruction does not update register EAX until the end of stage 5;
® SUB instruction needs that value at FO (stage 3, clock cycle 4);

® Solution: Pipeline must idle for two clocks cycles.

Chapter 14 - Processor Sructue andfunclion 90/ 117

PoeineHoerc

Now that we know more about data hazards:

Are all data hazards equal? Any ideas?

Chapter 14 - Processor Sructue andfunclion 91117

PoeineHozars

Now that we know more about data hazards:

Are all data hazards equal? Any ideas? '

There are three types of data hazards:

® Read after write (RAW)
® Wirite after read (WAR)
® Write after write (WAW)

What do you think each one of these means? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 52,117

Pipelining Pipeline Hazards

Read after write (RAW)
@ Instruction modifies a register or memory location
@ Succeeding instruction reads the data in that memory or register location.

©® Hazard occurs if:

® Data read takes place before the write operation is complete.

Luis Tarrataca Chapter 14 - Processor Structure and Function 93/ 117

Pipelining Pipeline Hazards

Write after read (WAR)
@ Instruction reads a register or memory location;
@ Succeeding instruction writes to the location;

©® Hazard occurs if:

® Write operation completes before the read operation is complete;

Luis Tarrataca Chapter 14 - Processor Structure and Function 94 /117

Pipelining Pipeline Hazards

Write after write (WAW)
© Two instructions both write to the same location;

@ Hazard occurs if:

® Write operations take place in the reverse order of the intended sequence.

Chapter 14 - Processor Sructue andfunclion 98 /117

Pipelining Pipeline Hazards

Control Hazards

Control hazards, a.k.a. a branch hazard, occur when:
® Pipeline makes wrong decision on a branch prediction:
® |nstructions must be discarded...

® Wasted work...

So what can we do to mitigate control hazards? Any ideas? '

Chapter 14 - Processor Sructue andfunclion 96117

PoeineHozars

So what can we do to mitigate control hazards? Any ideas? '

Myriad of strategies exist e.g.:

Multiple streams;

® Prefetch branch target;

Loop buffer;
® Branch prediction;
® Delayed branch;

Lets have a look at these =)

Chapter 14 - Processor Sructue andfunclion 57117

Pipelining Pipeline Hazards

Multiple streams

® Makes use of multiple pipelines:
® One pipeline loads the jump sequence;
® Another pipeline loads the non-jump sequence;
® Brute-force approach:
® Additional branch instructions may enter each pipeline;
® Search space grows exponentially quick =(

® Despite these drawbacks: can sfill improve performance.

Chapter 14 - Processor Sructue andfunclion 98/ 117

Pipelining Pipeline Hazards

Prefetch Branch Target

® When a conditional branch is recognized:
® Target is prefetched, in addition fo the instruction following the branch.
® If the branch is taken: target has already been prefetched;

® Otherwise: instruction following the branch was also fetched.

Chapter 14 - Processor Sructue andfunclion 99117

Pipelining Pipeline Hazards

Loop Buffer

As always in hardware: when performance is an issue use a cache ;)

® High-speed memory maintained by the IF stage of the pipeline

® Containing the n most recently fetched instructions;

If a branch is o be taken:
® Pipeline hardware checks if target is in cache;
® If so: next instruction is fetched from the buffer;

® No need to fetch instruction from main memory;

Well suited to dealing with loops, or iterations. Why?:

® Temporal and spatial locdlity is ideally suited for cache systems.

Chapter 14 - Processor Structure and Function 100 /

Pipelining Pipeline Hazards

Branch Prediction

Several possible techniques (1/3):

® Predict never taken - assume that the branch will not be taken and
continue to fetch instructions in sequence.

® p(working) < 50% (Source: (Lija, 1988))

® Predict always taken - assume that the branch will be taken and always
fetch from the branch target.

® p(working) > 50% (Source: (Lija, 1988))

Chapter 14 - Processor Structure and Function 101/

Pipelining Pipeline Hazards

Several possible techniques (2/3):

® Predict by opcode - Some opcodes are more likely than others to lead to
branch targets.

® Processor assumes that:
® Branch will be taken for certain opcodes;
® Branch will not be taken for other opcodes;

* p(working) > 75% (Source: (Lija, 1988))

Chapter 14 - Processor Structure and Function 102/

Luis Tarrataca 17

Pipelining Pipeline Hazards

Several possible techniques (3/3):
® Branch Taken / not taken switch
® |dea: use a single bit to reflect that last thing that happened (JMP or —~JMP);
® Very limiting...
® Branch history table.
® |dea: counters for each branching instruction:

® Real fime decision based on history;

® |f > 50% time branch jumps then load branch targets;

® Otherwise continue sequentially.

Chapter 14 - Processor Structure and Function 103 /

Luis Tarrataca 17

Overclocking

Overclocking

Lets discuss an additional performance technique:
® Always a fun topic =)

In reality we are going fo discuss two topics:
® Overclocking;

® Reasons why CPU frequency ceased to grow.

Chapter 14 - Processor Structure and Function 104 /

Overclocking

® Lets look again at the instruction pipeline

Instruction 1
Instruction 2
Instruction 3

Instruction 4

® This figure is a little bit deceptive, a better representation is:

 Tick , Tick , Tick , Tick

Chapter 14 - Processor Structure and Function
Luis Tarrataca 17

.
»

105 /

Overclocking

® Some stages of the pipeline execute faster than the clock speed;
® Limited by the stage that lasts the longest time, i.e.: 7.
® There is also a safety margin in terms of clock speed and the longest stage:
® To deal with operating conditions outside of a manufacturer’s control:
® Ambient temperature;
® Fluctuations in operating voltage;

® and some others...

Chapter 14 - Processor Structure and Function 106 /

Luis Tarrataca 17

Overclocking

Overclock idea:
® Abdicate of this safety margin and increase the clock speed

® Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas? '

Chapter 14 - Processor Structure and Function 107 /

Overclocking

Overclock idea (1/2):
® Abdicate of this safety margin and increase the clock speed

® Time for each stage will diminish and we will have a faster processor.

Will we be able to diminish this time a lot? Any ideas? '
Not always... Why? Any ideas? '

Chapter 14 - Processor Structure and Function 108 /

Overclocking

Overclock idea (2/2):

Not always... Why? Any ideas?

® |n the figure above the clock speed is too fast for stage 3...
® Increase frequency too much:
® Some pipeline stages will not have time to end...

® Performance will stop improving...

Chapter 14 - Processor Structure and Function

109 /

Overclocking

Besides pipeline problems can you think of any other problems with

overclocking?

Chapter 14 - Processor Structure and Function 110/

Overclocking

Besides pipeline problems can you think of any other problems with
overclocking?

® Increasing the frequency is done by increasing the voltage to the system
® fxV

e px V8

® Changes in voltage lead to a cubic increase of powerl!!!

® And what is the physical manifestation of power? Heat dissipation.

Chapter 14 - Processor Structure and Function 11/

Overclocking

® Elevated heat degrades the useful-life of the silicon used in chips;
® If heat is not properly managed:
® Only a matter of time until the processor goes kaputz;
® Even with built-in sensors...:
® Video 1

® Video 2

® Thus the need for good refrigeration systems.

Chapter 14 - Processor Structure and Function 112/

Luis Tarrataca 17

https://www.youtube.com/watch?v=ssL1DA_K0sI
https://www.youtube.com/watch?v=Ggh2Mu4Qkgk

Overclocking

® Heat: reason why CPU frequency has stopped growing;
® Yet we still have had performmance gains. Why?
® Parallel computing FTW =)

® One final question?

Why do logical processors emit heat? '

Chapter 14 - Processor Structure and Function 113/

Overclocking

® This is the same reason why the CPU frequency has stopped growing some
years ago;

® Yet we sfill have had performance gains. Why?
® Parallel computing FTW =)

® One final question?

Why do logical processors emit heat? '

® Landauer’s principle - irreversible computation leads to heat dissipation as a
direct logical consequence of the underlying reversibility of physics!

Chapter 14 - Processor Structure and Function 114/

Where to focus your study

Where to focus your study

After this class you should be able to:
® Explain what a pipeline is and the underlying mechanics.
® Understand how pipelines can improve performance.
® Understand the issues influencing pipeline performance;

® Understand how to tackle these issues.

Chapter 14 - Processor Structure and Function 115/

Where to focus your study

Less important to know how these solutions were implemented:
® details of specific pipelines from the x86 processor family.

Your focus should always be on the building blocks for developing a solution
=)

Chapter 14 - Processor Structure and Function 116/

Luis Tarrataca 17

References

References |

@ Lilja, D. J. (1988).
Reducing the branch penalty in pipelined processors.

Computer, 21(7):47--55.

Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Chapter 14 - Processor Structure and Function 17/

	Processor Organization
	Register Organization
	User-visible Registers
	Control and Status Registers

	Instruction Cycle
	Pipelining
	Instruction Stages
	Simplifications
	Possible pipeline disruptions
	Design issues
	Pipeline Performance
	Pipeline Hazards
	Pipeline Hazards

	Overclocking
	Where to focus your study
	References

