Chapter 10 - Computer Arithmetic

Luis Tarrataca
luis.tarratacalgmail.com

CEFET-RJ

Chapter 10 Computer Afibmetc

1/147

luis.tarrataca@gmail.com

© Motivation

® Arithmetic and Logic Unit

©® Integer representation
Sign-Magnitude Representation
Twos Complement Representation

Range Extension

@ Integer Arithmetic
Negation
Addition
Subtraction
Hardware Block Diagram for Adder

Multiplication
Unsigned Integers

Twos complement multiplication

0 Floating-point representation

Motivation

Motivation

How can a computer perform arithmetic operations? Any ideas?

Chapter 10 Computer Aibmetic 4147

How can a computer perform arithmetic operations? Any ideas? '

® Well, it depends on the type of numbers: infeger and floating point;

® Representation is a crucial design issue...

® Guess what we will be seeing next ;)

Arithmetic and Logic Unit

What is the computer component responsible for calculations? Any

ideas?

Chapter 10 Computer Aibmetic /147

Arithmetic and Logic Unit

Arithmetic and Logic Unit

What is the computer component responsible for calculations?
ideas?

Arithmetic Logic Unit
® Component that performs arithmetic and logical operations;

® All other system components are there mainly to:
® Bring data into the ALU;
® Process datfa;

® Take results back out;

Chapter 10 Computer Aibmetic 7147

Arithmetic and Logic Unit

What is the general organization of the ALU? Any ideas?

Chapter 10 Computer Aibmetic 8147

Arithmetic and Logic Unit

What is the general organization of the ALU? Any ideas?

Very generally:

Control — % >
Signals

.o

Em—

Operand
Registers #‘

ALU

Result
Registers

Figure: ALU Inputs and outputs (Source: (Stallings, 2015))

Chapter 10 Computer Aibmetic 9147

Arithmetic and Logic Unit

Textual description of the previous image (1/2):
® Operands for arithmetic/logic operations are provided in registers;
® Results of an operation are also stored in registers;
® ALU may also set flags as the result of an operation, e.g.:
® OQverflow flag is set fo 1:
® If aresult exceeds the length of the register into which it is to be stored.

® Zero flag is set to 1:

® |f aresult produces value zero (JMP.Z, JIMP.NZ, etfc...)

Arithmetic and Logic Unit

Textual description of the previous image (2/2):
® Flags are also stored in registers within the processor.

® Processor provides signals that control:
® ALU operation;

® Data movement into and out of the ALU.

11/147

Arithmetic and Logic U

i 1

| |

! i

- =1

| i

i '

| 1 !

|

; ¥ b i Main
1

=] [| S

| j i

i '

I '

i i

! — !

—
: C““’_“: *Control :
i .]
e L | e |

! . ‘EAﬂdrm

i
1

i Program control unit !

Figure: Expanded Structure of a computer (Source: (Stallings, 2015))

Arithmetic and Logic Unit

From the previous picture (1/2):
® Accumulator (AC) and Multiplier quotient (MQ):
® Employed to hold temporarily operands and results of ALU operations
® Memory buffer register(MBR):

® Contains a word to be stored in memory or sent to the I/O unit, or is used to
receive a word from memory or from the |/O unit.

® Memory address register (MAR):

® Specifies the address in memory of the word to be written from or read into
the MBR.

Arithmetic and Logic Unit

From the previous picture (2/2):
® Instruction register (IR):
® Contains the instruction being executed.
® Instruction buffer register (IBR):
® Employed to hold the right-hand instruction from a word in memory.
® Program counter (PC)

® Contains the address of the next instruction pair to be fetched from memory.

Luis Tarrataca Chapter 10 - Computer Arithmetic 14 / 147

Integer representation

Integer representation

An n-bit sequence a,_1an,_» - - - ag is an unsigned integer A:

n—1
A= Z 2i0i

i=0

But what if we have to express negative numbers. Any ideas? '

Chapter 10 Computor Atibmetic 18147

Integer representation Sign-Magnitude Representation

Sign-Magnitude Representation

The sign of a number can be represented using the leftmost bit:
® [f bit is 0, the number is positive;
® If bitis 1, the number is negative;

+18 = 00010010
-18 = 10010010 (sign magnitude)

-2

2}2‘&; ifa,,_1 =0

A=q %,)

_2[:)2]8,- ifa"_1 =1
i=

Chapter 10 Computor Atibmetic 16,147

Integer representation Sign-Magnitude Representation

The number sign can be represented using the leffmost bit:
® If bit is 0: number is positive;
® [f bitis 1: number is negative;

+18 = 00010010
—18 = 10010010 (sign magnitude)

n—2)
22‘&; iIa,,_1 =0
=0
A= :n—Z ;
_22131- ifa,,_1 =1
=0

Can you see any problems with this method?

Integer representation Sign-Magnitude Representation

There are several problems in fact:
® Addition and subtraction operations require:

® Considering both signs and the magnitudes of each number;
® There are two representations of 0:

+0p = 00000000
-0 = 10000000 (sign magnitude)

® We need to test for two cases representing zero;

® This operation is frequently used in computers...

® Because of these drawbacks sign-magnitude representation is rarely use...

Integer representation Sign-Magnitude Representation

So what can we use to represent integers? Any ideas?

Chapter 10 Computr Atibmetic 19147

Integer representation Sign-Magnitude Representation

So what can we use to represent integers? Any ideas?

® Twos Complement Representation

Chapter 10 Computer Atibmetic 20,147

Integer representation Twos Complement Representation

Twos Complement Representation

Like the sign magnitude system:
® uses the most significant bit as a sign bit;
® Easy to test whether an integer is positive or negative
However, it differs from the use of the sign-magnitude representation:

® in the way that the other bits are interpreted.

Chapter 10 Computr Afibmetic 21147

Integer representation Twos Complement Representation

Key characteristics of twos complement representation and arithmetic:

Range —2" through 21 — 1
Number of Representations
One
of Zero
. Take the Boolean complement of each bit of the corresponding

Negation positive number, then add 1 to the resulting bit pattern viewed
as an unsigned integer.

Expansion of Bit Length Add add'iti'ona.l })it p9sitions to the left and fill in with the value
of the original sign bit.
If two numbers with the same sign (both positive or both

Overflow Rule negative) are added, then overflow occurs if and only if the
result has the opposite sign.

Subtraction Rule To stz)tract B from A, take the twos complement of B and add
it to A.

Figure: Characteristics of twos complement representation and arithmetic (Source: (Stallings, 2015))

Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (1/3):
® If A is positive, then the sign bit, a,_, is zero;

® Remaining bits represent number magnitude:

23 /147

Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement:

What is the maximum positive integer? An ideas?

Chapter 10 Computer Atibmetic 24147

Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (2/3):

What is the maximum positive integer? An ideas? '

® Zero is identified as positive (zero sign bit) and a magnitude of all Os;

® Range of positive integers that may be represented is:
® from O (all of the magnitude bits are 0)...

® through 2"~ — 1 (all of the magnitude bits are 1).

Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement:

What is the minimum positive integer? An ideas?

Chapter 10 Computer Atibmetic 26/ 147

Integer representation Twos Complement Representation

Consider an n-bit integer, A, in twos complement (3/3):

What is the minimum positive integer? An ideas? '

® A negative number A has the sign bit, a,_;, set to one:

® Remaining n — 1 bits can take on any one of 2"~ values

® Therefore, range is from —1to —2"~;

Integer representation Twos Complement Representation

Ideally: negative numbers should facilitate arithmetic operations:
® Similar o unsigned integer arithmetic;

® In unsigned integer representation:

® Weight of the most significant bit is +27~";

® |t turns out that with a sign bit desired arithmetic properties are achieved if:

® Weight of the most significant bit is —27~';

Integer representation Twos Complement Representation

This is the convention used in twos complement representation:

n—1
A=-2""a, 1+ » 2aforA<O
i=0
® Fora,_; =0,then —2"'a,_; =0, ie.:
® Equation defines nonnegative integer;

n—1

® For a,—_7 = 1, then the term —2 is subtracted from the summation, i.e.:

® vyielding a negative integer

Integer representation Twos Complement Representation

Decimal Sign-Magnitude Twos Complement
Representation Representation Representation

+8 — —

+T 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
#3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
-0 1000 —

=1 1001 1111
=2 1010 1110
=3 1011 1101
—4 1100 1100
=5 1101 1011
—6 1110 1010
= 1111 1001
-8 — 1000

Figure: Alternative representations for 4 bit integers (Source: (Stallings, 2015))

Luis Tarrataca Chapter 10 - Computer Arithmetic

30/ 147

Integer representation Twos Complement Representation

Twos complement is a weird representation from the human perspective:
® However:
® Facilitates addition and subtraction operations;

® For this reason:
® |t is almost universally used as the processor representation for integers;

® |tis also the representation used by the P3 processor employed in the lab;

Integer representation Twos Complement Representation

A useful illustration of fwos complement:

Figure: An eight-position twos complement value box (Source: (Stallings, 2015))

Chapter 10 Computr Afibmetic 32,147

Integer representation Twos Complement Representation

A useful illustration of twos complement:

1 0 0 0 0 0 1 1

—128 +2 +1 =-125

Figure: Convert binary 10000011 to decimal (Source: (Stallings, 2015))

Chapter 10 Computr Afibmetic 33147

Integer representation Twos Complement Representation

A useful illustration of twos complement:

—120 = —128 +8

Figure: Convert decimal -120 to binary (Source: (Stallings, 2015))

Chapter 10 Computor Atibmetic 34147

Integer representation Range Extension

Range Extension

Sometimes it is desirable to take an n-bit integer and store it in m-bits:
® wherem > n
® Easy in sign-magnitude notation:

® move the sign bit to the new leffmost position and fill in with zeros.

+18 = 00010010 (sign magnitude, 8 bits)
+18 = 0000000000010010 (sign magnitude, 16 bits)
—-18 = 10010010 (sign magnitude, 8 bits)
—18 = 1000000000010010 (sign magnitude, 16 bits)

Integer representation Range Extension

But how will range extension work from two’s complement perspective?

Any ideas?

Chapter 10 Computer Atibmetic 36147

Integer representation Range Extension

But how will range extension work from two’s complement perspective?
Any ideas?

Can you see any potental problems? Any ideas?

Chapter 10 Computor Atibmetic 37,147

Integer representation Range Extension

Range Extension

Sometimes it is desirable to take an n-bit integer and store it in m-bits:
® wherem > n

® Same procedure will not work for twos complement:

+18 = 00010010 (twos complement, 8 bits)

+18 = 0000000000010010 (twos complement, 16 bits)

-18 = 11101110 (twos complement, 8 bits)
—32,658 = 1000000001101110 (twos complement, 16 bits)

What can we do to solve this problem? Any ideas? '

Integer representation J:IL T Y SAEL BN

Rule for twos complement integers is:

® Move sign bit to leffmost position and fill in with copies of the sign bit, i.e.:
® For positive numbers:
® Fill in with zeros
® For negative numbers:

® Fill in with ones

® Example:
—-18 = 11101110 (twos complement, 8 bits)
—-18 = 1111111111101110 (twos complement, 16 bits)

Integer Arithmetic Negation

Negation

How can we negate a number in twos complement? Any ideas?

Chapter 10 Computer Atibmetic 40,147

Integer Arithmetic

Negation

How can we negate a number in twos complement? Any ideas?

To negate an integer in twos complement notation:

© Complement each bit (including sign bit);

O Add 1;
©® Example:
+18 = 00010010 (twos complement)
bitwise complement = 11101101
4 il

11101110 = —18

—18 = 11101110 (twos complement)
bitwise complement = 00010001
+ 1
00010010 = +18

Luis Tarrataca Chapter 10 - Computer Arithmetic 41 /147

Integer Arithmetic Negation

What is the negation of zero in twos complement? Any ideas?

Chapter 10 Computr Atibmetic 42,147

Integer Arithmetic [Ty

What is the negation of zero in twos complement? Any ideas? '

® Consider A = 0. In that case, for an 8-bit representation:

0 = 00000000 (twoscomplement)
bitwise complement = 11111111
=+ 1
100000000 = 0

® Carry bit out of the most significant bit is ignored;

® The result is that the negation of O is O;

Integer Arithmetic Negation

What is the negation of 1 followed by n — 1 zeros? Any ideas?

Chapter 10 Computer Afibmetic 44/ 147

Integer Arithmetic Negation

What is the negation of 1 followed by n — 1 zeros? Any ideas? '

® Negation of the bit pattern of 1 followed by n — 1 zeros:

—128 = 10000000 (twos complement)

bitwise complement = 01111111
+ 1
10000000 = —128

® Produces the same number

Why does this happen? Any ideas? '

Integer Arithmetic Negation

What is the negation of 1 followed by n — 1 zeros? Any ideas? '

® Negation of the bit pattern of 1 followed by n — 1 zeros:

—128 = 10000000 (twos complement)
bitwise complement = 01111111
+ 1
10000000 = —128

® Produces the same number

Why does this happen? Any ideas? '

* Twos complement range: [—2"~1,2"~1 — 1];

® Negating —128 falls out of this range;

Integer Arithmetic Addition

Addition

How can we add a number in twos complement? Any ideas?

Chapter 10 Computer Atibmetic 47,147

Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

1001 = —7
+0101 5

1110 = —2
(@) (=7) + (+5)

Chapter 10 Computer Atibmetic 48,147

Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

I

1100
+0100 4
10000 0

(b) (=4) + (+4)

—4

® Carry bit beyond (indicated by shading) is ignored;

Chapter 10 Computer Atibmetic 49/ 147

Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

0011
+0100
0111

3
<4

7
(©) (+3) + (+4)

Chapter 10 - Computer Arithmetic 50/ 147

Integer Arithmetic Addition

Addition

Addition proceeds as if the two numbers were unsigned integers:

1100 = —4
+1111 = -1
#1011 = -5

(d) (=4 + (=D

® Carry bit beyond (indicated by shading) is ignored;

Chapter 10 Computor Atibmetic 81,147

Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas? '

0101
+0100
1001

Chapter 10 Computr Atibmetic 82,147

Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas? '

0101 = 5
+0100 4

1001 = Overflow
(e) (+5) + (+4)

® Two numbers of the same sign produce a different sign...

Chapter 10 Computer Atibmetic 53,147

Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas? '

1001
+1010
10011

Chapter 10 Computr Atibmetic 54147

Integer Arithmetic Addition

Addition

But what happens with this case? Any ideas? '

Lopl =
+1010 = —6
IOOll Overflow

B 7+ (=6)

® Two numbers of the same sign produce a different sign...

Chapter 10 Computer Atibmetic 55147

Integer Arithmetic Addition

Addition

Why do you think this happens? Any ideas? '

Chapter 10 Computer Atibmetic 56147

Integer Arithmetic Addition

Addition

Why do you think this happens? Any ideas?

® Overflow:
® Result is larger that what can be stored with the word;
® Solution: Increase word size;
® When overflow occurs:

® ALU must signal this fact so that no attempt is made to use the result.

Chapter 10 Computer Atibmetic 7,147

Integer Arithmetic

Subtraction

How can we subtract a number in twos complement? Any ideas?

Chapter 10 Computer Atibmetic 58,147

Integer Arithmetic Subtraction

Subtraction

To subtract the subtrahend from the minuend:

® Take the twos complement of the subtrahend (S) and add it o the
minuend (M).

°* M+ (=5)

® |.e.: subtraction is achieved using addition;

0010 = 2

+1001 = —7

1011 = -5

(a) M = 2 = 0010
S =7 = 0111

—s = 1001

Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (—5)

0101 = 5
+1110 = —2
10011 = 3
(b) M = 5 = 0101
S =2 = 0010
—S = 1110

® Carry bit beyond (indicated by shading) is ignored;

Luis Tarrataca Chapter 10 - Computer Arithmetic

60 / 147

Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (—S)

1011 = =5
+1110 = -2
11001 = -7

(c) M = —5 = 1011
S = 2=0010
-8 = 1110

® Carry bit beyond (indicated by shading) is ignored;

Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (—S)

0101 = 5
+0010 = 2
0111 = 7

(dy M = 5 = 0101
S =—2= 1110
0010

|
03
I

62 /147

Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (—5)

0111 = 7
+0111 = 7
1110 = Overflow
(e) M = 7 = 0111
S = =7 = 1001
—-S = 0111

® Oveiflow: two numbers of the same sign produce a different sign;

Integer Arithmetic Subtraction

Subtraction is achieved using addition: M + (—S)

1010 = —6
+1100 = —4
10110 = Overflow
(f) M = —6 = 1010
S = 4 = 0100
—S = 1100

® Cary bit beyond (indicated by shading) is ignored;

® Overflow: two numbers of the same sign produce a different sign;

Luis Tarrataca Chapter 10 - Computer Arithmetic

64 /147

Integer Arithmetic Hardware Block Diagram for Adder

Hardware Block Diagram for Adder

So, the question now is:

How can we map these concepts into hardware? Any ideas? '

Chapter 10 Computer Atibmetic 65147

Integer Arithmetic Hardware Block Diagram for Adder

Hardware Block Diagram for Adder

A Register

OF = Overflow bit
SW = Switch (select addition or subtraction)

Figure: Block diagram of hardware for addition and subtraction (Source: (Stallings, 2015))

Chapter 10 Computer Atibmetic 66147

Integer Arithmetic Hardware Block Diagram for Adder

From the previous figure:
® Central element is a binary adder:
® Presented with two inputs;

® Produces a sum and an overflow indication;

Adder freats the two numbers as unsigned integers

For the addition operation:
® The two numbers are presented in two registers;

® Result may be stored in one of these registers or in a third;

For the subtraction operation:
® Subtrahend (B register) is passed through a twos complementer;

® Overflow indication is stored in a 1-bit overflow flag.

Luis Tarrataca Chapter 10 - Computer Arithmetic 67 /147

Integer Arithmetic Muttiplication

Multiplication

Multiplication is a complex operation:
® Compared with addition and subtraction;

® Again lets consider multiplying for the following cases:
® Two unsigned numbers;

® Two signed (twos complement) numbers;

Chapter 10 Computr Atibmetic 68147

Integer Arithmetic Muttiplication

Unsigned Integers

How can we perform multiplication? Any ideas? '

1011
X1101

Luis Tarrataca Chapter 10 - Computer Arithmetic 69 /147

Integer Arithmetic Muttiplication

How can we perform multiplication? Any ideas? '

1611 Multiplicand (11)
X1101 Multiplier (13)
1011
0000)
1011
10001111 Product (143)

Chapter 10 Computr Atibmetic 70,147

Integer Arithmetic Multtiplication

Several important observations:
© Multiplication involves the generation of partial products:
® One for each digit in the multiplier;
® These partial products are then summed to produce the final product.
® The partial products are easily defined.
® When the multiplier bit is 0,the partial product is O;
® When the multiplier is 1, the partial product is the multiplicand;
© Total product is produced by summing the partial products:
® each successive partial product is shifted one position to the left relative

@ Multiplication of two n-bit binary integers produces up to 2n bits;

Luis Tarrataca Chapter 10 - Computer Arithmetic 71 /147

Integer Arithmetic Muttiplication

How can we translate these concepts into hardware? Any ideas?

Chapter 10 Computr Atibmetic 72,147

Integer Arithmetic Multtiplication

How can we translate these concepts into hardware? Any ideas? '

® We can perform a running addition on the partial products:

® Rather than waiting until the end;
® Eliminates the need for storage of all the partial products;
® Fewer registers are needed
® We can save some time on the generation of partial products:
® For each 1 on the multiplier, an add and a shift operation are required

® For each 0, only a shift is required.

Integer Arithmetic Muttiplication

Possible implementation employing these measures:

Multiplicand
o < Add Shift and add
= n-bit adder oonteitoghc
Shift right
———
‘——_‘“If"_—" Multiplier

Chapter 10 Computer Atibmetic 74/ 147

Integer Arithmetic Multtiplication

© Multiplier and multiplicand are loaded into two registers (Q and M);
@ A third register, the A register, is also needed and is initially set to O;

©® There is also a 1-bit C register, initialized o O:

® which holds a potential carry bit resulting from addition.

Luis Tarrataca Chapter 10 - Computer Arithmetic 75 /147

Integer Arithmetic Multtiplication

@ Control logic then reads the bits of the multiplier one at a fime:

® If &is 1, then:
® the mulfiplicand is added to the A register...
® and the result is stored in the A register...
® with the C bit used for overflow.
® Then all of the bits of the C, A, and Q registers are shifted to the right one bit:
® So that the C bit goes info A,—1, Ap goes into &,—1 and & is lost.

® |f @ is O, then:
® Then no addition is performed, just the shift;
® Process is repeated for each bit of the original multiplier;

® Resulting 2n-bit product is contained in the A and Q registers

Luis Tarrataca Chapter 10 - Computer Arithmetic 76 / 147

Integer Arithmetic Muttiplication

C A M

1011 Multiplicand (11)
X1101 Multiplier (13)

1011 Partial products

10001111 Product (143)

Chapter 10 Computr Atibmetic 77,147

Integer Arithmetic Muttiplication

1011 Multiplicand (11)
X1101 Multiplier (13)

“1011 C A Q M
13230 Partial products 0 0000 1101 1011 Inifial Values
1011

10001111 Product (143)

Chapter 10 Computer Atibmetic 78,147

Integer Arithmetic Muttiplication

1011 Multiplicand (11)

X1101 Multiplier (13) C A Q M

1011

0000 0 0000 1101 1011 Inifial Values
1011 Partial products

1011 0 1011 1101 1011 Add
10001111 Product (143)

Chapter 10 Computr Atibmetic 79147

Integer Arithmetic Muttiplication

1011 Multiplicand (11) C A Q M
X1101 Multiplier (13)
1011 0 0000 1101 1011 Inifial Values
0000
1011 Partial products 0 1011 1101 1011 Add
1011 -
T0001TiT / Product (143) 0 0101 1110 1011 Shift Right

Chapter 10 Computr Afibmetic 80,147

Integer Arithmetic Muttiplication

1011 Multiplicand (11) c A Q M
xi;gi Multiplier (13) 0 0000 1101 1011 Initial Values
0000) 0 1011 1101 1011 Add
1011 Partial products
el 0 0101 1110 1011 Shiff Right
ZAR0SAILT N Erodact (1) 0 0010 1111 1011 Shift

Chapter 10 Computor Atibmetic 81,147

Integer Arithmetic

Multiplication

1011
xX1101
1011
0000
1011
1011

10001111

Multiplicand (11)
Multiplier (13)

Partial products

Product (143)

C A Q M

0 0000 1101 1011 Initial Values
0 1011 1101 1011 Add

0 0101 1110 10711 Shift Right
0 0010 1111 10711 Shift

0 1101 1111 10711 Add

Chapter 10 - Computer Arithmetic

82/ 147

Integer Arithmetic Muttiplication

cC A Q M
o Multiplicand (1) 0 0000 1101 1011 Initial Values
XI161 - Ml (1) 0 1011 1101 1011 Add
0000) 0 0101 1110 1011 Shift Right
1031 Pnrhnlpmducts
Eeds 0 0010 1111 1011 Shift
IRARTAT = Frodnet (o) 0 1101 1111 1011 Add
0 0110 1111 1011 Shift

Integer Arithmetic

Multiplication

1011 Multiplicand (11)
X1101 Multiplier (13)

1011 Partial products

10001111 Product (143)

C A Q M

0 0000 1101 1011 |Initial Values
0 1011 1101 1011 Add

0 0101 1110 1011 Shift Right
0 0010 1111 1011 Shift

0 1101 1111 1011 Add

0 0110 1111 1011 Shift

1 0001 1111 1011 Add

Chapter 10 - Computer Arithmetic

84 /147

Integer Arithmetic Muttiplication

C A Q M
0 0000 1101 1011 Initial Values
TG | O 1011 DT o1 Add
Xi;ﬁ Multiplier (13) 0 0101 1110 1011 Shift Right
0000 0 0010 1111 1011 Shift
1011 Pﬂrtialp. duct:
1011 0 1101 1111 1011 Add
ety Froduet (iad) 0 0110 1111 1011 Shift
1 0001 1111 1011 Add
0 1000 1111 1011 Shift

Integer Arithmetic Muttiplication

Or in flowchart form:

C,A—0

M « Multiplicand
Q < Multiplier

Count < n

Shift right C,A, Q
Count < Count -1

Product
inA, Q

Figure: Flowchart for unsigned binary multiplication (Source: (Stallings, 2015))

Chapter 10 - Computer Arithmetic 86 /147

Integer Arithmetic Muttiplication

Twos complement multiplication

How can we perform multiplication using twos complement? Any ideas? '

Chapter 10 Computr Atibmetic 87,147

Integer Arithmetic Multtiplication

Product of two N-bit numbers requires maximum of 2N:
® Double operands precision using two’s complement;

® For example, take 6 x —5 = —30
® 6(10) = 0110(2) = 000001103
® —5@0) = 1011(p) = 11111011(y)

00000110 (6)
* 11111011 (-5)

110

1100

00000

110000
1100000
11000000
x10000000

+ xx00000000

xx11100010

Figure: (Source: wikipedia)

® Discarding the bits beyond the eighth bit will produce the correct result;

Integer Arithmetic Muttiplication

Can you see any problems with this approach? Any ideas?

Chapter 10 Computr Atibmetic 89,147

Integer Arithmetic Multtiplication

Very inefficient:
® Precision is doubled ahead of fime;
® This means that all additions must be double-precision;

® Therefore twice as many partial products are needed...

90/ 147

Integer Arithmetic Muttiplication

Can we do better than this?

Chapter 10 Computr Atibmetic 91147

Integer Arithmetic Muttiplication

Can we do better than this?

® Yes we can through Booth’s algorithm =)

Chapter 10 Computer Atibmetic 52,147

Integer Arithmetic Muttiplication

Booth’s Algorithm

Example of BoothOs Algorithm for: 7 X 3

A Q @, M

Chapter 10 Computer Atibmetic 93,147

Integer Arithmetic Muttiplication

Booth’s Algorithm

Example of BoothOs Algorithm for: 7 X 3

A Q Q_, M
0000 0011 0 0111 Initial Values

Chapter 10 Computer Atibmetic 94 /147

Integer Arithmetic Muttiplication

Booth’s Algorithm

Example of BoothOs Algorithm for: 7 X 3

A Q Q_, M
0000 0011 0 0111 Initial Values
1001 0011 0 0111 A+ A—M

Chapter 10 Computer Atibmetic 95147

Integer Arithmetic Muttiplication

Booth’s Algorithm

Example of BoothOs Algorithm for: 7 X 3

A Q Q_, M
0000 0011 0 0111 Initial Values
1001 0011 0 0111 A—A—M
1100 1001 1 0111 Arithmetic Shift Right

Chapter 10 Computer Atibmetic 96,147

Booth’s Algorithm

Integer Arithmetic

Example of BoothOs Algorithm for: 7 X 3

Multiplication

A Q @, M
0000 0011 O O111 Initial Values
1001 0011 O 0111 A—A—M
1100 1001 1 0111 Arthmetic Shift Right
1110 0100 1 0111 Arthmetic Shift Right

Chapter 10 - Computer Arithmetic

97 /147

Booth’s Algorithm

Integer Arithmetic

Example of BoothOs Algorithm for: 7 X 3

Multiplication

A Q @, M

0000 0011 O O111 Initial Values
1001 0011 O O111 A A—M
1100 1001 1 0111 Arthmetic Shift Right
1170 0100 1 0111 Arthmetic Shift Right
0101 0100 1 0111 A—A+M

Chapter 10 - Computer Arithmetic

98 /147

Booth’s Algorithm

Integer Arithmetic

Example of BoothOs Algorithm for: 7 X 3

Multiplication

A Q @, M

0000 0011 O O111 Initial Values
1001 0011 O 0111 A—A—M
1100 1001 1 0111 Arthmetic Shift Right
1110 0100 1 0111 Arthmetic Shift Right
0101 0100 1 0111 A A+M
0010 1010 O 0111 Arthmetic Shift Right

Chapter 10 - Computer Arithmetic

99 /147

Booth’s Algorithm

Integer Arithmetic

Multiplication

Example of BoothOs Algorithm for: 7 X 3

A Q Q_, M
0000 0011 0 0111 Initial Values
1001 0011 0 0111 A+—A-—M
1100 1001 1 0111 Arithmetic Shift Right
1110 0100 1 0111 Arithmetic Shift Right
0101 07100 1 0111 A—A+M
0010 1010 0 0111 Arithmetic Shift Right
0001 0101 0 0111 Arithmetic Shift Right

Chapter 10 - Computer Arithmetic

100 / 147

Booth’s Algorithm

Integer Arithmetic

Multiplication

Example of BoothOs Algorithm for: 7 X 3

A Q Q_, M
0000 0011 0 0111 Initial Values
1001 0011 0 0111 A—A-M
1100 1001 1 0111 Arithmetic Shift Right
1110 0100 1 0111 Arithmetic Shift Right
0101 07100 1 0111 A—A+M
0010 1010 0 0111 Arithmetic Shift Right
0001 0101 0 0111 Arithmetic Shift Right

Final result appears in the A and Q registers:

® A= 0001
® Q=0101

° AQ = 000101012 = 21]0

Chapter 10 - Computer Arithmetic

101 / 147

Integer Arithmetic Multtiplication

@ Multiplier and multiplicand are placed in the @ and M registers;
O Q_, is a 1-bit register placed logically to the right of &;
©® Results of the multiplication will appear in the A and Q registers;

O Aand Q_; are initialized to 0.

Integer Arithmetic Multtiplication

O Control logic scans the bits of the multiplier one at a time:
® @as each bit is examined, the bit to its right is also examined;
® If the two bits are the same (1-1 or 0-0):
® all of the bits of the A, Q, and Q_; registers are shifted to the right 1 bit.
® |f the two bits differ:
® then the multiplicand is added/subtracted from the A register
® depending on whether the two bits are 0-1 or 1-0.
® Following the addition or subtraction, the right shift occurs.
@ All shifts performed preserve the sign:

® Arithmetic Right Shift

Integer Arithmetic Muttiplication

In flowchart form:

Ac—0,Q ;<0
M < Multiplicand
Q Multiplier
Count < n

=10

_le

=00
A<—A-M

Arithmetic shift
Right: A, Q, Q_;
Count < Count — 1

Figure: (Source: (Stallings, 2015))

Luis Tarrataca Chapter 10 - Computer Arithmetic

104 / 147

Integer Arithmetic Muttiplication

Exercise

Use Booth’s algorithm to multiply 23 (M) by 29 (Q):

A @ e, M |

Rules:

0 — 1=A=A+M, Arithmetic Right Shift

1 — 0=A=A + (-M), Arithmetic Right Shift
0 — 0 = Arithmetic Right Shift

1 — 1 = Arithmetic Right Shift

Chapter 10 Computr Atibmetic 108147

Integer Arithmetic Muttiplication

Exercise

Use Booth’s algorithm to multiply 22 (M) by 28 (Q):

A @ e, M |

Rules:

0 — 1=A=A+M, Arithmetic Right Shift

1 — 0=A=A + (-M), Arithmetic Right Shift
0 — 0 = Arithmetic Right Shift

1 — 1 = Arithmetic Right Shift

Chapter 10 Computor Atibmetic 106147

Integer Arithmetic Multtiplication

Seems complicated?
® That is because it is;
® Focus on performance not on human easiness to understand...

® Can be proved mathematically that works:

® Beyond the scope of this class...

® Same concepts could be used to divise a division method:

® Beyond the scope of this class...

Luis Tarrataca Chapter 10 - Computer Arithmetic 107 / 147

Integer Arithmetic Muttiplication

Now that we have a basic understanding about:
® integer representation;

® integer arithmetic operations;

How can we represent floating-point numbers?

Floating-point representation

Important notice:
® Throughout computation history, several standards have been created:
® |EEE 754-1985
® |EEE 854-1987
® |EEE 754-2008

® This means that it is difficult fo present this material concisely;

Therefore: | only want you to have a basic notion of floating-point

operations ;)

Floating-point representation

Floating-point representation

We can represent decimal numbers in several ways, e.g.:
® 976,000, 000,000,000 = 9.76 x 10™
* 0.0000000000000976 = 9.76 x 104
l.e. the decimal point floats to a convenient location:
® We use the exponent of 10 to keep track of the decimal point;

® This way we can represent large and small numbers with only a few digits;

Floating-point representation

Same approach can be taken with binary numbers, i.e.:

+S x B*F

This number can be stored in a binary word with three fields:
® Sign: plus or minus
® Significand: S
® Exponent: E

® Base: B (binary)

111/147

Floating-point representation

In general:
Sign of
significand 8 bits 23 bits
\1‘ \ Biased exponent Significand

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

® |eftmost bit stores the sign of the number (0 = positive, 1 = negative)

® Exponent value is stored in the next k = 8 bits:
® Fixed value is subtracted from the field to get the true value.
® Value equals 21 — 1
® Range of possible values [—(2¢~1 — 1), 2¢71]

® Significand: right portion of the word;

Luis Tarrataca Chapter 10 - Computer Arithmetic 112 / 147

Floating-point representation

Sign of
significand 8 bits 23 bits
\|\ | Biased exponent Significand
Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))
® Example:

1.1010001 x 2'°'%° — 0 10010011 10100010000000000000000

Biased exponent:

20m0:= 0 0 0 1 0 1 0 0
+12769:= 0 1 1 1 1 1 1 1
T 0 0 1 0 0 1 1

Chapter 10 Computer Afibmetie 113147

Floating-point representation

What is the decimal form of this number:

0 1001 0011 101000100000000000000007? Any ideas?

Chapter 10 Computor Atibmetie 114/ 147

Floating-point representation

What is the decimal form of this number:

0 1001 0011 101000100000000000000007? Any ideas?

® 1.6328125 x 220

e 271 41 273 4 277 = 1.6328125

Chapter 10 Computer Afibmetc

115 / 147

Floating-point representation

Sign of
significand 8 bits 23 bits
\|\ | Biased exponent Significand
Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))
® Example:

—1.1010001 x 2'9'% — 1 10010011 10100010000000000000000

Biased exponent:

0= 0 0 0 1 0 1 0 0
+12769:= 0 1 1 1 1 1 1 1
T 0 0 1 0 0 1 1

Chapter 10 Computor Atibmetie 116/ 147

Floating-point representation

What is the decimal form of this number:

11001 0011 101000100000000000000007 Any ideas?

Chapter 10 Computor Atibmetie 117147

Floating-point representation

What is the decimal form of this number:

11001 0011 101000100000000000000007 Any ideas?

® —1.6328125 x 2%

e 271 41 273 4 277 = 1.6328125

Chapter 10 Computr Atibmetie 118147

Floating-point representation

Sign of
significand 8 bits 23 bits
\|\ | Biased exponent Significand
Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))
® Example:

1.1010001 x 27 9% — g (01101011 10100010000000000000000

Biased exponent:

~20p= 1 1 1 0 1 1 0 0
+12769:= 0 1 1 1 1 1 1 1
0 1 1 0 1 0 1 1

Chapter 10 Computor Atibmetie 119,147

Floating-point representation

What is the decimal form of this number:

00110 1011 101000100000000000000007? Any ideas?

Chapter 10 Computor Atibmetie 120,147

Floating-point representation

What is the decimal form of this number:

00110 1011 101000100000000000000007? Any ideas?

® 1.6328125 x 2720

e 271 41 273 4 277 = 1.6328125

Chapter 10 Computer Afibmetc

121 /147

Floating-point representation

Sign of
significand 8 bits 23 bits
\|\ | Biased exponent Significand
Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))
® Example:

—1.1010001 x 27199 — 1 11101101 10100010000000000000000

Biased exponent:

~204p:= 1 1 1 0 1 1 0 0
+12709:= 0 1 1 1 1 1 1 1
01 1.0 1 0 1 1

Chapter 10 Computor Atibmetie 122,147

Floating-point representation

What is the decimal form of this number:

111101107 10100010000000000000000? Any ideas?

Chapter 10 Computor Atibmetie 123147

Floating-point representation

What is the decimal form of this number:

111101107 10100010000000000000000? Any ideas?

o 16328125 x 2720

e 271 41 273 4 277 = 1.6328125

Chapter 10 Computor Atibmetie 124/ 147

Floating-point representation

Sign of
significand 8 bits 93 bits
\i‘ ‘ Biased exponent Significand

Figure: Typical 32-Bit floating-point format (Source: (Stallings, 2015))

® Examples conclusion:
1.1010001 x 2'°' — g 10010011 10100010000000000000000

—1.1010001 x 2'9'% — 1 10010011 10100010000000000000000
1.1010001 x 27 9% — 0 01101011 10100010000000000000000
—1.1010001 x 27199 — 1 01107011 10100010000000000000000

Floating-point Arithmetic

Floating-point Arithmetic

Now that we know how to represent floating-point numbers:

How can we perform floating-point arithmetic? Any ideas? '

Chapter 10 Computor Atibmetie 126/ 147

Floating-point Arithmetic

Some observations:

® Addition and subtraction operations:
® Necessary o ensure that both operands have the same exponent value;

® May require shifting the radix point to achieve alignment;

® Multiplication and division are more straightforward.

Luis Tarrataca Chapter 10 - Computer Arithmetic 127 / 147

Floating-point Arithmetic

Floating-Point Numbers Arithmetic Operations
X = X; X B% X+Y=()§,XBXE‘YE+K,)XBYE}X<Y
Y = Y¥; X B X-Y=(X,xBXY—_Y)x BYs|7E~ 'E

XXY=(X XY)x BX¥:

X X) =
— _ XBXEYE
v - (5

Figure: Floating point numbers and arithmetic operations (Source: (Stallings, 2015))

Floating-point Arithmetic

X =0.3x 10 =30

Y =0.2 x 10° = 200

X+Y=(03x10"3402) x 10° = 0.23 x 10° = 230
X—Y=(03x10"°-02) x10°=0.17 x 10° = —170
X x Y = (0.3 x0.2) x 10°"® = 0.06 x 10° = 6000
X+Y=(03+02)x10°°=15x10"=0.15

Chapter 10 Computor Atibmetie 129,147

Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?

Chapter 10 Computor Atibmetie 130,147

Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?

Floating-point operation may produce (1/2):
® Exponent overflow: Positive exponent exceeds maximum value;

® Exponent underflow: Negative exponent exceeds minimum value;
® F.g.:-200is less than -127.

® Number is too small o be represented (reported as 0).

Floating-point Arithmetic

Can you see any type of problems that the operations might produce?

Any ideas?

Floating-point operation may produce (2/2):

® Significand underflow: In the process of aligning significands, digits may
flow off the right end of the significand.

® Significand overflow: The addition of two significands of the same sign
may result in a carry out of the most significant bit

Floating-point Arithmetic Addition and Subtraction

So now the question is

How can we perform addition/subtraction using floats? Any ideas?

Chapter 10 Computor Atibmetie 133147

Floating-point Arithmetic Addition and Subtraction

Addition and Subtraction

In floating-point arithmetic:
® Addition/subtraction more complex than multiplication/division;
® This is because of the need for alignment;
® There are four basic phases of the algorithm for addition and subtraction:
@ Check for zeros.
@ Align the significands.
© Add or subtract the significands.

@ Normadlize the result.

Lets have a look at each one of these...

Floating-point Arithmetic Addition and Subtraction

Phase 1: Zero check:

® Addition and subtraction are identical except for a sign change:

® Begin by changing the sign of the subtrahend if it is a subtract operation.

® [f either operand is 0, the other is reported as the result.

Floating-point Arithmetic Addition and Subtraction

Phase 2: Significand alignment (1/2):
® Manipulate numbers so that the two exponents are equal, e.g.:
e (123 x 10°) + (456 x 1072)
® Digits must first be set into equivalent positions, i.e.:
® 4 of the second number must be aligned with the 3 of the first;
® The two exponents need to be equal
® Thus:

® (123 x 10°) + (456 x 1072) = (123 x 10°) + (4.56 x 10°) = 127.56 x 10°

Floating-point Arithmetic Addition and Subtraction

Phase 2: Significand alignment (2/2):
® Alignment may be achieved by:
® Shifting either the smaller number to the right (increasing its exponent)
® Shifting the larger number to the left
® Either operation may result in the loss of digits
® Smaller number is usually shifted:
® Since any digits lost are of small significance.
® |In general terms:
® Repeatedly shift the significand right 1 digit

® and increment the exponent until the two exponents are equal.

Luis Tarrataca Chapter 10 - Computer Arithmetic 137 / 147

Floating-point Arithmetic Addition and Subtraction

Phase 3: Addition
® Significands are added together;
® Because the signs may differ: result may be 0;

® There is also the possibility of significand overflow, if so:
@ Significand of the result is shifted right and the exponent is incremented;
® Exponent overflow could occur as a result;

® Operation is halted.

Floating-point Arithmetic Addition and Subtraction

Phase 4: Normalization
® Shift significand digits left until most significant digit is nonzero;
® Each shift causes:
® a decrement of the exponent and...

® .thus could cause an exponent underflow.

Arithmetic Addition and Subtraction

In flowchart form:

Figure: Floating Point Addition And Subtraction (Source: (Stallings, 2015))

Luis Tarrataca Chapter 10 - Computer Arithmetic 140 / 147

Floating-point Arithmetic Floating-Point Multiplication

So now the question is

How can we perform multiplication using floats? Any ideas?

Chapter 10 Computor Atibmetie 141147

Floating-point Arithmetic Floating-Point Multiplication

Floating-Point Multiplication

© If either operand is O: O is reported as the result;
©® Add the exponents;

©® Multiply the significands:

® Similarly o twos complement multiplication.

@ Result is normalized.

Chapter 10 Computor Atibmetie 142,147

Arithmetic Floating-Point Multiplication

In flowchart form:

Figure: Floating Point Multiplication (Source: (Stallings, 2015))

Luis Tarrataca Chapter 10 - Computer Arithmetic 143 / 147

Floating-point Arithmetic Floating-Point Multiplication

So now the question is

How can we perform division using floats? Any ideas?

Chapter 10 Computor Atibmetie 144147

Floating-point Arithmetic Floating-Point Multiplication

Floating-Point Division

© Test for O:
® |f the divisor is O: report error;

® Dividend is O: results in O.
@ Divisor exponent is subtracted from the dividend exponent;
©® Divide the significands;

@ Result is normalized;

Chapter 10 Computor Afibmetie 145/ 147

Floating-point Arithmetic Floating-Point Multiplication

In flowchart form:

Figure: Floating Point Division (Source: (Stallings, 2015))

arrataca Chapter 10 - Computer Arithmetic 146 / 147

References

References |

@ Stallings, W. (2015).
Computer Organization and Architecture: Designing for Performance.

Pearson Education, 10th edition edition.

Chapter 10 Computor Atibmetie 147/ 147

	Motivation
	Arithmetic and Logic Unit
	Integer representation
	Sign-Magnitude Representation
	Twos Complement Representation
	Range Extension

	Integer Arithmetic
	Negation
	Addition
	Subtraction
	Hardware Block Diagram for Adder
	Multiplication

	Floating-point representation
	Floating-point Arithmetic
	Addition and Subtraction
	Floating-Point Multiplication

	References

