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Abstract
This article proposes a methodology for the development of
adaptive traffic signal controllers using reinforcement learn-
ing. Our methodology addresses the lack of standardization
in the literature that renders the comparison of approaches
in different works meaningless, due to differences in metrics,
environments and even experimental design and methodol-
ogy. The proposed methodology thus comprises all the steps
necessary to develop, deploy and evaluate an adaptive traf-
fic signal controller—from simulation setup to problem for-
mulation and experimental design. We illustrate the proposed
methodology in two simple scenarios, highlighting how its
different steps address limitations found in the current litera-
ture.

Introduction
Traffic congestion is a cross-continental problem. In the
United States alone, an average automobile commuter
spends 54 hours in congested traffic and wastes 21 gal-
lons of fuel due to congestion, leading to a total estimated
cost of 1, 080 USD in wasted time and fuel per commuter
(Schrank, Eisele, and Lomax 2019), not considering exter-
nal costs such as the increasing price of goods caused by the
inflation of transportation costs, environmental and produc-
tivity impacts, as well as the decrease of population’s quality
of life (Hilbrecht, Smale, and Mock 2014). Similarly, a re-
cent study shows that, in the EU, the total external costs as-
sociated with traffic is over 300, 000 million euros (Becker,
Becker, and Gerlach 2016). Hence, there have been numer-
ous initiatives to mitigate traffic congestion, such as invest-
ment in public transit systems (Harford 2006) or intelligent
transportation systems (Dimitrakopoulos and Demestichas
2010).

Traffic signals, being a fundamental element in traffic
control and regulation, are at the same time responsible for
a significant percentage of traffic bottlenecks in urban envi-
ronments, and play a key role in addressing the problem of
traffic congestion. Effective traffic signal control is, there-
fore, a key part of urban traffic management. Classic traf-
fic signal control approaches from transportation engineer-
ing, such as the Webster (Webster 1958) or Max-Pressure
(Varaiya 2013) methods, are capable of greatly increasing
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the efficiency of traffic infrastructures all around the world.
However, such approaches are either unable to adapt to
changing traffic volumes, or rely on oversimplified traffic
models, manual-tuning and inaccurate traffic information
(Zheng et al. 2019; Wei et al. 2019).

Alternatively, adaptive traffic signal control (ATSC) ap-
proaches seek to take advantage of the multiple sources of
information currently available (from mobile navigation ap-
plications, ride sharing platforms, etc.). Machine learning
techniques can use the data made available by such plat-
forms to provide traffic signal control strategies that adapt
to the current traffic conditions in an effective manner, pro-
viding a promising alternative to classical approaches.

Recently, several researchers have addressed ATSC using
Markov decision processes (MDP) (Wang et al. 2019; Wei
et al. 2019). MDPs model discrete-time stochastic control
problems, and are extensively used in artificial intelligence
to describe problems of sequential decision-making under
uncertainty (Puterman 2005). In an MDP, an agent (the con-
troller) interacts sequentially with an environment by select-
ing actions based on its observation of the environment’s
state; the actions selected by the agent influence how the en-
vironment’s state evolves, and the agent receives a numerical
evaluation signal (a reward) that instantaneously assesses the
quality of the agent’s action. The agent’s goal is to select its
actions to maximize some form of cumulative reward. MDPs
are the backbone of reinforcement learning (RL), a machine
learning paradigm in which the agent learns the optimal way
of selecting the actions from direct interaction with the envi-
ronment, without resorting to any pre-defined model thereof
(Sutton and Barto 1998).

RL algorithms are a natural choice when addressing
ATSC, since they can be trained directly in the data avail-
able, without requiring human annotators to define what is a
“good” or “bad” control strategy. Unfortunately, the use of
RL in this domain is not without its own challenges.

One of the first challenges is the lack of standard envi-
ronments in the domain of ATSC. The RL field has bene-
fited from standardized environments and easy to use APIs
that allow researchers to compare different approaches to the
same problem space, e.g the Deep Q-network (Mnih et al.
2013) which has been shown to generate relevant features
for the Arcade Learning Environment. The need for stan-
dardization has sparkled new research towards open source



frameworks (Genders and Razavi 2019), as means to pre-
vent researchers to re-implement the same set of fundamen-
tal tools with which to conduct de facto experiments. We
argue it is important that the community agrees on a set of
benchmark environments/traffic networks that may be used
as a first test stage for the algorithms explored in the context
of ATSC. The existence of such benchmarks would enable
a proper comparison of different models and algorithms in a
common set of environments, enabling a clearer assessment
of the strengths and weaknesses of different alternatives.

Another major challenge is related to the security and ex-
plainability of current RL architectures. Although some RL
systems have been quite successful in improving metrics of
interest such as the average travel time, some protocols are
not viable to be implemented in a real world situations for
a variety of reasons (Ault, Hanna, and Sharon 2020) such
as, long and unsafe tuning process, opaque policies, and the
predominant use of synthetic simulation scenarios.

One third challenge is reproducibility. Reproducibility is
thoroughly documented in RL literature, as such systems
might overfit to the training experience, showing good per-
formance during training but performing poorly at deploy-
ment time (Whiteson et al. 2011). Works show that simply
changing the random seeds used to generate the simulations
influence in a statistically significant manner the outcome of
the RL algorithm (Aslani, Mesgari, and Wiering 2017).

This paper contributes one further step towards a wider
application of RL in ATSC. However, for this potential
to be realized, it is paramount to address the standardiza-
tion, security and reproducibility issues identified above.
Our contribution in this article is, therefore, a methodol-
ogy for the development of RL-based adaptive traffic sig-
nal controllers that ensures some level of standardization at
the different stages of the experimental process: simulation
setup, environment modeling, experimental design and re-
sult reporting. We adopt an action definition which is rather
constrained: it produces synchronous joint action schemes
across the network – we show that the reinforcement learn-
ing agent is able to find policies that are on par with classi-
cal controllers which benefit from both human supervision
and from decades-old literature from the Transportation do-
main. Such action plans generate protocols which are more
in line with governmental transportation department’s ex-
pectations, hence they provide more trust in face of the li-
ability that such regulatory agencies face. In particular, with
respect to experimental design and result reporting, we dis-
cuss good practices and relevant metrics that have been ex-
plored in different works, highlighting their merits and how
their adoption may contribute to better interpretation of ex-
perimental results and mitigate reproducibility issues. We il-
lustrate our own methodology by applying its different steps
in designing a traffic signal controller using the well known
deep Q-network (DQN) algorithm (Mnih et al. 2013).

Background
Most approaches to traffic signal control rely on computer
software for microsimulation, which simulates traffic at the
level of individual vehicles, computing the position, veloc-
ity, emissions data and other for every vehicle at each time
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Figure 1: Intersection with four incoming approaches, each
composed of three lanes.

step. A route is a sequence of roads used by vehicles to tra-
verse the network.

A traffic infrastructure can be represented as a net-
work/graph, where roads and junctions correspond to the
edges and nodes, respectively. A road connects two nodes
of the network and has a given number of lanes, a maximum
speed and a length. Traffic light controllers are typically in-
stalled at road junctions. An intersection is a common type
of junction in which roads cross each other. Figure 1 illus-
trates a typical intersection with four incoming and four out-
going approaches, each approach composed of three lanes.

A signal movement refers to the transit of vehicles from an
incoming approach to an outgoing approach. A signal move-
ment can generally be sub-categorized as a left-turn, through
or right-turn movement. For example, in the intersection
of Fig. 1, East-South corresponds to a left-turn movement,
while East-West corresponds to a through movement. Both
are examples of signal movements. A green signal indicates
that the respective movement is allowed, whereas a red sig-
nal indicates that the movement is prohibited.

A signal phase is a combination of non-conflicting sig-
nal movements, i.e. the signal movements that can be set
to green at the same time. In the intersection of Fig. 1, the
triplet (North through, South through, South right-turn) is a
valid signal phase. In contrast, (North through, South left-
turn) is not. A signal plan for a single intersection is a se-
quence of signal phases and their respective durations. Usu-
ally, the time to cycle through all phases, known as cycle
length, is fixed. Therefore, the phase splits—i.e., the amount
of time allocated for each signal phase—are normally de-
fined as a ratio of the cycle length. A yellow signal is set as
a transition from a green to a red signal.

Reinforcement Learning
As mentioned in the introduction, reinforcement learning
considers an agent whose interaction with the environment
can be described as a Markov decision process (MDP). An
MDP is a tuple (S,A, {Pa, a ∈ A}, r, γ), where S is a set
of states and A is a set of actions. At each step t, the agent
observes the state St ∈ S of the environment and selects an
action At ∈ A. The environment then transitions to a state



St+1, where

P [St+1 = s′ | St = s,At = a] = [Pa]ss′ . (1)

The matrix Pa, a ∈ A, encodes the transition probabilities
associated with action a. Upon executing an action a in state
s, the agent receives a (possibly random) reward with ex-
pectation given by r(s, a). The goal of the agent is to select
its actions so as to maximize the expected total discounted
reward (TDR),

TDR = E

[ ∞∑
t=0

γtRt

]
, (2)

where Rt is the random reward received at time step t (with
E [Rt] = r(St, At)) and the scalar γ is a discount factor.
The long-term value of an action a in a state s is captured by
the optimal Q-value, Q∗(s, a), which can be computed us-
ing, for example, the Q-learning algorithm (Watkins 1989).
The Q-learning algorithm estimates the optimal Q-values as
the agent interacts with the environment: given a transition
(s, a, r, s′) experienced by the agent, Q-learning performs
the update

Q̂(s, a)← Q̂(s, a)+α
(
r+γmax

a′∈A
Q̂(s′, a′)−Q̂(s, a)

)
, (3)

where α is a step size. Upon computingQ∗, the agent can act
optimally by selecting, in each state s, the optimal action at
s, given by π∗(s) = argmaxaQ

∗(s, a). The mapping π∗ :
S → A, mapping each state s to the corresponding optimal
action π∗(s), is known as the optimal policy for the MDP.

Deep Q-network (Mnih et al. 2013) is a well known
RL method that approximates the Q-values with a neural
network Q̂(s, a; θ), where θ denotes the parameters of the
model. At each step, the agent adds a transition (s, a, r, s′)
to a replay memory buffer, from which batches of transitions
are sampled in order to optimize the parameters of the model
such that the following loss in minimized:

L(θ) =
(
r + γmax

a′∈A
Q̂(s′, a′; θ−)− Q̂(s, a; θ)

)2

. (4)

The gradient of the loss is backpropagated only into the be-
haviour network, Q̂(s, a; θ), which is used to select actions.
The term θ− represents the parameters of the target network,
a periodic copy of the behaviour network.

Related Work
Several works have explored the use of RL in traffic light
control, most of which rely on estimating the Q-function
or an approximation thereof (Abdulhai, Pringle, and Karak-
oulas 2003; Wiering 2000). In their simplest form, such RL
approaches consider that each intersection is controlled by
a single agent that ignores the existence of other agents
in neighboring intersections. More sophisticated approaches
consider the existence of multiple agents and leverage the
network structure to address the interaction between the
different agents (Prabuchandran, Hemanth, and Bhatnagar
2014; Liu, Liu, and Chen 2017). With the advent of deep

learning, several of the approaches above have been ex-
tended to accommodate deep neural networks as the under-
lying representation of the problem. For example, Genders
and Razavi (Genders and Razavi 2016) propose a DQN con-
trol agent that combines a deep convolutional networks with
Q-learning. The work controls the traffic lights at a single in-
tersection, and essentially extends previous work to accom-
modate the deep learning model.

In terms of experimental methodology, there are several
issues that make the comparison of different approaches
challenging. First, different works adopt different evalua-
tion metrics and baseline policies. In one work, the per-
formance metrics used are the average travel time per car
and the average wait time per car; the proposed approach
is compared against a fixed timed plan (Thorpe 1997). In
a different work, the metrics adopted are the average wait-
ing time and number of refused cars (a saturation condition
of the used simulator), and the proposed approach is com-
pared against both a random policy and a fixed-time policy
(Wiering 2000). In yet another work, the metrics used are
the ratio of the average delay, and the proposed approach is
compared against a pre-timed plan (Abdulhai, Pringle, and
Karakoulas 2003). The lack of a clear understanding of the
dependence of the different metrics on the number of inter-
sections is another issue that renders comparisons difficult.
Finally, while average metrics of the variables of interest are
provided, most works offer no measures of significance re-
garding the reported performance.

Recently, several works sought to address some of the
issues previously discussed (Genders and Razavi 2019).
Researchers have put forth several recommendations/good
practices when exploring the use of RL in the context of
ATSC: (i) provide all hyper-parameters and number of trial
experiments; (ii) report aggregated results with deviation
metrics (averages and standard deviations, not maximum re-
turns); (iii) implement proper experimental procedures (av-
erage together many trials using different random seeds for
each) (Islam et al. 2017). We extend those works by pro-
viding both the preliminary steps necessary to simulate, de-
velop, train and evaluate RL-based experiments for ATSC
on real world scenarios, as well as, insights which can be
extracted by our methodology in this domain.

Methodology
We propose a four-stage methodology to be used in the de-
velopment of RL-based traffic signal controllers. Figure 2 il-
lustrates the proposed methodology, comprising four phases:
simulation setup, MDP formulation and selection of the RL
learning method, train and evaluation.

Simulation setup
The first stage of the proposed methodology is the simu-
lation setup phase. RL controllers must be trained by re-
sorting to (micro-)simulators that are able to provide a re-
alistic response to the agent’s actions during the learning
process. The main objective of the simulation setup stage
is to prepare all the simulations needed to carry out such
training. It includes gathering simulation-related data such
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Figure 2: Diagram illustrating the proposed methodology, composed of four stages. Solid arrows denote the main development
flow, whereas dashed arrows denote the iterative process of model tuning.

as the topological data of the roads’ network and vehicles
demand/routes data, as well as setting up the traffic simula-
tor.

In any case, for the purpose of our methodology, it is im-
portant that during this stage two key components are con-
figured and defined: (i) the topology of the roads network;
and (ii) the traffic demands and routes.

Roads network topology. Networks can be either syn-
thetic or extracted from real world locations. Available
open source services, such as OPENSTREETMAP (Open-
StreetMap contributors 2017), allow segments of cities’ dis-
tricts to be exported and, during the simulation setup step,
such information can be prepared and fed to the simulator,
thus opening up the possibility of simulating a rich set of
networks relevant to real-world traffic signal control.

In our own implementation, we use geospatial data from
OPENSTREEMAPS to build the configuration files to be used
by the simulator, in our case, the SUMO micro-simulator
(Krajzewicz et al. 2012). The following steps are required:
(i) extract the region of interest from OPENSTREETMAP and
open the resulting file with the JOSM1 editor, an extensi-
ble editor for OPENSTREETMAP files, in order to fine-tune
the network; (ii) convert the (edited) OPENSTREETMAP file
into the SUMO network format using the netconvert2

tool; and (iii) open the resulting SUMO network file with
the netedit3 tool, a graphical network editor for SUMO,
in order to ensure that all intersections are properly setup,
namely check whether all traffic phases and links (connec-
tions between lanes) are correct.

Traffic demands and routes. Traffic demands and routes
can be either synthetic (Wei et al. 2018) or derived from
real-world data using origin-destination matrices (Aslani,
Mesgari, and Wiering 2017) or induction loops counts (Ro-
drigues and Azevedo 2019). Regarding synthetic demands,
simple (constant demands) to complex (variable demands)
scenarios can be created by specifying the probabilites of
vehicles’ insertion through time. With respect to the genera-
tion of a synthetic set of routes, the duarouter4 tool can
be used. Afterwards, a probability can be assigned to each
unique route by weighting it accordingly to a pre-determined
criteria, such as, invertionally proportional to the number of
turns contained in the respective route.

1https://josm.openstreetmap.de/
2https://sumo.dlr.de/docs/netconvert.html
3https://sumo.dlr.de/docs/netedit.html
4https://sumo.dlr.de/docs/duarouter.html

MDP formulation and RL approach
The second stage in our methodology is the description of
the traffic control problem as a Markov decision problem
(or a multiagent version thereof). As previously discussed,
an MDP comprises 5 elements: the set of states, the set of
actions, the transition probabilities, the reward, and the dis-
count.

Most works which apply RL to the ATSC domain do not
specify the transition probabilities since they are not strictly
required – additionally explicitly modeling the traffic dy-
namics as a result of changes in traffic light control is un-
feasible in most cases. Three components must still be spec-
ified: the state space (i.e., the information upon which the
agent will base its decisions), the action space (i.e., how the
agent is able to influence the environment through the choice
of its actions) and the reward function (which implicitly en-
codes the goal of the agent). The literature is very diverse
with respect to the adopted problem formulation; it is impor-
tant to stress that the performance of the resulting controller
will depend critically on the choices made at this stage.

Alongside the MDP formulation, it is also necessary to
select the desired RL method to be used as a learning com-
ponent for the traffic signal controller, a choice that is not
independent of MDP formulation. The literature is also very
diverse with respect to the algorithm choice, even though
the majority of the works focus their attention on the study
of value-based methods (i.e., methods that seek to esti-
mate/approximate the Q-function or a surrogate thereof).

The work of El-Tantawy et al. (El-Tantawy, Abdulhai, and
Abdelgawad 2014) provides a comparison between some
common state-space representations, reward functions and
action space definitions, using a real-world network topol-
ogy. Wei et al. (Wei et al. 2019) provide a comprehensive
list of commonly used MDP formulations in the context of
ATSC, as well as RL methods used in the context of traffic
signal control.

Training
The training procedure of RL-based traffic signal controllers
should follow the same guidelines used in the field of RL.
For example, a proper balance between exploration and ex-
ploitation should be ensured, making sure that the agent is
able to experience a wide range of different situations. In
adherence to the good practices previously discussed, it is
important to run multiple instances of the training process,
using different seeds, in order to correctly assess the learning
ability of the proposed RL method.



In the context of ATSC, particular attention must be paid
to ensure that the simulations are properly running. Grid-
locks should be avoided or properly processed, for example
by restarting the simulation, adjusting the vehicles’ arrivals,
or teleporting vehicles.5

Finally, it is important to monitor performance metrics
such as losses, rewards, the number of vehicles in the sim-
ulation and the vehicles’ velocity throughout the training in
order to gain a better insight into the learning process.

The outcome of the training process consists of a set of
policies (each one resulting from a different training run),
that need to be properly evaluated. The next and final step
of the proposed methodology addresses how this can be ac-
complished.

Evaluation
In the context of traffic light control, several performance
metrics have been proposed: travel time, waiting time, num-
ber of stops, queue length, throughput, as well as gas emis-
sions and fuel consumption. From all these metrics, the min-
imization of the travel time is usually the main goal in the
development of ATSCs, therefore, it is arguably the most
important metric to report. Since algorithms are usually un-
able to directly optimize the travel time, it is useful to report
additional metrics that are more closely related with the for-
mulated agent’s objective (the reward function, in the case
of RL agents), such as the queue length or waiting time.

It is important to run some baseline algorithms, such as
the Webster or Max-Pressure methods, under the same sce-
nario. These runs are of extreme importance since they allow
to compare the performance of the RL controller(s) against
well-established, commonly used traffic engineering meth-
ods.

Performance estimation. In order to adequately compare
the different approaches, it is important to assess the perfor-
mance of the alternative proposals with a set of accordingly
seeded simulations in order to rule out any influence of the
simulation seeds in the results. For the baseline algorithms,
this can be achieved by simply running multiple evaluation
simulations. With respect to the RL agents, each of the poli-
cies that resulted from the training stage should be evaluated
with a set of evaluation rollouts and, if posteriorly needed,
the results aggregated per policy.

Performance analysis & comparison. The simplest and
most straightforward way to present and compare the perfor-
mances of the different methods is through point estimation,
for example by reporting the mean and standard deviation
of the travel times observed for a set of evaluation rollouts.
While this is commonly used in the ATSC domain, some-
times it exists a big overlap in the reported performance
metrics between different methods, thus, it is important to
understand whether the observed differences are statistically
significant or not.

5A gridlock occurs when a queue from one bottleneck creates
a new bottleneck somewhere else, and so on in a vicious cycle that
completely stalls the vehicles’ circulation (Daganzo 2007).

Figure 3: SUMO screenshot of the considered intersections,
near Marquês de Pombal square, in Lisbon. Scenario 1 com-
prises only the left-most intersection whereas scenario 2 is
composed of all three pictured intersections. Phase 1 allows
the movement of vehicles in the vertical direction whereas
phase 2 allows the movement in the horizontal direction.

A better insight into the performance of the methods can
be achieved by plotting the distributions of the travel time
means for each of the methods, however, in order to ro-
bustely draw conclusions from the observed performances
it is proposed the use of statistical hypothesis testing (Ross
2004). Specifically, we are firstly interested in trying to un-
derstand whether two or more population means (the per-
formance metrics of the different methods) are equal. It is
highly likely that the previous hypothesis is rejected, there-
fore, post hoc comparisons need to be performed in order to
understand between which mean pairs exists a statistically
significant difference. In order to perform such evaluation,
it is proposed the use of the (one-way) ANOVA test, fol-
lowed by the Tukey Honestly Significant Difference (HSD)
test for post hoc comparisons. Unfortunately, the previous
tests make some assumptions related with the data distribu-
tions that not always hold. Therefore, it is worth checking
whether the assumptions are met, and if not, to switch the
aforementioned tests with their respective non-parametric
versions.

As a complementary analysis, it might be interesting to
plot histograms for the performance metrics as most of the
times, mean values may not be well representative of the
underlying distributions.

Experiments
We now illustrate the application of the previously described
methodology by developing a DQN-based ATSC for two
real-world scenarios in Lisbon, Portugal.

Pre-processing
For the purposes of this work, two real-world scenarios in
the Lisbon metropolitan area are considered: scenario 1 con-
sists of a single intersection, whereas the second scenario
consists of a set of three consecutive intersections. The two
scenarios were extracted from OPENSTREETMAP by fol-
lowing the previously described steps. The JOSM editor was
used to further crop, rotate and resize the area of interest.
The resulting SUMO environment is shown in Figure 3. The
considered demands are time-constant and proportional to



the number of lanes. The routes are weighted using the pre-
viously described synthetic procedure.

MDP formulation and RL approach
We adopt a simple approach where an RL agent controls
a single intersection, ignoring the existence of other agents
in neighboring intersections (Abdulhai, Pringle, and Karak-
oulas 2003). In other words, each individual agent is mod-
eled using an MDP that considers only the traffic informa-
tion in the intersection controlled by that agent.

In each intersection, the signal cycle length is fixed to
60 seconds, and the yellow time to 6 seconds. At the begin-
ning of each cycle, the controller is able to pick the signal
plan to be executed throughout the next cycle, from a set
of predefined signal plans. In our case, all intersections are
composed of two phases. More precisely, the action space
consists of a discrete set of 7 signal plans {0: (30%, 70%), 1:
(37%, 63%), 2: (43%, 57%), 3: (50%, 50%), 4: (57%, 43%),
5: (63%, 37%), 6: (70%, 30%) }, where the first and second
elements of each tuple correspond, respectively, to the phase
split of phase 1 and phase 2. With this action space defini-
tion, adjacent traffic controllers can be easily synchronized
and a minimum green time is guaranteed for all phases, eas-
ily ensuring that all safety standards are met.

The state s, at cycle c is represented by the tuple (w1, w2),
where wp is the cumulative number of vehicles waiting, or
navigating at low speeds, in phase p, and can be computed
according to:

wp =
1

K

K−1∑
k=0

∑
l∈Lp

∑
v∈V k

l

stopped(v, k), (5)

where K is the cycle length in seconds (fixed as K = 60),
Lp is the set of all inbound lanes to phase p, and V k

l is the
set of vehicles on l lane at time k. A vehicle is said to be
stopped when it has a very low speed:

stopped(v, k) =

{
1 speed(v, k) < threshold
0 otherwise

(6)

where the used threshold corresponds to 10% of the maxi-
mum velocity and all vehicles’ speeds are normalized as to
belong to the interval [0, 1].

Finally, we use an action-independent reward function de-
fined, for a state s = (w1, w2) in intersection i and cycle c
with phases P , as:

r = −
∑
p∈P

wp (7)

The reward in Eq. (7) consists of the (negative) sum of
the total amount of seconds the vehicles have been stopped
during the cycle. We use γ = 0.95.

Training
We ran 30 independent training runs. Figures 4 and 5 dis-
play, respectively, the mean actions selected during training
and the observed instantaneous rewards. As it can be seen,
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Figure 4: (Scenario 1) Mean actions.
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Figure 5: (Scenario 1) Instantaneous rewards.

the agent’s actions converge towards lower-indexed signal
plans, which can be justified by the intersection’s struc-
ture (Fig. 3): the horizontal direction serves more vehicles,
therefore the agent converges towards lower-indexed actions
which allocate a longer period to this phase. As the actions
converge it is noticeable an increase in the observed instan-
taneous rewards.

The outcome of the training stage consists of 30 policies
that need now to be properly assessed.

Evaluation
Finally, the performance of the resulting agents is evaluated
using a set of performance metrics: travel time, waiting time
and vehicles’ speed. Tables 1 and 2 display the evaluation
metrics for different traffic signal controllers. The actuated
controller dynamically extends the current phase, up to a
maximum value, if a continuous stream of incoming vehi-
cles is detected.

With respect to scenario 1 (Tab. 1), the results show that
the RL controller is able to achieve the highest average
speed, outperforming all the other controllers. With respect
to the travel time metric, the RL agent is able to outperform
the Webster method and equal the performance of both the
best static controller and the actuated method. However, the
agent is unable to outperform the Max-Pressure controller,
but it is important to notice that this method exhibits a higher
degree of flexibility in comparison to the RL agent since it
is acyclic.

Regarding the second scenario (Tab. 2), the RL agents are
again able to achieve the highest average speed. Regard-
ing the travel time, it can be seen that the RL agents are



Method Speed Waiting time Travel time
Static (6.7, 3.5) (8.1, 9.9) (25.0, 12.5)

Webster (6.6, 3.4) (8.2, 9.7) (25.4, 12.4)
Max-pressure (6.5, 2.8) (5.7, 6.5) (23.4, 9.0)

Actuated (6.7, 3.4) (7.8, 10.2) (24.9, 12.8)
RL controller (6.8, 3.5) (8.0, 10.1) (25.0, 12.6)

Table 1: (Scenario 1) Evaluation metrics aggregated per ve-
hicle’s trip (averaged over 30 simulations). The first tuple
position encodes the mean value; the second tuple position
encodes the standard deviation.

Method Speed Waiting time Travel time
Webster (6.3, 2.7) (12.0, 12.0) (38.6, 14.7)

Max-pressure (5.8, 2.2) (9.0, 7.0) (42.3, 18.6)
Actuated (5.6, 2.5) (11.6, 10.5) (45.5, 22.0)

RL controller (6.3, 2.8) (12.2, 10.9) (39.1, 15.5)

Table 2: (Scenario 2) Evaluation metrics aggregated per ve-
hicle’s trip (averaged over 30 simulations). The first tuple
position encodes the mean value; the second tuple position
encodes the standard deviation.

able to outperform the actuated method as well as the Max-
Pressure controller, despite the fact that these methods are
able to achieve a significantly lower waiting time. This hap-
pens due to miscoordination between the adjacent intersec-
tions for both the actuated and Max-Pressure methods (due
to their acyclic behaviour).

Fig. 6 displays the distribution of the travel time means
for scenario 1. As it can be seen, there is a significant overlap
in performance between the different methods. Furthermore,
despite the fact that the ANOVA test yields a p-value of ≈ 0
(meaning that, indeed, the mean performance of all meth-
ods is not the same), the Tukey HSD pairwise tests show no
significant difference in mean performance between some
methods. Namely, between the actuated, static and RL con-
trollers, the confidence interval on the means’ difference ei-
ther includes zero, or its bounds are close to it.

Finally, Fig. 7 displays the distribution of the vehicles’
speed per trip. Interesting to notice the multimodal shape of
the underlying distributions, as well as the slight differences
between the different methods.

Conclusions
In this paper, we proposed a methodology for the devel-
opment of RL-based adaptive traffic signal controllers. The
proposed methodology comprises 4 steps, all of which nec-
essary to develop, deploy and evaluate an ATSC — simula-
tion setup, problem formulation, training and evaluation. We
illustrated the proposed methodology by developing a deep
RL-based ATSC that achieves performance on par with es-
tablished methods from the transportation engineering field.
Despite the fact that the flexibility of the agent is con-
strained in order to met safety standards, the presented re-
sults glimpse at the potential of RL-based controllers to con-
tribute to improve traffic congestion and highlight the need
for coordination between adjacent intersections. Finally, we
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Figure 6: (Scenario 1) Kernel density estimation of the travel
time means, computed using 30 samples for each of the
methods.
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Figure 7: (Scenario 1) Kernel density estimation of the ve-
hicles’ speeds, computed using 30 samples for each of the
methods.

note that the advantages of RL-methods are more apparent in
scenarios comprising bigger traffic networks and more vari-
able traffic patterns, something that could be considered in
future work.
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