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Abstract—Several studies indicate that poor requirements
practices, that result in incomplete or inaccurate requirements,
poorly managed requirement changes, and missed requirements,
are the most common factors in project failure. Possible solutions
for better requirements definition include better requirements
documentation, and requirements reuse. In this paper, we present
a novel application of machine learning and active learning to
classify the requirements of a given dataset. This approach can
accelerate project development. By organizing the requirements
into categories, developers can easily see what requirements were
already implemented, and where they need to focus on the next
step of development.

Index Terms—Requirements, Agile Development, Machine
Learning, Natural Language Processing, Active Learning

I. INTRODUCTION

Poor requirement practices are the main issue related to
Project Failure. Incomplete or inaccurate requirements, poorly
managed requirement changes, and missing requirements are
common problems found in projects developed with agile
methodologies [1]. Solutions include increasing the quality
of existing requirements documentation, reusing requirements
from previous projects, and “creating” requirements where
there are none [2].

Another issue is the abundance of unorganized, unclassi-
fied requirement data. It would be ideal for the evolution
of a company if it could restructure and polish existing
requirements. Through Machine Learning (ML) and Natural
Language Processing (NLP), we can process, categorize and
organize the existing requirements so that they can be reused.

ML practices are all about understanding data patterns on
a larger scale. With millions of projects every year, ML
can make a real contribution in recognizing different types
of requirements and connections between them. NLP is an
invaluable field of linguistics and computer science, that has
driven forward communication between human and machine.
The contributions of this field are what makes it possible for
computers to process and analyze large amounts of natural
language data. With the help of NLP techniques, we can cor-
rectly extract and transform textual requirements into formats
that ML algorithms can utilize to the fullest. This will encour-
age companies to adopt proper requirements principles and
techniques and thus improving software evolution. However,

manually classifying the existing data is a very costly, time-
consuming process [3]. Active Learning (AL) is a way to
significantly reduce this cost and do it in a more efficient and
less laborious way. AL is founded on the notion that actively
requesting information to label the training set can be more
time and cost efficient than labelling the entire set by hand. Our
goal is to take a list of unorganized, unclassified requirements
and turn it into a usable list of requirements that can be easily
understood and enhanced.

II. BACKGROUND

Here we introduce the main topics of this work. Machine
Learning is a branch of Artificial Intelligence (AI) that focuses
on pattern identification and data analysis. It builds on the
idea that systems can use existing data to improve their
performance. In this work, we will focus on Supervised
Learning approaches, where data being studied are already
labelled. Classification is a Supervised Leaning process that
approximates a mapping function (f ) from input variables (x)
to discrete output variables (y). The discrete output values are
often probabilities that are used in the classification process to
separate a dataset into discrete categories. The Naı̈ve Bayes
classifier is the ML method used in this paper.

Active learning [3] is a subfield of AI and machine learning.
AL is founded on the notion that actively requesting informa-
tion to label the training set can be more time and cost efficient
than labelling the entire set by hand. A key driving factor for
using AL is that there is often an abundance of unlabeled
real-world data that we can feed into the classification pro-
cess. Active Learning systems can use uncertainty sampling
methods (or strategies) to choose which data to present to
the ”oracle” for labelling. We employ three AL strategies in
this work: Least Confident (LC), Margin Sampling (MS), and
Entropy Measure (EM). LC is the simplest of the strategies.
In this case, the algorithm chooses the instances for which
the learner is least confident in its most likely label. The
most uncertain their classification is, the more likely they will
get chosen to be incorporated into the training set. MS is a
strategy where the learner picks the instances with the smallest
difference between most probable and second most probable
classification. It hones on uncertainty between classifications.
EM is the case where the learner calculates the entropy



measure of the probabilities associated with each instance and
selects the instances with the highest entropy.

NLP is a sub-field of Computer Engineering, Data Science,
AI and Linguistics that focuses on bridging the gap between
computers and natural languages. Text preprocessing is an
important step in NLP, because it transforms text into formats
that are better processed by ML algorithms [4]. Without
it, ML algorithms have a hard time understanding human
speech patterns and very high error rates. Text preprocess-
ing is comprised of three main components: Tokenization;
Normalization; and Noise Removal. Tokenization is the task
of dividing character sequences (like phrases or paragraphs)
into tokens. Text Normalization aims to regularize the text,
by transforming it to a single canonical. Examples of text
normalization include converting characters to lowercase or
transforming abbreviations to their normal form. Finally, Noise
Removal consists of cleaning up text, for example, by remov-
ing extra white spaces.

III. RELATED WORK

In [5], the authors present an automated tool for identifying
conflicts in aspect-oriented requirements specified in natural-
language text. Similarly to our work, they use the Naı̈ve Bayes
classifier to classify textual data. However, they do not use
this tool to categorize requirements into classes such as ”Func-
tional” and ”Non-Functional” (NF), but instead into ”Conflict”
and ”Harmony”. Two or more requirements are labeled as
”Conflict” when they present a conflicting dependency, or
”Harmony” when they interact harmoniously. Also, they do
not use an AL as we do. It is worth noting that they mention
that they needed a human annotator to label each example,
and that was a very time-consuming process.

The work in [6] is focused on a data-driven approach to
risk management in Requirements Engineering (RE). They
aimed at predicting RE problems, their causes and their
effects. For this purpose, they trained a series of Bayesian
Networks to model cause-effect relationships that characterize
the dependency between the three. They used data from the
NaPiRE project, which offers survey data on RE practices.
They focus on the risk management angle of RE whilst we
focus on the documentation aspect of RE. We share the same
goal, which is to decrease the rate of project failure. In their
case, they accomplish that by finding the causes behind RE
problems, while in our case we wish to possibly increase the
quality of documentation by classifying existing requirements.

In [7], the authors propose the use of interpretative ML
classifiers for RE. They used 8 datasets, of which they manu-
ally classified 1,500+ requirements. Some of these datasets
were already classified, and were used to train and test
other requirement classification approaches. In contrast, our
approach to requirements classification is more flexible. as it
is tailored for situations where there is no systematic collection
and classification of requirement, and we have to work with
very small datasets. Additionally, the author’s approach for
manually classifying requirements was time-consuming.

In [8], the authors reviewed 24 ML approaches for the
identification and classification of NF requirements. In these
approaches they studied 16 different ML algorithms. A key
difference from our work is their focus on classes of NF
requirements. Our approach is capable of classifying require-
ments into Functional, NF and other, user defined classes. In
their review, the only ML algorithm that used AL techniques
was S21. The work in [9] presents a process for automatically
classifying requirements gathered through crowd-sourcing.
Here, the authors were faced with the same issue we had
to contend with, an unorganized and unclassified dataset. As
with the other ML algorithms analyzed in [8], they classify
user requirements into NF types. This is a much more limited
usage of the classification process than the one we employ.
In their case, they apply AL to reduce the number of labeled
data required to train a classifier. They did not use AL to its
full potential, as that was not the focus of their work.

The work in [10] approaches the concept of incorporating
Active Learning in app review analysis. In this context, app
reviews are descriptions users send in about their interaction
and experience with an app. The authors intend to use AL to
reduce the human effort involved in the process of analysing
these reviews. They concluded that active learners are more
effective than passive learners for their classification tasks.
Their application of AL is similar to our own, an iterative
process, with a small, random sample of data for initialization.
Additionally, the AL strategies they employ are also the same,
Least Confidence, Entropy and Margin Sampling. The biggest
difference between this work and ours is its purpose. They
intended to create an ML algorithm capable of classifying
app reviews. For this, authors created four classes: ”feature
request”, ”bug”, ”user experience”, and ”rating”.

IV. APPROACH

In different levels of abstraction (e.g., business, user, sys-
tem) we can find Functional and Non-Functional requirements
(NFRs). As these are common types of requirements, we used
them as our main classes. Figure 1 shows an example of a
requirements classification. If we map these requirement types
into ML classes, we can categorize requirements into those
classifications. We use text classification, with a Bayesian
classifier, to calculate the probability of each requirement
belonging to each class. The class with the highest probability
is chosen for each requirement.

A. The MARE Process

In this section, we present the MARE process, which is
a novel application of ML and Active Learning to classify
requirements. The process can be described as follows:

1) Retrieve and clean the data in order to create the dataset
of unlabeled instances;

2) Separate data into Training Set and Test Set;
3) Create a Training Batch with N entries from the

Training Set;
4) Label the unlabeled instances in the Training Batch

manually;



Fig. 1. Visual representation of categorizing requirements with ML

5) Train the Naı̈ve Bayes Classifier with the Training
Batch;

6) Classify the Test Set and the rest of the Training Set
using the Naı̈ve Bayes Classifier;

7) Use an Active Learning strategy to select the N
unlabeled instances from the Training Set that will
enter the Training Batch;

8) Repeat the process from 4 to 7 until stopping criteria is
true or there are no more entries in the Training Set.

We will explore the first step in depth, to explain the data
we are working with. Our dataset comes from a company
that develops websites and apps. These requirements were
extracted from the company’s agile project development logs
on Trello (a project management tool). We extracted each of
the company’s projects on Trello into a CSV file, that we
then cleaned and manually classified. There were 1293 text
entries in the final document, but only 436 were considered
requirements. Whilst the MARE process includes a step where
we ask a human to only label N instances at each iteration,
for testing purposes we ended up labelling the entire set
to evaluate the performance of the AL strategies. Then we
separated our data into two datasets. The first dataset contained
all 1293 text entries, and the second one contained only the
436 entries that were considered requirements. We used the
first dataset to test how well our approach could separate
requirements and non-requirements, and the second one to
sort requirements into classes and sub-classes.

For our requirement sorting dataset, we came up with 4
functional requirements sub-classes, and 7 NFRs sub-classes;
hence, 11 sub-classes in total. Unlike NFRs, there are no
common sub-classifications for functional requirements. In this
case, it made sense to create subcategories based on common
traits in the company’s projects. Taking into account that the
company is involved with website and application develop-
ment, the sub-classes we created are Information Update,
Information Retrieval, Registration and Site Feature, described
as follows:

• Information Update (IU) refers to requirements for
changing information, e.g., “User edit profile name”.

• Information Retrieval (IR) refers to requirements for
downloads and auto-fill, e.g., “Fetch feed from Firebase”.

• Registration (R) requirements are those that deal with
registration and login functionalities, e.g., “Add login

through Facebook”.
• Site Feature (SF) requirements deal with site organiza-

tion and functionality, e.g., “Button for editing a post”.
The 7 NFRS subcategories selected from the dataset are:
• Performance (PE) refers to requirements for the quality

of the application or website, e.g., “Reduce loading time”.
• Legal (LE) refers to requirements that deal with laws,

e.g., “Implement cookie policy”.
• Portability (PO) requirements are those for devices

changes, e.g., “Use accordion tabs on mobile devices”.
• Maintainability (MA) refers to requirements that deal

with documenting for ease of future development, e.g.,
“Add pagination to archives”.

• Security (SE) refers to requirements for securing data,
e.g., “Restrict profile role list based on user role”.

• Operational (OP) refers to requirements that specify
how a certain feature should be implemented, e.g., “Set
maximum number of words on services content”.

• Usability (US) refers to requirements for ease of use,
e.g., “Increase font size when creating a new post”.

Fig. 2. Data Distribution of our dataset

Figure 2 shows how the requirements were sorted into each
classification. As we can see in the figure, there are a total of
190 Functional requirements and 246 NFRs. Note that these
classes were imbalanced, especially when we consider the
sub-classes, which had a profound impact on the accuracy of
our classification algorithm. With the dataset, the goals of our
empirical evaluation was to: create a classifier that can classify
requirements using a Bayesian classifier; find the amount of
data points that are required to train the classifier; test different
Active Learning strategies (explained in the next section). To
accomplish these objectives, we created a step by step process.

Figure 3 shows the classification algorithm. To begin with,
we shuffle the dataset, then split it into a Train Set and a
Test Set. We take the first N requirements from the Training
Set to create a Training Batch and give these N requirements
to a human for labeling. We use this labeled Training Batch



to train the Naı̈ve Bayes Classifier. With this classifier, we
classify the Test Set, calculate and store the accuracy of
this classification. If the stopping criteria is not reached, the
algorithm classifies the rest of the Training Set. The stopping
criteria can be an accuracy threshold the algorithm achieved,
or a fixed number of batches, or a lack of significant increase
in the accuracy of X number of batches.

Fig. 3. General MARE Process for Classification

We then use an Active Learning strategy to pick out N
more requirements to join our Training Batch. A key goal of
adding more requirements is to see if the classifier improves
its accuracy when tested with the test set. Then we start the
process of training the Naı̈ve Bayes Classifier again, and this
loops until the stopping criteria is reached. When this occurs,
the algorithm ends, and a new run begins. In the case of our
first dataset (the one with 1293 entries), our Training Batches
incremented in 80 entries at a time (N=80), and in the case of
our second dataset (with 436 entries) it incremented in batches
of 20. In both cases, our stopping criteria was to stop when
the size of the Training Batch was equal to the size of the
Training Set. We did this to test the Active Learning strategies
(LC, MS, and EM) and compare them with the classical ML
approach of training the classifier with the entire Training Set.

Fig. 4. Dataset segmentation and usage.

Figure 4 shows how the requirements dataset is divided and
used throughout the algorithm. It follows a fictional example
where there are 130 requirements in a dataset. That dataset is
split into a Test Set with 30 requirements and a Training Set
with 100 requirements. The stopping criteria for this example
is that the size of the Training Batch is equal to the size of
the Training Set. In the first line in the figure (marked with

the number 1), we separated the first 20 requirements of the
Training Set into our first Training Batch. The blue rectangle
is our Training Batch, comprised of 20 requirements, and
the orange rectangle to the right represents the rest of the
Training Set, with 80 requirements. We train the classifier
using the Training Batch, and use it to classify the rest of
the Training Set and the Test Set.

In the second line, we add 20 more requirements into the
Training Batch, meaning it now has 40 requirements, and the
part of the Training Set we will classify drops down to 60
requirements. This pattern continues until the Training Batch
is of the same size as the Training Set. Once the Training
Batch has all 100 requirements, it classifies only the Test Set
and ends that run of the code.

Active Learning is a process where the ML algorithm
chooses how new data should be incorporated into the training
set. From the classifier’s and AL’s perspective, the initial state
of the training set has no labels and you only add the labels
when you add a new batch (that is why it is easier to say that
every time you add a new batch, a human adds the labels or
classifies the requirements).

One of our goals was to see how accurate the Naı̈ve Bayes
classifier was with different sizes of the Training Set. We
divided it into Training Batches, using AL strategies, because
it allowed us to grow the training set in a smarter way. AL
strategies do this by automatically classifying and sorting the
data that is neither in the training set nor in the test set
according to different parameters. The AL strategies we used
were LC, MS and EM.

To test how effective the Active Learning strategies are, we
created a Random learning strategy that chooses the next 20
requirements to enter the training batch at random. This is to
be used as a baseline, so that we can compare this random
strategy against the Active Learning strategies.

Taking the example in Figure 4, we will describe how the
same process looks like when we take into account the 3
different Active Learning strategies and the random selection.
Figure 5 shows an example of how the first two Training
Batches might be formed. The first batch is the same for
all the Active Learning strategies and the random selector.
It includes the first N requirements of the Training Set. The
second Training Batch includes the previous batch, as well
as the requirements that each AL strategy algorithm chose.
We can see in the figure that all the different strategies chose
different requirements to add into the 2nd Training Batch.

Fig. 5. How each Active Learning Strategy creates different Training Batches



V. EVALUATION

This section is divided into two subsections, one for the
separation of Requirements and Non-Requirements and the
second for sorting Requirements into classes and sub-classes.
We analyze the mean results for 30 runs of our code. Our aim
here is to see how Active Learning can improve the classifica-
tion performance. We compare the results achieved via Active
Learning with the ones achieved with with classical Machine
Learning approach. To do this, we trained the classifier with
the entire Training Set and using it to classify the Test Set.
The mean accuracy results for this approach appear in the
tables under the name “Classic”. The results for each Active
Learning strategy appear under their names (i.e., LC, MS, EM)
with the addition of the Random selection process and the
Balanced selection process. The Balanced selection process
was applied only in the first dataset, and it is a strategy where
every batch contains 40 entries of either class. Since there are
857 non-requirements and 436 requirements in this dataset,
and we have a Test Set with 173 entries, there are no more new
“requirement” entries to the Training Batch after it reaches a
size of 720 requirements.

A. Separating Requirements and Non-Requirements
In this subsection, we will analyse the results achieved when

separating the 1293 original text entries into requirements and
non-requirements. We start with the mean accuracy.

Fig. 6. Mean accuracy for separating requirements and non-requirements

Figure 6 shows the mean accuracy per training set size. We
can see that the “Classic” Machine Learning approach achieves
a mean accuracy of 67%. The LC and MS Active Learning
strategies reached this threshold quicker than the Random,
Balanced and EM. In fact, we can see that the Balanced
strategy achieved surprisingly poor results.

For our classification problem it is much more impor-
tant that the algorithm correctly selects the “requirements”
than the “non-requirements”. If it incorrectly classifies “non-
requirements” as “requirements”, they are easily classified as
“non-requirements”, by a human, later down the line. So we
would like to see more True Positives (requirements classified
correctly) and False Positives (non-requirements classified as
requirements). We would also want to keep the number of
False Negatives (requirements classified as non-requirements)
low for this same reason.

Fig. 7. Mean precision for separating requirements and non-requirements

Figure 7 shows the mean precision per training set size.
Precision measures how many Positive class predictions actu-
ally belong to the Positive class. We considered the “require-
ment” class to be Positive and the “non-requirement” class as
Negative. Here, precision quantifies how many instances that
where correctly classified as “requirements”. We can see that
the classic approach reaches a precision level of 53% with
a Training Set with 1120 entries. Once again, the LC and
MS strategies reach this threshold quicker than the others, and
we can see that the Balanced strategy performs very poorly.
This indicates that the algorithm has difficulty in recognizing
instances from the “requirement” class.

Figure 8 shows the mean recall per training set size. Recall
measures how many “requirements” where classified as “non
requirements”. If there are many False Negatives, recall is low.

Fig. 8. Mean recall graph for separating requirements and non-requirements

B. Sorting Requirements into Classes and Sub-classes

Here we will analyse the results achieved when sorting
the 436 requirements into classes and sub-classes. We will
show two graphs, one with the accuracy results for the classes
(Figure 9), and another for the sub-classes (Figure 10).

Figure 9 shows the mean accuracy results per training set
size. The “Classic” Machine Learning approach achieves a
mean accuracy of 73%. All the Active Learning strategies
achieve similar results. They climb steadily towards the same
accuracy as the “Classic” approach, but the ”LC” and ”EM”



Fig. 9. Mean accuracy graph for sorting requirements into classes

strategies reach it in 280-300 requirements, and they even
surpass these results. If we take into consideration that there
are two classes, these are not excellent results. But we must
also consider the inherent difficulties tied to this dataset.
Firstly, the training set is very small (360 entries). Secondly,
the dataset is comprised of entries in two languages, with
some entries mixing the two in one sentence. Also, on average,
each requirement is comprised of 8 words. For a text-based
algorithm, all of these factors combined are a big challenge.
Despite these difficulties, we can show that the LC reaches
the 70% accuracy with only 200 requirements (i.e., 55.55% of
the dataset), which shows that the Active Learning strategies
are a promising approach for requirements classification.

Fig. 10. Mean accuracy graph for sorting requirements into sub-classes

Finally, Figure 10 presents the mean accuracy results for
sorting the requirements into sub-classes. The “Classic” ap-
proach achieves a mean accuracy slightly below 45% and none
of the Active Learning strategies were able to reach the same
value. Between the Active Learning strategies, ”LC” and ”MS”
achieve the best results. Here, the dataset presents the same
difficulties encountered in the previous classification problem,
including an unbalanced dataset issue. As mentioned in the
Approach section (IV), the number of requirements belonging
to each sub-class vary wildly, from 9 to 112 requirements.

VI. CONCLUSIONS

This paper offers the groundwork for creating an ML
approach capable of categorizing requirements with minor

human involvement, with varying levels of abstraction (cate-
gories and subcategories) for system documentation purposes.
We extracted requirements from agile development projects.
We cleaned and labelled these requirements in order to create
two datasets. We applied a classic ML text classification
algorithm and tested how it performed on both datasets.
We implemented an Active Learning framework, including
3 Active Learning algorithms (i.e., LC, MS, and EM). We
tested how well the Active Learning system and algorithms
performed for both of our datasets. The method of classifica-
tion is useful for the identification and reuse of requirements
for applications in a given domain, and particularly in the
context of agile development like the one the company we
worked with employs. It helps to organize and better document
requirements, where before they where disorganized to the
point where they were nestled in with non-requirement data.

There is a lot of work ahead in order to create a fully
fledged system capable of categorizing requirements with
minor human involvement, with varying levels of abstraction.
Firstly, it is necessary to create and test new requirement
datasets. Bigger requirements datasets are preferred, especially
in order to properly test the Active Learning system.
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