
Online Learning for Conversational Agents

Vânia MendonçaB, Francisco S. Melo, Lúısa Coheur, and Alberto Sardinha

Instituto Superior Técnico and INESC-ID,
Av. Prof. Doutor Ańıbal Cavaco Silva, Porto Salvo, Portugal

{vania.mendonca, luisa.coheur, jose.alberto.sardinha}@tecnico.ulisboa.pt,
fmelo@inesc-id.pt

Abstract. Agents relying on large collections of interactions face the
challenge of choosing an appropriate answer from such collections. Sev-
eral works address this challenge by using offline learning approaches,
which do not take advantage of how user-agent conversations unfold.

In this work, we propose an alternative approach: incorporating user
feedback at each interaction with the agent, in order to enhance its abil-
ity to choose an answer. We focus on the case of adjusting the weights
of the features used by the agent to choose an answer, using an online
learning algorithm (the Exponentially Weighted Average Forecaster) for
that purpose. We validate our hypothesis with an experiment featuring
a specific agent and simulating user feedback using a reference corpus.
The results of our experiment suggest that the adjustment of the agent’s
feature weights can improve its answers, provided that an appropriate
reward function is designed, as this aspect is critical in the agent’s per-
formance.

Keywords: Online learning; Exponentially Weighted Average Forecaster;
Conversational agents

1 Introduction

Several agents rely on large collections of data from where to get their answers
(e.g., TV drama scripts [11], Twitter interactions [5], movie scripts [4] and sub-
titles [1, 15]). Using such large collections makes these systems more likely to be
able provide an answer to a variety of potential requests.

Given a considerably large collection of interactions (each interaction being
composed of a trigger and an answer), the challenge lies in how to select an
appropriate answer from this collection. Several works address this challenge by
modelling human-agent conversations using offline learning approaches [18, 21,
22, 13]. Approaches of this sort have the downside of not taking advantage of how
user-agent conversations unfold. An alternative approach would be to incorpo-
rate user feedback in an attempt to enhance the system’s ability to choose an
answer at each interaction, as discussed by [7]. This approach has been followed
by several works in the task of choosing a dialogue strategy, achieving promising
results [12, 19, 9, 17, 20, 23]. These works formulate their problems as a Markov

2

Decision Problem and apply reinforcement learning techniques to learn policies
from user feedback (either simulated or from real users).

In this work, we focus on the following scenario: given a user request, an
agent retrieves a set of candidate interactions from its source of data, and then
applies a set of weighted features to those candidates in order to choose the
most appropriate answer to the request. Our hypothesis is that, if these weights
were iteratively adjusted considering user feedback at each interaction, the agent
would be more capable of retrieving an appropriate response. In this scenario,
and unlike the works mentioned above, we do not explicitly model states, as there
is only one state. Moreover, there is feedback for each of the agent’s possible
actions. Therefore, we propose the use of an online learning algorithm suitable
for this kind of scenario: the Exponentially Weighted Average Forecaster [14].

To validate this hypothesis, we devised an experiment using an existing di-
alogue engine, Say Something Smart (SSS) [1, 15]. Given a user request, SSS
retrieves a set of candidate interactions from a corpus of interactions based on
movie subtitles, and chooses the answer from the most voted interaction ac-
cording to a set of weighted criteria. We compare the performance of weights
iteratively adjusted based on feedback against the performance achieved by dif-
ferent sets of fixed weights, using a reference corpus of actual movie dialogues
to simulate user feedback.

2 Related Work

In order to be more robust to a variety of user requests, several works on con-
versational agents and dialogue systems rely on large collections of data from
where to get their answers. The system by Lasguido et al [11] uses a corpus of
TV drama series and retrieves the candidate answers from the dialogues that
are most similar to the input in terms of syntactic and semantic features. In
Bessho et al [5], a corpus of Twitter interactions is used as the main source
of candidate answers (when it cannot find a candidate within that corpus, the
system delegates the request to a crowd to get a response in real time). The
IRIS chatbot [4] provides answers based on a corpus of interactions extracted
from movie scripts (Movie-DiC [3]). The Filipe chatbot, based on the dialogue
system Say Something Smart (SSS) [2, 15], follows a similar approach, but using
a corpus of movie subtitles instead (Subtle [1, 15]). Finally, the TickTock chat-
bot [24] incorporates crowdsourcing of the appropriateness of responses present
in the corpus.

While the strategy of relying on large amounts of data allows these systems
to provide diverse responses to most requests, these might not always be the
most adequate. Some works deal with this challenge by modelling human-agent
conversations, employing to this end diverse deep learning representations. This
is the case of the works presented by Serban et al [18], in which the system
learns offline to emulate the training dialogues, Xu et al [21], whose system
incorporates loose-structured domain knowledge in order to capture semantic
relevance between sentences in a conversation, Yao et al [22], who propose a

3

neural conversation model that models the intention across turns and produces
specific responses from scratch, and Li et al [13], who address the issue of the
consistency of the agent’s responses within a dialogue.

The aforementioned works depend on previous offline training and, in some
cases, they rely on domain-specific knowledge; moreover, the machine learning
representations they use might be too costly to be efficiently deployed and scal-
able to realistic settings. As such, several works focus on the use of learning
strategies that incorporate feedback, which allows to improve the systems at
each user-agent interaction, as discussed by Cuayáhuitl & Dethlefs [7]. Below we
present a brief description of such works.

Levin et al [12] follow an hybrid approach by combining supervised learning
(to estimate the model of the user) with reinforcement learning, simulating a
user interaction with the system, to learn the weights in the system’s objective
function (an application similar to our scenario).

Singh et al [19] take a two-step approach: first, they train the system by
having it interacting with users, in order to use the resulting dialogues to build
a Markov Decision Problem (MDP); then they use reinforcement learning to
obtain the optimal dialogue policy for the built MDP. This policy outperformed
several standard policies in the experiment reported.

Gašić et al [9] use reinforcement learning to learn a dialogue policy directly
from human interaction, using a reward signal provided by users at the end of
each dialogue. the authors compared this approach with the use of a random
policy and an offline one in an experiment with humans. They collected the first
680 dialogues and observed that the online approach significantly outperformed
the random policy and was not significantly inferior to a offline trained policy.

Pietquin et al [17] use reinforcement learning (both online and batch ap-
proaches) to learn an optimal policy as the system interacts with (simulated)
users, with the online approach obtaining the best results.

Su et al [20] seek to simultaneously optimize both the dialogue policy and the
reward model of their system by extracting the features of the previous dialogue
turn. The reward model estimates the success of that turn based on the extracted
features and, depending on the degree of uncertainty regarding that estimate,
the user is queried for feedback. This system achieved approximately 91% of
subjective success and an F-Score of 95% on the reward model evaluation.

In contrast to these works, Yu et al [23] address a scenario of non-task ori-
ented conversation. They use reinforcement learning to learn a policy from user
feedback, simulated using the chatbot A.L.I.C.E. in one experimental setting,
and coming from actual humans in another setting. The authors compared the
policy learned using reinforcement learning with both a random and a greedy
policy, and observed that it outperforms those policies in all metrics of interest
(turn-level appropriateness, conversational depth and information gain).

4

3 Learning from Feedback in a Conversational Agent
Scenario

Let us recall the scenario in hands: an agent receives a user request and looks for
an answer in a large collection of interactions (pairs trigger-answer). For each
request, the agent obtains a set of candidate interactions from that collection
and then applies a set of weighted features to those candidates in order to choose
the most appropriate answer to the request.

Our goal is to accommodate feedback in the process of selecting the weights
assigned to each of the features used to assess the quality of different candidate
answers. Ultimately, we are interested in the feedback provided by users, which
imposes two important requirements:

– The algorithm should learn incrementally from successive feedback, allowing
the performance of the system to immediately incorporate each piece of
feedback provided by users;

– The learning algorithm used should be fast at incorporating user feedback,
since user interactions are potentially expensive.

In light of the requirements above, we adopt an online approach, choosing
a standard sequential learning algorithm known as Exponentially Weighted Av-
erage Forecaster (EWAF), a generalization of the Weighted Majority algorithm
of Littlestone & Warmuth [14]. EWAF precisely addresses the two requirements
above: it has well-established performance guarantees, which include a bound
on how fast it converges [6]. We describe this algorithm in Section 3.1 how we
applied it to our scenario in Section 3.2.

3.1 The Exponentially Weighted Average Forecaster

EWAF addresses sequential prediction problems with expert advice. An expert
is defined as a function E : Ht → ∆(A) that, at each step t, maps the history
Ht of past events (we denote by Ht the set of all histories of events up to
time t) to a distribution E(Ht) over the set of alternatives A (we denote by
∆(A) the set of all distributions over A). A sequential prediction problem with
expert advice is then an iterated game between a predictor P and “nature”.
At each step t, the predictor has access to a set of experts E =

{
E1, . . . , EK

}
and observes the distribution over A proposed by each expert Ek ∈ E . It then
proposes a distribution P (Ht) over the set A. At the same time, “nature” selects
an element at ∈ A. Each expert Ek ∈ E incurs a loss

`kt =
∣∣Ek(Ht)− at

∣∣ (1)

and the predictor incurs a loss

`Pt = |P (Ht)− at| . (2)

5

The EWAF algorithm associates a weight ωk to each expert Ek ∈ E . Then,
at each step t, computes

PEWAF (a | Ht) =

∑K
k=1 ω

kEk(a | Ht)∑K
k=1 ω

k
. (3)

The weights ωk, k = 1, . . . ,K, are updated according to the loss incurred by
each expert as

ωkt+1 = ωkt e
−η`kt , (4)

where η is a parameter of the algorithm. By setting η =
√

8 log |E| /T it can be
shown that

T∑
t=1

`Pt − min
k=1,...,K

T∑
t=1

`kt ≤
√
T

2
log |E|, (5)

ensuring that the predictor P quickly reaches a performance similar to that of
the best expert [6].

3.2 Learning the Agent’s Feature Weights

The learning process can be formalized as follows. At each step t, the user for-
mulates a request u(t) to the agent. The user request is used to retrieve a set of
candidate interactions C(t) = {c1(t), . . . , cN (t)}. In order to choose an answer,
the agent will use K features. Each feature fk, k = 1, . . . ,K gives a score to
each candidate interaction cn(t) ∈ C(t). The “user” is provided with the high-
est scored candidate according to each feature, c(t)k = (T k, Ak), and evaluates
the quality of the respective answer with a reward rt(c(t)

k) ∈ [0, 1]. Finally, the
feature weights w1, . . . , wK are updated as a function of the reward rt(c(t)

k).
In order to apply the EWAF algorithm to the learning of the feature weights,

w1, . . . , wK , we associate with each feature fk an expert Ek, k = 1, . . . ,K as:

Ek(c | Ht) =

{
1 if c = argmaxc∈C(t) fk(C(t), c, u(t)).

0 otherwise.
(6)

In other words, each expert Ek selects the interaction c(t)k ∈ C(t) that
maximizes the feature fk. By setting

wk =
ωk∑K
k=1 ω

k
(7)

the agent’s selection criterion becomes that of PEWAF . Finally, by setting

`kt = −rt(c(t)k) (8)

we can use the EWAF weight update to adjust the weights wk associated with
each feature f1, . . . , fK . In particular, we update the weights considering the
sum of the rewards rkt received so far, Rk(1, ..., t), as shown in Equation 9:

6

ωk(t+ 1) = eηR
k(1,...,t) (9)

We compute η according to Equation 10 (in whichK is the number of experts,
U is the expected number of iterations – in this case, the number of input pairs
u –, and β is a configurable parameter).

η =

√
β logK

U
(10)

4 Evaluation

To evaluate our contribution, we start by defining the following research ques-
tion: Can iteratively adjusted weights outperform fixed weights?. As explained in
Section 1, our problem differs from those addressed in existing works in that we
do not explicitly model states and we have feedback for each of the agent’s pos-
sible action. Therefore, we cannot directly compare our contribution with those
from such works.

To address our research question, we set up an experiment in a concrete sce-
nario, using a reference corpus to simulate user input and feedback. We describe
our approach to account for user feedback in Section 4.1; we present our choice
for the scenario and reward function in Section 4.2; we describe the procedure
followed in our experiment in Section 4.3, and then we present and discuss the
results obtained in Section 4.4.

4.1 Simulating User Feedback

In a first approach to validate the proposed learning approach, we use a ref-
erence corpus to simulate the user feedback. As such, at each step t, a “user
interaction” u(t) = (Tu(t), Au(t)) is selected from the reference corpus. The trig-
ger Tu(t) is presented to the agent as being a user request. The agent proceeds
as usual, retrieving a set C(t) of candidate interactions from its collection of
interactions, and each expert Ek scores the different candidate interactions in
C(t) as described in the previous section. Then, for each expert, a user reward
rkt is computed, using as reference the answer Au(t) from the user interaction

u(t), so that it measures how well the candidate answer Ak that received the
highest score by Ek matches the reference answer, Au(t). The weights ωk of

each expert Ek are then updated considering the sum of the rewards received
so far, Rk(1, ..., t). In other words, we use the reference corpus to automatically
compute the user feedback.

Our choice for the reference corpus was the Cornell Movie-Dialogs (CMD)
corpus1, which contains over 80, 000 conversations from different sources [8], all

1 This corpus is available in http://www.cs.cornell.edu/~cristian/Cornell_

Movie-Dialogs_Corpus.html (last accessed in 07/21/2016).

7

SubId - 100679

DialogId - 10

Diff - 20927

T - Did you see that?

A - What is it?

Fig. 1. Example of an interaction in the Subtle format.

of them corresponding to actual movie conversations. Each entry in the conver-
sations file of the CMD corpus lists all the lines that compose that conversation.
For our purposes, we select only the first two lines of each interaction, acting as
a pair (trigger, answer).

4.2 Experimental Scenario: Say Something Smart

As our evaluation scenario, we decided to use Say Something Smart (SSS), the di-
alogue engine behind the open domain agent Filipe [2, 15]. Given a user request,
SSS looks up for a set of answer candidates in Subtle, a corpus of interactions
built from movie subtitles [1, 15], and returns the best answer according to a
combination of K configurable features [15]. The interactions in Subtle were
extracted from OpenSubtitles2 and are organized as pairs of of consecutive sub-
titles – the first element of the pair is the trigger (T), and the second is the
answer (A), as illustrated in Figure 1. The interactions are indexed using the
Lucene engine [16].

For each request u, Lucene retrieves a set of up to N candidate interactions
C = {c1, . . . , cN}, where each interaction cn is a trigger-answer pair, (Tn, An),
and N is a configurable value. SSS then has each feature fk comparing every
interaction cn ∈ C to the user input u and scoring them. SSS outputs the answer
associated with the most voted interaction c∗ as the reply to the user input u.

For the purpose of our experiment, we adapted SSS in order to include a
learning module that selects a pair trigger-answer u(t) = (Tu(t), Au(t)) from
the reference corpus and sends the trigger Tu(t) to Lucene, which retrieves N
candidates from the collection of interactions. Each candidate is scored by each
feature fk, and then each feature is evaluated by a reward function (simulating
user feedback). We define our reward function as the similarity between the
answer selected by the criterion k and the reference answer Au(t):

rkt = Jac(An, Au(t)). (11)

where Jac is the Jaccard similarity measure3. The value obtained is rounded
by α decimal places. Finally, the weights wk associated with each feature fk are
updated as a function of the accumulated reward Rk(1, ..., t), as explained in the
previous section. An overview of this process is shown in Figure 2.

2 http://www.opensubtitles.org/ (last accessed on 07/23/2016).
3 The Jaccard similarity coefficient measures the similarity between two sets A and B

as Jac(A,B) = |A∩B|
|A∪B| [10].

8

Fig. 2. SSS incorporating a learning module.

Concerning the values used in the experiment, we considered the same ones
from the work of Magarreiro et al [15]: the maximum number N of candidate
interactions retrieved by Lucene was set to 20, and the criteria considered were
the following:

f1: Frequency of the answer An in the subtitle corpus;
f2: Similarity between the answer An and the user input u using the Jaccard

similarity measure;
f3: Similarity between the trigger Tn and the user input u, also using the Jaccard

similarity measure;

However, we did not consider the fourth criterion reported in Magarreiro et
al [15] (f4 – Time difference between the trigger Tn and the answer An), as CMD
corpus does not contain such information. In Magarreiro et al [15], the weight for
this criterion was set to zero in the configuration that achieved the best results,
therefore its removal should not impact the evaluation procedure.

4.3 Experimental Procedure

In our experiment, we aim at comparing the performance of the weights learned
using the online approach described in Section 3 against sets of fixed weights: the
ones reported as best by Magarreiro et al [15], and six sets of random weights.

Our simulation was designed in a cross-validation fashion with 10 folds. For
each fold, the algorithm learns sets of weights wk using different configurations
of the algorithm’s meta-parameters β (parameter of the weight update) and α
(decimal places of the rounding made to the reward rt(c(t)

k)). When learning,
we used 60000 interactions from the CMD corpus (i.e., 80% of the corpus) as the
collection of interactions used by SSS (having had converted them to the Subtle
format), and 18000 (9 × 2000) other interactions as the reference corpus.

In order to assess the performance of the weights as they were iteratively
adjusted, at each 300 iterations, we “froze” the weights obtained and ran SSS
with them. We computed the accuracy of the system, i.e., the percentage of
iterations in which SSS was able to choose the candidate answer that matched the

9

input reference answer. To make this possible, the remaining 2000 interactions
in the corpus were used both as the reference corpus and as the collection of
interactions.

4.4 Results and Discussion

We compared the performance, in terms of accuracy (%), of the following sets
of weights:

– The weights iteratively adjusted using different combinations of meta-parameters:
α ∈ {0, 4} and β ∈ {4, 16};

– The weights reported as best by Magarreiro et al [15]: all the three features
with the same weight: 33.3(3);

– Six sets of randomly generated weights:

• w1 = 64, w2 = 22, w3 = 14
• w1 = 48, w2 = 45, w3 = 7
• w1 = 43, w2 = 0, w3 = 57
• w1 = 12, w2 = 81, w3 = 7
• w1 = 40, w2 = 41, w3 = 19
• w1 = 19, w2 = 56, w3 = 25

The results of this comparison are shown in Figure 3, where each marker
point over the solid lines represents the accuracy obtained by the set of weights
computed at a given iteration, while the dashed line represents the accuracy
of the fixed weights by Magarreiro et al [15] and the dotted line represents
the accuracy of the sets of random weights. The accuracy curves represent the
average accuracy across the 10 cross-validation folds. In the case of the sets of
random weights, we also averaged across different sets of weights.

The weights obtained when α was set to 0 outperformed both those of Ma-
garreiro et al [15] and random weights, converging within about 8000 iterations
(and 4000 iterations in the case of β = 16), and achieving an accuracy of nearly
80%. In contrast, the weights obtained when α was set to 4 underperformed
when compared to those of Magarreiro et al [15] and to random weights. These
results suggest that iteratively adjusting weights might or might not improve
performance, showing high sensitivity to a particular meta-parameter: α. Let
us recall that α regulates the rounding of the reward value. In practical terms,
α = 0 (rounding to the unit) benefits features that receive the maximum reward
(1.0) often, which is the case of f3, and penalizes those that receive a reward
between 0.0 and 0.5 more often than a reward between 0.5 and 1.0, which is
the case of f1 and f2. On the other hand, as expected, the parameter β does
not impact how good the results are, but rather how fast these are obtained,
since this parameter regulates how fast the weights change. From these results,
we observe that the choice of reward function (and, particularly, the numerical
precision of the values that can be returned by such function) is critical to its
performance.

10

Fig. 3. Comparison in terms of accuracy between the weights iteratively adjusted using
different combinations of meta-parameters α and β, the weights reported as best by
Magarreiro et al [15] and random sets of weights.

5 Conclusions and Future Work

In this work, we proposed the use of an online approach to improve an agent’s
performance at each interaction with a user. In particular, we applied an online
algorithm, the Exponentially Weighted Average Forecaster, to the problem of
adjusting the weights of the features used by a given agent to choose an answer to
a given request from a large collection of interactions. We devised an experiment
to validate this hypothesis, in which we adapted an existing dialogue engine, Say
Something Smart, in order to incorporate the Exponentially Weighted Average
Forecaster, and used a reference corpus to simulate user feedback. The results
achieved indicate that adjusting the feature weights based on feedback might
improve the performance of the agent, but it strongly depends on the design of
the feedback (reward) function. Further exploration of the current work includes
experimenting different online approaches and reward functions in the process
of learning weights.

Acknowledgements This work was supported by national funds through Fun-
dação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013,
and under project CMUP-ERI/HCI/0051/2013. Vânia Mendonça is funded by
an FCT grant with reference SFRH/BD/121443/2016.

11

References

1. Ameixa, D., Coheur, L.: From subtitles to human interactions: introducing the
SubTle Corpus From Subtitles to Interactions- Response pairs. Tech. rep. (2013)

2. Ameixa, D., Coheur, L., Fialho, P., Quaresma, P.: Luke, I am your father: Dealing
with out-of-domain requests by using movies subtitles. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 8637 LNAI, 13–21 (2014)

3. Banchs, R.E.: Movie-dic: A movie dialogue corpus for research and develop-
ment. In: Proceedings of the 50th Annual Meeting of the Association for Com-
putational Linguistics: Short Papers - Volume 2. pp. 203–207. ACL ’12, As-
sociation for Computational Linguistics, Stroudsburg, PA, USA (2012), http:

//dl.acm.org/citation.cfm?id=2390665.2390716

4. Banchs, R.E., Li, H.: Iris: A chat-oriented dialogue system based on the vector
space model. In: Proceedings of the ACL 2012 System Demonstrations. pp. 37–
42. ACL ’12, Association for Computational Linguistics, Stroudsburg, PA, USA
(2012), http://dl.acm.org/citation.cfm?id=2390470.2390477

5. Bessho, F., Harada, T., Kuniyoshi, Y.: Dialog system using real-time crowdsourcing
and twitter large-scale corpus. In: Proceedings of the 13th Annual Meeting of the
Special Interest Group on Discourse and Dialogue. pp. 227–231. SIGDIAL ’12,
Association for Computational Linguistics, Stroudsburg, PA, USA (2012), http:
//dl.acm.org/citation.cfm?id=2392800.2392841

6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge Univer-
sity Press (2006)

7. Cuayáhuitl, H., Dethlefs, N.: Dialogue systems using online learning: Beyond em-
pirical methods. In: NAACL-HLT Workshop on Future Directions and Needs
in the Spoken Dialog Community: Tools and Data. pp. 7–8. SDCTD ’12, As-
sociation for Computational Linguistics, Stroudsburg, PA, USA (2012), http:

//dl.acm.org/citation.cfm?id=2390444.2390451

8. Danescu-Niculescu-Mizil, C., Lee, L.: Chameleons in imagined conversations: A
new approach to understanding coordination of linguistic style in dialogs. In: Pro-
ceedings of the Workshop on Cognitive Modeling and Computational Linguistics,
ACL 2011 (2011)

9. Gašić, M., Jurčiček, F., Thomson, B., Yu, K., Young, S.: On-line policy optimisa-
tion of spoken dialogue systems via live interaction with human subjects. In: 2011
IEEE Workshop on Automatic Speech Recognition and Understanding, ASRU
2011, Proceedings. pp. 312–317 (2011)

10. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytologist 11(2),
37–50 (1912)

11. Lasguido, Sakti, S., Neubig, G., Toda, T., Adriani, M., Nakamura, S.: Developing
non-goal dialog system based on examples of drama television. In: The Interna-
tional Workshop on Spoken Dialog Systems (IWSDS). Paris, France (December
2012)

12. Levin, E., Pieraccini, R., Eckert, W.: A stochastic model of human-machine in-
teraction for learning dialog strategies. In: IEEE Trans. on Speech and Audio
Processing, Vol. 8 (2000)

13. Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B.: A persona-based neural conver-
sation model. CoRR abs/1603.06155 (2016), http://arxiv.org/abs/1603.06155

14. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput.
108(2), 212–261 (1994), http://dx.doi.org/10.1006/inco.1994.1009

12

15. Magarreiro, D., Coheur, L., Melo, F.S.: Using subtitles to deal with out-of-domain
interactions. In: SemDial 2014 - DialWatt (2014)

16. McCandless, M., Hatcher, E., Gospodnetic, O.: Lucene in Action, Second Edition:
Covers Apache Lucene 3.0. Manning Publications Co., Greenwich, CT, USA (2010)

17. Pietquin, O., Geist, M., Chandramohan, S.: Sample Efficient On-line Learning
of Optimal Dialogue Policies with Kalman Temporal Differences. In: International
Joint Conference on Artificial Intelligence (IJCAI 2011). pp. 1878–1883. Barcelona,
Spain (July 2011)

18. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building End-
To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.
AAAI 2016 (Special Track on Cognitive Systems) (2015), https://arxiv.org/

abs/1507.04808

19. Singh, S., Litman, D., Kearns, M., Walker, M.: Optimizing dialogue management
with reinforcement learning: Experiments with the njfun system. Journal of Arti-
ficial Intelligence Research 16, 105–133 (2002)

20. Su, P.H., Gasic, M., Mrkšić, N., Rojas Barahona, M.L., Ultes, S., Vandyke, D.,
Wen, T.H., Young, S.: On-line active reward learning for policy optimisation in
spoken dialogue systems. In: Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). pp. 2431–2441. As-
sociation for Computational Linguistics (2016), http://aclweb.org/anthology/
P16-1230

21. Xu, Z., Liu, B., Wang, B., Sun, C., Wang, X.: Incorporating loose-structured knowl-
edge into LSTM with recall gate for conversation modeling. CoRR abs/1605.05110
(2016), http://arxiv.org/abs/1605.05110

22. Yao, K., Peng, B., Zweig, G., Wong, K.: An attentional neural conversation model
with improved specificity. CoRR abs/1606.01292 (2016), http://arxiv.org/abs/
1606.01292

23. Yu, Z., Xu, Z., Black, A.W., Rudnicky, A.I.: Strategy and Policy Learning for
Non-Task-Oriented Conversational Systems. In: Proceedings of the SIGDIAL 2016
Conference. pp. 404–412 (2016)

24. Yu, Z., Xu, Z., Black, A.W., Rudnicky, A.I.: Chatbot Evaluation and Database
Expansion via Crowdsourcing. In: In Proceedings of the RE-WOCHAT workshop
of LREC, 2016 (2016)

