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Abstract. We present the Bayesian Online Prediction for Ad hoc team-
work (BOPA), a novel algorithm for ad hoc teamwork which enables a
robot to collaborate, on the fly, with human teammates without any
pre-coordination protocol. Unlike previous works, BOPA relies only on
state observations/transitions of the environment in order to identify the
task being performed by a given teammate (without observing the team-
mate’s actions and environment’s reward signals). We evaluate BOPA in
two distinct settings, namely (i) an empirical evaluation in a simulated
environment with three different types of teammates, and (ii) an experi-
mental evaluation in a real-world environment, deploying BOPA into an
ad hoc robot with the goal of assisting a human teammate in completing
a given task. Our results show that BOPA is effective at correctly identi-
fying the target task, efficient at solving the correct task in optimal and
near-optimal times, scalable by adapting to different problem sizes, and
robust to non-optimal teammates, such as humans.

Keywords: Ad Hoc Teamwork · Multi-Agent Systems · Human-robot
Collaboration

1 Introduction

As the number of robots increases in our everyday environment, many scenarios
(e.g., healthcare, search-and-rescue teams, warehouse management) will require
them to collaborate with humans in order to accomplish a given task. Hospitals,
for example, can now count on medical robotic assistants (e.g., Terapio [11] and
Robear [9]) to help nurses in tasks such as recording patients’ vitals, delivering
resources, and lifting patients out of bed. However, humans and robots may not
be able to coordinate in advance. Hence, designing robots for these environments
can be a very challenging problem, especially if you need the robot to learn how
to collaborate without any pre-coordination protocol.

The research problem of collaboration without pre-coordination is known as
ad hoc teamwork [10]. Within the robotics community, this research problem
has been addressed by several robotic systems in the drop-in player competition
at the annual RoboCup world championships [7]. The competition served as
testbed for ad hoc teamwork with robots, and highlighted several important
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problems that must be addressed if ad hoc teamwork is to be ported to real-
world interactions. First, the ad hoc agent may not know the task it has to
perform in advance, because the teammate may not explicitly communicate the
task to the robot. Second, the robot may not have the capability to perceive the
teammate’s actions due to limited perception capabilities. Lastly, the robot may
not receive any (explicit or implicit) reward signals during the interaction [6].

State-of-the-art algorithms [3,4,8] for ad hoc teamwork can, in theory, be
used to allow robots to collaborate with humans on-the-fly, without any pre-
coordination protocol. Unfortunately, they are not tailored for the specific chal-
lenges of human-robot collaboration identified above. For instance, PLASTIC
Model [3] and PLASTIC Policy [4] rely on reward signals from the environ-
ment; other works [8] assume that a robot can observe the teammates’ actions.
However, these assumptions may not hold in real-world human-robot interaction
settings, where the robot plays the role of “ad hoc agent” and the human plays
the role of teammate.

This paper addresses the aforementioned challenges by presenting a novel
approach for ad hoc teamwork. In particular, we present Bayesian Online Pre-
diction for Ad hoc teamwork (BOPA), which enables a robot to learn how to
collaborate on the fly with human teammates by relying only on state observa-
tions. We build on the work of Melo & Sardinha [8] but with a widely different
set of assumptions. In particular, we make the following assumptions: i) there are
no visible actions and the reward signals are not available; ii) the current task
is described by a multi-agent Markov decision process (MMDP); iii) teammates
may not always follow an optimal policy; and iv) the ad hoc agent has access to
a library of possible tasks (each described as an MMDP).

In order to test our BOPA algorithm, we conducted an empirical evaluation
in two different environments. The first environment is a simulation of an ad
hoc robot and a human teammate in a grid world, where we evaluate the effec-
tiveness, efficiency, scalability, and robustness of our algorithm. In the second
environment, a live robot collaborates with a human teammate in order to ex-
plore uncharted areas of a map. Our empirical results, both in simulation and in
a real-world scenario, show that our algorithm is not only efficient at identifying
the correct task but also capable of completing all cooperative tasks without
reward feedback or knowledge of human actions.

Hence, this work makes two novel contributions to the robotics community
by (i) presenting the first ad hoc teamwork algorithm tailored for human-robot
collaboration, together with a theoretical bound on the performance of our ap-
proach, and (ii) evaluating the ad hoc robot in order to show the effectiveness,
efficiency, scalability, and robustness of our algorithm.

2 Notation and background

We resort to a multi-agent Markov decision process (MMDP) framework to model
our tasks. An MMDP can be described as a tuple

M = (N,X , {An, n = 1, . . . , N} , {Pa, a ∈ A} , r, γ)
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where N is the number of agents in the MMDP, X is the (finite) state space
(we write Xt to denote the state at time step t), An is the (finite) individual
action space for agent n, n = 1, . . . , N . A is the set of all joint actions, i.e.,
A = A1 ×A2 × . . .×AN . We denote an element of An as an and an element of
A as a tuple a = (a1, . . . , aN ), with an ∈ An. Similarly, we write a−n to denote
a reduced joint action, i.e., a tuple a−n = (a1, . . . , an−1, an+1, . . . , aN ), and A−n
to denote the set of all reduced joint actions. We also write At, A−nt and Ant to
denote, respectively, the joint action, a reduced joint action and the individual
action of agent n at time step t. Pa is the transition probability matrix associ-
ated with joint action a. We usually write P(y | x, a) to denote the probability
P [Xt+1 = y | Xt = x,At = a]. Finally, r(x) denotes the reward associated with
a given state x. The reward is common to all agents and translates the goal of
the team as a whole. γ is a scalar discount such that 0 ≤ γ < 1.

The goal of the agents in an MMDP is to select a joint policy, π, that maxi-
mizes the total discounted reward. Letting

vπr (x) = Eπ

[ ∞∑
t=0

γtr(Xt+1) | X0 = x

]
,

the goal of the agents can be formulated as computing a joint policy, πr, such
that vπrr (x) ≥ vπr (x) for any policy π.

3 Bayesian online prediction for ad hoc teamwork

We now formalize ad hoc teamwork as a Bayesian prediction problem.

3.1 Assumptions

The ad hoc agent is denoted as α and the teammates as a single “meta agent”,
denoted as −α. We assume the teammates know the task r and follow the cor-
responding MMDP’s optimal policy, π−αr , but the ad hoc agent does not. Ad-
ditionally, and unlike [2], we do not consider a reinforcement learning setting,
whereby the ad hoc agent, at each step t, is actually able to observe a reward
Rt resulting from the current state Xt and joint action At. Instead, the ad hoc
agent is only able to observe, at each step t, the current state, Xt.

Finally, we assume that the ad hoc agent knows the dynamics of the world
(i.e., the transition probabilities {Pa, a ∈ A}) and that the (unknown) reward
r belongs to some pre-specified library of possible rewards, R = {r1, . . . , rM}
(which are then used to compute the MMDP’s optimal policies πr1 , . . . , πrM ).
By simply observing how the state evolves through time, the ad hoc agent must
infer both the task and the teammate’s policy.

3.2 Preliminaries

We treat the unknown MMDP reward, r, as a random variable—henceforth
denoted as R to make explicit its nature as a random variable. Let π−αm denote
the optimal policy for the teammates if the R = rm, rm ∈ R, and define

Pm(y | x, aα) , P
[
Xt+1 = y | Xt = x,Aαt = a,A−αt ∼ π−αrm

]
.
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We can compute Pm(y | x, aα) as

Pm(y | x, aα) =
∑
a−α

P(y | x, (aα, a−α))π−αm (a−α | x). (1)

Let p0 denote some (prior) probability distribution over R, with p0(m) =
P [R = rm]. More generally, we define

pt(m) = P
[
R = rm |

{
x0, a

α
0 , x1, . . . , xt−1, a

α
t−1, xt

}]
. (2)

From Bayes theorem,

pt(m) =
1

Z

M∑
m=1

Pm(xt | xt−1, aαt−1)pt−1(m),

where Z is a normalization constant. Finally, for rm ∈ R, we define the MDP

Mm = (X ,Aα, {Pm,aα} , rm, γ), (3)

where the transition probabilities Pm,a are defined as in (1). The optimal policy
forMm, henceforth denoted as πm, is the optimal “ad hoc policy” when R = rm.

3.3 Bayesian Online Prediction for Ad hoc teamwork (BOPA)

At each time step t, the ad hoc agent selects an action Aαt in the current state,
Xt. To that purpose, it may choose to follow the action prescribed by any of
the optimal policies in the set {π1, . . . , πM}. The agent is only able to observe
the transition between states and its own action. After observing a transition
(x, aα, y), and independently of which policy is followed,

P [(x, aα, y) | R = rm] = Pm(y | x, aα).

The agent can thus update its current belief over which is the target task, pt,
using (2). Given the target reward rm, we define the loss of policy selecting
action aα at time step t given that the target task is m as

`t(a
α | m) = vπm(xt)− qπm(xt, aα),

where πm is the solution to the MMDPMm.
It is important to note that both vπm(xt) and qπm(xt, aα) can be computed

offline when solving the MMDPMm. Note also that `t(aα | m) ≥ 0 for all aα,
and `t(aα | m) = 0 only if πm(aα | xt) > 0. The action for the ad hoc agent at
time step t can now be computed using our Bayesian setting as

πt(a
α | xt) , P [Aαt = aα | Xt = xt] =

M∑
m=1

πm(aα | xt)pt(m). (4)

We can derive a bound for the loss of our agent, when compared against an
agent considering a distribution q over tasks. We use the following lemma [1].
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Lemma 1. Given a set of hypothesis H = {1, . . . ,H}, for any measurable func-
tion φ : H → R and any distributions p and q on H,

Eh∼q [φ(h)]− logEh∼p [exp(φ(h))] ≤ KL(q ‖ p).

We want to bound the loss incurred by our agent after T time steps. Be-
fore introducing our result, we require some auxiliary notation. Let m∗ be the
(unknown) target task at time step t. The expected loss at time step t is

Lt(πt) = E [`t(A
α | m∗)] =

M∑
m=1

pt(m)`t(πm | m∗),

where, for compactness, we wrote

`t(πm | m∗) =
∑

aα∈Aα
πm(aα | xt)`t(aα | m∗).

Let q denote an arbitrary distribution over R, and define

Lt(q) =

M∑
m=1

q(m)`t(πm | m∗).

Then, setting φ(m) = −η`t(πm | m∗), for some η > 0, and using Lemma 1,

Em∼q [φ(m)]− logEm∼pt [exp(φ(m))] ≤ KL(q ‖ pt)

which is equivalent to

− logEm∼pt [exp(φ(m))] ≤ ηLt(q) + KL(q ‖ pt). (5)

Noting that −2ηRmax

1−γ ≤ φ(m) ≤ 0 and using Hoeffding’s Lemma,3 we have that

− logEm∼pt [exp(φ(m))] ≥ ηLt(pt)−
η2R2

max

2(1− γ)2
. (6)

Combining (5) and (6), yields

Lt(pt) ≤ Lt(q) +
1

η
KL(q ‖ pt) +

ηR2
max

2(1− γ)2

which, summing for all t, yields

T−1∑
t=0

Lt(pt) ≤
T−1∑
t=0

Lt(q) +
1

η

T−1∑
t=0

KL(q ‖ pt) +
TηR2

max

2(1− γ)2
.

3 Hoeffding’s lemma states that, given a real-valued random variable X such that
a ≤ X ≤ b almost surely and any λ ∈ R,

E
[
eλX

]
≤ exp

(
λE [X] +

λ2(b− a)2

8

)
.
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(a) Sketch of the environ-
ment layout.

(b) RGB feed from the Intel
RealSense Camera.

(c) Location using color
segmentation and planar
homography.

Fig. 1: Environment for ER scenario, including the environment layout, a frame
where both robot and human are in position 3 (next to Workbench 1), and the
segmentation and homography, used to locate the human in the environment.

Since η is arbitrarily, setting η =
√

T
2 leads to

T−1∑
t=0

Lt(pt) ≤
T−1∑
t=0

Lt(q) +

√
2

T

T−1∑
t=0

KL(q ‖ pt) +
√
T

2
· R2

max

(1− γ)2
. (7)

Aside from the term
√

T
2 ·

R2
max

(1−γ)2 (which grows sub-linearly with T ), the
bound in (7) is similar to to those reported by Banerjee for Bayesian online
prediction with bounded loss [1], since

T−1∑
t=0

KL(q ‖ pt) = KL(q ‖ p0:T−1),

where q,p0:T−1 refer to distributions over sequences in RT .

4 Evaluation

We evaluate BOPA in two different environments, a simulated environment—
Panic Buttons, or PB [5]—and a real world environment using a real robot as
the ad hoc agent and a human as the teammate—Environment Reckon, or ER.
PB is a benchmark grid-world environment where N agents must simultaneously
press N buttons. ER is a real-world ad hoc teamwork scenario, where a human
and a robot explore specific uncharted areas in the environment in Fig. 1a. The
task is complete once all uncharted areas are visited.

We consider three different configurations for both scenarios, which cor-
respond to the different tasks in the ad hoc agent’s library.4 Each environ-
ment/configuration is described as an MMDP with a distinct reward function.
4 In the PB environment, different configurations correspond to different positions for
the buttons; in the ER environment, different configurations correspond to different
uncharted locations in the map.
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The joint optimal policies are computed using value iteration for the underlying
MDP. In both environments, the ad hoc agent observes only the state of the
teammate (i.e., its position in the environment) and must infer the task (i.e.,
configuration) and act accordingly.

4.1 Evaluation procedure

The two scenarios are used to assess different aspects of our proposed approach.
In both scenarios, the ad hoc agent can only observe the state of the MMDP,
and can observe neither the teammate’s actions nor any reward.

The PB scenario is used to assess the scalability, efficiency and robustness to
different teammates. To the best of knowledge, our work is the first addressing
ad hoc teamwork problems where the ad hoc agent has only state information
available. To evaluate our approach, we compare BOPA against two baselines:
an “ad hoc agent” following a random policy (named random), and an “ad hoc
agent” following optimal policy for the task at hand (named greedy). The two
baselines provide upper and lower bounds on the performance of BOPA.

The ER scenario, on the other hand, is used to assess the applicability of our
approach in a real human-robot interaction scenario, where the state perception
is not perfect, and the teammate (the human user) does not necessarily follow a
pre-specified policy. We deploy our algorithm, BOPA, into a human-sized robot
from our laboratory (see Fig. 1b). The position of the robot is detected using the
robot localization (determined using odometry and a laser sensor). The position
of the human is determined using a RealSense RGB camera (see Fig. 1b for
a snapshot). The user wears high contrast shoes that are segmented from the
background and used to locate the user in the room using planar homography
(Fig. 1c). The human user is told beforehand the task (i.e., which locations
should be visited) and asked to move between adjacent nodes at each time step
and coordinate with the robot to visit the un-visited areas as quickly as possible.

4.2 Metrics

In the PB scenario, the reported values consist of averages and 95% confidence
intervals over 32 independent trials, where a single trial consists of running the
three agents (greedy, BOPA, and random) against an unknown teammate. To
gain some additional insight regarding the robustness of our approach, we pair
the ad hoc agent with different teammates—an optimal teammate, that knows
the task and acts optimally; a sub-optimal teammate, that knows the task but
chooses not to act with a probability 0.3, and a teammate that acts randomly.

We report four different metrics that seek to assess effectiveness, efficiency,
scalability and robustness to sub-optimal teammates. Effectiveness is measured
by determining whether or not BOPA is able to identify the correct task. Ef-
ficiency is measured by evaluating whether or not the ad hoc agent is able to
solve the task in near-optimal time. Scalability is assessed by observing the per-
formance of the ad hoc agent in different problem sizes (3 × 3, 4 × 4 and 5 × 5
grids). Robustness is evaluated by reporting whether or not an ad hoc agent is
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Fig. 2: Probability of correct task averaged across the whole episode,
1/T

∑
t pt(r) (left) and probability of correct task, at the last step of the episode,

pT (r) (right). The error bars correspond to the variability in the agent’s estimate.

Table 1: Average number of steps required for task completion.
Optimal Sub-optimal Random

3× 3 Greedy 2.7± 0.5 3.4± 1.2 24.2± 23.3
3× 3 Bopa 3.3± 0.8 4.3± 2.3 35.9± 37.7
3× 3 Random 25.2± 27.4 26.7± 28.2 144.8± 154.1

4× 4 Greedy 4.0± 0.8 5.2± 1.9 54.0± 56.1
4× 4 Bopa 4.7± 0.8 6.0± 2.4 61.0± 67.0
4× 4 Random 47.3± 50.6 56.8± 59.2 497.4± 426.3

5× 5 Greedy 5.3± 0.9 6.7± 1.6 85.7± 97.4
5× 5 Bopa 5.8± 0.8 8.5± 3.7 168.8± 169.5
5× 5 Random 104.7±106.9 103.3± 109.0 1120.4±1003.1

able to cope with non-optimal teammates. In the ER scenario, we report only
the first two metrics (effectiveness and efficiency).

5 Results

We now present and discuss the results of our experiments.

5.1 PB Scenario

The results for the PB scenario are summarized in Fig. 2 and Table 1. The plots
in Fig. 2 depict the ad hoc agent’s ability to identify the unknown target task, r.
Figure 2 (left) presents—for the different environment sizes and teammates—the
likelihood of r according to the agent’s belief, averaged across the whole trial,
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i.e., for an episode of length T ,

pave(r
∗) =

1

T

T∑
t=1

pt(r
∗).

Figure 2 (right) presents the likelihood of r∗ according to the agent’s belief and
the final step of the trial, i.e., for an episode of length T , pT (r∗).

The plots of Fig. 2 allow us to conclusively assess BOPA’s effectiveness: in all
environments and for all teammates, the algorithm is able to identify the target
task with great certainty. The plot also shows successfully identifying the target
task largely depends on the teammate’s behaviors: if the teammate behaves in
a misleading way (i.e., sub-optimally), this will sometimes lead to poor belief
updates, hindering the algorithm’s ability to identify the target task.

In terms of BOPA’s efficiency (i.e., its ability to solve the target task), we can
observe in Table 1 that the performance of BOPA—when playing with an optimal
teammate—closely follows that of the greedy agent (i.e., the agent knowing the
target task). This is in accordance with our results on effectiveness: since BOPA
is able to quickly identify the target task, it performs near-optimally in all tasks.

In terms of scalability and robustness (i.e., how BOPA’s performance depends
on the size of the problem and the quality of the teammates), two interesting
observations are in order. On one hand, the difference in performance between
BOPA and the greedy agent attenuates for larger environments. This can be
understood as the larger environments provide more data (i.e., teammate’s action
effects through state observations) for the ad hoc agent to recognize the action
and immediately head to the goal. On the other hand, the negative impact of
playing with sub-optimal teammates is larger for larger environments.

To conclude, and taking all results into account, we conclude that BOPA is
a robust approach to the problem of ad hoc teamwork, being able to identify the
unknown task in near-optimal time even with non-optimal teammates.

5.2 ER Scenario

For the ER scenario, we provide results for each of the three task configurations.
In all trials, both robot and human depart from node 0 (“Door”). In the first
configuration, the uncharted areas correspond to the “Door” (node 0), “Robot
station” (node 1) and the “Table” (node 4). In the second configuration, the un-
charted areas correspond to nodes 1, 2, and 3 (“Robot station”, “Workbench 2”,
and “Workbench 1”, respectively). Finally, in the third configuration, the un-
charted areas correspond to nodes 1, 2, and 4 (“Robot station”, “Workbench 2”,
and “Table”, respectively). The observed runs—in terms of states and agent’s
beliefs—are depicted in Figure 3. No mis-detections were observed (i.e., the sen-
sors on the robot were always able to correctly locate the robot, while the camera
system always correctly located the human user).

In the first run, corresponding to the first configuration, the optimal policy
is for one of the agents to go towards the last unexplored node (“Table”). We can
see that in the first time step, the robot had the highest uncertainty. In this turn,
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Fig. 3: Trajectories observed during the interaction with a human user (for tasks
1, 2 and 3). The diagrams on the left represent the sequence of states, (numbers
on top correspond to the positions of the robot and the human, respectively,
while the bits on the bottom denote whether the uncharted areas have been
visited). The plots on the right depict the evolution of the robot’s beliefs.

only the human user moved, to “Robot station”. In turn 2, human proceeded to
go towards the last unexplored node (“Table”), solving the task in optimal time.
As the human moves towards this final node, the robot’s belief on the target task
goes up to 1.0. This first run enables two conclusions: first, there is no need for
actual cooperation in this task, meaning if one of the agents is solving the task
the other may do nothing. Second, unsurprisingly, BOPA successfully identified
the correct task by observing the movement of the human user.

In the second run, corresponding to the second configuration, the optimal
policy requires cooperation in order to be optimally solved. In the first timestep,
the robot moved towards node 1. By observing this transition alone, we can see
that the likelihood of the first task decreases to nearly 0.0, since visiting node 0
did not activate any of the three visitation bits. After this transition, BOPA
still has some uncertainty on which task is the correct one, with the second
and correct task having a likelihood of around 0.55 and the third task having a
likelihood of around 0.44. This uncertainty is expected, since in both tasks, the
observed transition is required in order to optimally solve them. After the third
and last transition, however, where the robot moved towards node 3 and the
human went to node 2, the state now indicates that all unexplored nodes have
been explored, enabling BOPA to identify the correct task with 100% certainty.
The task was also solved in its optimal number of steps.

The third run, corresponding to the third configuration, also requires coop-
eration in order to be optimally solved. In the optimal policy, both agents go
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towards node 1 first and then split up, one going towards node 2 and the other
towards node 4, having to pass through node 3. This task provides ambiguity
with the other two, since it needs the forth node to be explored (like the first
task) and the second node to be explored (like the second task).

We can see that in the first timestep, the robot had the highest uncertainty
and, once again by chance, moved towards node 1 (which is considered an optimal
action for all tasks). Like with the second task, by observing this first transition
alone, we can see that the likelihood of the first task decreases to nearly 0.0.
After this transition, BOPA has the same uncertainty it had on the previous
task (which makes sense given the exact same transition), with the second and
correct task having a likelihood of around 0.55 and the third task having a
likelihood of around 0.44. After the second transition, however, the robot moves
towards node 2 and the human moves towards node 3. Since the flags indicating
whether each node has been explored are all set to one (unlike what happened
in the second task), BOPA is now able to identify the correct task with 100%
certainty. This final task was also concluded in its optimal number of steps.

To conclude, taking these results into account, we can see that BOPA is
not only able to identify the correct task with great certainty by inferring the
teammate’s behavior through state observations, but also capable of adapting
to non-optimal teammates by still being able to solve the tasks.

6 Conclusion and Future Work

This paper presented and evaluated the Bayesian Online Prediction Algorithm
for Ad Hoc Teamwork (BOPA), a novel approach for the ad hoc teamwork
problem, where an agent had to learn to cooperate with both optimal and non-
optimal teammates in solving an unknown task, without being able to observe
the teammates’ actions and the environment’s reward signals.

Having performed both an empirical evaluation in a simulated environment
following the OpenAI Gym API and a live experimental evaluation with a live
robot in our laboratory running BOPA which had to assist a human teammate
in solving a task, our results show that our approach is effective at identifying
the correct task, efficient at solving the correct task in optimal and near-optimal
times, scalable, by being able to adapt to different problem sizes, and robust, by
being able to adapt non-optimal teammates, such as humans, in order to solve
unknown tasks without having access to the teammates’ actions and environ-
ment’s reward signals.

Given that in our experimental evaluation, all sensors did not show any faulty
behavior, preventing a deeper analysis of BOPA whenever the state is incorrect,
our next logical line of work will be to setup a second experimental scenario
where there isn’t full observability of the current state (or if the current state is
faultily created). In this setting we will compare BOPA against a successor which
does not assume the state is fully observable, modeling the tasks as partially
observable Markov decision processes instead of multi-agent Markov decision
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processes in order to provide yet another layer of robustness when working with
real life robots and humans.
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