
How to use Mashic: Step by Step

November 1, 2015

In this step-by-step tutorial, we explain how to use Mashic to automati-
cally sandbox third-party code in client-side Web applications. To illustrate the
process, we make a simple Web application which uses Google Maps.

Requirements: To run Mashic, you need: (1) linux; (2) Make; and (3) bigloo
3.5a, which can be found in http://www-sop.inria.fr/members/Manuel.Serrano/

bigloo/.

Installing Mashic: Installing Mashic amounts to downloading its sources
(available at http://web.ist.utl.pt/~ist24690/mashic) and running Make.

Compiling your Application

We illustrate the use of Mashic with a simple Web application that uses Google
Maps (GM) for drawing the Bermuda’s triangle. Let us start by examining the
original HTML file:

1 <html>
2 <head>
3 <script src="http://maps.google.com/maps/api/js?sensor=false

" type="text/javascript"></script >
4 <script src="input.js" type="text/javascript"></script >
5 </head>
6 <body onload="initialize ();">
7 <div id="map_canvas" style="width: 550px; height: 500px;

border: 3px gray solid;"></div>
8 </body>
9 </html>

The first script node in the header element includes the GM gadget, while the
second one includes the integrator code. When the body of the page is loaded,
the initialise method of the integrator is called. The div element will be used
by the GM gadget for drawing the map.

The integrator code interacts with the GM gadget through the variable
google (which is defined in the GM script). For instance, the code:

map_div = document.getElementById("map_canvas");
map = new google.maps.Map(map_div, my_options);

1

http://www-sop.inria.fr/members/Manuel.Serrano/bigloo/
http://www-sop.inria.fr/members/Manuel.Serrano/bigloo/
http://web.ist.utl.pt/~ist24690/mashic


tells the gadget to create a map with the coordinates described in the object
bound to my_options inside the div element with id "map_canvas".

Mashic compiles JavaScript files, it does not compile HTML files. It is the
job of the developer to restructure the original HTML file in order make use of
the compiled integrator code. In a nutshell, the developer needs to follow the
steps given below.

1. Pre-compilation Step: Before compilation, the developer must distin-
guish interactions with DOM elements that are to be kept in the integrator
side from interactions with DOM elements that will be sandboxed inside
the iframe.

2. Compilation Step: Compile the integrator file specifying which are the
variables that serve to communicate with the gadget.

3. Post-compilation Step: Split the original HTML file into two distinct
ones: one for running the integrator code (corresponding to the original
Web page) and a second one for running the gadget.

Pre-compilation step Before compiling, the developer needs to define a new
variable iframe that is assigned to the document node: iframe = document.
Then, the variable document must be replaced with the variable iframe wher-
ever it is used to interact with a part of the document that is going to be sand-
boxed inside an iframe. For instance, in our running example, the assignment
map_div = document.getElementById("map_canvas") needs to be replaced by
map_div = iframe.getElementById("map_canvas") because the element node
with id "map_canvas" is going to be sandboxed inside an iframe.

Compilation step When compiling the integrator code, the developer needs
to specify: (1) the name of the input file, (2) the name of the output file (to
be generated), and (3) the variables that are used by the integrator to interact
with the gadget. Note that variables used to interact with the gadget may have
a different names in the gadget side and in the integrator side. More concretely,
the syntax for running Mashic is the following:

$: js2post -i INPUT -o OUTPUT -a IVAR1 GVAR1 · · · -a IVARn GVARn

For instance, to compile the running example, the developer needs to run:

$: js2post -i input.js -o output.js -a google google -a iframe document

Observe that the variable iframe on the integrator side corresponds to the
variable document on the gadget side.

Post-compilation step The post-compilation step corresponds to restruc-
turing the original HTML file into two separate ones: one for the execution of
the integrator and another for the execution of the gadget. The gadget HTML
file is included inside the integrator HTML file using an iframe as follows:

2



1 <html>
2 <head
3 <script src="output.js" type="text/javascript"></script >
4 <script src= "proxies.js" type="text/javascript"></script >
5 </head>
6 <body onload="initialize ();">
7 <iframe src="iframe.html" id="widget"></iframe >
8 </body>
9 </html>

Observe that the new integrator HTML file does not include the GM gadget, nor
the original input file. Instead, it includes the compiled input file and the file
proxies.js containing the proxy libraries for communication with the iframe.
Furthermore, the div element where the map is to be drawn is replaced with
the iframe containing the GM gadget. The HTML file loaded in the iframe is
the following:

1 <html>
2 <head
3 <script src="http://maps.google.com/maps/api/js?sensor=

false" type="text/javascript"></script >
4 <script src= "listener.js" type="text/javascript"></

script >
5 </head>
6 <body>
7 <div id="map_canvas" style="width: 550px; height: 500px;

border: 3px gray solid;"></div>
8 </body>
9 </html>

This HTML file contains the code of the gadget (which is left unchanged), a
listener library for communication with the integrator, and the div element in
which the map is to be drawn.

3


