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Abstract

In the context of distributed and mobile computing, information flow security
must deal with the decentralized nature of security policies. This issue is partic-
ularly challenging when migrating programs are given the flexibility to perform
declassifying operations, as these might be acceptable or not depending on the
thread’s current computation domain.

This paper studies the compliance of programs consisting of one or more mi-
grating threads to flow polices that can change dynamically via declassification
declarations and program migration. It exploits the principle of separating the
enabling and controlling dimensions of declassification. At the programming
language level, declassification is enabled by assuming a purely declarative de-
classification construct, and its compliance to the relevant allowed flow policies
is facilitated by considering a flow policy context testing construct that provides
the programmer with flow policy awareness. Then, two security properties that
articulate the compliance of program behavior to relevant information flow poli-
cies are studied:

1. Non-disclosure for networks, which requires the compliance of information
leaks that are encoded by programs to the declared declassifications.

2. Flow policy confinement requires that declassifications that are used by
programs respect the allowed flow policy of the context in which they
execute.

We present mechanisms that are based on type and effect systems, ranging
from purely static mechanisms to hybrid combinations with dynamic features,
for enforcing the above properties on an expressive distributed higher-order
lambda-calculus with imperative features and code migration.
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1. Introduction

The rapid evolution and increasing pervasiveness of web technologies in sen-
sitive aspects of daily life presses the problem of web security as an urgent
concern. Indeed, the new possibilities offered by the the ubiquitous and glob-
ally connected nature of the Internet can just as well be exploited by parties
with hazardous intentions, with an unprecedented potential for damage. Web
programming has emerged as a new and distinct paradigm in itself, subject to
new and specific forms of security vulnerabilities. Two specific traits of web ap-
plications are their distributed nature, as they are executed in different physical
locations, and their plasticity which is based on the assemblage and execution of
code from different origins, known as mobile code. In this paper we contribute
to the young and quickly developing research topic of language-based web secu-
rity [1] by considering the most basic foundations of the Web as a distributed
network with code mobility.

Research in language based security has placed a lot of attention on the study
of information flow properties and enforcement mechanisms [36]. Information
flow security regards the control of how dependencies between information of
different security levels can lead to information leakage during program execu-
tion. This kind of program behavior can be controlled using information flow
analyses [36, 9], by detecting dependencies in programs that could encode flows
of information from private to publicly available resources. Information flow
properties range in strictness from pure absence of information leaks, classi-
cally known as non-interference [21], to more flexible properties that allow for
declassification to take place in a controlled manner [38].

So far, most studies of declassification have been directed towards local com-
putation scenarios, thus overlooking decentralization issues that are inherent to
distributed settings. Indeed, enforcement of confidentiality in networks must
deal with distributed security policies, since different computation domains (or
sites) follow different security orientations. For example, migrating programs
that were conceived to comply to certain flow policies don’t necessarily respect
those of the computational locations they might end up executing at. This
problem seems to be beyond the grasp of single declassification constructs that
can restrict by whom, when, what, or where in the program declassification can
be performed [38], since now the question is: in which context?

Some security minded distributed network models have been proposed with
the purpose of controlling the migration of code between computation sites, such
as by means of programmable domains [11], type systems [30], or boundary
transposition control that performs automatic checks to incoming code [22].
It appears natural to apply migration control techniques to the problem of
controlling declassification by preventing programs from migrating to sites if
they would potentially violate that site’s flow policies. However, we fall short
on technical mechanisms that would allow, on one hand, for a site to know what
are the most flexible flow policies that a program sets up for its own executions;
on another hand, for a program to know how flexible is the flow policy of the
context in which it is running.
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In this paper we show that the issue of enabling and controlling flexible
information flow policies in computations that can spread out over locations
that are governed by different security requirements, can be addressed at the
programming language level. We propose to remove some of the burden of
restricting declassification away from the declassification instruction itself, and
transfer it to new program constructs that provide awareness about the flow
policy of the context in which it is running. Programmers can then be given the
power to predict alternatives to the pieces of code that contain the forbidden
declassification operations they would wish to use. This opens the possibility
to write programs that can safely run under any flow policy. Furthermore, it
becomes acceptable to rely on mechanisms that reject the execution of programs
that, being unaware of the flow policy of the context, blindly encode disallowed
declassifications.

Separating the problems of enabling and of controlling flexible information
flow policies paves the way to a modular composition of security properties that
can be studied independently. Here we treat the former as an information flow
control problem, in the frame of the non-disclosure property[3], while the latter
is isolated as the problem of ensuring that declassifications that are performed
by mobile code comply to the flow policy that is allowed at the computation
domain where they are performed. We refer to this new property as flow pol-
icy confinement, and enforce it using migration control techniques. This paper
addresses the technical problem of how to build suitable enforcement mecha-
nisms that enable domains to check incoming code against their own allowed
flow policies.

Intuitions. The non-disclosure property is a generalization of non-interference.
It uses information provided by the program semantics describing which flow
policies are valid at different points of the computation, to ensure that, at each
step, all information flows comply with the valid flow policy. In order to enable
local dynamic changes to the valid flow policy, the programming language may
be enriched with a flow declaration construct (flow F in M) that simply declares
the flow policy F as valid in its scope M . It is then easy to set up more flexible
flow policy environments for delimited blocks of code, as for instance the part
of a program that is executed by authenticated users:

(if authenticated then (flow Fpermissive in M) else N)

This program declares that flows in M conform to a policy that is extended
by Fpermissive. In other words, M may contain declassifications that com-
ply to Fpermissive.

Once the language is enriched with flow declarations (or any other means
for expressing declassification), some mechanism for controlling its usage is de-
sirable. This is particularly relevant in mobile code settings. For instance, a
computation domain d might want to impose a limit to the flexibility of the flow
declarations that it executes, and prevent incoming code from containing:

(flow Fall is allowed in M)

In the above example, the flow declaration validates any information flow that
might occur in M , regardless of what is considered acceptable by d. This mo-
tivates the notion of a domain’s allowed flow policy, which represents the flow
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policy that should rule for all programs that are running at a certain domain.
We can then define the notion of confinement with respect to a flow policy as
a property of programs that can only perform steps that comply with that al-
lowed flow policy. We will see that this property can be formalized by making
use of the information about the declared flow policies that is provided by the
semantics.

At the moment that a program is written, it might be hard to anticipate
which flow policies will be imposed at execution time by the domains where
the program will run. In a distributed context with code mobility, the problem
becomes more acute, since the computation site might change during execution,
along with the allowed flow policy with which the program must comply. In or-
der to provide programs with some awareness regarding the flow policy that is
ruling in the current computation domain, we introduce the allowed-condition,
written (allowed F then M else N), that tests whether the flow policy F is al-
lowed by the current domain and executes branches M or N accordingly. Pro-
grams can then offer alternative behaviors to be taken in case the domains they
end up at do not allow declassifications of the kind they wished to perform:

(allowed Fdisclose secret then M else plan B)

The allowed-condition brings no guarantees that the “plan B” of the above
program does not disclose just as much as the M branch. However, misbehaving
programs can be rejected by the domains where they would like to execute, so
its chances of being allowed to execute are increased by adequately “protecting”
portions of code containing declassifications by appropriate allowed-conditions.

Domains can statically check incoming code against their own flow policies,
ideally assisted by certificates that are carried by the program, and then decide
upon whether those programs should be “let in”. A certificate could consist of
information about all the flow policies that are declared in the program and do
not appear within the “allowed” branch of an allowed-condition. We call this
flow policy the declassification effect of the program, and provide a type system
for obtaining it. Then, while the program

(allowed F1 then M else (flow F2 in N))

would have a declassification effect that includes F2 – meaning that it should
only be allowed to run in domains where F2 is allowed –, the program

(allowed F then (flow F in M) else N)

(assuming that M and N have no flow declarations) would have an empty
declassification effect – meaning that it could be safely allowed to run in any
domain.

Furthermore, when programs consist of more than one thread running con-
currently, the same program might need to comply to more than one allowed
flow policy simultaneously.

An illustrative scenario could be that of a set of personal mobile appliances,
such as smart-phones. Due to their inter-connectivity (web, Bluetooth), they
form networks of highly responsive computing devices with relatively limited
resources, and that handle sensitive information (personal location, contacts,
passwords). This combination demands for scalable and efficient mechanisms for
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ensuring privacy in a distributed setting with code mobility. From an abstract
perspective, each device forms a computation domain with specific capabilities
and restrictions, and in particular information flow policies for protecting data
and other computing threads that are running concurrently in the same domain.
We refer to these policies as the allowed flow policy of the domain. Flow pol-
icy confinement ensures that domains do not execute code that might perform
declassifications that break their own allowed policies.

Let us consider, for example, an application for supporting two users (Alice
and Bob) in choosing the best meeting point and path for reaching each other
by means of public transportation. In order to produce advice that takes into
account the current context (recent user locations, traffic conditions, weather)
threads containing code for building updated travel maps are downloaded by
Alice and Bob at runtime (their travel). The recommended path and meeting
point can be improved by deducing the users’ personal preferences from data
that it collects from the mobile devices (e.g. content of stored images, file
types). Users might, however, have privacy restrictions regarding that data,
in the form of allowed flow policies that the downloaded threads must comply
to. The following naive program creates a thread for gathering data that helps
select the meeting point. Since the meeting point will necessarily be revealed
to Bob, this part of the program should only allowed to run if it respects which
private information Alice accepts to leak to Bob.

1 newthread { // Creates thread at Alice’s device

2 ref zoo=0; ref bookstore=0; // to choose between zoo or bookstore

3 allowed // If allowed by Alice’s policy

4 (L_IMGS < L_BOB /\ // to leak image contents

5 L_FILES < L_BOB) // and file types to Bob

6 flow (L_IMGS < L_BOB /\ // Declares a declassification

7 L_FILES < L_BOB) // with same policy

8 processImgs(zoo); // weighs images with animals

9 searchFiles(bookstore); // weighs e-book files

10 if (zoo > bookstore) // inspects sensitive data...

11 meetAt(ZOO); // and influences meeting point

12 meetAt(BOOKSTORE);

13 meetAt(random); // If not allowed, uses other criteria

14 } at D_ALICE

As the above code is deployed, device D_ALICE must decide whether it is safe to
execute the thread or not. Clearly, the decision must be taken quickly so as to
not disrupt the purpose of the application. Ultimately, it is based on an analysis
of the code, giving special attention to the points where declassifications occur.

Contributions. This paper presents a simple language-based framework for study-
ing information flow security in distributed security settings in the presence of
code mobility. In this model, computation domains are units of allowed flow
policies, which have a scope that is local to each domain. While the formula-
tion of the security properties is largely language-independent, a concrete lan-
guage is defined and considered for the purpose of examples and as a target to
the proposed enforcement mechanisms. It consists of an expressive distributed
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higher-order imperative lambda-calculus with remote thread creation. The lat-
ter language feature implies in particular that programs might need to comply
to more than one dynamically changing allowed flow policy simultaneously. The
main technical contributions are:

1. A new programming construct (allowed F then M else N) that tests the
flexibility of the allowed flow policy imposed by the domain where it is
currently located and can act accordingly.

2. A refinement of the Non-disclosure for Networks property [4] that is more
suitable for settings where migration is subjective.

3. A new security property, named Flow Policy Confinement that regards the
compliance of declassification operations that are performed by programs
will to the valid allowed flow policies where they take place.

4. A comparative study of three enforcement mechanisms for flow policy
confinement in the form of migration control mechanisms for deciding
whether or not certain programs should be allowed to execute at each site.
These are based on a type and effect system, and differ on the emphasis
that is placed on static and runtime effort:
(a) A purely static type and effect system for enforcing flow policy con-

finement.
(b) A type and effect system for checking migrating threads at runtime,

that is more precise than the one in point 4a.
(c) A static-time informative pre-processing type and effect system for

annotating programs with a declassification effect, for a more efficient
and precise mechanism than the one in point 4b.

This paper revises, unifies and expands work that is presented in the conference
articles [2], [5], and part of [6]. Some proofs are omitted for space reasons, but
are available in the Appendix.

Outline of the paper. We start by defining the formal security and language
setting of the paper (Section 2). Two main sections follow, dedicated to the
security analyses of Non-disclosure for Networks (Section 3) and Flow Policy
Confinement (Section 4). In each, the formal properties are proposed (Subsec-
tions 3.1 and 4.1), and enforcement mechanisms are presented (Subsections 3.2
and 4.2 to 4.4), and their soundness is proved. In the latter, a closer look
at the enforcement of Flow Policy Confinement by means of migration control
mechanisms. We study three type and effect-based mechanisms for enforcing
confinement that place different weight over static and run time, and draw con-
clusions regarding their efficiency and precision. Finally we discuss related work
(Section 5) and conclude (Section 6).

2. Setting

2.1. Security Setting

The study of confidentiality traditionally relies on a lattice of security lev-
els [18], corresponding to security clearances, that is associated to information
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containers in the programming language. The idea is that information pertain-
ing to references labeled with l2 can be legally transferred to references labeled
with l1 only if l1 is at least as confidential as l2. Flow policies can then be seen
as a means for relaxing the basic security lattice, by establishing additional le-
gal flow directions between security levels. Formally, such flow policies consist
of downward closure operators that collapse security levels of a basic security
lattice into lower ones [7].

2.1.1. Abstract requirements

Basic lattice of security levels. Security levels l, j, k ∈ Lev can be seen as repre-
senting read-access rights, and can be ordered according to their confidentiality
by means of a relation v, where l1 v l2 means that l2 is at least as confidential
as l1. It can also be seen as a flow relation, since information can flow from l1
to l2 without becoming accessible to any additional reader.

In this paper security levels are assumed to form an abstract lattice L =
〈Lev ,v,u,t,>,⊥〉, where: the meet operation u gives, for any two security
levels l1, l2, the most confidential security level that allows for all the readers
of levels l1 and l2; the join operation g gives, for any two security levels l1, l2,
the least confidential security level that only allows for readers of both levels l1
and l2; the most confidential security level > does not allow any reader; and the
least confidential security level ⊥ allows all readers.

Lattice of flow policies. Flow policies A,F ∈ Flo can be ordered according to
their permissiveness by means of a permissiveness relation 4, where F1 4 F2

means that F1 is at least as permissive as F2.
We assume an abstract lattice of flow policies that supports a pseudo-

subtraction operation 〈Flo,4,f,g,0,Ω,^〉, where: the meet operation f
gives, for any two flow policies F1, F2, the strictest policy that allows for both
F1 and F2; the join operation g gives, for any two flow policies F1, F2, the
most permissive policy that only allows what both F1 and F2 allow; the most
restrictive flow policy 0 does not allow any information flows; and the most
permissive flow policy Ω that allows all information flows. Finally, the pseudo-
subtraction operation ^ between two flow policies F1 and F2

1 represents the
most permissive policy that allows everything that is allowed by the first (F1),
while excluding all that is allowed by the second (F2); it is defined as the rela-
tive pseudo-complement of F2 with respect to F1, i.e. the greatest F such that
F f F2 4 F1.

Relaxed lattice of security levels. The base pre-lattice of security levels can be
relaxed by means of flow policies [7], by extending the permissivity of the flow
relation v. The new more general flow relation vF that is determined by the
flow policy F now enables the information flows that are allowed by F . For

1This operation is used for refining the static analysis of the policy-testing construct, and
is not a requirement of the security properties that are studied here.
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a given flow policy F , security levels now form a lattice L(F ) = 〈F (Lev),vF
,uF ,tF ,>F ,⊥F 〉.

2.1.2. Concrete example

Considering a concrete security setting that meets the abstract requirements
defined above can provide helpful intuitions. In the remainder of this paper we
use in examples the case of flow policies that operate over the security lattice
where security levels are sets of principals p, q ∈ Pri .

Basic lattice of security levels. Security levels consist of sets of principals l ⊆
Pri , similar to read-access lists. In this setting, security levels are ordered by
means of the flow relation ⊇.

Lattice of flow policies. Flow policies then consist of binary relations on Pri ,
which can be understood as representing additional directions in which informa-
tion is allowed to flow between principals: a pair (p, q) ∈ F , most often written
p ≺ q, is to be understood as “information may flow from p to q”. New more
permissive security lattices are obtained by collapsing security levels into pos-
sibly lower ones, by closing them with respect to the valid flow policy. Writing
F1 4 F2 means that F1 allows flows between at least as many pairs of principals
as F2. The relation is here defined as F1 4 F2 iff F2 ⊆ F ∗1 (where F ∗ denotes
the reflexive and transitive closure of F ): The meet operation is then defined as
f = ∪, the join operation is defined as F1 g F2 = F ∗1 ∩ F ∗2 , the top flow policy
is given by 0 = ∅, the bottom flow policy is given by Ω = Pri ×Pri , and the
pseudo-subtraction operation is given by ^= − (set subtraction).

Relaxed lattice of security levels. In order to define vF we use the notion of
F -upward closure of a security level l, defined as l ↑F= {q | ∃p ∈ l. p F ∗ q}.
The F -upward closure of l contains all the principals that are allowed by the
policy F to read information labeled l. A more permissive flow relation can now
be derived as follows [32, 3]:

l1 vF l2
def⇔ ∀q ∈ l2 . ∃p ∈ l1 : p F ∗ q ⇔ (l1 ↑F ) ⊇ (l2 ↑F )

Since in a pre-lattice the meet and join operations are not unique, here we
chose l1 u l2 = l1 ∪ l2 and l1 t l2 = (l1 ↑F ) ∩ (l2 ↑F ). Consequently, we have
> = ∅ and ⊥ = Pri .

Notice that vF extends ⊇ in the sense that vF is larger than ⊇ and that
v∅ = ⊇. In other words, for the base security lattice (where the flow policy
parameter is 0), the flow relation coincides with reverse inclusion of security
levels, while the join operator is simply given by t = ∩.

2.2. Language Setting

We now present the basic language requirements to which the technical de-
velopments of this paper apply. We then define a concrete instance of the
language that suits these requirements. It will be used for providing illustrative
examples, and as a target for the enforcement mechanisms.
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Security Levels l, j ∈ Lev Reference Names a, b ∈Ref Values V ∈Val
Flow Policies A,F ∈ Flo Thread Names m,n ∈Nam Expressions M,N ∈ Exp
Types τ, σ, θ ∈ Typ Domain Names d ∈Dom

Figure 1: Syntax of Basic Elements of the Language

2.2.1. Abstract requirements

Networks are flat juxtapositions of domains, each containing a store and
a pool of threads, which are subjected to the local allowed flow policy of the
domain. Information is associated to references in Ref , and can be seen as
information containers to which values of the language pertaining to a given
type in Typ can be assigned, and to thread names in Nam that are mapped
into different locations when a distributed setting is considered. The basic
elements of the language, summarized in Figure 1, are thus references, domains,
and threads, whose names are drawn from disjoint countable sets a, b ∈ Ref ,
d ∈ Dom 6= ∅ and m,n ∈ Nam , respectively.

As mentioned earlier, security levels are associated to information holders by
means of labelings. We define a reference labeling Σ : Ref → Lev×Typ, whose
left projection corresponds to the usual security labeling Σ1 : Ref → Lev that
assigns security levels to references, and right projection corresponds to the
type labeling Σ2 : Ref → Typ that determines the type of values that can
be assigned to each reference. We also define a thread labeling Υ : Nam →
Lev , that assigns security levels to thread names. This mapping is used in
Subsection 3.1. In this paper, the mapping between reference and thread names
and their corresponding security annotations and types might be informally
denoted as subscript of names in the context of examples.

Threads run concurrently in pools P : Nam → Exp, which are mappings
from thread names to expressions (denoted as sets of threads). Stores S :
Ref → Val map reference names to values. Position-trackers T : Nam →
Dom , map thread names to domain names, and are used to keep track of the
locations of threads in the network. The pool P containing all the threads
in the network, the position tracker T that keeps track of their positions, and
the store S containing all the references in the network, form configurations
〈P, T, S〉, over which the evaluation relation is defined in the next subsection.
We refer to the pairs 〈S, T 〉 as states, and pairs 〈P, T 〉 as thread configurations.
The flow policies that are allowed by each domain are kept by the allowed-policy
mapping W : Dom → Flo from domain names to flow policies.

The ‘W `Σ,Υ’ turnstile gives a security context to the definition of the
semantics, making explicit the allowed flow policy of each domain in the network,
and the valid reference and thread labelings. These parameters are fixed, and

can be omitted when clear from the context. The transitions
d−→
F

are decorated

with the name of the domain d where each step is taking place and the flow
policy F declared by the evaluation context where they are performed. The
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Values V ::= () | x | a | (λx.M) | tt | ff

Pseudo-values X ::= V | (%x.X)

Expressions M,N ::= X | (M N) | (M ;N) | (refl,θ M) | (! N) | (M := N) |
(if M then Nt else Nf ) | (flow F in M) |
(allowed F then Nt else Nf ) | (threadl M at d)

Figure 2: Syntax of Expressions

semantics does not depend on this information, which is used for the purpose
of the security analysis. The relation � denotes the reflexive closure of the

transition relation
d−→
F

.

2.2.2. Concrete object language

The distributed language that we use is a an imperative higher-order λ-
calculus with reference creation, where we include a flow policy declaration
construct (for directly manipulating flow policies [3] and the new flow policy
tester construct that branches according to whether a certain flow policy is
allowed in the program’s computing context, obtained by adding a notion of
computing domain, to which we associate an allowed flow policy, and a code
migration primitive. Threads are also named in order to keep track of their
position in the network. Programs executing in different domains are subjected
to different allowed flow policies – this is what distinguishes local computations
from global computations, and is the main novelty in this language. We opt
for a rather simplistic memory model, assuming memory to be shared by all
programs and every computation domain, in a transparent form. Nevertheless,
as we will see in Section 3, while this allows us to avoid synchronization issues
that are not central to this work, we do not avoid the distributed nature of the
model.

Syntax. The syntax of expressions defined in Figure 2 is based on an imperative
higher order λ-calculus that includes boolean values, recursion (provided by the
(%x.X) construct), conditional branching, reference and remote thread creation,
declassification and a context-policy testing construct.

Reference names are not associated to any security levels or types at the
language level (in this aspect we depart from [2]), and make use of the ref-
erence labelings defined in Subsection 2.2.1 only during the security analysis.
Nevertheless, reference names can be created at runtime, by a construct that
is annotated with a type and security level that should be associated with the
new reference.

The new features are the flow declaration and the allowed-condition. The
flow declaration construct is written (flow F in M), where M is executed in
the context of the current flow policy extended with F ; after termination the
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current flow policy is restored, that is, the scope of F is M . The allowed-
condition is similar to a standard boolean condition, with the difference that in
(allowed F then Nt else Nf ) the branches Nt or Nf are executed according to
whether or not F is allowed by the site’s allowed flow policy.

The remote thread creator (threadl M at d) spawns a new thread with secu-
rity level and expression M in domain d, to be executed concurrently with other
threads at that domain. It functions as a migration construct when the new
domain of the created thread is different from that of the parent thread. The
security level l is the confidentiality level that is associated to the knowledge of
the position of the thread in the network.

Example. The allowed flow policy A of a site restricts the flow policies that can
be set up by programs running in that site. Then, the (allowed F then M else N)
construct tests whether F is allowed by A, and can safely set up a flow declara-
tion for F in its “allowed” branch. A typical usage of the construct could then
be

(allowed FH≺L then (flow FH≺L in (xL := (! yH)))
else plan B)

(1)

where the flow the flow policy FH≺L represents a flow policy that allows infor-
mation to flow from level H to level L.

Operational semantics. In order to define the operational semantics, expres-
sions are represented using evaluation contexts, which specify a call-by-value
evaluation order:

E ::= [] | (E N) | (V E) | (E;N) | (refl,θ E) | (! E)

(E := N) | (V := E) | (if E then Nt else Nf )

We write E[M ] to denote an expression where the sub-expression M is placed
in the evaluation context E, obtained by replacing the occurrence of [] in E by
M . The flow policy that is permitted by the evaluation context E is denoted
by dEe. It consists of a lower bound (see Section 2) to all the flow policies that
are declared by the context:

d[]e = 0, d(flow F in E)e = F f dEe,
dE′[E]e = dEe, when E′ has no flow declarations

The following basic notations and conventions are used for defining transi-
tions. For a mapping Z, we define dom(Z) as the domain of a given mapping Z.
We say a name is fresh in Z if it does not occur in dom(Z). We denote by rn(P )
and dn(P ) the set of reference and domain names, respectively, that occur in the
expressions of P . We let fv(M) be the set of variables occurring free in M . We
restrict our attention to well formed configurations 〈P, T, S〉 satisfying the con-
ditions that rn(P ) ⊆ dom(S), that dn(P ) ⊆ dom(W ), that dom(P ) ⊆ dom(T ),
and that, for every a ∈ dom(S), rn(S(a)) ⊆ dom(S) and dn(S(a)) ⊆ dom(W ).
We denote by {x 7→W}M the capture-avoiding substitution of W for the free
occurrences of x in M . The operation of adding or updating the image of an
object z to z′ in a mapping Z is denoted [z := z′]Z.

The small step operational semantics of the language is defined in Figure 3.
The last rule establishes that the execution of a pool of threads is compositional
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W `Σ,Υ 〈{E[((λx.M) V )]m}, T, S〉 T (m)−−−→
dEe

〈{E[{x 7→ V }M ]m}, T, S〉

W `Σ,Υ 〈{E[(if tt then Nt else Nf )]m}, T, S〉 T (m)−−−→
dEe

〈{E[Nt]
m}, T, S〉

W `Σ,Υ 〈E[(if ff then Nt else Nf )]m}, T, S〉 T (m)−−−→
dEe

〈{E[Nf ]m}, T, S〉

W `Σ,Υ 〈{E[(V ;N)]m}, T, S〉 T (m)−−−→
dEe

〈{E[N ]m}, T, S〉

W `Σ,Υ 〈{E[(%x.X)]m}, T, S〉 T (m)−−−→
dEe

〈{E[({x 7→ (%x.X)} X)]m}, T, S〉

W `Σ,Υ 〈{E[(flow F in V )]m}, T, S〉 T (m)−−−→
dEe

〈{E[V ]m}, T, S〉

W `Σ,Υ 〈{E[(! a)]m}, T, S〉 T (m)−−−→
dEe

〈{E[S(a)]m}, T, S〉

W `Σ,Υ 〈{E[(a := V )]m}, T, S〉 T (m)−−−→
dEe

〈{E[()]m}, T, [a := V ]S〉

W `Σ,Υ 〈{E[(refl,θ V )]m}, T, S〉 T (m)−−−→
dEe

〈{E[a]m}, T, [a := V ]S〉, where
a fresh in S and Σ(a) = θ

W (T (m))4F

W `Σ,Υ 〈{E[(allowed F then Nt else Nf )]m}, T, S〉 T (m)−−−→
dEe

〈{E[Nt]
m}, T, S〉

W (T (m)) 64F

W `Σ,Υ 〈{E[(allowed F then Nt else Nf )]m}, T, S〉 T (m)−−−→
dEe

〈{E[Nf ]m}, T, S〉

W `Σ,Υ 〈{E[(threadl N at d)]m}, T, S〉 T (m)−−−→
dEe
〈{E[()]m, Nn}, [n := d]T, S〉, where

n fresh in T and Σ(a) = θ

W `Σ,Υ 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉 〈P ∪Q,T, S〉 is well formed

W `Σ,Υ 〈P ∪Q,T, S〉 d−→
F
〈P ′ ∪Q,T ′, S′〉

Figure 3: Operational Semantics

(up to the choice of new names). Notice that W , representing the allowed flow
policies associated to each domain, is never changed. For simplicity, memory
is assumed to be shared by all programs and every computation domain, in a
transparent form.

Thread names are used in two situations: When a new thread is created, its
new fresh name is added to the position-tracker, associated to the parameter
domain. As with reference creation, the security level that is associated to the
new thread does not influence the semantics, but is used later by the security
analysis. Thread names are also used when an allowed-condition is performed:
the tested flow policy is compared to the allowed flow policy of the site where
that particular thread is executing.

One can prove that the semantics preserves well-formedness of configura-
tions, and that a configuration with a single thread has at most one transition,
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up to the choice of new names.
According to the chosen semantics, dereferencing and assigning to remote

references can be done transparently. One may wonder whether it is correct to
consider a system with a shared global state as distributed. We point out that
in this model, the flow policies are distributed, while the behavior of a program
fragment may differ on different machines. As an example, consider the thread

(allowed F then (yL := 1) else (yL := 2))m (2)

running in a network such that W (d1) = F1 and W (d2) = F2, where W (d1) 4 F
but W (d2) 64 F . The thread will perform different assignments depending on
whether T (m) = d1 or T (m) = d2. In Section 3 we will see that their behavior
is distinguishable by an information flow bisimulation relation. In other words,
the network does exhibit a distributed behavior.

3. Controlling Information Flow

In this section we revisit the problem of controlling information flow in the
context of a distributed setting with code mobility. We present a new refined
formalization of the Non-disclosure for Networks property, and argue for its
suitability. Then, we analyze the behavior of the new allowed condition con-
struct in light of the new property. We then present a type and effect system
for enforcing the property over the concrete language of Subsection 2.2 and
establish soundness of the enforcement mechanism.

3.1. Non-disclosure for Networks

Non-disclosure states that, at each computation step performed by a pro-
gram, information flows respects the flow policy that is declared by the eval-
uation context where the step is performed. The property is naturally de-
fined for sets of concurrent threads in terms of an information-flow bisimula-
tion [37, 40, 12, 19], that, at each execution point, relates the outcomes of each
possible step that is performed over states (stores) that coincide on their “low”
region, where the notion of “low” is customized with the currently declared flow
policy [3]. It can be generalized to a distributed setting by extending the notion
of state in order to include position trackers [4].

Low equality. As we will see towards the end of this section, the position of a
thread in the network can reveal information about the values in the memory.
For this reason, we must use a notion of low-equality that is extended to states.
Furthermore, in order to keep track of the security levels that are associated
to threads, the relation must be parameterized by the thread mapping Υ (see
Subsubsection 2.2.1). Given a security labeling Σ1, two memories S1 and S2

are said to be indistinguishable at level l ∈ L with respect to a flow policy F ,
written S1 =Σ1

F,l S2, if they coincide in all references assigned to security levels
less or equal than l.
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Definition 3.1 (Low-Equality). The low-equality between states 〈T1, S1〉 and

〈T2, S2〉 with respect to a flow policy F and a security level l, written 〈T1, S1〉 =Σ1,Υ
F,l

〈T2, S2〉, if and only if for every reference name a ∈ Ref, if Σ1(a) vF l, then
S1(a) = S2(a) holds, and for any thread name n ∈ Nam, if Υ(n) vF l, then
T1(n) = T2(n) holds.

This relation is transitive, reflexive and symmetric.

Store compatibility. The language defined in Section 2.2 is a higher-order lan-
guage, where values stored in memory can be used by programs to build expres-
sions that are then executed. For example, the expression ((! a) ()) can evolve
into an insecure program when running on a memory that maps a reference a to
a lambda-abstraction whose body consists of an insecure expression. In order
to avoid considering all such programs insecure, it is necessary to make assump-
tions concerning the contents of the memory. Here, memories are assumed to
be compatible to the given security setting and typing environment, requiring
typability of their contents with respect to the type system that is defined in
the next subsection (see Definition 3.5), and can be shown to be preserved by
the semantics.

Definition on thread configurations. Intuitively, if a program is shown to be
related to itself by means of an information flow bisimulation, one can conclude
that it has the same behavior regardless of changes in the high part of the
memory. In other words, the high part of the memory has not interfered with
the low part, i.e., no security leak has occurred. A secure program can then be
defined as one that is related to itself by the above bisimulation.

When imposing restrictions on the behaviors of bisimilar pools of threads,
the definition in [4] resets the state arbitrarily at each step of the bisimulation
game. This accounts for changes that might be induced by threads that are
external to the pools under consideration, thus enabling compositionality of
the property. However, in a context where migration is subjective (i.e. only
the thread itself can trigger its own migration), resetting the position tracker
arbitrarily is unnecessary. In fact, it leads to a property that is overly restrictive.
In the following program Minsec can be a direct leak that is not placed within
a flow declaration:

(threadl (allowed F then () else Minsec) at d) (3)

The above program is intuitively secure (regarding Non-disclosure for Networks)
if W (d) 4 F and insecure otherwise, as the body of the thread is known to be ex-
ecuted at domain d. However, it is considered insecure by the original definition,
as if the allowed condition is executed over “fresh” thread configurations such
that the thread is located at a domain where F is not allowed, then the branch
with the illegal expressions Minsec would be executed. It is then reasonable to
relax the power of the attacker, by focusing on the behavior of threads when
coupled with their possible locations on the network. The following information-
flow bisimulation fixes the position tracker across the bisimulation steps:
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Definition 3.2 (≈Σ,Υ
Γ,l ). Consider an allowed-policy mapping W , a reference

labeling Σ, and a typing environment Γ. A (Σ,Υ,Γ, l)-bisimulation is a sym-
metric relation R on thread configurations that satisfies, for all P1, T1, P2, T2,
and (W,Σ,Γ)-compatible stores S1, S2:

〈P1, T1〉 R 〈P2, T2〉 and W ` 〈P1, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉

and 〈T1, S1〉 =Σ,Υ
F,l 〈T2, S2〉

with (dom(S1
′)−dom(S1))∩dom(S2)=∅ and (dom(T1

′)− dom(T1))∩dom(T2)=∅
implies that there existP ′2, T

′
2, S
′
2 s.t.:

W ` 〈P2, T2, S2〉� 〈P ′2, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ,Υ
0,l 〈T

′
2, S
′
2〉

and 〈P ′1, T ′1〉 R 〈P ′2, T ′2〉
Furthermore, S′1, S

′
2 are still (W,Σ,Γ)-compatible. The largest (W,Σ,Υ,Γ, l)-

bisimulation, the union of all such bisimulations, is denoted ≈Σ,Υ,
Γ,l .

For any Σ, Υ, Γ and l, the set of pairs of thread configurations where threads
are values is an (Σ,Υ,Γ, l)-bisimulation. Furthermore, the union of a family

of (Σ,Υ,Γ, l)-bisimulations is a (Σ,Υ,Γ, l)-bisimulation. Consequently, ≈Σ,Υ,
Γ,l

exists.
Despite the technical difference regarding the new focus on thread config-

urations, the intuitions that explain the above definition are maintained. We
briefly recall them here, and refer the reader to [4] for more explanations. The
reason why the above bisimulation potentially relates more programs than one
for Non-interference is the stronger premise 〈T1, S1〉 =Σ1

F,l 〈T2, S2〉, which as-
sumes pairs of states that coincide “to a greater extent”, thus “facilitating” the
reproduction of the behavior by the opposite thread configuration. The absence
of a condition on the flow policy of the matching move for P2 enables all expres-
sions without side-effects (such as) to be bisimilar, independently of the flow
policy that is declared by their evaluation contexts. Clearly, the relation ≈Σ

Γ,l is
not reflexive since, as only “secure” programs, as defined next, are bisimilar to
themselves. For instance, the insecure expression (vB := (! uA)) is not bisimilar
to itself if A 6vF B.

We now present a weakened version of non-disclosure for networks, that is
defined over thread configurations.

Definition 3.3 (Non-disclosure for Networks (on thread configurations)). A
pool of threads P satisfies the Non-disclosure for Networks property with respect
to an allowed-policy mapping W , a reference labeling Σ, a thread labeling Υ
and a typing environment Γ, if it satisfies 〈P, T1〉 ≈Σ,Υ

Γ,l 〈P, T2〉 for all security
levels l and position trackers T1, T2 such that dom(P ) = dom(T1) = dom(T2)

and T1 =Σ,Υ
0,l T2. We then write P ∈ NDN 2(W,Σ,Υ,Γ).

Properties. Definition 3.3 is strictly weaker, in the sense that it considers more
programs as secure, than the old thread pool-based definition of [4]. The idea is
that if we only consider reasonable locations for the thread at the point that the
leak is performed, then we are accepting more programs. In the following result,
the sets NDN 1(W,Σ,Υ,Γ) and NDN 2(W,Σ,Υ,Γ) are the sets of secure pools
of threads according to Definition 3.3 and the one in [4], respectively.
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Proposition 3.4. NDN 1(W,Σ,Υ,Γ) ⊂ NDN 2(W,Σ,Υ,Γ).

Example 3 illustrates which programs are now deemed secure by the new prop-
erty, that remembers the possible locations at each point of the bisimulation
game.

The new weakened definition of Non-disclosure for Networks is compositional
with respect to set union of pools of threads, up to disjoint naming of threads.

Example. We are considering a simplistic memory model where all of the net-
work’s memory is accessible at all times by every process in the network. With
this assumption we avoid migration leaks that derive from synchronization be-
haviors [4]. In our setting, we avoid these issues, but migration leaks can be
encoded nonetheless. The idea is that now a program can reveal information
about the position of a thread in a network by performing tests on the flow
policy that is allowed by that site:

if (! xH) then (threadl (allowed F then (yL := 1) else (yL := 2)) at d1)
else (threadl (allowed F then (yL := 1) else (yL := 2)) at d2)

(4)

In this example, the new thread will be created at (migrate) to domains d1 or d2

depending on the tested high value; then, if these domains have different allowed
flow policies, different low-assignments are performed, thus revealing high level
information. Therefore, the program is insecure with respect to Non-disclosure
for Networks.

3.2. Type and Effect System

We now present a type and effect system [27] that accepts programs that
satisfy Non-disclosure for Networks, as defined in Subsubsection 3.1. It is sim-
ilar to the one in [3], for a language that is extended to include the allowed
conditions, and while restricting information leaks to occur within the bound-
aries of the flow declarations, as in [4]. An additional parameter appears in this
setting, where the reference labeling is made explicit.

The typing judgments used in Figure 4 have the form

Γ `Σ
j,F M : s, τ

meaning that the expression M is typable with type τ and security effect s
in the typing context Γ : Var → Typ, which assigns types to variables. The
turnstile has three parameters: (1) the reference labeling Σ; (2) the flow policy
declared by the context F , represents the one that is valid in the evaluation
context in which the expression M is typed, and contributes to the meaning of
operations and relations on security levels. (3) he security level j represents the
confidentiality level associated to the thread that the expression M is part of,
i.e. the confidentiality level of the location of that thread in the network.

The security effect s is composed of three security levels that are referred to
by s.r, s.w and s.t, and can be understood as follows: s.r is the reading effect,
an upper-bound on the security levels of the references that are read by M ;
s.w is the writing effect, a lower bound on the references that are written by
M ; s.t is the termination effect, an upper bound on the level of the references
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[Nil] Γ `Σ
j,F () : s, unit [BT] Γ `Σ

j,F tt : s, bool [BF] Γ `Σ
j,F ff : s, bool

[Loc] Γ `Σ
j,F a : s,Σ2(a) refΣ1(a) [Var] Γ, x : τ `Σ

j,F x : s, τ

[Abs]
Γ, x : τ `Σ

j,F M : s, σ

Γ `Σ
j′,F ′ (λx.M) : s′, τ

s−−→
j,F

σ
[Rec]

Γ, x : τ `Σ
j,F W : s, τ

Γ `Σ
j,F (%x.W ) : s, τ

[Flow]
Γ `Σ

j,FfF ′ N : s, τ

Γ `Σ
j,F (flow F ′ in N) : s, τ

[Allow]

Γ `Σ
j,F Nt : st, τ

Γ `Σ
j,F Nf : sf , τ

j vF st.w, sf .w

Γ `Σ
j,F (allowed F ′ then Nt else Nf) : st t sf t 〈⊥,>, j〉, τ

[Ref]
Γ `Σ

j,F M : s, θ s.r, s.t vF l
Γ `Σ

j,F (refl,θ M) : s t 〈⊥, l,⊥〉, θ refl
[Der]

Γ `Σ
j,F M : s, θ refl

Γ `Σ
j,F (! M) : s t 〈l,>,⊥〉, θ

[Ass]

Γ `Σ
j,F M : s, θ refl Γ `Σ

j,F N : s′, θ
s.t vF s′.w

s.r, s′.r, s.t, s′.t vF l

Γ `Σ
j,F (M := N) : s t s′ t 〈⊥, l,⊥〉, unit

[Cond]

Γ `Σ
j,F M : s, bool

Γ `Σ
j,F Nt : st, τ

Γ `Σ
j,F Nf : sf , τ

s.r, s.t vF st.w, sf .w

Γ `Σ
j,F (if M then Nt else Nf ) : s t st t sf t 〈⊥,>, s.r〉, τ

[Seq]
Γ `Σ

j,F M : s, τ Γ `Σ
j,F N : s′, σ s.t vF s′.w

Γ `Σ
j,F (M ;N) : s t s′, σ

[App]

Γ `Σ
j,F M : s, τ

s′−−→
j,F

σ Γ `Σ
j,F N : s′′, τ

s.t vF s′′.w
s.r, s′′.r, s.t, s′′.t vF s′.w

Γ `Σ
j,F (M N) : s t s′ t s′′ t 〈⊥,>, s.r t s′′.r〉, σ

[Mig]
Γ `Σ

l,0 M : s, unit

Γ `Σ
j,F (threadl M at d′) : 〈⊥, l t s.w,⊥〉, unit

Figure 4: Type and Effect System for checking Non-disclosure for Networks

on which the termination of expression M might depend. According to these
intuitions, in the type system the reading and termination levels are composed
in a covariant way, whereas the writing level is contravariant.

Types have the following syntax (t is a type variable):

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s−−→
j,F

σ

Typable expressions that reduce to () have type unit, and those that reduce to
booleans have type bool. Typable expressions that reduce to a reference which
points to values of type θ and has security level l have the reference type θ ref l.
The security level l is used to determine the effects of expressions that handle
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references. Expressions that reduce to a function that takes a parameter of type
τ , that returns an expression of type σ, and with a latent effect s [27] have the

function type τ
s−−→
j,F

σ. The latent effect is the security effect of the body of

the function, while the latent flow policies are those that are assumed to hold
when the function is applied to an argument, and the latent security level j of
the thread containing the expression that appears in the the type of expressions
that reduce to functions.

We use a lattice on security effects, that is obtained from the point-wise
composition of three lattices of the security levels. More precisely:

s vF s′ def⇔ s.r vF s′.r & s′.w vF s.w &s.t vF s′.t
s t s′ def⇔ 〈s.r t s′.r, s.w u s′.w, s.t t s′.t〉

> = 〈>,⊥,>〉 ⊥ = 〈⊥,>,⊥〉

Our type and effect system applies restrictions to programs in order to en-
force compliance of all information flows to the flow relation that is parame-
terized with the current flow policy. This is achieved by conditions of the kind
“vF ” in the premises of the typing rules, and by the update of the security
effects in the conclusions. Apart from the parameterization of the flow relation
with the current flow policy, these are fairly standard in information flow type
system and enforce syntactic rules of the kind “no low writes should depend on
high reads”, both with respect to the values that are read, and to termination
behaviors that might be derived. Notice that the Flow rule types the body of
the flow declaration under a more permissive flow policy. We refer the reader
to [4] for explanations on all of these conditions. There are, however, extra con-
ditions that are introduced in order to deal with new forms of migration leaks
that appear in our distributed setting (such as Example 4), and that deserve
further attention: the security level j that is associated to each thread, and
represents the confidentiality level of the position of the thread in the network
is used to update the termination effect in the allowed-condition rule, for the
choice of the branch can determine the termination behavior of the condition.
The security level of the thread is also constrained not to be higher in confiden-
tiality than the “low writes” in rule Allow. The extra condition regarding the
termination effect (such as in rules Ass, Cond and App) are in fact, they are
implicit in the previous type system as well. Here they must appear explicitly
since it is no longer true that s.t vF s.r for any F , due to the update of the
termination effect with the level j in rule Allow.

We are now in position to define the compatibility predicate that applies to
this particular information flow analysis:

Definition 3.5 ((Σ,Γ)-Compatibility). A memory S is said to be (Σ,Γ)-compa-
tible if, for every reference a ∈ dom(S), its value S(a) satisfies Γ `Σ S(a) : Σ2(a).

3.2.1. Soundness

The main result of this section, soundness, states that the type system only
accepts expressions that are secure in the sense of Definition 3.3. In the remain-
der of this section we sketch the main definitions and results that can be used
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to reconstruct a direct proof of this result. A similar proof is given in detail for
a similar language (without the allowed condition or remote thread creation)
in [4].

Subject Reduction. In order to establish the soundness of the type system of
Figure 4 we need a Subject Reduction result, stating that the type of a thread
is preserved by reduction. When a thread performs a computation step, some
of its effects may be performed by reading, updating or creating a reference,
and some may be discarded when a branch in a conditional expression is taken.
Then the effects of an expression “weaken” along the computations. To prove
it we follow the usual steps [41].

Proposition 3.6 (Subject Reduction). Given a reference and thread labeling
Σ, Υ, consider a thread Mm for which there exist Γ, F , s and τ such that

Γ `Σ
j,F M : s, τ and suppose that W ` 〈{Mm}, T, S〉 d−→

F ′
〈{M ′m} ∪ P, T ′, S′〉,

for a memory S that is (Σ,Γ)-compatible. Then, there is an effect s′ such that
s′ v s and Γ `Σ

j,F M ′ : s′, τ , and S′ is also (Σ,Γ)-compatible. Furthermore,
if P = {Nn}, for some expression N and thread name n, then there exists s′′

such that s.w v s′′.w such that Γ `Σ
Υ(k),0 N : s′′, unit.

Properties of the Semantics. One can prove that the semantics preserves the
conditions for well-formedness, and that a configuration with a single expression
has at most one transition, up to the choice of new names.

The following result states that, if the evaluation of a thread Mm differs
in the context of two distinct states while not creating two distinct reference
names or thread names, this is because either Mm is performing a dereferencing
operation, which yields different results depending on the memory, or because
Mm is testing the allowed policy.

Lemma 3.7 (Splitting Computations).

If we have W ` 〈{Mm}, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉 and W ` 〈{Mm}, T2, S2〉

d−→
F ′

〈P ′2, T ′2, S′2〉 with P1
′ 6= P2

′, then P ′1 = {M1
′m}, P ′2 = {M2

′m} and either:

• ∃E, a such that F = dEe = F ′, M = E[(! a)], and M ′1 = E[S1(a)], M ′2 =
E[S2(a)] with 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉, or

• ∃E, F̄ such that F = dEe = F̄ , M = E[(allowed F ′ then Nt else Nf )],
and T1(m) 6= T2(m) with 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉.

Proof. Note that the only rules that depend on the state are those for the
reduction of E[(! a)] and of E[(allowed F ′ then Nt else Nf )]. By case analysis

on the transition W ` 〈{Mm}, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉.

High Expressions. We can identify a class of threads that have the property
of never performing any change in the “low” part of the memory. These are
classified as being “high” according to their behavior:
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Definition 3.8 (Operationally High Threads). A set of threads HΣ,Υ is a set of
operationally (Σ,Υ, F, l)-high threads if the following holds for all Mm ∈ HΣ,Υ,
for all states 〈T, S〉, and for all flow policy mappings W :

W ` 〈{Mm}, T, S〉 d−→
F ′
〈P ′, T ′, S′〉 implies 〈T, S〉 =Σ,Υ

F,l 〈T
′, S′〉 and P ′ ⊆ HΣ,Υ

The largest set of operationally (Σ,Υ, F, l)-high threads is denoted by HΣ,Υ
F,l . We

then say that a thread Mm is operationally (Σ,Υ, F, l)-high, if Mm ∈ HΣ1,Υ
F,l .

For any Σ, Υ, F and l, the set of threads with values as expressions is
a set of operationally (Σ,Υ, F, l)-high threads. Furthermore, the union of a
family of sets of operationally (Σ,Υ, F, l)-high threads is a set of operationally

(Σ,Υ, F, l)-high threads. Consequently, HΣ,Υ
F,l exists.

Notice that if F ′ ⊆ F , then any operationally (Σ,Υ, F, l)-high thread is also
operationally (Σ,Υ, F ′, l)-high.

Some expressions can be easily classified as “high” by the type system, which
only considers their syntax. These cannot perform changes to the “low” memory
simply because their code does not contain any instruction that could perform
them. Since the writing effect is intended to be a lower bound to the level of the
references that the expression can create or assign to, expressions with a high
writing effect can be said to be syntactically high:

Definition 3.9 (Syntactically High Expressions). An expression M is syn-
tactically (Σ,Γ, j, F, l)-high if there exists s, τ such that Γ `Σ

j,F M : s, τ with

s.w 6vF l. The expression M is a syntactically (Σ,Γ, j, F, l)-high function if

there exists j′, F ′, s, τ, σ such that Γ `Σ
j′,F ′ M : τ

s−−→
j,F

σ with s.w 6vF l.

Syntactically high expressions have an operationally high behavior.

Lemma 3.10 (High Expressions). If M is a syntactically (Σ,Γ, j, F, l)-high
expression, and Υ(m) = j, then Mm is an operationally (Σ,Υ, F, l)-high thread.

Proof. We show that the following is a set of operationally (Σ,Υ, F, l)-high
threads:

{Mm | ∃j . M is syntactically (Σ,Γ, j, F, l)-high}

Behavior of “Low”-Terminating Expressions. We first build a symmetric binary
relation between typable expressions whose terminating behaviors do not depend
on high references, more precisely, between those that are typable with a low
termination effect. The binary relation should be such that if the evaluation
of two related expressions, in the context of two low-equal stores should split
(see Lemma 3.7), then the resulting expressions are still in the relation. This

relation, called T Σ,Γ
j,F,low is inductively defined for a security level low as follows:

Definition 3.11 (T Σ,Γ
j,F,low ). We have that M1 T Σ,Γ

j,F,low M2 if Γ `Σ
j,F M1 : s1, τ

and Γ `Σ
j,F M2 : s2, τ for some s1, s2 and τ with s1.t vF low and s2.t vF low

and one of the following holds:
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1. M1 and M2 are both values, or

2. M1 = M2, or

3. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 T Σ,Γ
j,F,low M̄2, or

4. M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 T Σ,Γ
j,F,low M̄2, and l 6vF low, or

5. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 T Σ,Γ
j,F,low M̄2, or

6. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 T Σ,Γ
j,F,low M̄2, and N̄1 T Σ,Γ

j,F,low N̄2,

and M̄1, M̄2 both have type θ refl for some θ and l such that l 6vF low, or

7. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with M̄1 T Σ,Γ
j,FfF ′,low M̄2.

The next proposition states that T Σ,Γ
j,F,low is a kind of “strong bisimulation”

with respect to the transition relation
d−→
F ′

.

Proposition 3.12 (Strong Bisimulation for Low-Termination).

Suppose that M1 T Σ,Γ
j,F,low M2 and, for a given allowed flow policy mapping

W , also W ` 〈{M1
m}, T1, S1〉

d−→
F ′
〈P ′1, T ′1, S′1〉, with Υ(m) = j and 〈T1, S1〉

=Σ1,Υ
FfF ′,low 〈T2, S2〉. Then P ′1 = {M ′m1 } ∪ P , and if a ∈ dom(S′1 − S1) im-

plies that a is fresh for S2, then there exist M ′2, T ′2 and S′2 such that W `
〈{M2

m}, T2, S2〉
d−→
F ′
〈{M ′2

m}, T ′2, S′2〉 with M ′1 T
Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low

〈T ′2, S′2〉. Furthermore, if P = {Nn} for some expression N and thread name

n /∈ dom(T2), then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m
, Nn}, T ′2, S′2〉 with M ′1 T

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.

Proof. By case analysis on the clause by which M1 T Σ,Γ
j,F,low M2, and by induction

on the definition of T Σ,Γ
j,F,low .

Behavior of Typable Low Expressions. We now define a larger symmetric binary
relation on typable expressions. Similarly to the previous one, it should be
possible to relate the results of the computations of two related expressions
in the context of two low-equal memories. The binary relation RΣ,Γ

j,F,low on
expressions is defined inductively as follows:

Definition 3.13 (RΣ,Γ
j,F,low ). We have that M1 RΣ,Γ

j,F,low M2 if Γ `Σ
j,F M1 : s1, τ

and Γ `Σ
j,F M2 : s2, τ for some Γ, s1, s2 and τ and one of the following holds:

1. M1
m,M2

m ∈ HΣ,Υ
F,low , or

2. M1 = M2, or

3. M1 = (if M̄1 then N̄t else N̄f ) and also M2 = (if M̄2 then N̄t else N̄f ) with
M̄1 RΣ,Γ

j,F,low M̄2, and N̄t
m
, M̄f

m ∈ HΣ,Υ
F,low , or

4. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 RΣ,Γ
j,F,low M̄2, and N̄m

1 , N̄
m
2 ∈

HF,low , and M̄1, M̄2 are syntactically (F, low , j)-high functions, or

5. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T Σ,Γ
j,F,low M̄2, and N̄1 RΣ,Γ

j,F,low N̄2,

and M̄1, M̄2 are syntactically (F, low , j)-high functions, or

6. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 RΣ,Γ
j,F,low M̄2, and N̄m ∈ HΣ,Υ

F,low , or
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7. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T Σ,Γ
j,F,low M̄2, or

8. M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) with M̄1 RΣ,Γ
j,F,low M̄2, and l 6vF low, or

9. M1 = (! M̄1) and M2 = (! M̄2) with M̄1 RΣ,Γ
j,F,low M̄2, or

10. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 RΣ,Γ
j,F,low M̄2, and N̄m

1 , N̄
m
2 ∈

HΣ,Υ
F,low , and M̄1, M̄2 both have type θ refl,nk for some θ and l such that l 6vF low,

or

11. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 T Σ,Γ
j,F,low M̄2, N̄1 RΣ,Γ

j,F,low N̄2,

and M̄1, M̄2 both have type θ refl,nk for some θ and l such that l 6vF low, or

12. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with M̄1 RjFfF ′,low M̄2.

The relation RΣ,Γ
j,F,low is a kind of “strong bisimulation”, with respect to the

transition relation
d−→
F ′

:

Proposition 3.14 (Strong Bisimulation for Typable Low Threads).

Suppose that M1 RΣ,Γ
j,F,low M2 and M1 /∈ HΣ,Υ

F,low and for a given allowed flow pol-

icy mapping W , also W `Σ,Υ 〈{M1
m}, T1, S1〉

d−→
F ′
〈P ′1, T ′1, S′1〉, with Υ(m) = j

and 〈T1, S1〉 =Σ1,Υ
FfF ′,low 〈T2, S2〉. Then P ′1 = {M ′m1 }∪P , and if a ∈ dom(S′1−S1)

implies that a is fresh for S2, then there exist M ′2, T ′2 and S′2 such that W `
〈{M2

m}, T2, S2〉
d−→
F ′
〈{M ′2

m}, T ′2, S′2〉 with M ′1R
Σ,Γ
j,F,lowM

′
2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low

〈T ′2, S′2〉. Furthermore, if P = {Nn} for some expression N and thread name

n /∈ dom(T2), then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m
, Nn}, T ′2, S′2〉 with M ′1 R

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.

Proof. By case analysis on the clause by which M1 RΣ,Γ
j,F,low M2, and by induc-

tion on the definition of RΣ,Γ
j,F,low .

Behavior of Sets of Typable Threads. To conclude the proof of the Soundness
Theorem, it remains to exhibit an appropriate bisimulation on thread configu-
rations.

Definition 3.15 (RΥ
low ). The relation RΥ

low is inductively defined as follows:

a)
Mm ∈ HΣ,Υ

0,low

{Mm} RΥ
low ∅

b)
Mm ∈ HΣ,Υ

0,low

∅ RΥ
low {Mm}

c)
M1 RΣ,Γ

Υ(m),0,low M2

{M1
m} RΥ

low {M2
m}

d)
P1 RΥ

low P2 Q1 RΥ
low Q2

P1 ∪Q1 RΥ
low P2 ∪Q2

We will now use Strong Bisimulation for Typable Low Threads (Proposition
3.14) to prove the following:

Proposition 3.16. The relation

BΣ,Γ
Υ(m),low = {(〈P1, T1〉, 〈P2, T2〉) | P1 RΥ

low P2 and T1 =Σ,Υ
0,l T2}

is a (W,Σ,Υ,Γ, l)-bisimulation acording to Definition 3.2.
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We can now prove the main result regarding Non-disclosure for Networks:

Theorem 3.17 (Soundness of Typing Non-disclosure for Networks.).
Consider a pool of threads P , an allowed-policy mapping W , a reference labeling
Σ, a thread labeling Υ and a typing environment Γ. If for all Mm ∈ P there
exist s, and τ such that Γ `Σ

Υ(m),0 M : s, τ , then P satisfies the Non-disclosure

for Networks policy, i.e. P ∈ NDN 2(W,Σ,Υ,Γ).

Proof. For all Mm ∈ P and for all choices of security levels low , by assump-
tion and by Clause 2’ of Definition 3.13, we have that M RΣ,Γ

Υ(m),low M . By

Rule c) of Definition 3.15 we then have {Mm} RΣ,Γ
Υ(m),low {M

m}. Therefore,

by Rule d) we have that P RΣ,Γ
Υ(m),low P , from which we conclude that for

all position trackers T1, T2 such that dom(P ) = dom(T1) = dom(T2) and

T1 =Σ,Υ
0,l T2 we have 〈P, T1〉 BΣ,Γ

Υ(m),low 〈P, T2〉. By Proposition 3.16 we con-

clude that 〈P, T1〉 ≈Σ,Υ
Γ,low 〈P, T2〉.

Our soundness result for non-disclosure is compositional, in the sense that
it is enough to verify the typability of each thread separately in order to ensure
non-disclosure for the whole network.

4. Controlling Declassification

We now define flow policy confinement with respect to a setting with dis-
tributed allowed flow policies, and justify the chosen formalization. The prop-
erty is similar to the one in [2], but is now formulated in terms of thread con-
figurations [6]. We study its enforcement y means by means of three migration
control mechanisms. We start by studying a type system for statically ensuring
that global computations always comply to the locally valid allowed flow policy.
This type system is inherently restrictive, as the domains where each part of
the code will actually compute cannot in general be known statically (Subsec-
tion 4.2). We then present a more precise type system to be used at runtime by
the semantics of the language for checking migrating threads against the allowed
flow policy of the destination domain (Subsection 4.3). Finally, we propose a
yet more precise type and effect system that computes information about the
declassification behaviors of programs. This information will be used more effi-
ciently at runtime by the semantics of the language in order to control migration
of programs (Subsection 4.4).

4.1. Flow Policy Confinement for Networks

The property of Flow Policy Confinement states that the declassifications
that are declared by a program at each computation step comply to the allowed
policy of the domain where the step is performed. In a distributed setting
with concurrent mobile code, programs might need to comply simultaneously
to different allowed flow policies that change dynamically. We deal with this
difficulty by placing individual restrictions on each step that might be performed
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by a part of the program, taking into account the possible location where it
might take place.

Memory compatibility. Similarly to Subsection 3.1, memories are assumed to
be compatible to the given security setting and typing environment, requiring
typability of their contents according to the relevant enforcement mechanism.
This predicate will be defined for each security analysis that is performed over
the next three subsections (see Definitions 4.4, 4.8 and 4.10).

Definition on thread configurations. Similarly to [5] we define the property co-
inductively, on thread configurations. The location of each thread determines
which allowed flow policy it should obey at that point, and is used to place a
restriction on the flow policies that decorate the transitions.

Definition 4.1 ((W,Σ,Γ)-Confined Thread Configurations). Given an allowed-
policy mappingW , a reference labelingΣ, and a typing environment Γ, a set CT C
of thread configurations is a set of (W,Σ,Γ)-confined thread configurations if it
satisfies, for all P, T , and (W,Σ,Γ)-compatible stores S:

〈P, T 〉 ∈ CT C and W ` 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉 implies

W (d) 4 F and 〈P ′, T ′〉 ∈ CT C

Furthermore, S′ is still (W,Σ,Γ)-compatible. The largest set of (W,Σ,Γ)-

confined thread configurations is denoted CT CΣ,Γ
W .

For anyW , Σ and Γ, the set of thread configurations where threads are values
is a set of (W,Σ,Γ)-confined thread configurations. Furthermore, the union of a
family of (W,Σ,Γ)-confined thread configurations is a (W,Σ,Γ)-confined thread

configurations. Consequently, CT CΣ,Γ
W exists.

Definition 4.2 (Flow Policy Confinement). A pool of threads P satisfies Flow
Policy Confinement with respect to an allowed-policy mapping W , a reference la-
beling Σ and a typing environment Γ, if all thread configurations satisfy 〈P, T 〉 ∈
CT CΣ,Γ

W . We then write P ∈ FPC2(W,Σ,Γ).

Notice that the property is parameterized by a particular mapping W from
domains to allowed flow policies. This means that security is defined relative to
W . An absolute notion of security holds when W is universally quantified.

It should be clear that Flow Policy Confinement speaks strictly about what
flow declarations a thread can do while it is at a specific domain. In particular,
it does not restrict threads from migrating to more permissive domains in order
to perform a declassification. It does not deal with information flows. So for
instance it offers no assurance that information leaks that are encoded at each
point of the program do obey the declared flow policies for that point. For
example, program

(threadl (flow F in (b := (! a))) at d) (5)

always satisfies flow policy confinement when F = 0, regardless of the levels of
references a and b.
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[Nil] W ; Γ `Σ
A () : unit [BT] W ; Γ `Σ

A tt : bool [BF] W ; Γ `Σ
A ff : bool

[Loc] W ; Γ `Σ
A a : Σ2(a) ref [Var] W ; Γ, x : τ `Σ

A x : τ

[Abs]
W ; Γ, x : τ `Σ

A M : σ

W ; Γ `Σ
A′ (λx.M) : τ −→

A
σ

[Rec]
W ; Γ, x : τ `Σ

A W : τ

W ; Γ `Σ
A (%x.W ) : τ

[Flow]
W ; Γ `Σ

A N : τ A 4 F

W ; Γ `Σ
A (flow F in N) : τ

[Allow]

W ; Γ `Σ
AfF Nt : τ

W ; Γ `Σ
A Nf : τ

W ; Γ `Σ
A (allowed F then Nt else Nf) : τ

[Ref]
W ; Γ `Σ

A M : θ

W ; Γ `Σ
A (refl,θ M) : θ ref

[Der]
W ; Γ `Σ

A M : θ ref

W ; Γ `Σ
A (! M) : θ

[Ass]
W ; Γ `Σ

A M : θ ref W ; Γ `Σ
A N : θ

W ; Γ `Σ
A (M := N) : unit

[Seq]
W ; Γ `Σ

A M : τ W ; Γ `Σ
A N : σ

W ; Γ `Σ
A (M ;N) : σ

[App]
W ; Γ `Σ

A M : τ −→
A
σ W ; Γ `Σ

A N : τ

W ; Γ `Σ
A (M N) : σ

[Cond]

W ; Γ `Σ
A M : bool

W ; Γ `Σ
A Nt : τ

W ; Γ `Σ
A Nf : τ

W ; Γ `Σ
A (if M then Nt else Nf ) : τ

[Mig]
W ; Γ `Σ

A′ M : unit W (d) 4 A′

W ; Γ `Σ
A (threadl M at d) : unit

Figure 5: Type and effect system for checking Confinement

Properties. Flow Policy Confinement, defined over thread configurations, is
equivalent to when defined over located threads. In the following result, the
sets FPC1(W,Σ,Γ) and FPC2(W,Σ,Γ) are the sets of secure pools of threads
according to Definition 3.3 and the one in [5], respectively.

Proposition 4.3. FPC1(W,Σ,Γ) = FPC2(W,Σ,Γ).

4.2. Static Type and Effect System

We have seen that in a setting where code can migrate between domains with
different allowed security policies, the computation domain might change during
computation, along with the allowed flow policy that the program must comply
to. This can happen in particular within the branch of an allowed condition:

(allowed F then (threadl (flow F in M1) at d) else M2) (6)
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In this program, the flow declaration of the policy F is executed only if F has
been tested as being allowed by the domain where the program was started.
It might then seem that the flow declaration is “protected” by an appropriate
allowed construct. However, by the time the flow declaration is performed, the
thread is already located at another domain, where that flow policy might not be
allowed. It is clear that a static enforcement of a confinement property requires
tracking the possible locations where threads might be executing at each point.

Figure 5 presents a new type and effect system [27] for statically enforcing
confinement over a migrating program. The type system guarantees that when
operations are executed by a thread within the scope of a flow declaration, the
declared flow complies to the allowed flow policy of the current domain. The
typing judgments have the form

W ; Γ `Σ
A M : τ

meaning that the expression M is typable with type τ in the typing context
Γ : Var → Typ, which assigns types to variables, in a context where W is
the mapping of domain names to allowed flow policies. The turnstile has two
parameters: (1) the reference labeling Σ; (2) the flow policy allowed by the
context A, which includes all flow policies that have been positively tested by
the program as being allowed at the computation domain where the expression
M is running.

Types have the following syntax (t is a type variable):

τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref | τ −→
A
σ

The syntax is similar to the one used in Subsubsection 3.2, but is simpler: The
security level of references does not appear in the reference types θ ref , while
the type function types τ −→

A
σ includes only the latent allowed flow policy, the

one that is assumed to hold when the function is applied to an argument.
Our type and effect system applies restrictions to programs in order to en-

force confinement of all flow declarations of a policy F to be performed only
once F has been tested to be positively allowed by the domain’s allowed flow
policy. This is achieved by means of the tested allowed flow policy A that pa-
rameterizes the typing judgments, and by the condition A 4 F ′ in the Flow
rule. Notice that the Allow rule types the “allowed” branch of the condition
under an extended allowed flow policy. Flow declarations can only be performed
if the declared flow policy is allowed by the flow policy that is tested by the con-
text (Flow), while allowed conditions relax the typing of the first branch by
extending the flow policy that is tested by the context with the policy that
guards the condition (Allow). The difference between the two type systems is
mainly in rule Mig, which initializes the policy that is allowed by the computa-
tion domain with that of the destination domain W (d) that is specified by the
(threadl M at d) construct.

Note that if an expression is typable with respect to an allowed flow policy
A, then it is also so for any more permissive allowed policy A′. In particular,
due to the Abs rule, the process of typing an expression is not deterministic.
For instance, the expression (λx.()) can be given any type of the form τ −→

A
unit.
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We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 5,
with respect to the allowed flow policies of each thread’s initial domain, using
the semantics represented in Figure 3, as Enforcement mechanism I.

To illustrate the restrictions that are imposed by the enforcement mecha-
nism, we may consider program

(allowed F then (flow FH≺L in plan A) else plan B) (7)

where plan A and plan B have no declassifications. The program is typable if
W (d)fF 4 FH≺L. If F 4 FH≺L, then the program is always secure. Otherwise,
the program is W -secure if W (d) 4 FH≺L.

We are now in position to define the compatibility predicate that applies to
enforcement mechanism I.

Definition 4.4 ((W,Σ,Γ)-Compatibility). A memory S is said to be (W,Σ,Γ)-
compatible if, for every reference a ∈ dom(S), its value S(a) satisfies the typing
condition W ; Γ `Σ

0, S(a) : Σ2(a).

4.2.1. Soundness

Subject reduction. In order to establish the soundness of the type system of
Figure 5 we need a Subject Reduction result, stating that types that are given
to expressions are preserved by computation. To prove it we follow the usual
steps [41].

We check that the type of a thread and the compatibility of memories is
preserved by reduction.

Proposition 4.5 (Subject Reduction). Given a reference and thread label-
ing Σ, Υ, consider a thread Mm for which there exist Γ, A and τ such that

W ; Γ `Σ
A M : τ and suppose that W ` 〈{Mm}, T, S〉 d−→

F
〈{M ′m} ∪ P, T ′, S′〉, for

a memory S that is (W,Σ,Γ)-compatible. Then, W ; Γ `Σ
AfW (T (m)) M

′ : τ , and

S′ is also (W,Σ,Γ)-compatible. Furthermore, if P = {Nn}, for some expression
N and thread name n, then W ; Γ `Σ

W (T ′(n)) N : unit.

Proof. We follow the usual steps [41], where the main proof is a case analysis

on the transition W ` 〈{Mm}, T, S〉 d−→
F
〈{M ′m} ∪ P, T ′, S′〉.

Soundness. Enforcement mechanism I guarantees security of networks with re-
spect to confinement, as is formalized by the following result.

Theorem 4.6 (Soundness of Enforcment Mechanism I). Consider a fixed allowed-
policy mapping W , a given reference labeling Σ and typing environment Γ, and
a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ such that
W ; Γ `Σ

W (T (m)) M : τ . Then 〈P, T 〉 is a (W,Σ,Γ)-confined thread configuration.

Proof. Consider the following set:

C = {〈P, T 〉 | ∀Mm ∈ P,∃τ . W ; Γ `Σ
W (T (m)) M : τ}
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We show that C is a set of (W,Σ,Γ)-confined thread configurations. If for a
given (W,Σ,Γ)-compatible store S we have that there exist P ′, T ′, S′ such that

W ` 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉, then, there is a thread Mm such that P = {Mm}∪

P̄ and W ` 〈{Mm}, T, S〉 d−→
F
〈{Mm} ∪ P̄ ′, T ′, S′〉, with P ′ = {Mm} ∪ P̄ ′ ∪ P̄

and T (m) = d. By induction on the inference of W ; Γ `Σ
W (T (m)) M : τ , we prove

that W (d) 4 F , and W ; Γ `Σ
W (T ′(m)) M

′ : τ . Furthermore, if P̄ = Nn for some

expression N and thread name N , then W ; Γ `Σ
W (T ′(n)) N : τ .

Since typability of the threads that result from the transition step, as well
as the (W,Σ,Γ)-compatibility of the stores, is guaranteed by Subject Reduction
(Proposition 4.5), we prove only the conditions regarding the compliance of the
declared flow policies to the current domain’s allowed flow policy. Assuming
that W ; Γ `Σ

W (d) M : τ , and considering the last rule in the corresponding typing

proof:

Flow. Here M = (flow F̄ in M̄), and we have W ; Γ `Σ
W (d) M̄ : τ , with W (d) 4

F̄ . There are two cases to consider:

M̄ can compute. Then W ` 〈{M̄}, T, S〉 d−→̄
F ′
〈{M̄ ′} ∪ P̄ ′, T ′, S′〉, with

F = F̄ f F̄ ′. By induction hypothesis, then W (d) 4 F̄ ′. Since
W (d) 4 F̄ , then W (d) 4 F .

M̄ ∈ Val . Then we have F = 0, so W (T (m)) 4 F holds vacuously.

Allow. Here M = (allowed Ā then N̄t else N̄f ), and we have and F = 0.
Therefore W (T (m)) 4 F holds vacuously.

Mig. In this case M = (threadl M̄ at d̄), with W ; Γ `Σ M̄ : unit. Then we have
F = 0, so W (T (m)) 4 F holds vacuously.

The cases for Ref, Der, Ass, Seq, App and Cond are similar to Flow,
since for the cases where the sub-expressions are not all values, these sub-
expressions require typing assumptions that have the same A parameter as
the concluding judgment, and for the cases where the expression is ready to re-
duce, the flow policy that decorates the transition is 0. The cases for Rec and
Mig is similar to Allow, since the constructs are not evaluation contexts, and
therefore the transition is decorated with the top flow policy F = 0.

Precision. Given the purely static nature of this migration control analysis,
some secure programs are bound to be rejected. There are different ways to
increase the precision of a type system, which are all intrinsically limited to
what can conservatively be predicted before runtime. For example, for the
program

(if (! a) then (threadl (flowF inM) at d1) else (threadl (flowF inM) at d2)) (8)

it is in general not possible to predict which branch will be executed (or,
in practice, to which domain the thread will migrate), for it depends on the
contents of the memory. It will then be rejected if W (d2) 64 F or W (d1) 64 F .
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...

[Mig]
Γ `Σ

Ω M : unit

Γ `Σ
A (threadl M at d) : unit

Figure 6: Relaxed Type and Effect System for Checking Confinement (Fragment)

4.3. Runtime Type Checking

In this subsection we study a hybrid mechanism for enforcing confinement,
that makes use of a relaxation of the type system of Figure 5 at runtime. Migra-
tion is now controlled by means of a runtime check for typability of migrating
threads with respect to the allowed flow policy of the destination domain. The
condition represents the standard theoretical requirement of checking incoming
code before allowing it to execute in a given machine.

The relaxation is achieved by replacing rule Mig by the one in Figure 6:
The new type system no longer imposes future migrating threads to conform to
the policy of their destination domain, but only to the most permissive allowed
flow policy Ω. The rationale is that it only worries about confinement of the
non-migrating parts of the program. This is sufficient, as all threads that are
to be spawned by the program will be re-checked at migration time.

The following modification to the migration rule of the semantics of Figure 3
introduces the runtime check that controls migration (n fresh in T ). The idea is
that a thread can only migrate to a domain if it respects its allowed flow policy:

Γ `Σ
W (d) N : unit

W `Σ,Υ 〈{E[(threadl N at d)]m}, T, S〉 T (m)−−−→
dEe

〈{E[()]m, Nn}, [n := d]T, S〉
(9)

The new remote thread creation rule (our migration primitive), now depends
on typability of the migrating thread. The typing environment Γ (which is
constant) is now an implicit parameter of the operational semantics. If only
closed threads are considered, then also migrating threads are closed. The
allowed flow policy of the destination site now determines whether or not a
migration instruction may be consummated, or otherwise block execution. E.g.,
the configuration

〈{E[(threadl (flow F in M) at d)]m}, T, S〉 (10)

can only proceed if W (d) allows for F ; otherwise it gets stuck.
Notice that, thanks to postponing the migration control to runtime, the type

system no longer needs to be parameterized with information about the allowed
flow policies of all domains in the network, which in practice could be impossible.
The only relevant ones are those of the destination domain of migrating threads.

We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 5
modified using the new Mig rule represented in Figure 6, with respect to the
allowed flow policies of each thread’s initial domain, using the semantics of
Figure 3 modified according to Figure 6, as Enforcement mechanism II.
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Notice that enforcement mechanism II restricts, on one hand, which pro-
grams are accepted to run, but also trims their possible executions, with respect
to a given allowed-policy mapping W . Program 8 illustrates this mechanism,
as it is typable according to the relaxed type system (with respect to any W ),
but will block at the choice of the second branch if W (d2) 64 F .

4.3.1. Soundness

Subject Reduction.

Proposition 4.7 (Subject Reduction). Given a reference and thread labeling Σ,
Υ, consider a thread Mm for which there exist Γ, A and τ such that Γ `Σ

A M : τ

and suppose that W ` 〈{Mm}, T, S〉 d−→
F
〈{M ′m} ∪ P, T ′, S′〉, for a memory S

that is (Σ,Γ)-compatible. Then, Γ `Σ
AfW (T (m)) M

′ : τ , and S′ is also (Σ,Γ)-

compatible. Furthermore, if P = {Nn}, for some expression N and thread name
n, then Γ `Σ

W (T ′(n)) N : unit.

Proof. We follow the usual steps [41], where the main proof is a case analysis

on the transition W ` 〈{Mm}, T, S〉 d−→
F ′
〈{M ′m} ∪ P, T ′, S′〉.

Soundness. We are now in position to define the compatibility predicate that
applies to enforcement mechanism II.

Definition 4.8 ((W,Σ,Γ)-Compatibility). A memory S is said to be (W,Σ,Γ)-
compatible if, for every reference a ∈ dom(S), its value S(a) satisfies the typing
condition Γ `Σ

0 S(a) : Σ2(a).

Enforcement mechanism II guarantees security of networks with respect to
confinement, as is formalized by the following result.

Theorem 4.9 (Soundness of Enforcement Mechanism II). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
Γ, and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ
such that Γ `Σ

W (T (m)) M : τ . Then 〈P, T 〉 is (W,Σ,Γ)-confined.

Proof. The same as for Theorem 4.6, where it is shown that the set

C = {〈P, T 〉 | ∀Mm ∈ P,∃τ . Γ `Σ
W (T (m)) M : τ}

is a set of (W,Σ,Γ)-confined thread configurations.

4.3.2. Safety, precision and efficiency
The proposed mechanism does not offer a safety result, guaranteeing that

programs never “get stuck”. Indeed, the side condition of the thread creation
rule introduces the possibility for the execution of a thread to block, since no
alternative is given. This can happen in Example 6 (in page 25), if the flow
policy F is not permitted by the allowed policy of the domain of the branch that
is actually executed, then the migration will not occur, and execution will not
proceed. In order to have safety, we could design the thread creation instruction
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as including an alternative branch for execution in case the side condition fails.
Nevertheless, Example 6 might have better been written

(threadl (allowed F then (flow F in M1) else M2) at d)

in effect using the allowed condition for encoding such alternative behaviors.
Indeed, the programmer can increase the chances that the program will be
allowed to migrate to other sites by protecting flow declarations with the new
allowed condition construct. Our type system does take that effort into account,
by “omitting” the tested flow policy when typing the “allowed” branch. As a
result, programs containing flow declarations that are too permissive according
to a certain domain might still be authorized to execute in it, as long as they
occur in the “not allowed” branch of our new construct which will not be chosen.

Returning to Example 8 (in page 28), thanks to the relaxed Mig rule, this
program is now always accepted statically by the type system. Depending on
the result of the test, the migration might also be allowed to occur if a safe
branch is chosen. This means that enforcement mechanism II accepts more
secure programs.

It is worth noting that the change in the semantics of the thread creation
introduces new information flow leaks, as the event of blockage of a computation
can reveal information about the control flow that led to it. These information
leaks can be treated in a similar manner as termination leaks, as in [2], for
blockage can be seen as a form of non-termination. Such leaks are in fact
rejected by the type and effect system of Figure 4 (though the soundness result
that is presented in this paper does not cover it). It is clear, however, that not
all programs that can block encode information leaks. To see this it suffices to
consider a security mapping that assigns the same security level to all references
in the program.

A drawback with this enforcement mechanism lies in the computation weight
of the runtime type checks. This is particularly acute for an expressive language
such as the one we are considering. Indeed, recognizing typability of ML ex-
pressions has exponential (worst case) complexity [28].

4.4. Static Informative Typing for Runtime Effect Checking

We have seen that bringing the type-based migration control of programs
to runtime allows to increase the precision of the confinement analysis. This
is, however, at the cost of performance. It is possible to separate the pro-
gram analysis as to what are the declassification operations that are performed
by migrating threads, from the safety problem of determining whether those
declassification operations should be allowed at a given domain. To achieve
this, we now present an informative type system [7] that statically calculates
a summary of all the declassification operations that might be performed by a
program, in the form of a declassification effect. Furthermore, this type system
produces a version of the program that is annotated with the relevant informa-
tion for deciding, at runtime, whether its migrating threads can be considered
safe by the destination domain. The aim is to bring the overhead of the runtime
check to static time.
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[NilI] Γ `Σ () ↪→ () : 0, unit [BtI] Γ `Σ tt ↪→ tt : 0, bool [BfI] Γ `Σ ff ↪→ ff : 0, bool

[LocI] Γ `Σ a ↪→ a : 0,Σ2(a) ref [VarI] Γ, x : τ `Σ x ↪→ x : 0, τ

[AbsI]
Γ, x : τ `Σ M ↪→ M̂ : s, σ

Γ `Σ (λx.M) ↪→ (λx.M̂) : 0, τ
s−→ σ

[RecI]
Γ, x : τ `Σ X ↪→ X̂ : s, τ

Γ `Σ (%x.X) ↪→ (%x.X̂) : s, τ

[RefI]
Γ `Σ M ↪→ M̂ : s, θ′ θ 4 θ′

Γ `Σ (refθ M) ↪→ (refθ M̂) : s, θ ref
[DerI]

Γ `Σ M ↪→ M̂ : s, θ ref

Γ `Σ (! M) ↪→ (! M̂) : s, θ

[AssI]
Γ `Σ M ↪→ M̂ : s, θ ref Γ `Σ N ↪→ N̂ : s′, θ′ θ 4 θ′

Γ `Σ (M := N) ↪→ (M̂ := N̂) : s f s′, unit

[CondI]

Γ `Σ M ↪→ M̂ : s, bool
Γ `Σ Nt ↪→ N̂t : st, τt

Γ `Σ Nf ↪→ N̂f : sf , τf
τt ≈ τf

Γ `Σ (if M then Nt else Nf ) ↪→ (if M̂ then N̂t else N̂f ) : s f st f sf , τt f τf

[SeqI]
Γ `Σ M ↪→ M̂ : s, τ Γ `Σ N ↪→ N̂ : s′, σ

Γ `Σ (M ;N) ↪→: s f s′, σ

[AppI]
Γ `Σ M ↪→ M̂ : s, τ

s′−→ σ Γ `Σ N ↪→ N̂ : s′′, τ ′′ τ 4 τ ′′

Γ `Σ (M N) ↪→ (M̂ N̂) : s f s′ f s′′, σ

[FlowI]
Γ `Σ N ↪→ N̂ : s, τ

Γ `Σ (flow F in N) ↪→ (flow F in N̂) : s f F, τ

[AllowI]

Γ `Σ Nt ↪→ N̂t : st, τt
Γ `Σ Nf ↪→ N̂f : sf , τf

τt ≈ τf

Γ `Σ(allowed F then Nt else Nf ) ↪→(allowed F then N̂t else N̂f ) :
st^F f sf , τt f τf

[MigI]
Γ `Σ M ↪→ M̂ : s, unit

Γ `Σ (threadl M at d) ↪→ (threadsl M̂ at d) : 0, unit

Figure 7: Informative Type and Effect System for obtaining the Declassification Effect

The typing judgments of the type system in Figure 7 have the form:

Γ `Σ M ↪→ M̂ : s, τ

Comparing with the typing judgments of Subsection 4.3, while the flow policy
allowed by the context parameter is omitted from the turnstile ‘`’, the security
effect s represents a flow policy which corresponds to the declassification effect :
a lower bound to the flow policies that are declared in the typed expression.
The second expression M̂ is the result of annotating M . We thus consider an
annotated version of the language of Subsection 2.2, where the syntax of values
and expressions (the sets are denoted Val ′ and Exp ′, respectively) differs only
in the remote thread creation construct.

Types have the following syntax (t is a type variable):
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τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref | τ s−→ σ

The syntax of annotated expressions differs only in the thread creation con-
struct, that has an additional policy F as parameter, written (threadFl M at d).
The syntax of types is the same as the one used in Subsections 4.2 and 4.3.

It is possible to relax the type system by matching types that have the same
structure, even if they differ in flow policies pertaining to them. We achieve this
by overloading 4 to relate types where certain latent effects in the first are at
least as permissive as the corresponding ones in the second. The more general
relation ≈ matches types where certain latent effects differ: Finally, we define
an operation f between two types τ and τ ′ such that τ ≈ τ ′:

τ4τ ′ iff τ = τ ′, or τ = θ
F−→σ and τ ′ = θ

F ′
−→σ′ with F 4F ′ and σ4σ′

τ ≈ τ ′ iff τ = τ ′, or τ = θ
F−→ σ and τ ′ = θ

F ′
−→ σ′ with σ ≈ σ′

τfτ ′ = τ, if τ = τ ′, or θ
FfF ′
−−−→σ f σ′, if τ = θ

F−→σ and τ ′ = θ
F ′
−→σ′

The 4 relation is used in rules RefI, AssI and AppI, in practice enabling
to associate to references and variables (by reference creation, assignment and
application) expressions with types that contain stricter policies than required
by the declared types. The relation ≈ is used in rules CondI andAllowI in
order to accept that two branches of the same test construct can differ regarding
some of their policies. Then, the type of the test construct is constructed from
both using f, thus reflecting the flow policies in both branches.

The declassification effect is constructed by aggregating (using the meet op-
eration) all relevant flow policies that are declared within the program. The
effect is updated in rule FlowI, each time a flow declaration is performed, and
“grows” as the declassification effects of sub-expressions are met in order to
form that of the parent command. However, when a part of the program is
“protected” by an allowed condition, some of the information in the declas-
sification effect can be discarded. This happens in rule AllowI, where the
declassification effect of the first branch is not used entirely: the part that will
be tested during execution by the allowed-condition is omitted. In rule MigI,
the declassification effect of migrating threads is also not recorded in the effect
of the parent program, as they will be executed (and tested) elsewhere. That
information is however used to annotate the migration instruction.

As an example, the thread creation of program 7, still assuming that plan A
and plan B have no declassifications, would be annotated with the declassifica-
tion effect FH≺L ^ F . In particular, the effect would be 0 if F 4 FH≺L.

One can show that the type system is deterministic, in the sense that it
assigns to a non-annotated expression a single annotated version of it, a single
declassification effect, and a single type.

4.4.1. Modified operational semantics, revisited.
By executing annotated programs, the type check that conditions the migra-

tion instruction can be replaced by a simple declassification effect inspection.The
new migration rule is similar to the one in Subsection 4.3, but now makes use
of the declassification effect (n fresh in T ):
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W (d) 4 s

W `Σ,Υ 〈{E[(threadsl N at d)]m}, T, S〉 T (m)−−−→
dEe

〈{E[()]m, Nn},[n := d]T, S〉
(11)

In the remaining rules of the operational semantics the annotations are ignored.
Note that the values contained in memories are also assumed to use annotated
syntax.

We refer to the mechanism that consists of statically annotating all threads in
a network according to the type and effect system of Figure 7, assuming that each
thread’s declassification effect is allowed by its initial domain, using the seman-
tics of Figure 3 modified according to Rule (11), as Enforcement mechanism III.

We are now in position to define the compatibility predicate that applies to
enforcement mechanism III.

Definition 4.10 ((W,Σ,Γ)-Compatibility). A memory S is said to be (W,Σ,Γ)-
compatible if, for every reference a ∈ dom(S), its value S(a) results from an-
notating some other value V according to Γ `Σ

0, V ↪→ S(a) : Σ2(a).

4.4.2. Soundness

Subject Reduction. The following proposition ensures that the annotation pro-
cessing is preserved by the annotated semantics. This is formulated by stating
that after reduction, programs are still well annotated. Since the type system
integrates both the annotating process and the calculation of the declassification
effect, the formulation of this result is slightly non-standard. More precisely, the
following result states that if a program is the result of an annotation process,
a certain declassification effect and type, then after one computation step it
is still the result of annotating a program, and is given a not-more permissive
declassification effect and type.

Proposition 4.11 (Subject Reduction, or Preservation of Annotations). Given
an allowed-policy mapping W , a reference labeling Σ and a typing environ-
ment Γ, consider a thread Mm for which there exist N , s and τ such that

Γ `Σ M ↪→ N : s, τ and suppose W `Σ,Υ 〈{Nm}, T, S〉 d−→
F
〈{N ′m} ∪ P, T ′, S′〉,

for a memory S that is (Σ,Γ)-compatible. Then there exist M ′, s′, τ ′ such
that s fW (T (m)) 4 s′, and τ 4 τ ′, and Γ `Σ M ′ ↪→ N ′ : s′, τ ′, and S′ is
also (Σ,Γ)-compatible. Furthermore, if P = {N ′′n} for some expression N ′′

and thread name n, then there exist M ′′, s′′ such that W (T ′(n)) 4 s′′ and
Γ `Σ M ′′ ↪→ N ′′ : s′′, unit.

Proof. We follow the usual steps [41], where the main proof is a case analysis

on the transition W ` 〈{Mm}, T, S〉 d−→
F ′
〈{M ′m} ∪ P, T ′, S′〉.

Soundness. We will now see that the declassification effect can be used for
enforcing confinement.

Theorem 4.12 (Soundness of Enforcement Mechanism III). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
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Γ, and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exist M̂ , s
and τ such that Γ `Σ M ↪→ M̂ : s, τ and W (T (m)) 4 s. Then 〈P̂ , T 〉, formed
by annotating the threads in 〈P, T 〉, is (W,Σ,Γ)-confined.

Proof. Consider the following set:

C = {〈P, T 〉 | ∀M̂m ∈ P, ∃M, s, τ . Γ `Σ M ↪→ M̂ : s, τ and W (T (m)) 4 s}

We show that C is a set of (W,Σ,Γ)-confined thread configurations. As
in the proof of Theorem 4.6, if for a given (W,Σ,Γ)-compatible store S we

have that there exist P ′, T ′, S′ such that W ` 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉, then,

there is a thread Mm such that P = {Mm} ∪ P̄ and W ` 〈{Mm}, T, S〉 d−→
F

〈{Mm} ∪ P̄ ′, T ′, S′〉, with P ′ = {Mm} ∪ P̄ ′ ∪ P̄ and T (m) = d. By induction
on the inference of Γ `Σ M ↪→ M̂ : s, τ , we prove that W (d) 4 F and there
exists M ′, s′ and τ ′ such that Γ `Σ M ′ ↪→ M̂ ′ : s′, τ ′ with W (T ′(m)) 4 s′. Fur-
thermore, if P̄ = Nn for some expression N and thread name N , then there
exists M ′, s′, τ ′ such that Γ `Σ M ′ ↪→ M̂ ′ : s′, τ ′ with W (T ′(m)) 4 s, and there
exists N , s′′ such that Γ `Σ N ↪→ N̂ : s′′, unit with W (T ′(n)) 4 s′′.

Notice that since we necessarily have T ′(m) = T (m) = d, then typability
of the threads that result from the transition step is guaranteed by Subject
Reduction (Proposition 4.11). Also, by the same result, we have compliance
of the new declassification effect s′ to the domain’s allowed flow policy, for: If
s f W (T (m)) 4 s′, and since W (d) = W (T (m)) 4 s, then W (T (m)) 4 s′.
Furthermore, if P̄ = Nn, then W (T ′(n)) 4 s′′.

It remains to prove the conditions regarding the compliance of the de-
clared flow policies to the current domain’s allowed flow policy. Assuming that
Γ `Σ M ↪→ N : s, τ and W (T (m)) 4 s and considering the last rule in the cor-
responding typing proof:

FlowI. Here M = (flow F̄ in M̄), N = (flow F̄ in N̄), and Γ `Σ M̄ ↪→ N̄ : s̄, τ ,
with s = s̄ f F̄ . Then, we have that W (d) 4 s̄. There are two cases to
consider:

N̄ can compute. Then W `Σ,Υ 〈{N̄m}, T, S〉 d−→̄
F ′
〈{N̄ ′m} ∪ P, T ′, S′〉,

with F = F̄ f F̄ ′. By induction hypothesis, then W (T (m)) 4 F̄ ′.
Since W (T (m)) = W (d) 4 F̄ , then W (T (m)) 4 F .

N̄ ∈ Val . Then we have F = 0, so W (T (m)) 4 F holds vacuously.

AllowI. Here N = (allowed Ā then N̄t else N̄f ), and we have F = 0. There-
fore W (T (m)) 4 F holds vacuously.

MigI. In this case M = (threadl M̄ at d̄) and N = (threads̄l N̄ at d̄), with
Γ `Σ M̄ ↪→ N̄ : s̄, unit. Then we have F = 0, so W (T (m)) 4 F holds
vacuously. Since N can reduce, then W (d̄) = W (T ′(n)) 4 s̄.

The cases for RefI, DerI, AssI, SeqI, AppI and CondI are similar to
FlowI, since for the cases where the sub-expressions are not all values, these
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sub-expressions are typed with a declassification effect s′ that is at least as
restrictive as that s′ of the concluding judgment, i.e. s 4 s′, and so since
W (d) 4 s′ then the induction hypothesis can be applied. Furthermore, for the
cases where the sub-expression is ready to reduce, the flow policy that decorates
the transition is the same as F . When the sub-expressions are all values (more
precisely, those that are to be evaluated in the evaluation context provided by
each of these constructs), then F = 0. The case for RecI is similar to AllowI,
since the constructs are not evaluation contexts, and therefore the transition is
decorated with the top flow policy F = 0.

4.4.3. Precision and efficiency

The relaxed type system of Subsection 4.3 for checking confinement, and its
informative counterpart of Figure 7, are strongly related. The following result
states that typability according to latter type system is at least as precise as
the former.

Proposition 4.13. Consider a given a typing environment Γ and reference
labeling Σ. If there exist A, τ such that W ; Γ `Σ

A, M : τ , then there exist M̂ , τ ′

and s such that Γ `Σ M ↪→ M̂ : s, τ ′ and A 4 s with τ 4 τ ′.

Proof. By induction on the inference of Γ `Σ
A M : τ , and by case analysis on

the last rule used in this typing proof. We show the cases for the non-standard
constructs.

Mig. Here M = (threadl M̄ at d) and we have that W ; Γ `Σ
W (d) M̄ : τ̄ , with

τ = τ̄ = unit. By induction hypothesis, there exist N̄ , s̄, τ̄ ′ such that
Γ `Σ M̄ ↪→ N̄ : s̄, τ̄ ′ and W (d) 4 s̄ with τ̄ 4 τ̄ ′. We conclude using rule
MigI, N = (threads̄l N̄ at d), s = 0 and τ ′ = unit.

Flow. Here M = (flow F̄ in M̄) and W ; Γ `Σ
A M̄ : τ̄ , with A 4 F̄ and τ = τ̄ . By

induction hypothesis, there exist N̄ , s̄, τ̄ ′ such that Γ `Σ M̄ ↪→ N̄ : s̄, τ̄ ′

and A 4 s̄ with τ̄ 4 τ̄ ′. Therefore A 4 s̄ f F̄ and we conclude using rule
FlowI, N = (flow F̄ in N̄), s = s̄f F̄ and τ ′ = τ̄ ′.

Allow. Here M = (allowed F̄ then M̄t else M̄f ) and we have W ; Γ `Σ
AfF̄ M̄t :

τ̄ and W ; Γ `Σ
A M̄f : τ̄ where τ̄ = τ . By induction hypothesis, there

exist N̄t, N̄f , s̄t, s̄f and τ̄ ′ such that Γ `Σ M̄t ↪→ N̄t : s̄t, τ̄
′ and

Γ `Σ M̄f ↪→ N̄f : s̄f , τ̄
′ and A f F̄ 4 s̄t

′, A 4 s̄f
′ with τ̄ 4 τ̄ ′.

Therefore, A 4 s̄t
′ ^ F̄ f s̄f

′, and we conclude using rule AllowI,
N = (allowed F̄ then N̄t else N̄f ), s = s̄t

′ ^ F̄ f s̄f ′ and τ ′ = τ̄ ′.

The converse direction is not true, i.e. enforcement mechanism III accepts
strictly more programs than enforcement mechanism II. This can be seen by

considering the secure program where, θ1 = τ
F1−→ σ and θ2 = τ

F2−→ σ:
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(if (! a) then (! (refθ1 M1)) else (! (refθ2 M2))) (12)

This program is not accepted by the type system of Section 4.3 because it
cannot give the same type to both branches of the conditional (the type of the
dereference of a reference of type θ is precisely θ). However, since the two types
satisfy θ1 ≈ θ2, the informative type system can accept it and give it the type
θ1 f θ2.

A more fundamental difference between the two enforcement mechanisms
lays in the timing of the computation overhead that is required by each mech-
anism. While mechanism II requires heavy runtime type checks to occur each
time a thread migrates, in III the typability analysis is anticipated to static
time, leaving only a comparison between two flow policies to be performed at
migration time. The complexity of this comparison depends on the concrete
representation of flow policies. In the worst case, that of flow policies as gen-
eral downward closure operators (see Section 2), it is linear on the number of
security levels that are considered. When flow policies are flow relations, then
it consists on a subset relation check, which is polynomial on the size of the flow
policies.

4.4.4. Preservation of the semantics
We now prove that the program transformation that is encoded in the type

system of Figure 7 preserves the semantics of the input expressions. To this
end, we define a simulation between pools of threads written in the original
language of Subsection 2.2, with pools of threads written in the language with
annotations. The behavior of pools of threads of the former should be able to
simulate step-by-step those of the latter, when operating on memories that are
the “same”, up to the annotations that distinguish the two languages. This
intuitive concept is captured by means of the function annot() : ((Ref →
Val)→ Ref )→ Val ′), that extends the annotation process to stores:

annot(S)(a) = V̂ where ∃τ . Γ `Σ S(a) ↪→ V̂ : 0, τ (13)

The following simulation on pools of threads relates programs in the anno-
tated language whose behavior exists already in the original (non-restricted)
language.

Definition 4.14 (∼Γ). A Γ-simulation is a relation S on pools of threads,
drawn from the original language and the annotated language, respectively, that
satisfies, for all thread configurations T and for all memories S, Ŝ such that

annot(S) = Ŝ: P1 S P2 and W ` 〈P2, T, Ŝ〉
d−→
F
〈P ′2, T ′, Ŝ′〉 implies:

∃P ′1, S′ . W ` 〈P1, T, S〉
d−→
F
〈P ′1, T ′, S′〉 and annot(S′) = Ŝ′ and P ′1 S P ′2

The largest Γ-simulation is denoted by ∼Γ.

For any Γ, the set of pairs of thread configurations where threads are values
is a Γ-simulation. Furthermore, the union of a family of Γ-simulations is a
Γ-simulation. Consequently, ∼Γ exists.
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We can now check that the annotation process produces expressions that can
be simulated in the above sense. In other words this means that enforcement
mechanism III only enables behavior of programs that is already present in the
original language.

Proposition 4.15. Consider a given a typing environment Γ and reference
labeling Σ. If there exist s, τ such that Γ `Σ M ↪→ N : s, τ , then for all thread
names m ∈ Nam we have that {Mm}∼Γ{Nm}.

Proof. We prove that the set

B = {〈{Mm}, {Nm}〉 | m ∈ Nam and ∃s, τ . Γ `Σ M ↪→ N : s, τ}

is a Γ-simulation acording to Definition 4.14. By case analysis on the proofs of

W ` 〈{Mm}, T, S〉 d−→
F
〈P ′2, T ′, S′〉 and of W ` 〈{Nm}, T, Ŝ〉 d−→

F
〈P ′2, T ′, Ŝ′〉.

To see that the behavior is restricted, it is enough to consider the program

(threadl (flow Ω in (a := 1)) at d)

which is transformed into (threadΩ
l (flow Ω in (a := 1)) at d) by the informative

type system. This program blocks at the first execution step when W (d) 6= Ω.

5. Related work

Information flow and distribution. The first approaches to the study of infor-
mation flow in the presence of distribution do not consider distributed security
settings. Mantel and Sabelfeld [29] provide a type system for preserving confi-
dentiality for different kinds of channels established over a publicly observable
medium in a distributed setting, but where interaction between domains is re-
stricted to the exchange of values (no code mobility). Castagna, Bugliesi and
Craffa study non-interference for a purely functional distributed and mobile cal-
culus [17]; where no declassification mechanisms are contemplated. The work
that is closest to this one is [4], which studies insecure information flows that
are introduced by mobility in the context of a stateful distributed language that
includes flow declarations. In the computation model that is considered, threads
own references that move along with them during migration; this gives rise to
migration leaks that result from memory synchronization issues.

Domains’ security assurances can be differentiated as security levels. Zdan-
cewic et. al [42] propose in Jif/Split a technique for automatically partitioning
programs by placing code and data onto hosts in accordance with DLM la-
bels [33] in the source code. Jif/Split ensures that if a host is subverted, the
only data whose confidentiality or integrity is threatened during execution of a
part of the program, is data owned by principals that trust that host. Chong et.
al [16] present Swift as specialization of this idea for Web applications. Fournet
et. al [20] present a compiler that produces distributed code where communi-
cations are implemented using cryptographic mechanisms, and ensures that all
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confidentiality and integrity properties are preserved, despite the presence of ac-
tive adversaries. In [43], Zheng and Myers address the issue of how availability
of hosts might affect information flows in a distributed computation.

To our knowledge, the work presented in this paper (which includes [2, 5])
is the only one on information flow assuming distributed allowed flow policies.
Most recently, the combination of the Non-disclosure for Networks Property
and the Flow Policy Confinement Property for the same distributed security
setting is shown to imply a generalization of Noninterference, referred to as the
Distributed Noninterference property in [6].

Controlling declassification. Sabelfeld and Sands survey the literature regarding
the subject of declassification [38], and observe that declassification can be con-
trolled according to four main orthogonal goals as to: what information should
be released [35, 26], when it should be allowed to happen [15], who should be
authorized to use it [34], and where in the program it can be stated [14, 3];
these dimensions can also be combined [10]. Most of the overviewed approaches
implicitly assume local settings, where the computation platform enforces fixed
policies. Furthermore, the tools that are given to the programmer for control-
ling the usage of declassification operations are restricted to the declassifying
operations themselves. In this sense, we can say that they provide for ways of
controlling declassification from within, as opposed to the techniques that are
proposed in this paper: both the allowed-construct and restricted versions of
migration instructions are external to the flow declaration construct. In this
sense, this paper advocates for technique for restricting declassification from
without.

The concept of allowed flow policy as external to the program’s own poli-
cies has been studied in simpler non-distributed contexts and in the absence of
declassification [24, 8].

The work by Boudol and Kolundzija [13] on combining access control and
declassification is the first to treat declassification control separately from the
underlying information flow problem. In [13], standard access control primitives
are used to control the access level of programs that perform declassifications
in the setting of a local language, ensuring that a program can only declassify
information that it has the right to read.

Controlling code mobility. A wide variety of distributed network models have
been designed with the purpose of studying mechanisms for controlling code
mobility. These range from type systems for statically controlling migration as
an access control mechanism [30, 23], to runtime mechanisms that are based
on the concept of programmable domain. In the latter, computing power is
explicitly associated to the membranes of computation domains, and can be
used for controlling boundary transposition. This control can be performed by
processes that interact with external and internal programs [25, 39, 11], and
can implement in particular runtime code migration enforcement mechanisms,
or by more specific automatic verification mechanisms [22], for policies requiring
different degree of expressiveness. In the present work we abstract away from
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the particular machinery that implements the migration control checks, and
express declaratively, via the language semantics, the condition that must be
satisfied for the boundary transposition to be allowed.

Checking the validity of the declassification effect as a certificate is not sim-
pler than checking the program against a concrete allowed policy (as presented
in Subsection 4.3), meaning that it does not consist of a case of Proof Carrying
Code. The concept of trust can be used to lift the checking requirements of code
whose history of visited domains provides enough reassurance [22, 30]. These
ideas could be applied to the present work, assisting the decision of trusting the
declassification effect, otherwise leading to a full type check of the code.

Hybrid mechanisms. The use of hybrid mechanisms for enforcing information
flow policies is currently an active research area (see [31] for a review of related
work). The closest to ours is perhaps the study of securing information release
for a simple language with dynamic code evaluation in the form of a string eval
command, which includes an on-the-fly information flow static analysis [8].

Focusing on declassification control, the idea of using a notion of declassifica-
tion effect for building a runtime migration control mechanism was put forward
in [2] for a similar language with local thread creator and a basic goto migration
instruction. In spite of the restrictions that are pointed out in Subsection 4.2
for a static analysis, the type system presented as part of enforcement mecha-
nism I is more refined than the proof-of-concept presented earlier. Indeed, in
the previous work, migration was not taken into account when analyzing the de-
classifications occurring within the migrating code. So while there the following
program would be rejected if F was not allowed by W (d1)

(threadl (threadl (flow F in M) at d2) at d1)

the type system of Figure 5 only rejects it if F is not allowed by W (d2).
Enforcement mechanism II adopts part of the idea in [2] of performing a runtime
type analysis to migrating programs, but uses a more permissive “checking” type
system. Enforcement mechanism III explores a mechanism that allows to take
advantage of the efficiency of flow policy comparisons. It uses a type and effect
system for calculating declassification effects that is substantially more precise
than previous ones, thanks to the matching relations and operations that it
uses.

The concept of informative type and effect system was introduced in [7],
where a different notion of declassification effect was defined and applied to the
problem of dealing with dynamic updates to a local allowed flow policy.

6. Conclusions and Future work

The issue of controlling information flow in distributed settings with code
mobility is a foundational problem in the field of Web security. In this work we
have considered a simple network model that offers a distributed security setting,
and adopted the standpoint of separating the enabling and controlling dimen-
sions of declassification. We distinguish the definition and enforcement of two
security properties that are related to declassification, namely Non-disclosure



6 CONCLUSIONS AND FUTURE WORK 41

for networks, which regards the compliance of information leaks to declassifi-
cation declarations in the code, and Flow Policy Confinement, which regards
compliance of those declarations to the allowed flow policies of each site. The
proposed techniques are largely independent of the declassification mechanism
that is used, which testifies on how a layer of control can be added to the most
permissive declassification mechanisms. We expect that our framework can be
easily adapted for studying other language constructs and settings, security
properties and enforcement mechanisms:

• We have addressed this issue of ensuring that a thread can only migrate to
a site if it complies to its allowed flow policy. One could also mention the
dual problem, that information that is carried by programs into sites with
more permissive flow policies becomes vulnerable. In order to tackle this
problem, one could consider a model where references can move along with
threads [4]. We leave this research direction for future work. Nevertheless,
we believe that the allowed-condition construct that was introduced here
can play an important role in the solution, since it enables threads to
inspect the allowed flow policy of a site, according to which they can
decide whether to remain there or to migrate away.

• When considering a strictly distributed memory model (where accesses
to remote references are restricted), memory synchronization issues can
lead to migration leaks as was shown in [4]. However, this paper shows
that migration leaks do not exclusively depend on the memory model. In
fact, even while assuming transparent remote accesses to references, a new
form of migration leaks appear as a result of introducing our new program
construction for inspecting the site’s flow policies. This motivates a better
understanding of migration leaks in global computations.

• The property of Flow Policy Confinement is perhaps the simplest form of
imposing compliance of declassifications to distributed allowed flow poli-
cies. It would be interesting to consider properties with more complex
(and restrictive) concerns, possibly taking into account the history of do-
mains that a thread has visited when defining secure code migrations. For
instance, one might want to forbid threads from moving to domains with
more favorable allowed flow policies. The enforcement of such a property
would be easily achieved by introducing a condition on the allowed flow
policies of origin and destination domains. Using the abstractions in this
paper, this could consist of the assumption A 4 W (d) to the migration
typing rule, in order to restrict programs to migrate only to domains whose
allowed flow policy is not more permissive than that that of the context
where the thread is being created.

• We have considered an instance of the problem of enforcing compliance
of declassifications to a dynamically changing allowed flow policy. In our
setting, changes in the allowed flow policy result from the migration of
programs during execution. We approach the problem from a migration
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control perspective. To this end, we chose a network model that abstracts
away the details of the migration control architecture. This allows us to
prove soundness of a concrete network level security property, guarantee-
ing that programs can roam over the network, never performing declassi-
fications that violate the network confinement property.

By performing comparisons between three related enforcement mecha-
nisms, we have argued that the concept of declassification effect offers
a good balance between precision and efficiency. We believe that similar
mechanisms can be applied in other contexts. For future work, we plan to
study others instances of enabling dynamic changing allowed flow policies.
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Appendix A. Proofs for “Controlling Information Flow”

Appendix A.1. Formalization of Non-Disclosure for Networks

Intuitively, Non-disclosure states that, at each computation step performed
by a program, the information flow that occurs respects the flow policy (F ) that
is declared by the evaluation context where the command is executed. In [4]
Non-disclosure is defined for Networks, considering a distributed setting with
code mobility, by means of a bisimulation on pools of threads. In this paper we
used a bisimulation on thread configurations. We prove that the new definition
is weaker than the first.

Definition on pools of threads. We recall the definition in [4] here, using the
notations of the current paper.

Definition Appendix A.1 (≈Σ,Υ
Γ,l ). Consider an allowed-policy mapping W ,

a reference labeling Σ, a thread labeling Υ, and a typing environment Γ. A
(Σ,Υ,Γ, l)-bisimulation is a symmetric relation R on pools of threads that
satisfies, for all P1, P2, and for all (Σ,Γ)-compatible stores S1, S2:

P1 R P2 and W ` 〈P1, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉 and

〈T1, S1〉 =Σ,Υ
F ,l 〈T2, S2〉

with dom(S1
′)−dom(S1) ∩ dom(S2) = ∅ and dom(T1

′)−dom(T1) ∩ dom(T2) =
∅ implies that there exist P ′2, T

′
2, S
′
2 such that:

W ` 〈P2, T2, S2〉� 〈P ′2, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ,Υ
0,l 〈T ′2, S′2〉 and

P ′1 R P ′2

Furthermore, S′1, S
′
2 are still (W,Σ,Γ)-compatible.

For any Σ, Υ, Γ and l, the set of pairs of thread configurations where threads
are values is an (Σ,Υ,Γ, l)-bisimulation. Furthermore, the union of a family

of (Σ,Υ,Γ, l)-bisimulations is a (Σ,Υ,Γ, l)-bisimulation. Consequently, ≈Σ,Υ,
Γ,l

exists.

Definition Appendix A.2 (Non-disclosure for Networks (on pools of threads)).
A pool of threads P satisfies the Non-disclosure for Networks property with re-
spect to an allowed-policy mapping W , a reference labeling Σ, a thread labeling
Υ and a typing environment Γ, if it satisfies P ≈Σ,Υ

Γ,l P for all security levels l.
We then write P ∈ NDN 1(W,Σ,Υ,Γ).

When imposing restrictions on the behaviors of related pools of threads, the
above definition resets the position tracker arbitrarily at each step. Here (as
in [4]), migration is subjective, meaning that only the thread itself can trigger
its own migration. It is then reasonable to relax the power of the attacker, by
focusing on the behavior of threads when coupled with their possible locations
on the network.
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Definition on thread configurations. We now present a weakened version of the
property, that is defined over thread configurations.

Definition Appendix A.3 (≈Σ,Υ
Γ,l ). Consider an allowed-policy mapping W ,

a reference labeling Σ, and a typing environment Γ. A (Σ,Υ,Γ, l)-bisimulation
is a symmetric relation R on thread configurations that satisfies, for all
P1, T1, P2, T2, and for all (Σ,Γ)-compatible memories S1, S2:

〈P1, T1〉 R 〈P2, T2〉 and W ` 〈P1, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉 and

〈T1, S1〉 =Σ,Υ
F,l 〈T2, S2〉

with dom(S1
′)−dom(S1) ∩ dom(S2) = ∅ and dom(T1

′)−dom(T1) ∩ dom(T2) =
∅ implies that there exist P ′2, T

′
2, S
′
2 such that:

W ` 〈P2, T2, S2〉� 〈P ′2, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ,Υ
0,l 〈T ′2, S′2〉 and

〈P ′1, T ′1〉 R 〈P ′2, T ′2〉

Furthermore, S′1, S
′
2 are still (W,Σ,Γ)-compatible.

For any Σ, Υ, Γ and l, the set of pairs of thread configurations where threads
are values is an (Σ,Υ,Γ, l)-bisimulation. Furthermore, the union of a family

of (Σ,Υ,Γ, l)-bisimulations is a (Σ,Υ,Γ, l)-bisimulation. Consequently, ≈Σ,Υ,
Γ,l

exists.

Definition Appendix A.4 (Non-disclosure for Networks (on thread configu-
rations)). A pool of threads P satisfies the Non-disclosure for Networks property
with respect to an allowed-policy mapping W , a reference labeling Σ, a thread
labeling Υ and a typing environment Γ, if it satisfies 〈P, T1〉 ≈Σ,Υ

Γ,l 〈P, T2〉 for
all security level l and position trackers T1, T2 such that dom(P ) = dom(T1) =

dom(T2) and T1 =Σ,Υ
0,l T2. We then write P ∈ NDN 2(W,Σ,Υ,Γ).

Comparison.

Proposition Appendix A.5. NDN 1(W,Σ,Υ,Γ) ⊆ NDN 2(W,Σ,Υ,Γ).

Proof. We consider P in NDN 1(W,Σ,Υ,Γ), i.e. such that for all security

levels l we have P ≈Σ,Υ
Γ,l P according to Definition Appendix A.1. Given any

pair of position trackers T1, T2 such that dom(P ) = dom(T1) = dom(T2) and

T1 =Σ,Υ
0,l T2, we prove that for all security levels l we have 〈P, T1〉 ≈Σ,Υ

Γ,l 〈P, T2〉
according to Definition Appendix A.3. To this end, we consider the set

N = {〈〈P1, T1〉, 〈P2, T2〉〉 | dom(P ) = dom(T1) = dom(T2) and T1 =Σ,Υ
0,l T2 and

P1 ≈Σ,Υ
Γ,l P2}

and prove that N ⊆ ≈Σ,Υ
Γ,l according to Definition Appendix A.3.

Assume that 〈〈P1, T1〉, 〈P2, T2〉〉 ∈ N , and suppose that for any given (Σ,Γ)-

compatible memories S1, S2 we have W ` 〈P1, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉 and
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〈T1, S1〉 =Σ,Υ
F,l 〈T2, S2〉, with dom(S1

′)−dom(S1) ∩ dom(S2) = ∅ and dom(T1
′)−

dom(T1) ∩ dom(T2) = ∅. Then, by Definition Appendix A.1 there exist
P ′2, T

′
2, S
′
2 such that

W ` 〈P2, T2, S2〉� 〈P ′2, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ,Υ
0,l 〈T ′2, S′2〉 and

P ′1 R P ′2

Furthermore, S′1, S
′
2 are still (W,Σ,Γ)-compatible. It is now easy to see that

〈〈P ′1, T ′1〉, 〈P ′2, T ′2〉〉 ∈ N .

Appendix A.2. Type system

Appendix A.2.1. Subject Reduction

In order to establish the soundness of the type system of Figure 4 we need
a Subject Reduction result, stating that types that are given to expressions are
preserved by computation. To prove it we follow the usual steps [41].

Remark Appendix A.6.

1. If W ∈ Pse and Γ `Σ
j,F W : s, τ , then for all domain names d′, security

levels j′, flow policies F ′ and security effects s′, we have that Γ `Σ
j′,F ′ W :

s′, τ .

2. For any flow policies F, F ′, such that F ′ 4 F , we have that Γ `Σ
j,F M : τ

implies Γ `Σ
j,F ′ M : τ .

Lemma Appendix A.7.

1. If Γ `Σ
j,F M : s, τ and x /∈ dom(Γ) then Γ, x : σ `Σ

j,F M : s, τ .

2. If Γ, x : σ `Σ
j,F M : s, τ and x /∈ fv(M) then Γ `Σ

j,F M : s, τ .

Proof. By induction on the inference of the type judgment.

Lemma Appendix A.8 (Substitution).
If Γ, x : σ `Σ

j,F M : s, τ and Γ `Σ
j′,F ′ W : s′, σ then Γ `Σ

j,F {x 7→W}M : s, τ .

Proof. By induction on the inference of Γ, x : τ `Σ
j,F M : s, σ, and by case

analysis on the last rule used in this typing proof, using the previous lemma.
Let us examine the cases related to the new language constructs:

Mig. Here M = (threadl M̄ at d̄) and we have that Γ, x : σ `Σ
l,0 M̄ : s̄, τ , with

τ = unit and s̄ = 〈⊥, l t s.w,⊥〉. By induction hypothesis, then Γ `Σ
l,0

{x 7→W}M̄ : s̄, τ . Therefore, by rule Mig, Γ `Σ
j,F (threadl {x 7→W}M̄ at d̄) :

s, τ .

Flow. Here M = (flow F̄ in M̄), Γ, x : σ `Σ
j,FfF̄ M̄ : s, τ . By induction

hypothesis, Γ `Σ
j,FfF̄ {x 7→W}M̄ : s, τ . Then, by Flow, we have

Γ `Σ
j,F (flow F̄ in {x 7→W}M̄) : s, τ .
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Allow. Here M = (allowed F̄ then Nt else Nf ) and we have Γ, x : σ `Σ
j,F Nt :

st, τ and Γ, x : σ `Σ
j,F Nf : sf , τ with j vF st.w, sf .w and s = st t sf t

〈⊥,>, j〉. By induction hypothesis, Γ, x : σ `Σ
j,F {x 7→W}Nt : st, τ and

Γ, x : σ `Σ
j,F {x 7→W}Nf : sf , τ . Therefore, by rule Allow, we have that

Γ, x : σ `Σ
j,F (allowed F̄ then {x 7→W}Nt else {x 7→W}Nf ) : s, τ .

Lemma Appendix A.9 (Replacement).
If Γ `Σ

j,F E[M ] : s, τ is a valid judgment, then the proof gives M a typing

Γ `Σ
j,FfdEe M : s̄, τ̄ for some s̄ and τ̄ such that s̄ v s. In this case, if Γ `Σ

j,FfdEe

N : s̄′, τ̄ with s̄′ v s̄, then Γ `Σ
j,F E[N ] : s′, τ , for some s′ such that s′ v s.

Proof. By induction on the structure of E. Let us examine the case of the flow
declaration, which is the only non-standard evaluation context:

E[M ] = (flow F ′ in Ē[M ]). By Flow, we have Γ `Σ
j,FfF ′ Ē[M ] : s, τ . By

induction hypothesis, the proof gives M a typing Γ `Σ
j,FfF ′fdĒe M : ŝ, τ̂ ,

for ŝ, τ̂ such that ŝ v s. Also by induction hypothesis, Γ `Σ
j,FfF ′ Ē[N ] :

s′, τ , for some s′ such that s′ v s. Then, again by Flow, we have Γ `Σ
j,F

(flow F ′ in Ē[N ]) : s′, τ .

We check that the type of a thread is preserved by reduction, while its effects
“weaken”.

Proposition Appendix A.10 (Subject Reduction). Given a reference and
thread labeling Σ, Υ, consider a thread Mm for which there exist Γ, F , s and τ

such that Γ `Σ
j,F M : s, τ and suppose W ` 〈{Mm}, T, S〉 d−→

F ′
〈{M ′m} ∪ P, T ′, S′〉,

for a memory S that is (Σ,Γ)-compatible. Then, there is an effect s′ such that
s′ v s and Γ `Σ

j,F M ′ : s′, τ , and S′ is also (Σ,Γ)-compatible. Furthermore,
if P = {Nn}, for some expression N and thread name n, then there exists s′′

such that s.w v s′′.w such that Γ `Σ
Υ(k),0 N : s′′, unit.

Proof. Suppose thatM = Ē[M̄ ] andW ` 〈{M̄m}, T, S〉 d−→̄
F
〈{M̄ ′m} ∪ P ′, T̄ ′, S̄′〉.

We start by observing that this implies F = F̄ f dĒe, M ′ = Ē[M̄ ′], P = P ′,
T̄ ′ = T ′ and S̄′ = S′. We can assume, without loss of generality, that M̄ is the
smallest in the sense that there is no Ê, M̂ , N̂ such that Ê 6= [] and Ê[M̂ ] = M̄

for which we can write W ` 〈{M̂m}, T, S〉 d−→̂
F
〈{M̂ ′m} ∪ P, T ′, S′〉.

By Lemma Appendix A.9, we have Γ `Σ
j,FfdĒe M̄ : s̄, τ̄ in the proof of

Γ `Σ
j,F Ē[M̄ ] : s, τ , for some s̄ and τ̄ . We proceed by case analysis on the

transition W ` 〈{M̄m}, T, S〉 d−→̄
F
〈{M̄ ′m} ∪ P, T ′, S′〉, and prove that if S′ 6= S

then:
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• There is an effect s̄′ such that s̄′ v s̄ and Γ `Σ
j,FfdĒe M̄

′ : s̄′, τ̄ . Further-

more, for every reference a ∈ dom(S′) implies Γ `Σ
j,0 S′(a) : ⊥,Σ2(a).

• If P = {Nn} for some expression N and thread name n, then there
is an effect s̄′′ such that s̄.w v s̄′′.w and a thread name d′ such that
Γ `Σ

Υ(n),0 N : s̄′′, unit.

M̄ = (allowed F ′ then Nt else Nf). Suppose that W (d) 4 F ′ (the other
case is analogous). Here we have M̄ ′ = Nt, S = S′ and P = ∅. By
Allow, we have that Γ `Σ

j,FfdĒe Nt : st, τ̄ , where st v s̄.

M̄ = (flow F ′ in V ). Here we have M̄ ′ = V , S = S′ and P = ∅. By
rule Flow, we have that Γ `Σ

j,FfdĒefF ′ V : s̄, τ . and by Remark Ap-

pendix A.6, we have Γ `Σ
j,FfdĒe V : s̄, τ̄ .

M̄ = (threadk N at d′). Here we have M̄ ′ = (), P = {Nn} for some thread
name n S = S′ and T ′(n) = d. By Mig, we have that Γ `Σ

Υ(n),0 N : ŝ, unit,

with s.w v ŝ.w and τ̄ = unit, and by Nil we have that Γ `Σ
FfdĒe, () : s̄, unit.

By Lemma Appendix A.9, we can finally conclude that Γ `Σ
j,F Ē[M̄ ′] : s′, τ ,

for some s′ v s.

Appendix A.2.2. Basic Properties

Properties of the Semantics. One can prove that the semantics preserves the
conditions for well-formedness, and that a configuration with a single expression
has at most one transition, up to the choice of new names.

The following result states that, if the evaluation of a thread Mm differs
in the context of two distinct states while not creating two distinct reference
names or thread names, this is because either Mm is performing a dereferencing
operation, which yields different results depending on the memory, or because
Mm is testing the allowed policy.

Lemma Appendix A.11 (Splitting Computations).

If we have W ` 〈{Mm}, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉 and W ` 〈{Mm}, T2, S2〉

d−→
F ′

〈P ′2, T ′2, S′2〉 with P1
′ 6= P2

′, then P ′1 = {M1
′m}, P ′2 = {M2

′m} and either:

• ∃E, a such that F = dEe = F ′, M = E[(! a)], and M ′1 = E[S1(a)], M ′2 =
E[S2(a)] with 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉, or

• ∃E, F̄ such that F = dEe = F̄ , M = E[(allowed F ′ then Nt else Nf )],
and T1(m) 6= T2(m) with 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉.

Proof. Note that the only rules that depend on the state are those for the
reduction of E[(! a)] and of E[(allowed F ′ then Nt else Nf )]. By case analysis

on the transition W ` 〈{Mm}, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉.
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Effects.

Lemma Appendix A.12 (Update of Effects).

1. If Γ `Σ
j,F E[(! a)] : s, τ then Σ1(a) v s.r.

2. If Γ `Σ
j,F E[(a := V )] : s, τ , then s.w v Σ1(a).

3. If Γ `Σ
j,F E[(ref l,θ V )] : s, τ , then s.w v l.

4. If Γ `Σ
j,F E[(threadl M at d′)] : s, τ , then s.w v l.

5. If Γ `Σ
j,F E[(allowed F then Nt else Nf )] : s, τ , then j v s.t.

Proof. By induction on the structure of E.

High Expressions. We can identify a class of threads that have the property
of never performing any change in the “low” part of the memory. These are
classified as being “high” according to their behavior2:

Definition Appendix A.13 (Operationally High Threads). A set of threads
HΣ,Υ is a set of operationally (Σ,Υ, F, l)-high threads if the following holds for
all Mm ∈ HΣ,Υ, for all states 〈T, S〉, and for all flow policy mappings W :

W ` 〈{Mm}, T, S〉 d−→
F ′
〈P ′, T ′, S′〉 implies 〈T, S〉 =Σ,Υ

F,l 〈T
′, S′〉 and P ′ ⊆ HΣ,Υ

The largest set of operationally (Σ,Υ, F, l)-high threads is denoted by HΣ,Υ
F,l . We

then say that a thread Mm is operationally (Σ,Υ, F, l)-high, if Mm ∈ HΣ1,Υ
F,l .

Remark that for any F and l there exists a set of operationally (F, l)-high
threads, like for instance {V m | V ∈ Val}. Furthermore, the union of a family
of sets of operationally (F, l)-high threads is a set of operationally (F, l)-high
threads. Notice that if F ′ ⊆ F , then any operationally (Σ,Υ, F, l)-high thread
is also operationally (Σ,Υ, F ′, l)-high.

Some expressions can be easily classified as “high” by the type system, which
only considers their syntax. These cannot perform changes to the “low” memory
simply because their code does not contain any instruction that could perform
them. Since the writing effect is intended to be a lower bound to the level of the
references that the expression can create or assign to, expressions with a high
writing effect can be said to be syntactically high:

Definition Appendix A.14 (Syntactically High Expressions). An expression
M is syntactically (Σ,Γ, j, F, l)-high if there exists s, τ such that Γ `Σ

j,F M : s, τ

with s.w 6vF l. The expression M is a syntactically (Σ,Γ, j, F, l)-high function

if there exists j′, F ′, s, τ, σ such that Γ `Σ
j′,F ′ M : τ

s−−→
j,F

σ with s.w 6vF l.

2The notion of “operationally high thread” that we define here should not not be confused
with the notion of “high thread”. The former refers to the security level that is associated
with a thread, while the latter refers to the changes that the thread performs on the state.
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We can now state that syntactically high expressions have an operationally
high behavior.

Lemma Appendix A.15 (High Expressions). If M is a syntactically (Σ,Γ, j, F, l)-
high expression, and Υ(m) = j, then Mm is an operationally (Σ,Υ, F, l)-high
thread.

Proof. We show that the set

{Mm | ∃j . M is syntactically (Σ,Γ, j, F, l)-high}

is a set of operationally (Σ,Υ, F, l)-high threads, i.e.: if M is syntactically
(Σ,Γ, j, F, l)-high, that is if there exists s, τ such that Γ `Σ

j,F M : s, τ with s.w 6vF

l, and, for some policy mappingW , ifW ` 〈{Mm}, T, S〉 d−→
F ′
〈{M ′m} ∪ P, T ′, S′〉

then 〈T, S〉 =Σ1,Υ
F,l 〈T ′, S′〉. This is enough since, by Subject Reduction (Theo-

rem Appendix A.10), M ′ is syntactically (Σ,Γ, j, F, l)-high, and if P = {Nn}
for some expression N and thread name n, then by Remark Appendix A.6 also
N is syntactically (Σ,Γ, k, F, l)-high for some k. We proceed by cases on the

proof of the transition W ` 〈{Mm}, T, S〉 d−→
F ′
〈{M ′m}, T ′, S′〉. The lemma is

trivial in all the cases where 〈T, S〉 = 〈T ′, S′〉.

M = E[(threadk N at d′)]. Here P = {Nn} for some thread name n, S′ = S
and T ′ = [n := d′]T . By Lemma Appendix A.12, s.w v k. This implies

k 6vF l, and by assumption k = Υ(n) 6vF l, hence T ′ =Σ1,Υ
F,l T .

Appendix A.2.3. Soundness

Behavior of “Low”-Terminating Expressions. Recall that, according to the in-
tended meaning of the termination effect, the termination or non-termination
of expressions with low termination effect should only depend on the low part
of the state. In other words, two computations of a same thread running un-
der two “low”-equal states should either both terminate or both diverge. In
particular, this implies that termination-behavior of these expressions cannot
be used to leak “high” information when composed with other expressions (via
termination leaks).

The following guaranteed-transition result holds for low-equal states.

Lemma Appendix A.16 (Guaranteed Transitions). Consider a flow policy
mapping W , a thread Mm and two states 〈T1, S1〉, 〈T2, S2〉 such that W `
〈{Mm}, T1, S1〉

d−→
F
〈P ′1, T ′1, S′1〉, and for some F ′ we have 〈T1, S1〉 =Σ1,Υ

FfF ′,low

〈T2, S2〉. Then:

• If P ′1 = {M ′m1 }, and a ∈ dom(S′1−S1) implies that a is fresh for S2, then

there exist M ′2, T ′2 and S′2 such that W ` 〈{Mm}, T2, S2〉
d−→
F
〈{M ′m2 }, T ′2, S′2〉

and 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉.
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• If P ′1 = {M ′m, Nn} for some expression N and thread name n /∈ dom(T2),

then there exist M ′2, T ′2 and S′2 such that we have W ` 〈{Mm}, T2, S2〉
d−→
F

〈{M ′m, Nn}, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉.

Proof. By case analysis on the proof of W ` 〈{Mm}, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉. In

most cases, this transition does not modify or depend on the state 〈T1, S1〉, and
we may let P ′2 = P ′1 and 〈T ′2, S′2〉 = 〈T2, S2〉.

M1 = E[(allowed F then Nt else Nf)] and W (T1(m)) 4 F . Here P ′1 =
{E[Nt]

m}, F = dEe, and 〈T ′1, S′1〉 = 〈T1, S1〉. There are two possible cases:

• If W (T2(m)) 4 F , then W ` 〈{Mm}, T2, S2〉
d−→
F
〈{Ntm}, T2, S2〉.

• If W (T2(m)) 64 F , then W ` 〈{Mm}, T2, S2〉
d−→
F
〈{Nfm}, T2, S2〉.

Clearly, in both cases, By assumption, 〈T1, S1〉 =Σ1,Υ
FfF ′,low 〈T2, S2〉.

M1 = E[(threadk N at d′)]. Here, for a thread name n, P ′1 = {E[()]
m
, Nn},

F = dEe, T ′1 = T1 ∪ {n 7→ d′}, and S′1 = S1. Assuming that n /∈ dom(T2),

we also have thatW ` 〈{Mm}, T2, S2〉
d−→
F
〈{E[()]

m
, Nn}, T2 ∪ {n 7→ d′}, S2〉.

Clearly, 〈T1 ∪ {n 7→ d′}, S1〉 =Σ1,Υ
FfF ′,low 〈T2 ∪ {n 7→ d′}, S2〉.

We aim at proving that any typable thread Mm that has a low-termination
effect always presents the same behavior according to a strong bisimulation on
low-equal states: if two continuations Mm

1 and Mm
2 of Mm are related, and if

Mm
1 can perform an execution step over a certain state, then Mm

2 can perform
the same low changes to any low-equal state in precisely one step, while the two
resulting continuations are still related. This implies that any two computations
of Mm under low-equal states should have the same “length”, and in particular
they are either both finite or both infinite. To this end, we design a reflexive
binary relation on expressions with low-termination effects that is closed under
the transitions of Guaranteed Transitions (Lemma Appendix A.16).

The inductive definition of T Σ,Γ
j,F,low is given in Figure A.8. Notice that it is

a symmetric relation. In order to ensure that expressions that are related by
T Σ,Γ
j,F,low perform the same changes to the low memory, its definition requires that

the references that are created or written using (potentially) different values are
high.

Remark Appendix A.18. If for Σ, Γ, j, F and low we have M1 T Σ,Γ
j,F,low M2

and M1 ∈ Val, then M2 ∈ Val.

From the following lemma one can conclude that the relation T Σ,Γ
j,F,low relates

the possible outcomes of expressions that are typable with a low termination
effect, and that perform a high read over low-equal memories.



APPENDIX A PROOFS FOR “CONTROLLING INFORMATION FLOW”53

Definition Appendix A.17 (T Σ,Γ
j,F,low ). We have that M1 T Σ,Γ

j,F,low M2 if

Γ `Σ
j,F M1 : s1, τ and Γ `Σ

j,F M2 : s2, τ for some s1, s2 and τ with s1.t vF low

and s2.t vF low and one of the following holds:

Clause 1. M1 and M2 are both values, or

Clause 2. M1 = M2, or

Clause 3. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 T Σ,Γ
j,F,low M̄2, or

Clause 4. M1 = (ref l,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 T Σ,Γ
j,F,low M̄2, and

l 6vF low, or

Clause 5. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 T Σ,Γ
j,F,low M̄2, or

Clause 6. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 T Σ,Γ
j,F,low M̄2, and

N̄1 T Σ,Γ
j,F,low N̄2, and M̄1, M̄2 both have type θ ref l for some θ and l such

that l 6vF low, or

Clause 7. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with

M̄1 T Σ,Γ
j,FfF ′,low M̄2.

Figure A.8: The relation T Σ,Γ
j,F,low
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Lemma Appendix A.19. If for some Σ, Γ, j and F there exist s, τ such that
Γ `Σ

j,F E[(! a)] : s, τ with s.t vF low and Σ1(a) 6vFfdEe low, then for any values

V0, V1 ∈ Val such that Γ `Σ
j,0 Vi : ⊥, θ we have E[V0] T Σ,Γ

j,F,low E[V1].

Proof. By induction on the structure of E.

E[(! a)] = (flow F ′ in E1[(! a)]). By rule Flow we have Γ `Σ
j,FfF ′ V :

s, τ . By induction hypothesis E1[V0] T jFfF ′,low E1[V1], so we conclude

by Lemma Appendix A.9 and Clause 7. Therefore s̄.t vF low , and since
Σ1(a) 6vFfE low implies Σ1(a) 6vFfE1 low , then by induction hypothesis

we have E1[V0] T Σ,Γ
j,F,low E1[V1]. By Lemma Appendix A.9 and Clause 8 we

can conclude.

We can now prove that T Σ,Γ
j,F,low behaves as a kind of “strong bisimulation”:

Proposition Appendix A.20 (Strong Bisimulation for Low-Termination).

If we have M1 T Σ,Γ
j,F,low M2 and, for a given allowed flow policy mapping W , also

W ` 〈{M1
m}, T1, S1〉

d−→
F ′
〈P ′1, T ′1, S′1〉, with Υ(m) = j and 〈T1, S1〉 =Σ1,Υ

FfF ′,low

〈T2, S2〉, then:

• If P ′1 = {M ′m1 }, and a ∈ dom(S′1 − S1) implies that a is fresh for S2,

then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m}, T ′2, S′2〉 with M ′1 T

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.

• If P ′1 = {M ′m1 , Nn} for some expression N and thread name n /∈ dom(T2),

then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m
, Nn}, T ′2, S′2〉 with M ′1 T

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.

Proof. By case analysis on the clause by which M1 T Σ,Γ
j,F,low M2, and by induc-

tion on the definition of T Σ,Γ
j,F,low . In the following, we use Subject Reduction

(Theorem Appendix A.10) to guarantee that the termination effect of the ex-
pressions resulting from M1 and M2 is still low with respect to low and F . This,
as well as typability (with the same type) for j, F and low , is a requirement for

being in the T Σ,Γ
j,F,low relation.

Clause 2. HereM1 = M2. By Guaranteed Transitions (Lemma Appendix A.16),
then:

• If P ′1 = {M ′m1 }, and a ∈ dom(S′1 − S1) implies that a is fresh for S2,

then there exist M ′2, T ′2 and S′2 such that W ` 〈{Mm}, T2, S2〉
d−→
F ′

〈{M ′m2 }, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉. There are two cases

to consider:
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M ′
2 = M ′

1. Then we have M ′1 T
Σ,Γ
j,F,low M ′2, by Clause 2 and Subject

Reduction (Theorem Appendix A.10).

M ′
2 6= M ′

1. Then by Splitting Computations (Lemma Appendix A.11)
we have two possibilities:
(1) there exist E and a such that M ′1 = E[S1(a)], F ′ = dEe,
M ′2 = E[S2(a)], 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉.
Since S1(a) 6= S2(a), we have Σ1(a) 6vFfF ′

low . Therefore,

M ′1 T
Σ,Γ
j,F,low M ′2, by Lemma Appendix A.19 above.

(2) there exists E such thatM ′1 = E[(allowed F ′ then Nt else Nf )],
F ′ = dEe, and T1(m) 6= T2(m) with 〈T ′1, S′1〉 = 〈T1, S1〉 and
〈T ′2, S′2〉 = 〈T2, S2〉. Since T1(m) 6= T2(m), we have Υ(m) =
j 6vF low , and by Lemma Appendix A.12 we have j vF s.t, so
s.t 6vF low , which contradicts the assumption.

• If P ′1 = {M ′m1 , Nn} for some expression N and thread name n /∈
dom(T2), then there exist M ′2, T ′2 and S′2 s.t. W ` 〈{Mm}, T2, S2〉

d−→
F

〈{M ′2, Nn}, T ′2, S′2〉 and 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉. By Splitting

Computations (Lemma Appendix A.11), necessarily M ′m1 = M ′m2 .

Then we have M ′1 T
Σ,Γ
j,F,low M ′2, by Clause 2 and Subject Reduction

(Theorem Appendix A.10).

Clause 7. Here we have M1 = (flow F̄ in M̄1) and M2 = (flow F̄ in M̄2) and

M̄1 T Σ,Γ

j,FfF̄ ,low M̄2. There are two cases.

M̄1 can compute. In this case we have M ′1 = (flow F̄ in M̄ ′1) with W `
〈{M̄m

1 }, T1, S1〉
d−−→
F ′′
〈{M̄ ′m1 }, T ′1, S′1〉 with F ′ = F̄ f F ′′. To use the

induction hypothesis, there are three possible cases:

• If P̄ ′1 = {M̄ ′m1 }, and a ∈ dom(S′1−S1) implies that a is fresh for

S2, then there exist M̄ ′2, T ′2 and S′2 s.t. W ` 〈{M̄m
2 }, T2, S2〉

d−−→
F ′′

〈{M̄ ′m2 }, T ′2, S′2〉 with M̄ ′1 T
Σ,Γ

j,FfF̄ ,low M̄
′
2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′fF̄ ,low

〈T ′2, S′2〉. Notice that 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉.

• If P̄ ′1 = {M̄ ′m1 , Nn} for some expression N and thread name
n /∈ dom(T2), then there exist M̄ ′2, T ′2 and S′2 such that W `
〈{M̄m

2 }, T2, S2〉
d−−→
F ′′
〈{M̄ ′m2 , Nn}, T ′2, S′2〉 with M̄ ′1 T

Σ,Γ

j,FfF̄ ,low M̄ ′2

and 〈T ′1, S′1〉 =Σ1,Υ
FfF ′fF̄ ,low 〈T

′
2, S
′
2〉. Notice that we have 〈T ′1, S′1〉

=Σ1,Υ
FfF ′,low 〈T ′2, S′2〉.

In all three cases, we use Clause 7 and Subject Reduction (Theorem
Appendix A.10) to conclude.

M̄1 is a value. In this case P ′1 = {M̄m
1 }, F ′ = 0 and 〈T ′1, S′1〉 = 〈T1, S1〉.

Then M̄2 ∈ Val by Remark Appendix A.18, so W ` 〈{M2
m}, T2, S2〉

d−→
F ′
〈{M̄m

2 }, T2, S2〉. We conclude using Clause 1 and Subject Re-

duction (Theorem Appendix A.10).
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We have seen in Remark Appendix A.18 that when two expressions are
related by T Σ,Γ

j,F,low and one of them is a value, then the other one is also a value.
From a semantical point of view, when an expression has reached a value it
means that it has successfully completed its computation. We will now see that
when two expressions are related by T Σ,Γ

j,F,low and one of them is unable to resolve
into a value, in any sequence of unrelated computation steps, then the other one
is also unable to do so. We shall use the notion of derivative of an expression
M :

Definition Appendix A.21 (Derivative of an Expression). Given a fixed flow
policy mapping W , we say that an expression M ′ is a derivative of an expression
M if and only if

• M ′ = M , or

• there exist two states 〈T1, S1〉 and 〈T ′1, S′1〉 and a derivative M ′′ of M such
that, for some m, F , d, P :

W ` 〈{M ′′m}, T1, S1〉
d−→
F
〈{M ′m} ∪ P, T ′1, S′1〉

Definition Appendix A.22 (Non-resolvable Expressions). Given a fixed flow
policy mapping W , we say that an expression M is non-resolvable, denoted M†,
if there is no derivative M ′ of M such that M ′ ∈ Val.

Lemma Appendix A.23. If for some F , low and j we have that M T Σ,Γ
j,F,low N

and M†, then N†.

Proof. Let us suppose that ¬N†. That means that there exists a finite number
of states 〈T1, S1〉, . . . , 〈Tn, Sn〉, and 〈T ′1, S′1〉, . . . , 〈T ′n, S′n〉, of expressions N1,
. . . , Nn and of thread names m1, . . .mn such that

W ` 〈{Nm1}, T1, S1〉 −→ 〈{Nm1
1 }, T ′1, S′1〉 and

W ` 〈{Nm2
1 }, T2, S2〉 −→ 〈{Nm2

2 }, T ′2, S′2〉 and

...
W ` 〈{Nmn

n }, Tn, Sn〉 −→ 〈{Nmn
n }, T ′n, S′n〉

and such that Nn ∈ Val . By Strong Bisimulation for Low-Terminating Threads
(Proposition Appendix A.20), we have that there exists a finite number of states
〈T̄ ′1, S̄′1〉, . . . , 〈T̄ ′n, S̄′n〉, of expressions M̄1, . . . , M̄n, of pools of threads P1, . . . Pn
such that

W ` 〈{Mm1}, T1, S1〉 −→ 〈{Mm1
1 } ∪ P1, T̄

′
1, S̄
′
1〉 and

W ` 〈{Mm2
1 }, T2, S2〉 −→ 〈{Mm2

2 } ∪ P2, T̄
′
2, S̄
′
2〉 and

...
W ` 〈{Mmn

n−1}, Tn, Sn〉 −→ 〈{Mmn
n } ∪ Pn, T̄ ′n, S̄′n〉
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such that:
M1 T Σ,Γ

j,F,low N̄1, and . . . , and Mn T Σ,Γ
j,F,low N̄n

By Remark Appendix A.18, we then have that Mn ∈ Val . Since Mn is a
derivative of M , we conclude that ¬M†.

The following lemma deduces operational “highness” of threads from that
of its subexpressions.

Lemma Appendix A.24 (Composition of High Expressions). Suppose that
M is typable with respect to Σ.Γ, j and F . Then:

1. If M = (M1 M2) and either

• M1† and M1
m ∈ HΣ,Υ

F,l , or

• M1
m,M2

m ∈ HΣ,Υ
F,l and M1 is a syntactically (Σ,Γ, j, F, l)-high func-

tion,

then Mm ∈ HΣ,Υ
F,l .

2. If M = (if M1 then Mt else Mf ) and M1
m,Mt

m,Mf
m ∈ HΣ,Υ

F,low , then

Mm ∈ HΣ,Υ
F,low .

3. If M = (ref l,θ M1) and l 6vF low and M1
m ∈ HΣ,Υ

F,low , then Mm ∈ HΣ,Υ
F,low .

4. If M = (M1;M2) and either

• M1† and M1
m ∈ HΣ,Υ

F,low , or

• M1
m,M2

m ∈ HΣ,Υ
F,low ,

then Mm ∈ HΣ,Υ
F,low .

5. If M = (M1 := M2) and M1 has type θ ref l,nk
with l 6vF low and either

• M1† and M1
m ∈ HΣ,Υ

F,low , or

• M1
m,M2

m ∈ HΣ,Υ
F,low ,

then Mm ∈ HΣ,Υ
F,low .

6. If M = (flow F in M1) and M1
m ∈ HΣ,Υ

F,low , then Mm ∈ HΣ,Υ
F,low .

7. If M = (allowed F then Mt else Mf ) and Mt
m,Mf

m ∈ HΣ,Υ
F,low , then

Mm ∈ HΣ,Υ
F,low .

Lemma Appendix A.25. If for some Σ, Γ, j, F , low and Υ we have that
M1 T Σ,Γ

j,F,low M2 and M1 ∈ HΣ,Υ
F,l , then M2 ∈ HΣ,Υ

F,l .

Proof. By induction on the definition of M1 T Σ,Γ
j,F,low M2.

Clause 7. Here we have M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2)

with M̄1 T jFfF ′,low M̄2. Clearly we have that M̄1 ∈ HΣ,Υ
F,low , so by induc-

tion hypothesis also M̄2 ∈ HΣ,Υ
F,low . Therefore, by Composition of High

Expressions (Lemma Appendix A.24) we have that M2 ∈ HΣ,Υ
F,low .

We now present the main steps for proving soundness of the type system of
Figure 4 with respect to the notion of security of Definition 3.3.
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Behavior of Typable Low Expressions. In this second phase of the proof, we
consider the general case of threads that are typable with any termination level.
As in the previous subsection, we show that a typable expression behaves as
a strong bisimulation, provided that it is operationally low. For this purpose,
we make use of the properties identified for the class of low-terminating expres-
sions by allowing only these to be followed by low-writes. Conversely, high-
terminating expressions can only be followed by high-expressions (see Defini-
tions Appendix A.13 and Appendix A.14).

Lemma Appendix A.26 (High Threads might Split). Consider a thread Mm

for which there exist Γ, F , s and τ such that Γ `Σ
j,F M : s, τ and suppose that

M = E[(allowed F ′ then Nt else Nf )] with j 6vF low. Then, we have that

Mm ∈ HΣ,Υ
F,low .

Proof. By induction on the structure of E, using Lemma Appendix A.12 and
Lemma Appendix A.15. Consider that we have M = E[M0], where M0 =
(allowed F ′ then Nt else Nf ).

E[M0] = M0. Then, by Allow, we have Γ `Σ
j,F (allowed F ′ then Nt else Nf ) :

s, τ where Γ `Σ
j,F Nt : st, τ , Γ `Σ

j,F Nf : sf , τ and j vF st.w, sf .w. This

means st.w, sf .w 6vF low , so by Lemma Appendix A.15, then Nt
m, Nf

m ∈
HΣ,Υ
F,low . By Composition of High Expressions (Lemma Appendix A.24),

Mm ∈ HΣ,Υ
F,low .

E[M0] = (E1[M0] M1). Then by rule App we have that Γ `Σ
j,F E1[M0] :

s1, τ1
s′1−−→
F,j

σ1 and Γ `Σ
j,F M1 : s′′1 , τ1 with s1.r vF s′1.w and s1.r vF s′′1 .w.

By Lemma Appendix A.12 we have j v s1.t, which implies that j vF s1.t
and s1.t 6vF low . Therefore, E1[M0] is a syntactically (F, low , j)-high
function and M1 is (F, low , j)-high. By High Expressions (Lemma Ap-

pendix A.15) we have M1
m ∈ HΣ,Υ

F,low . By induction hypothesis E1[M0]
m ∈

HΣ,Υ
F,low . Then, by Lemma Appendix A.24, Mm ∈ HΣ,Υ

F,low .

E[M0] = (V E1[M0]). Then by App we have Γ `Σ
j,F V : s1, τ1

s′1−−→
F,j

σ1 and

Γ `Σ
j,F E1[M0] : s′′1 , τ1 with s′′1 .t vF s′1.w and s′1.t vF s′′1 .w. By Lemma Ap-

pendix A.12 we have j v s′′1 .t, which implies that j vF s′′1 .t and s′′1 .t 6vF
low , and so s′1.w 6vF low . Therefore, s′1.w 6vF low , and s′′1 .w 6vF low ,
which means that V is a syntactically (F, low , j)-high function and E1[M0]

is (F, low , j)-high. By induction hypothesis E1[M0]
m ∈ HΣ,Υ

F,low . Then, by

Composition of High Expressions (Lemma Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (if E1[M0] then Mt else Mf). Then by rule Cond we have that

Γ `Σ
j,F E1[M0] : s1, bool, and Γ `Σ

j,F Mt : s′1, τ1 and Γ `Σ
j,F Mf : s′′1 , τ1 with

s1.t vF s′1.w, s′1.w. By Lemma Appendix A.12 we have j v s1.t, which im-
plies that j vF s1.t and s1.t 6vF low . Therefore, s′1.w, s

′
1.w 6vF low , so by



APPENDIX A PROOFS FOR “CONTROLLING INFORMATION FLOW”59

High Expressions (Lemma Appendix A.15) we have Mt
m,Mt

m ∈ HΣ,Υ
F,low .

By induction hypothesis E1[M0]
m ∈ HΣ,Υ

F,low . Then, by Composition of

High Expressions (Lemma Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (E1[M0];M1). Then by Seq we have that Γ `Σ
j,F E1[M0] : s1, τ1

and Γ `Σ
j,F M1 : s′1, τ

′
1 with s1.t vF s′1.w. By Lemma Appendix A.12 we

have j v s1.t, which implies that j vF s1.t and s1.t 6vF low . Therefore,
s′1.w 6vF low , and by High Expressions (Lemma Appendix A.15) we have

M1
m ∈ HΣ,Υ

F,low . By induction hypothesis E1[M0]
m ∈ HΣ,Υ

F,low . Then, by

Composition of High Expressions (Lemma Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (ref l,θ E1[M0]). Then by Ref we have that Γ `Σ
j,F E1[M0] : s1, θ

with s1.t vF l. By Lemma Appendix A.12 we have j v s1.t, which implies
that j vF s1.t and s1.t 6vF low . Therefore, l 6vF low , and by induction
hypothesis E1[M0]

m ∈ HΣ,Υ
F,low . Then, by Composition of High Expressions

(Lemma Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (! E1[M0]). Easy, by induction hypothesis.

E[M0] = (E1[M0] := M1). Then by Ass we have Γ `Σ
j,F E1[M0] : s1, θ ref l̄

and Γ `Σ
j,F M1 : s′1, τ1 with s1.t vF s′1.w and s1.t vF l̄. By Lemma Ap-

pendix A.12 we have j v s1.t, which implies that j vF s1.t and s1.t 6vF
low . Therefore, l̄ 6vF low and s′1.w 6vF low . Hence, by High Expressions

(Lemma Appendix A.15) we have M1
m ∈ HΣ,Υ

F,low . By induction hypothesis

E1[M0]
m ∈ HΣ,Υ

F,low . Then, by Composition of High Expressions (Lemma

Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (V := E1[M0]). Then by Ass we have Γ `Σ
j,F V : s1, θ ref l̄,nk̄

and

Γ `Σ
j,F E1[M0] : s′1, τ1 with s′1.t vF l̄. By Lemma Appendix A.12 we

have j v s′1.t, which implies that j vF s′1.t and s′1.t 6vF low . Therefore,

l̄ 6vF low , and by induction hypothesis E1[M0]
m ∈ HΣ,Υ

F,low . Then, by

Composition of High Expressions (Lemma Appendix A.24), Mm ∈ HΣ,Υ
F,low .

E[M0] = (flow F ′ in E1[M0]). Then by Flow we have Γ `Σ
j,FfF ′ E1[M0] :

s1, τ1. By induction hypothesis E1[M0]
m ∈ HΣ,Υ

FfF ′,low , which implies

E1[M0]
m ∈ HΣ,Υ

F,low . Then, by Composition of High Expressions (Lemma

Appendix A.24), we conclude that Mm ∈ HΣ,Υ
F,low .

We now design a binary relation on expressions that uses T Σ,Γ
j,F,low to en-

sure that high-terminating expressions are always followed by operationally high
ones. The definition of RΣ,Γ

j,F,low is given in Figure A.9. Notice that it is a sym-

metric relation. In order to ensure that expressions that are related by RΣ,Γ
j,F,low
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Definition Appendix A.27 (RΣ,Γ
j,F,low ). We have that M1 RΣ,Γ

j,F,low M2 if

Γ `Σ
j,F M1 : s1, τ and Γ `Σ

j,F M2 : s2, τ for some Γ, s1, s2 and τ and one of
the following holds:

Clause 1’. M1
m,M2

m ∈ HΣ,Υ
F,low , or

Clause 2’. M1 = M2, or

Clause 3’. M1 = (if M̄1 then N̄t else N̄f ) and M2 = (if M̄2 then N̄t else N̄f )

with M̄1 RΣ,Γ
j,F,low M̄2, and N̄t

m
, M̄f

m ∈ HΣ,Υ
F,low , or

Clause 4’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 RΣ,Γ
j,F,low M̄2, and

N̄m
1 , N̄

m
2 ∈ HF,low , and M̄1, M̄2 are syntactically (F, low , j)-high func-

tions, or

Clause 5’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T Σ,Γ
j,F,low M̄2, and

N̄1 RΣ,Γ
j,F,low N̄2, and M̄1, M̄2 are syntactically (F, low , j)-high functions,

or

Clause 6’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 RΣ,Γ
j,F,low M̄2, and N̄m ∈

HΣ,Υ
F,low , or

Clause 7’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T Σ,Γ
j,F,low M̄2, or

Clause 8’. M1 = (ref l,θ M̄1) and M2 = (ref l,θ M̄2) with M̄1 RΣ,Γ
j,F,low M̄2, and

l 6vF low, or

Clause 9’. M1 = (! M̄1) and M2 = (! M̄2) with M̄1 RΣ,Γ
j,F,low M̄2, or

Clause 10’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 RΣ,Γ
j,F,low M̄2,

and N̄m
1 , N̄

m
2 ∈ H

Σ,Υ
F,low , and M̄1, M̄2 both have type θ ref l,nk

for some θ

and l such that l 6vF low, or

Clause 11’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 T Σ,Γ
j,F,low M̄2,

and N̄1 RΣ,Γ
j,F,low N̄2, and M̄1, M̄2 both have type θ ref l,nk

for some θ and

l such that l 6vF low, or

Clause 12’. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with
M̄1 RjFfF ′,low M̄2.

Figure A.9: The relation RΣ,Γ
j,F,low
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perform the same changes to the low memory, its definition requires that the
references that are created or written using (potentially) different values are
high, and that the body of the functions that are applied are syntactically high.

Remark Appendix A.28. If M1 T Σ,Γ
j,F,low M2, then M1 RΣ,Γ

j,F,low M2.

The above remark is used to prove the following lemma.

Lemma Appendix A.29. If for some j, F and low we have that M1 RΣ,Γ
j,F,low M2

and M1 ∈ HΣ,Υ
F,low , then M2 ∈ HΣ,Υ

F,low .

Proof. By induction on the definition of M1 RΣ,Γ
j,F,low M2, using Lemma Ap-

pendix A.25.

We have seen in Splitting Computations (Lemma Appendix A.11) that two
computations of the same expression can split only if the expression is about
to read a reference that is given different values by the memories in which they
compute. In Lemma Appendix A.30 we saw that the relation T Σ,Γ

j,F,low relates the
possible outcomes of expressions that are typable with a low termination effect.
Finally, from the following lemma one can conclude that the above relation
RΣ,Γ
j,F,low relates the possible outcomes of typable expressions in general.

Lemma Appendix A.30. If for some Σ, Γ, j and F there exist s, τ such that
Γ `Σ

j,F E[(! a)] : s, τ with l 6vFfdEe low, then for any values V0, V1 ∈ Val such

that Γ `Σ
, Vi : θ we have E[V0] RΣ,Γ

j,F,low E[V1].

Proof. By induction on the structure of E using Lemma Appendix A.9, Lemma Ap-
pendix A.19, Lemma Appendix A.15.

E[(! a)] = (flow F ′ in E1[(! a)]). By rule Flow we have Γ `Σ
j,FfF ′ V :

s, τ . By induction hypothesis E1[V0] T jFfF ′,low E1[V1], so we conclude
by Lemma Appendix A.9 and Clause 12’.

We now state a crucial result of the paper: the relation T Σ,Γ
j,F,low is a sort of

“strong bisimulation”.

Proposition Appendix A.31 (Strong Bisimulation for Typable Low Threads).

If M1 RΣ,Γ
j,F,low M2 and M1 /∈ HΣ,Υ

F,low and for a given allowed flow policy mapping

W , also W `Σ,Υ 〈{M1
m}, T1, S1〉

d−→
F ′
〈P ′1, T ′1, S′1〉, with Υ(m) = j and 〈T1, S1〉

=Σ1,Υ
FfF ′,low 〈T2, S2〉 then:

• If P ′1 = {M ′m1 }, and a ∈ dom(S′1 − S1) implies that a is fresh for S2,

then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m}, T ′2, S′2〉 with M ′1 R

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.
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• If P ′1 = {M ′m1 , Nn} for some expression N and thread name n /∈ dom(T2),

then there exist M ′2, T ′2 and S′2 such that W ` 〈{M2
m}, T2, S2〉

d−→
F ′

〈{M ′2
m
, Nn}, T ′2, S′2〉 with M ′1 R

Σ,Γ
j,F,low M ′2 and 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low 〈T ′2, S′2〉.

Proof. By case analysis on the clause by which M1 RΣ,Γ
j,F,low M2, and by induc-

tion on the definition of RΣ,Γ
j,F,low . In the following, we use Subject Reduction

(Theorem Appendix A.10) to guarantee typability (with the same type) for j,

low and F , which is a requirement for being in the RΣ,Γ
j,F,low relation. We also

use the Strong Bisimulation for Low Terminating Threads Lemma (Lemma Ap-
pendix A.20).

Clause 2’. HereM1 = M2. By Guaranteed Transitions (Lemma Appendix A.16),
then:

• If P ′1 = {M ′m1 }, and a ∈ dom(S′1 − S1) implies that a is fresh for S2,

then there exist M ′2, T ′2 and S′2 such that W `Σ,Υ 〈{Mm
2 }, T2, S2〉

d−→
F ′

〈{M ′m2 }, T ′2, S′2〉 with 〈T ′1, S′1〉 =Σ1,Υ
FfF ′,low 〈T ′2, S′2〉. There are two

cases to consider:

M ′
2 = M ′

1. Then we have M ′1 T
Σ,Γ
j,F,low M ′2, by Clause 2’ and Subject

Reduction (Theorem Appendix A.10).

M ′
2 6= M ′

1. Then by Splitting Computations (Lemma Appendix A.11)
we have two possibilities:
(1) there exists E and a such that M ′1 = E[S1(a)], F ′ = dEe,
M ′2 = E[S2(a)], 〈T ′1, S′1〉 = 〈T1, S1〉 and 〈T ′2, S′2〉 = 〈T2, S2〉.
Since S1(a) 6= S2(a), we have Σ1(a) 6vFfF ′

low . Therefore,

M ′1 R
Σ,Γ
j,F,low M ′2, by Lemma Appendix A.30 above.

(2) there exists E such thatM ′1 = E[(allowed F ′ then Nt else Nf )],
F ′ = dEe, and T1(m) 6= T2(m) with 〈T ′1, S′1〉 = 〈T1, S1〉 and
〈T ′2, S′2〉 = 〈T2, S2〉. Since T1(m) 6= T2(m), we have Υ(m) =

j 6vF low , and by Lemma Appendix A.26 M1 ∈ HΣ,Υ
F,low , which

contradicts our assumption.

• If P ′1 = {M ′m1 , Nn}, for some expression N and thread name n /∈
dom(T2) then there exist M ′2, T ′2 and S′2 such that we have W `Σ,Υ

〈{Mm
2 }, T2, S2〉

d−→
F ′
〈{M ′m2 , Nn}, T ′2, S′2〉 and with 〈T ′1, S′1〉 =Σ1,Υ

FfF ′,low

〈T ′2, S′2〉 where M ′1 = M ′2. Then we have M ′1 T
Σ,Γ
j,F,low M ′2, by Clause

2’ and Subject Reduction (Theorem Appendix A.10).

Clause 12’. Here M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with

M̄1 RjFklmeetF ′,low M̄2. We can assume that M̄m
1 /∈ HΣ,Υ

FfF ′,low , since

otherwise M̄m
1 /∈ HΣ,Υ

F,low and by Composition of High Expressions (Lemma

Appendix A.24) Mm
1 ∈ H

Σ,Υ
F,low . Therefore W `Σ,Υ 〈{M̄m

1 }, T1, S1〉
d−−→
F ′′

〈{M̄ ′m1 }, T ′1, S′1〉 with F ′ = F̄ fF ′′. By induction hypothesis, we have that
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W `Σ,Υ 〈{M̄m
2 }, T2, S2〉

d−−→
F ′′
〈{M̄ ′m2 }, T ′2, S′2〉, and that M ′1 R

j
FfF̄ ,low M ′2

and also 〈T ′1, S′1〉 =Σ1,Υ
FfF̄ ,low 〈T

′
2, S
′
2〉. Notice that 〈T ′1, S′1〉 =Σ1,Υ

F,low 〈T ′2, S′2〉.
We use Subject Reduction (Theorem Appendix A.10) and Clause 12’ to
conclude.

Behavior of Sets of Typable Threads. To conclude the proof of the Soundness
Theorem, it remains to exhibit an appropriate bisimulation on thread configu-
rations.

Definition Appendix A.32 (RΥ
low ). The relation RΥ

low is inductively defined
as follows:

a)
Mm ∈ HΣ,Υ

0,low

{Mm} RΥ
low ∅

b)
Mm ∈ HΣ,Υ

0,low

∅ RΥ
low {Mm}

c)
M1 RΣ,Γ

Υ(m),0,low M2

{M1
m} RΥ

low {M2
m}

d)
P1 RΥ

low P2 Q1 RΥ
low Q2

P1 ∪Q1 RΥ
low P2 ∪Q2

Proposition Appendix A.33. The relation

BΣ,Γ
Υ(m),low = {(〈P1, T1〉, 〈P2, T2〉) | P1 RΥ

low P2 and T1 =Σ,Υ
0,l T2}

is a (W,Σ,Υ,Γ, l)-bisimulation acording to Definition Appendix A.3.

Proof. It is easy to see, by induction on the definition of RΥ
low , that the relation

BΣ,Γ
Υ(m),low is symmetric. We show, by induction on the definition of RΥ

low , that

if 〈P1, T1〉 BΣ,Γ
Υ(m),low 〈P2, T2〉 and for any given S1, S2 such that 〈T1, S1〉 =Σ1,Υ

F,low

〈T2, S2〉 we have W `Σ,Υ 〈P1, T1, S1〉
d−→
F
〈P ′1, T ′1, S′1〉, and (dom(S1

′)−dom(S1))∩
dom(S2)=∅ and (dom(T1

′)− dom(T1))∩dom(T2)=∅, then there exist T ′2, P ′2 and

S′2 such that W `Σ,Υ 〈P2, T2, S2〉� 〈P ′2, T ′2, S′2〉 and 〈P ′1, T ′1〉 B
Σ,Γ
Υ(m),low 〈P

′
2, T

′
2〉

and 〈T ′1, S′1〉 =Σ1,Υ
0,low 〈T ′2, S′2〉.

Rule a). Then P1 = {Mm}, P2 = ∅, and Mm ∈ HΣ,Υ
0,low . Therefore, P ′1 ⊆

HΣ,Υ
G,low and 〈T ′1, S′1〉 =Σ1,Υ

0,low 〈T1, S1〉. We have that W `Σ,Υ 〈P2, T2, S2〉�
〈P2, T2, S2〉 and by transitivity 〈T ′1, S′1〉 =Σ1,Υ

0,low 〈T2, S2〉. By Rules a) and

d), we have P ′1 RΥ
low ∅. Then, 〈P ′1, T ′1〉 B

Σ,Γ
Υ(m),low 〈∅, T

′
2〉.

Rule c). Then P1 = {M1
m} and P2 = {M2

m}, and we haveM1 RΣ,Γ
Υ(m),0,low M2.

IfMm
1 ∈ H

Σ,Υ
0,low , then by Rule a), we have that P ′1 RΥ

low ∅ and 〈T ′1, S′1〉 =Σ1,Υ
0,low

〈T ′2, S′2〉. Also, by Lemma Appendix A.29, we have that Mm
2 ∈ H

Σ,Υ
0,low ,

so by Rule b) ∅ RΥ
low P2. By Rule d), we have P ′1 RΥ

low P2. Then,

〈P ′1, T ′1〉 B
Σ,Γ
Υ(m),low 〈P

′
2, T

′
2〉.

If Mm
1 /∈ HΣ,Υ

0,low , there are two cases to be considered:
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P ′
1 = {M ′

1
m}. Then by Strong Bisimulation for Typable Low Threads

(Proposition Appendix A.31) there exist T ′2, M ′2 and S′2 such that

W `Σ,Υ 〈{M2
m}, T2, S2〉

d−→
F ′
〈{M ′2

m}, T ′2, S′2〉 withM ′1 R
Σ,Γ
Υ(m),0,low M

′
2

and 〈T ′1, S′1〉 =Σ1,Υ
0,low 〈T ′2, S′2〉. Then, by Rule c), we have that {M ′1

m}
RΥ

low {M ′2
m}. Then, 〈{M ′m1 }, T ′1〉 B

Σ,Γ
Υ(m),low 〈{M

′m
2 }, T ′2〉.

P ′
1 = {M ′

1
m
, Nn}. We proceed as in the previous case to conclude that

there exists M ′m2 such that {M ′1
m} RΥ

low {M ′2
m}. By Subject Re-

duction (Theorem Appendix A.10), by Lemma Appendix A.7, and
by Clause 2’ we have N Rn0,low N , and so by Rule c) we have

{Nn} RΥ
low {Nn}. Therefore, by Rule d), we have {M ′1

m
, Nn} RΥ

low

{M ′2
m
, Nn}. Then, 〈{M ′1

m
, Nn}, T ′1〉 B

Σ,Γ
Υ(m),low 〈{M

′
2
m
, Nn}, T ′2〉.

Rule d). Then P1 = P̄1 ∪ Q̄1 and P2 = P̄2 ∪ Q̄2, with P̄1 RΥ
low P̄2 and

Q̄1 RΥ
low Q̄2. Suppose that W `Σ,Υ 〈P̄1, T1, S1〉

d−→
F
〈P̄ ′1, T ′1, S′1〉 – the case

where Q̄1 reduces is analogous. By induction hypothesis, there exist T ′2,
P̄ ′2 and S′2 such that W `Σ,Υ 〈P̄2, T2, S2〉� 〈P̄ ′2, T ′2, S′2〉 with P̄ ′1 RΥ

low P̄ ′2
and 〈T ′1, S′1〉 =Σ1,Υ

0,low 〈T ′2, S′2〉. Then, we have W `Σ,Υ 〈P̄2 ∪ Q̄2, T2, S2〉 �
〈P̄ ′2 ∪ Q̄2, T

′
2, S
′
2〉, and by Rule d) we have P̄ ′1 ∪ Q̄1 RΥ

low P̄ ′2 ∪ Q̄2. Then,

〈P̄ ′1 ∪ Q̄1, T
′
1〉 B

Σ,Γ
Υ(m),low 〈P̄

′
2 ∪ Q̄2, T

′
2〉.

We can now prove the main-result regarding Non-disclosure for Networks:

Theorem Appendix A.34 (Soundness of Typing Non-disclosure for Net-
works.).
Consider a pool of threads P , an allowed-policy mapping W , a reference labeling
Σ, a thread labeling Υ and a typing environment Γ. If for all Mm ∈ P there
exist s, and τ such that Γ `Σ

Υ(m),0 M : s, τ , then P satisfies the Non-disclosure

for Networks policy, i.e. P ∈ NDN 2(W,Σ,Υ,Γ).

Proof. For all Mm ∈ P and for all choices of security levels low , by assumption
and by Clause 2’ of Definition Appendix A.27, we have that M RΣ,Γ

Υ(m),low M .

By Rule c) of Definition Appendix A.32 we then have {Mm} RΣ,Γ
Υ(m),low {M

m}.
Therefore, by Rule d) we have that P RΣ,Γ

Υ(m),low P , from which we conclude that

for all position trackers T1, T2 such that dom(P ) = dom(T1) = dom(T2) and

T1 =Σ,Υ
0,l T2 we have 〈P, T1〉 BΣ,Γ

Υ(m),low 〈P, T2〉. By Proposition Appendix A.33

we conclude that 〈P, T1〉 ≈Σ,Υ
Γ,low 〈P, T2〉.

Our soundness result for non-disclosure is compositional, in the sense that
it is enough to verify the typability of each thread separately in order to ensure
non-disclosure for the whole network.
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Appendix B. Proofs for “Controlling Declassification”

Appendix B.1. Formalization of Flow Policy Confinement

In [2, 5] Flow Policy Confinement is defined for Networks, considering a
distributed setting with code mobility, by means of a bisimulation on “located
threads”. In this paper we used a bisimulation on thread configurations, for the
sake of uniformity with the definition on Non-disclosure for Networks, and for
clarity. We prove that the two variations of the definition are equivalent.

Definition on located threads. The property is defined co-inductively on sets
of located threads, consisting of pairs 〈d,Mm〉 that carry information about
the location d of a thread Mm. The location of each thread determines which
allowed flow policy it should obey at that point, and is used to place a restriction
on the flow policies that decorate the transitions: at any step, they should
comply to the allowed flow policy of the domain where the thread who performed
it is located.

Definition Appendix B.1 ((W,Σ,Γ)-Confined Located Threads). Consider
an allowed-policy mapping W , a reference labeling Σ, and a typing environment
Γ. A set CLT of located threads is a set of (W,Σ,Γ)-confined located threads
if the following holds for all 〈d,Mm〉 ∈ CLT , for all T such that T (m) = d, and
for all (W,Σ,Γ)-compatible memory S:

• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m}, T ′, S′〉 implies W (T (m)) 4 F and also

〈T ′(m),M ′m〉 ∈ CLT .

• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m, Nn}, T ′, S′〉 implies W (T (m)) 4 F and

also 〈T ′(m),M ′m〉, 〈T ′(n), Nn〉 ∈ CLT .

Furthermore, S′ is still (W,Σ,Γ)-compatible. The largest set of (W,Σ,Γ)-

confined located threads is denoted CLT Σ,Γ
W .

For any W , Σ and Γ, the set of located threads where threads are values is a
set of (W,Σ,Γ)-confined located threads. Furthermore, the union of a family of
sets of (W,Σ,Γ)-confined located threads is a set of (W,Σ,Γ)-confined located

threads. Consequently, CT CΣ,Γ
W exists.

We say that a threadMm is (W,Σ,Γ)-confined when located at d, if 〈d,Mm〉 ∈
CLT Σ,Γ

W . A well formed thread configuration 〈P, T 〉, satisfying the applicable
rules of a well formed configuration, is said to be (W,Σ,Γ)-confined if all lo-
cated threads in {〈T (m),Mm〉 | Mm ∈ P} are (W,Σ,Γ)-confined.

Definition Appendix B.2 (Flow Policy Confinement (on located threads)). A
pool of threads P satisfies Flow Policy Confinement with respect to an allowed-
policy mapping W , a reference labeling Σ and a typing environment Γ, if for all
domains d ∈ Dom and threads Mm ∈ P we have that 〈d,Mm〉 ∈ CLT Σ,Γ

W . We
then write P ∈ FPC1(W,Σ,Γ).
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Definition on thread configurations.

Definition Appendix B.3 ((W,Σ,Γ)-Confined Thread Configurations). Con-
sider an allowed-policy mapping W , a reference labeling Σ, and a typing envi-
ronment Γ. A set CT C of thread configurations is a set of (W,Σ,Γ)-confined
thread configurations if it satisfies, for all P, T , and for all (W,Σ,Γ)-compatible
memories S:

〈P, T 〉 ∈ CT C and W ` 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉 implies

W (d) 4 F and 〈P ′, T ′〉 ∈ CT C

Furthermore, S′ is still (W,Σ,Γ)-compatible. The largest set of (W,Σ,Γ)-

confined thread configurations is denoted CT CΣ,Γ
W .

For anyW , Σ and Γ, the set of thread configurations where threads are values
is a set of (W,Σ,Γ)-confined thread configurations. Furthermore, the union of a
family of (W,Σ,Γ)-confined thread configurations is a (W,Σ,Γ)-confined thread

configurations. Consequently, CT CΣ,Γ
W exists.

Definition Appendix B.4 (Flow Policy Confinement (on thread configura-
tions)). A pool of threads P satisfies Flow Policy Confinement with respect to
an allowed-policy mapping W , a reference labeling Σ and a typing environment
Γ, if for all thread configurations 〈P, T 〉 such that dom(P ) = dom(T ) we have

that 〈P, T 〉 ∈ CT CΣ,Γ
W . We then write P ∈ FPC2(W,Σ,Γ).

Note that for any P1 ⊆ P and T1 ⊆ T such that dom(P ) = dom(T ), if

〈P, T 〉 ∈ CT CΣ,Γ
W then 〈P1, T1〉 ∈ CT CΣ,Γ

W .

Comparison. Flow Policy Confinement, defined over thread configurations, is
equivalent to when defined over located threads.

Proposition Appendix B.5. FPC1(W,Σ,Γ) = FPC2(W,Σ,Γ).

Proof. We assume that P ∈ FPC1(W,Σ,Γ), and show that the set

CT C = {〈P, T 〉 | ∀Mm ∈ P . 〈T (m),Mm〉 ∈ CLT Σ,Γ
W and dom(P ) = dom(T )}

satisfies CT C ⊆ CT CΣ,Γ
W . Given any thread configuration 〈P, T 〉 ∈ CT C, and

any thread Mm ∈ P , it is clear that 〈T (m),Mm〉 ∈ CLT Σ,Γ
W . If

W `Σ,Υ 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉

then for some P ′′, T ′′ such that P = {Mm} ∪ P ′′ and T = {m 7→ d} ∪ T ′′ we
have that either:

• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m}, T ′, S′〉 where P ′ = {M ′m} ∪ P ′′ and

T ′ = {m 7→ d} ∪ T ′′. In this case, by hypothesis, W (T (m)) 4 F and also

〈T ′(m),M ′m〉 ∈ CLT Σ,Γ
W .
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• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m, Nn}, T ′, S′〉 where P ′ = {M ′m, Nn} ∪

P ′′ and T ′ = {m 7→ d, n 7→ d′}∪T ′′ for some d′. In this case, by hypothesis,

W (T (m)) 4 F and also 〈T ′(m),M ′m〉, 〈T ′(n), Nn〉 ∈ CLT Σ,Γ
W .

In both cases, we can conclude that ∀Mm ∈ P ′ . 〈T ′(m),Mm〉 ∈ CLT Σ,Γ
W and

dom(P ′) = dom(T ′), so 〈P ′, T ′〉 ∈ CT C. We then have that CT C ⊆ CT CΣ,Γ
W , and

also that for all 〈P, T 〉 such that dom(P ) = dom(T ), we have that 〈P, T 〉 ∈ CT C.
Then, P ∈ FPC2(W,Σ,Γ).

We now assume that P ∈ FPC2(W,Σ,Γ), and show that the set

CLT = {〈T (m),Mm〉 | ∃P, T . 〈P, T 〉 ∈ CT CΣ,Γ
W and Mm ∈ P}

satisfies CLT ⊆ CLT Σ,Γ
W . Given any located thread 〈d,Mm〉 ∈ CLT and posi-

tion tracker T such that T (m) = d, and any (W,Σ,Γ)-compatible memory S, it

is clear that also 〈{Mm}, {m 7→ d}〉 ∈ CT CΣ,Γ
W . Then, if:

• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m}, T ′, S′〉, then by hypothesis, W (d) 4 F

and 〈{M ′m}, T ′〉 ∈ FPC2(W,Σ,Γ). Therefore, 〈T ′(m),M ′m〉 ∈ CLT .

• W `Σ,Υ 〈{Mm}, T, S〉 d−→
F
〈{M ′m, Nn}, T ′, S′〉, then by hypothesis, W (d) 4

F and 〈{M ′m, Nn}, T ′〉 ∈ FPC2(W,Σ,Γ). Therefore, both 〈T ′(m),M ′m〉,
〈T ′(n), N ′n〉 ∈ CLT .

We then have that CLT ⊆ CLT Σ,Γ
W , and also that for all 〈d,Mm〉 such that

Mm ∈ P , we have that 〈d,Mm〉 ∈ CLT . Then, P ∈ FPC1(W,Σ,Γ).

Appendix B.2. Type System

Appendix B.2.1. Subject reduction

In order to establish the soundness of the type system of Figure 5 we need
a Subject Reduction result, stating that types that are given to expressions are
preserved by computation. To prove it we follow the usual steps [41].

Remark Appendix B.6.

1. If W ∈ Pse and W ; Γ `Σ
A W : τ , then for all flow policies A′, we have

that W ; Γ `Σ
A′ W : τ .

2. For any flow policies A and A′ such that A′ 4 A, we have that W ; Γ `Σ
A M : τ

implies W ; Γ `Σ
A′ M : τ .

Lemma Appendix B.7.

1. If W ; Γ `Σ
A M : τ and x /∈ dom(Γ) then W ; Γ, x : σ `Σ

A M : τ .

2. If W ; Γ, x : σ `Σ
A M : τ and x /∈ fv(M) then W ; Γ `Σ

A M : τ .

Proof. By induction on the inference of the type judgment.

Lemma Appendix B.8 (Substitution).
If W ; Γ, x : σ `Σ

A M : τ and W ; Γ `Σ
A′ W : σ then W ; Γ `Σ

A {x 7→W}M : τ .
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Proof. By induction on the inference of W ; Γ, x : σ `Σ
A M : τ , and by case

analysis on the last rule used in this typing proof, using the previous lemma.

Nil. Here {x 7→W}M = M , and since x /∈ fv(M) then by Lemma Appendix B.7
we have Γ `Σ

j M : s, τ .

Var. If M = x then σ = τ and {x 7→W}M = W . By Remark Appendix B.6,
we have W ; Γ `Σ

A W : τ . If M 6= x then {x 7→W}M = M , where

x /∈ fv(M). Therefore, by Lemma Appendix B.7, we have W ; Γ `Σ
A M : τ .

Abs. Here M = (λy.M̄), and W ; Γ, x : σ, y : τ̄ `Σ
Ā
M̄ : σ̄ where τ = τ̄ −→̄

A
σ̄. We

can assume that y /∈ dom(W ; Γ, x : σ) (otherwise rename y). Therefore
{x 7→W}(λy.M̄) = (λy.{x 7→W}M̄). By assumption and Lemma Ap-
pendix B.7 we can write W ; Γ, y : τ̄ `Σ

A′ W : σ. By induction hypothesis,

W ; Γ, y : τ̄ `Σ
Ā
{x 7→W}M̄ : σ̄. Then, by Abs, W ; Γ `Σ

A (λy.{x 7→W}M̄) :
τ .

Rec. Here M = (%y.W̄ ), and W ; Γ, x : σ, y : τ `Σ
A W̄ : τ . We can assume that

y /∈ dom(W ; Γ, x : σ) (otherwise rename y). Therefore {x 7→W}(%y.W̄ ) =
(%y.{x 7→W}W̄ ). By assumption and Lemma Appendix B.7 we have
W ; Γ, y : τ `Σ

A′ W : σ. By induction hypothesis, W ; Γ, y : τ `Σ
A {x 7→W}W̄ :

τ . Then, by Rec, W ; Γ `Σ
A (%y.{x 7→W}W̄ ) : τ .

Cond. Here M = (if M̄ then N̄t else N̄f ) and we have W ; Γ, x : σ `Σ
A M̄ : bool,

W ; Γ, x : σ `Σ
A Nt : τ1 and W ; Γ, x : σ `Σ

A Nf : τ2. By induction hypothe-

sis, W ; Γ, x : σ `Σ
A {x 7→W}M̄ : bool, W ; Γ, x : σ `Σ

A {x 7→W}Nt : τ1 and

W ; Γ, x : σ `Σ
A {x 7→W}Nf : τ2. Therefore, we have that W ; Γ, x : σ `Σ

A

(if {x 7→W}M̄ then {x 7→W}Nt else {x 7→W}Nf ) : τ by rule Cond.

Mig. Here M = (threadl M̄ at d) and we have that W ; Γ, x : σ `Σ
W (d) M̄ : τ ,

with τ = unit. By induction hypothesis, thenW ; Γ, x : σ `Σ
W (d) {x 7→W}M̄ :

τ . Therefore, by rule Mig, W ; Γ, x : σ `Σ
A (threadl {x 7→W}M̄ at d) : τ .

Flow. Here M = (flow F̄ in M̄) and W ; Γ, x : σ `Σ
A M̄ : τ , with A 4 F̄ . By

induction hypothesis, W ; Γ, x : σ `Σ
A {x 7→W}M̄ : τ . Then, by Flow,

W ; Γ, x : σ `Σ
A (flow F̄ in {x 7→W}M̄) : τ .

Allow. Here M = (allowed F̄ then N̄t else N̄f ) and W ; Γ, x : σ `Σ
A M̄ : bool

and W ; Γ, x : σ `Σ
AfF̄ N̄t : τ1 and W ; Γ, x : σ `Σ

A N̄f : τ2. By induc-

tion hypothesis, W ; Γ, x : σ `Σ
AfF̄ {x 7→W}N̄t : τ1 and W ; Γ, x : σ `Σ

A

{x 7→W}N̄f : τ2. Therefore, by rule Cond, we have that W ; Γ, x : σ `Σ
A

(allowed F̄ then {x 7→W}Nt else {x 7→W}Nf ) : s, τ .

The proofs for the cases Loc, BT and BF are analogous to the one for Nil,
while the proofs for Ref, App, Seq, Der and Ass are analogous to the one for
Cond.
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Lemma Appendix B.9 (Replacement).
If W ; Γ `Σ

A E[M ] : τ is a valid judgment, then the proof gives M a typing

W ; Γ `Σ
AfdEe M : τ̄ for some τ̄ . In this case, if W ; Γ `Σ

AfdEe N : τ̄ , then

W ; Γ `Σ
A E[N ] : τ .

Proof. By induction on the structure of E.

E[M ] = M . This case is direct.

E[M ] = (if Ē[M ] then N̄t else N̄f). By Cond, we have W ; Γ `Σ
A Ē[M ] :

bool, and also W ; Γ `Σ
A N̄t : τ and W ; Γ `Σ

A N̄f : τ . By induction

hypothesis, the proof gives M a typing W ; Γ `Σ
AfdĒe M : τ̂ , for some τ̂ .

Also by induction hypothesis, W ; Γ `Σ
A Ē[N ] : bool. Again by Cond, we

have W ; Γ `Σ
A (if Ē[N ] then N̄t else N̄f ) : τ .

E[M ] = (flow F̄ in Ē[M ]). By Flow, we have W ; Γ `Σ
A Ē[M ] : τ and A 4

F̄ . By induction hypothesis, the proof gives M a typing W ; Γ `Σ
AfdĒe M :

τ̂ , for some τ̂ .

Also by induction hypothesis, W ; Γ `Σ
A Ē[N ] : τ . Then, again by Flow,

we have W ; Γ `Σ
A (flow F̄ in Ē[N ]) : τ .

The proofs for the cases E[M ] = d(E[M ] := N)e, E[M ] = d(V := E[M ])e,
E[M ] = d(! E[M ])e, E[M ] = d(E[M ] N)e, E[M ] = d(V E[M ])e, E[M ] =
d(E[M ];N)e and E[M ] = drefl,θE[M ]e, are all analogous to the proof for the
case E[M ] = (if Ē[M ] then Nt else Nf ).

We check that the type of a thread and the compatibility of memories is
preserved by reduction.

Proposition Appendix B.10 (Subject Reduction). Given a reference and
thread labeling Σ, Υ, consider a thread Mm for which there exist Γ, A and τ such

that W ; Γ `Σ
A M : τ and suppose that W ` 〈{Mm}, T, S〉 d−→

F
〈{M ′m} ∪ P, T ′, S′〉,

for a memory S that is (W,Σ,Γ)-compatible. Then, W ; Γ `Σ
AfW (T (m)) M

′ : τ ,

and S′ is also (W,Σ,Γ)-compatible. Furthermore, if P = {Nn}, for some ex-
pression N and thread name n, then W ; Γ `Σ

W (T ′(n)) N : unit.

Proof. Suppose that we have M = Ē[M̄ ] and that W ` 〈{M̄m}, T, S〉 d−→̄
F

〈{M̄ ′m} ∪ P ′, T̄ ′, S̄′〉. We start by observing that this implies F = F̄ f dĒe,
M ′ = Ē[M̄ ′], P = P ′, T̄ ′ = T ′ and S̄′ = S′. We can assume, without loss of
generality, that M̄ is the smallest in the sense that there is no Ê, M̂ , N̂ such

that Ê 6= [] and Ê[M̂ ] = M̄ for which we can write W ` 〈{M̂m}, T, S〉 d−→̂
F

〈{M̂ ′m} ∪ P, T ′, S′〉.
By Lemma Appendix B.9, we have W ; Γ `Σ

AfdĒe M̄ : τ̄ in the proof of

W ; Γ `Σ
A Ē[M̄ ] : τ , for some τ̄ . We proceed by case analysis on the transition

W ` 〈{M̄m}, T, S〉 d−→̄
F
〈{M̄ ′m} ∪ P, T ′, S′〉, and prove that if S′ 6= S then:
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• There exists τ̄ ′ such that W ; Γ `Σ
AfdĒefW (T (m))

M̄ ′ : τ̄ ′ and τ̄ 4 τ̄ ′.

Furthermore, for every reference a ∈ dom(S′) implies Γ `Σ
0 S′(a) : Σ2(a).

• If P = {N ′′n} for some expression N ′′ and thread name n, then also
W ; Γ `Σ

W (T ′(n)) N : unit. (Note that in this case S = S′.)

By case analysis on the structure of M̄ :

M̄ = ((λx.M̂) V ). Here we have M̄ ′ = {x 7→ V }M̂ , S = S′ and P = ∅. By
rule App, there exist τ̂ and σ̂ such that W ; Γ `Σ

AfdĒe (λx.M̂) : τ̂ −−−−→
AfdĒe

σ̂

and W ; Γ `Σ
AfdĒe V : τ̂ with σ̂ = τ̄ . By Abs, then W ; Γ, x : τ̂ `Σ

AfdĒe M̂ :

σ̂. Therefore, by Lemma Appendix B.8, we get W ; Γ `Σ
AfdĒe {x 7→ V }M̂ :

τ̄ . By Remark Appendix B.6, W ; Γ `Σ
AfdĒefW (T (m))

{x 7→ V }M̂ : τ̄ .

M̄ = (%x.W ). Here we have M̄ ′ = ({x 7→ (%x.W )} W ), S = S′ and P =
∅. By rule Rec, we have W ; Γ, x : τ̄ `Σ

AfdĒe W : τ̄ . Therefore, by

Lemma Appendix B.8, we get W ; Γ `Σ
AfdĒe {x 7→ (%x.W )}W : τ̄ . By

Remark Appendix B.6, W ; Γ `Σ
AfdĒefW (T (m))

{x 7→ (%x.W )}W : τ̄ .

M̄ = (if tt then Nt else Nf). Here we have M̄ ′ = Nt, S = S′ and P = ∅.
By Cond, we have that W ; Γ `Σ

AfdĒe Nt : τ̄ . By Remark Appendix B.6,

W ; Γ `Σ
AfdĒefW (T (m))

Nt : τ̄ .

M̄ = (ref l,θ V ). Here we have M̄ ′ = a, lab = a : θ ref l for some reference
name a, type θ and security level l, S′ = S ∪ {(a, V )} and P = ∅. By
Ref, τ̄ = θ ref and W ; Γ `Σ

AfdĒe V : θ, and by Remark Appendix B.6

then W ; Γ `Σ
0 V : θ. By Lemma Appendix B.7 we have W ; Γ `Σ

0 S′(a) : θ

for every a ∈ dom(S′). By Loc, we have W ; Γ `Σ
AfdĒe a : θ ref , and

τ̄ = θ ref .

M̄ = (! a). Here we have M̄ ′ = S(a), S = S′ and P = ∅. By Der, we
have that W ; Γ `Σ

AfdĒe a : τ̄ ref , and by Loc we know that Σ2(a) =

τ̄ . By compatibility assumption, then W ; Γ `Σ
0 S(a) : Σ2(a), and by

Remark Appendix B.6, then W ; Γ `Σ
AfdĒefW (T (m))

S(a) : τ̄ .

M̄ = (a := V ). Here we have M̄ ′ = (), and P = ∅. By Ass, τ̄ = unit, and
W ; Γ `Σ

AfdĒe a : θ ref and W ; Γ `Σ
AfdĒe V : θ, for some θ. By Loc,

θ = Σ2(a) and by Remark Appendix B.6 we have W ; Γ `Σ
0 V : Σ2(a). By

Nil, we have that W ; Γ `Σ
AfdĒefW (T (m))

() : τ̄ , with τ̄ = unit.

M̄ = (flow F ′ in V ). Here we have M̄ ′ = V , S = S′ and P = ∅. By rule
Flow, we have that W ; Γ `Σ

AfdĒe V : τ̄ and by Remark Appendix B.6,

we have W ; Γ `Σ
AfdĒefW (T (m))

V : τ̄ .
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M̄ = (allowed F ′ then Nt else Nf) and W (T (m)) 4 F ′. Here we have

M̄ ′ = Nt, S = S′ and P = ∅. By Allow, we have that W ; Γ `Σ
AfdĒefF ′

Nt : τ̄ . By Remark Appendix B.6, W ; Γ `Σ
AfdĒefW (T (m))

Nt : τ̄ .

M̄ = (allowed F ′ then Nt else Nf) and W (T (m)) 64 F ′. Here we have

M̄ ′ = Nf , S = S′ and P = ∅. By Allow, we have that W ; Γ `Σ
AfdĒe Nf :

τ̄ . By Remark Appendix B.6, W ; Γ `Σ
AfdĒefW (T (m))

Nf : τ̄ .

M̄ = (threadk N at d). Here we have M̄ ′ = (), P = {N̂n} for some thread
name n, S = S′, and T ′(n) = d. By Mig, since AfW (d)f dĒe 4W (d),
we have that W ; Γ `Σ

AfW (d)fdĒe N : unit and τ̄ = unit, and by Nil we

have that W ; Γ `Σ
A () : unit.

The cases M̄ = (if ff then Nt else Nf ) and M̄ = (V ; M̂) are analogous to the
one for M̄ = (if tt then Nt else Nf ).

By Lemma Appendix B.9, we can finally conclude that: W ; Γ `Σ
AfW (T (m))

Ē[M̄ ′] : τ .

Appendix B.3. Runtime Type Checking

Appendix B.3.1. Subject Reduction

Proposition Appendix B.11 (Subject Reduction). Given a reference and
thread labeling Σ, Υ, consider a thread Mm for which there exist Γ, A and τ such

that Γ `Σ
A M : τ and suppose that W ` 〈{Mm}, T, S〉 d−→

F
〈{M ′m} ∪ P, T ′, S′〉,

for a memory S that is (W,Σ,Γ)-compatible. Then, Γ `Σ
AfW (T (m)) M

′ : τ , and

S′ is also (W,Σ,Γ)-compatible. Furthermore, if P = {Nn}, for some expression
N and thread name n, then Γ `Σ

W (T ′(n)) N : unit.

Proof. The proof is the same as the one for Proposition Appendix B.10, with ex-
ception for the treatment of the case where the step corresponds to the creation
of a new thread:

M̄ = (threadl N at d). Here we have M̄ ′ = (), P = {N̂n} for some thread
name n, T ′(n) = d and (by the migration condition) Γ `Σ

W (d) N : unit,

where τ̄ = unit. By Nil we have that Γ `Σ
A () : unit.

Appendix B.4. Declassification effect

Appendix B.4.1. Subject Reduction

In order to prove Subject Reduction, we follow the usual steps [41].

Remark Appendix B.12. If Γ `Σ M ↪→ N : s, τ then M ∈ Val iff N ∈ Val
and s = 0.
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Remark Appendix B.13. If Γ `Σ M ↪→ N : s, τ and M ∈ Pse with rn(M) ⊆
dom(Σ), then N ∈ Pse and s = 0.

Lemma Appendix B.14.

1. If Γ `Σ M ↪→ M̂ : s, τ and x /∈ dom(Γ) then W ; Γ, x : σ `Σ M ↪→ M̂ : s, τ .
2. If W ; Γ, x : σ `Σ M ↪→ M̂ : s, τ and x /∈ fv(M) then Γ `Σ M ↪→ M̂ : s, τ .

Proof. By induction on the inference of the type judgment.

Lemma Appendix B.15 (Substitution).
If W ; Γ, x : σ `Σ M ↪→ N : s, τ and Γ `Σ X1 ↪→ X2 : 0, σ′ with σ 4 σ′, then
Γ `Σ {x 7→ X1}M ↪→ {x 7→ X2}N : s, τ ′ with τ 4 τ ′.

Proof. By induction on the inference of W ; Γ, x : σ `Σ M ↪→ N : s, τ , and
by case analysis on the last rule used in this typing proof, using Lemma Ap-
pendix B.14.

NilI. Here {x 7→ X1}M = M , and {x 7→ X2}N = N , and since x /∈ fv(M) then
by Lemma Appendix B.14 we have Γ `Σ M ↪→ N : s, τ .

VarI. If M = x then N = x, s = 0, σ = τ , {x 7→ X1}M = X1, and
{x 7→ X2}N = X2. It is then direct that Γ `Σ X1 ↪→ X2 : s, σ′,
and we take τ ′ = σ′. If M 6= x then N 6= x, {x 7→ X1}M = M
and {x 7→ X1}M = M where x /∈ fv(M). Therefore, by Lemma Ap-
pendix B.14, we have Γ `Σ M ↪→ N : s, τ .

AbsI. Here M = (λy.M̄), N = (λy.N̄), s = 0, and W ; Γ, x : σ, y : τ̄ `Σ M̄ ↪→
N̄ : s̄, σ̄ where τ = τ̄

s̄−→ σ̄. We can assume that y /∈ dom(W ; Γ, x : σ)

(otherwise rename y). Then {x 7→ X1}(λy.M̄) = (λy.{x 7→ X1}M̄) and
{x 7→ X2}(λy.N̄) = (λy.{x 7→ X2}N̄). By assumption and Lemma Ap-
pendix B.14 we can write W ; Γ, y : τ̄ `Σ X1 ↪→ X2 : 0, σ′. By induc-
tion hypothesis, W ; Γ, y : τ̄ `Σ {x 7→ X1}M̄ ↪→ {x 7→ X2}N̄ : s̄, σ̄′ with

σ̄ 4 σ̄′. By AbsI, Γ `Σ (λy.{x 7→ X1}M̄) ↪→ (λy.{x 7→ X2}N̄) : s, τ̄
s̄−→ σ̄′,

and we take τ ′ = τ̄
s̄−→ σ̄′.

RecI. Here M = (%y.X̄1), M = (%y.X̄2), by Remark Appendix B.13 we have
s = 0, and W ; Γ, x : σ, y : τ `Σ X̄1 ↪→ X̄2 : s, τ . We can assume that
y /∈ dom(W ; Γ, x : σ) (otherwise rename y). Then {x 7→ X1}(%y.X̄1) =
(%y.{x 7→ X1}X̄1) and {x 7→ X2}(%y.X̄2) = (%y.{x 7→ X2}X̄2). By as-
sumption and Lemma Appendix B.14 we have W ; Γ, y : τ `Σ X1 ↪→
X2 : s, σ′. By induction hypothesis, W ; Γ, y : τ `Σ {x 7→ X1}X̄1 ↪→
{x 7→ X2}X̄2 : 0, τ ′, with tau 4 τ ′. Then, by RecI, Γ `Σ (%y.{x 7→ X1}X̄1)
↪→ (%y.{x 7→ X2}X̄2) : 0, τ ′.

Ref I. Here M = (refθ M̄), N = (refθ N̄) and we have Γ `Σ M̄ ↪→ N̄ : s̄, θ′

where θ 4 θ′ and τ = θ ref . By induction hypothesis, Γ `Σ {x 7→ X1}M̄ ↪→
{x 7→ X2}N̄ : s̄, θ′′ with θ′ 4 θ′′. Then, θ 4 θ′′, so we conclude by
RefI that Γ `Σ (refθ {x 7→ X1}M̄) ↪→ (refθ {x 7→ X2}N̄) : s, τ .
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CondI. Here M = (if M̄ then M̄t else M̄f ), N = (if N̄ then N̄t else N̄f ) and
we have W ; Γ, x : σ `Σ M̄ ↪→ N̄ : s̄, bool, W ; Γ, x : σ `Σ M̄t ↪→ N̄t : s̄t, τ̄t
and W ; Γ, x : σ `Σ M̄f ↪→ N̄f : s̄f , τ̄f with s = s̄ f s̄t f s̄f , τ̄t ≈ τ̄f
and τ = τ̄t f τ̄f . By induction hypothesis, W ; Γ, x : σ `Σ {x 7→ X1}M̄ ↪→
{x 7→ X2}N̄ : s̄, bool, W ; Γ, x : σ `Σ {x 7→ X1}M̄t ↪→ {x 7→ X2}N̄t : s̄t, τ̄t

′

and W ; Γ, x : σ `Σ {x 7→ X1}M̄f ↪→ {x 7→ X2}N̄f : s̄f , τ̄f ’ with τ̄t 4 τ̄t
′

and τ̄f 4 τ̄f
′. It is still the case that τ̄t

′ ≈ τ̄f
′, so by rule CondI we have

thatW ; Γ, x : σ `Σ (if {x 7→ X1}M̄ then {x 7→ X1}M̄t else {x 7→ X1}M̄f )
↪→ (if {x 7→ X2}N̄ then {x 7→ X2}N̄t else {x 7→ X2}N̄f ) : s, τ̄t

′ f τ̄f ′. We
then take τ ′ = τ̄t

′ f τ̄f ′.

AppI. Here M = (M̄1 M̄2) and we have that Γ `Σ M̄1 ↪→ N̄1 : s̄1, θ̄
s̄3−→ σ̄

and Γ `Σ M̄2 ↪→ N̄2 : s̄2, θ̄
′′ where s = s̄1 f s̄2 f s̄3, θ̄ 4 θ̄′′, and τ = σ̄.

By induction hypothesis, W ; Γ, x : σ `Σ {x 7→ X1}M̄1 ↪→ {x 7→ X2}N̄1 :

s̄t, θ̄
s̄3

′

−−→ σ̄′ and W ; Γ, x : σ `Σ {x 7→ X2}M̄f ↪→ {x 7→ X2}N̄2 : s̄f , θ̄
′′′

with s̄3 4 s̄3
′, σ̄ 4 σ̄′ and θ̄′′ 4 θ̄′′′. It is still the case that θ̄ 4 θ̄′′′. There-

fore, by rule AppI we have thatW ; Γ, x : σ `Σ ({x 7→ X1}M̄1 {x 7→ X1}M̄2)
↪→ (if {x 7→ X2}M̄2 then {x 7→ X2}N̄t else {x 7→ X2}N̄2) : s, σ̄′, and we
take τ ′ = σ̄′.

MigI. Here M = (threadl M̄ at d), N = (threads̄l N̄ at d), s = 0 and we have
that W ; Γ, x : σ `Σ M̄ ↪→ N̄ : s̄, τ̄ and τ = unit. By induction hypothesis,
then Γ `Σ {x 7→ X1}M̄ ↪→ {x 7→ X2}N̄ : s̄, τ̄ . Therefore, by rule MigI,
Γ `Σ (threadl {x 7→ X1}M̄ at d) ↪→ (threads̄l {x 7→ X2}N̄ at d) : 0, τ .

FlowI. Here M = (flow F̄ in M̄), N = (flow F̄ in N̄) and W ; Γ, x : σ `Σ M̄ ↪→
N̄ : s̄, τ with s = s̄ f F̄ . By induction hypothesis, Γ `Σ {x 7→ X1}M̄ ↪→
{x 7→ X2}N̄ : s̄, τ ′ with τ 4 τ ′. By FlowI, Γ `Σ (flow F̄ in {x 7→ X1}M̄)
↪→ (flow F̄ in {x 7→ X2}N̄) : s, τ ′.

AllowI. Here we have that M = (allowed F̄ then M̄t else M̄f ), and that N =
(allowed F̄ then N̄t else N̄f ) and W ; Γ, x : σ `Σ M̄ ↪→ M̄ : s̄, bool and
also W ; Γ, x : σ `Σ M̄t ↪→ N̄t : s̄t, τ̄t and W ; Γ, x : σ `Σ M̄f ↪→ N̄f : s̄f , τ̄f ,
with s = s̄t ^ F̄ f s̄f , τ̄t ≈ τ̄f and τ = τ̄t f τ̄f . By induction hypothesis,
Γ `Σ {x 7→ X1}M̄t ↪→ {x 7→ X2}N̄t : s̄t, τ̄ ′t and Γ `Σ {x 7→ X1}M̄f ↪→
{x 7→ X2}N̄f : s̄f , τ̄ ′f with τ̄t 4 τ̄ ′t and τ̄f 4 τ̄ ′f . Still, τ̄ ′t ≈ τ̄ ′f . By AllowI,

we have that Γ `Σ (allowed F̄ then {x 7→ X1}M̄t else {x 7→ X1}M̄f ) ↪→
(allowed F̄ then {x 7→ X1}N̄t else {x 7→ X1}N̄f ) : s, s̄t

′ ^ F̄ f s̄f ′. We
then take τ ′ = τ̄t f τ̄f .

The proofs for the cases LocI, BtI and BfI are analogous to the one for NilI,
while the proofs for SeqI, DerI and AssI are analogous to (or simpler than)
the one for AppI.

Lemma Appendix B.16 (Replacement).
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1. If Γ `Σ E1[M ] ↪→ NE2 : s, τ is a valid judgment, then the proof gives
M a typing Γ `Σ M ↪→ N : s̄, τ̄ for some M , s̄ and τ̄ such that s 4 s̄
and for which there exists E2 such that ME2

= E1[M ]. In this case, if
Γ `Σ M ′ ↪→ N ′ : s̄′, τ̄ ′ with s̄ f A 4 s̄′ for some A and τ̄ 4 τ̄ ′, then
Γ `Σ E1[M ′] ↪→ E2[N ′] : s′, τ ′ for some s′, τ ′ such that s f A 4 s′ and
τ 4 τ ′.

2. If Γ `Σ ME1
↪→ E2[N ] : s, τ is a valid judgment, then the proof gives

N a typing Γ `Σ M ↪→ N : s̄, τ̄ for some M , s̄ and τ̄ such that s 4 s̄
and for which there exists E1 such that ME1

= E1[M ]. In this case, if
Γ `Σ M ′ ↪→ N ′ : s̄′, τ̄ ′ with s̄ f A 4 s̄′ for some A and τ̄ 4 τ̄ ′, then
Γ `Σ E1[M ′] ↪→ E2[N ′] : s′, τ ′ for some s′, τ ′ such that s f A 4 s′ and
τ 4 τ ′.

Proof. 1. By induction on the structure of E1. The proof is “symmetric” to
the second case.

2. By induction on the structure of E2.

E2[N ] = N . This case is direct.

E2[N ] = (if Ê2[N ] then N̂t else N̂f). By rule CondI, we have that

ME1
= (if MÊ1

then M̂t else M̂f ), and Γ `Σ MÊ1
↪→ Ê2[N ] : ŝ, bool,

and also Γ `Σ M̂t ↪→ N̂t : ŝt, τ̂t and Γ `Σ M̂f ↪→ N̂f : ŝf , τ̂f with
s = ŝf ŝtf ŝf , τ̂t ≈ τ̂f and τ = τ̂tf τ̂f . By induction hypothesis, the
proof gives N a typing Γ `Σ M ↪→ N : s̄, τ̄ , for some M , s̄, τ̄ such
that ŝ 4 s̄, and for which there exists Ê1 such that MÊ1

= Ê1[M ].

Also by induction hypothesis, Γ `Σ Ê1[M ′] ↪→ Ê2[N ′] : ŝ′, bool,
for some ŝ′ such that ŝ f A 4 ŝ′. Again by rule CondI, Γ `Σ

(if Ê1[M ′] then M̂t else M̂f ) ↪→ (if Ê2[N ′] then N̂t else N̂f ) : s′, τ ′

with s′ = ŝ′ f ŝt f ŝf and τ ′ = τ̂t f τ̂f . Notice that s f A =
ŝf ŝt f ŝf fA 4 ŝ′ f ŝt f ŝf = s′.

E2[M ] = (flow F̂ in Ê2[M ]). By FlowI, ME1
= (flow F̂ in MÊ1

), and

Γ `Σ MÊ1
↪→ Ê2[N ] : ŝ, τ and s = ŝ f F̂ . By induction hypothesis,

the proof gives N a typing Γ `Σ M ↪→ N : s̄, τ̄ , for some M , s̄, τ̄ such
that ŝ 4 s̄, and for which there exists Ê1 such that MÊ1

= Ê1[M ].

Also by induction hypothesis, Γ `Σ Ê1[M ′] ↪→ Ê2[N ′] : ŝ′, τ , for
some ŝ′ such that ŝ f A 4 ŝ′. Then, again by FlowI, we have
Γ `Σ (flow F̂ in Ê1[M ′]) ↪→ (flow F̄ in Ê2[N ′]) : s′, τ with s′ = ŝ′fF̂ .
Notice that sfA = ŝf F̂ fA 4 ŝ′ f F̂ = s′.

The proofs for the cases E2[M ] = d(Ê2[M ] := N)e, E2[M ] = d(V := Ê2[M ])e,
E2[M ] = d(! Ê2[M ])e, E2[M ] = d(Ê2[M ] N)e, E2[M ] = d(V Ê2[M ])e,
E2[M ] = d(Ê2[M ];N)e and E2[M ] = d(ref l,θ Ê2[M ])e, are all analogous

to the proof for the case E2[M ] = (if Ê2[M ] then Nt else Nf ).

The following proposition ensures that the annotation processing is preserved
by the annotated semantics. This is formulated by stating that after reduction,
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programs are still well annotated. More precisely, the following result states
that if a program is the result of an annotation process, a certain declassification
effect and type, then after one computation step it is still the result of annotating
a program, and is given a not-more permissive declassification effect and type.

Proposition Appendix B.17 (Subject Reduction, or Preservation of Anno-
tations). Given an allowed-policy mapping W , a reference labeling Σ and a
typing environment Γ, consider a thread Mm for which there exist N , s and

τ such that Γ `Σ M ↪→ N : s, τ and suppose that W `Σ,Υ 〈{Nm}, T, S〉 d−→
F

〈{N ′m} ∪ P, T ′, S′〉, for a memory S that is (Σ,Γ)-compatible. Then there exist
M ′, s′, τ ′ such that sfW (T (m)) 4 s′, and τ 4 τ ′, and Γ `Σ M ′ ↪→ N ′ : s′, τ ′,
and S′ is also (Σ,Γ)-compatible. Furthermore, if P = {N ′′n} for some expres-
sion N ′′ and thread name n, then there exist M ′′, s′′ such that W (T ′(n)) 4 s′′

and Γ `Σ M ′′ ↪→ N ′′ : s′′, unit.

Proof. Suppose thatN = Ē[N̄ ] andW `Σ,Υ 〈{N̄m}, T, S〉 d−→̄
F
〈{N̄ ′m} ∪ P ′, T̄ ′, S̄′〉.

We start by observing that this implies F = F̄ f dĒe, M ′ = Ē[M̄ ′], P = P ′,
T̄ ′ = T ′ and S̄′ = S′. We can assume, without loss of generality, that N̄ is the
smallest in the sense that there is no Ê, N̂ such that Ê 6= [] and Ê[N̂ ] = N̄ for

which we can write W `Σ,Υ 〈{N̂m}, T, S〉 d−→̂
F
〈{N̂ ′m} ∪ P, T ′, S′〉.

By Lemma Appendix B.16, we have Γ `Σ M̄ ↪→ N̄ : s̄, τ̄ , for some M̄ , s̄’
τ̄ such that s 4 s̄, in the proof of Γ `Σ M ↪→ N : s, τ . We proceed by case

analysis on the transition W `Σ,Υ 〈{N̄m}, T, S〉 d−→̄
F
〈{N̄ ′m} ∪ P, T ′, S′〉, and

prove that:

• There exist M̄ ′, s̄′ and τ̄ ′ such that Γ `Σ M̄ ′ ↪→ N̄ ′ : s̄′, τ̄ ′, and s̄ f
W (T (m)) 4 s̄′ and τ̄ 4 τ̄ ′. Furthermore, for every reference a ∈ dom(S′)
implies Γ `Σ

0, V ↪→ S′(a) : Σ2(a) for some value V .

• If P = {N ′′n} for some expression N ′′ and thread name n, then there
exist M ′′ and s̄′′ such that Γ `Σ M ′′ ↪→ N ′′ : s̄′′, unit, and W (T ′(n)) 4 s̄′.
(Note that in this case S = S′.)

By case analysis on the structure of N̄ :

N̄ = ((λx.N̂) V2). Here we have N̄ ′ = {x 7→ V2}N̂ , S = S′ and P = ∅. By
rule AppI, there exist M̂ , V1, ŝ1, ŝ2, ŝ3, τ̂ , σ̂ and τ̂ ′′ such that Γ `Σ

(λx.M̂) ↪→ (λx.N̂) : ŝ1, τ̂
ŝ3−→ σ̂ and Γ `Σ V1 ↪→ V2 : ŝ2, τ̂

′′ with s̄ =

ŝ1 f ŝ2 f ŝ3, τ̂ 4 τ̂ ′′ and τ̄ = σ̂. By AbsI, then Γ, x : τ̂ `Σ M̂ ↪→ N̂ :
ŝ3, σ̂. Therefore, by Lemma Appendix B.15, we get Γ `Σ {x 7→ V1}M̂ ↪→
{x 7→ V2}N̂ : ŝ3

′, σ̂′ with ŝ3 4 ŝ3
′ and σ̂ 4 τ̄ ′. We take s̄′ = ŝ3 and

τ̄ ′ = σ̂′.

N̄ = (flow F̂ in V2). Here we have N̄ ′ = V2, S = S′ and P = ∅. By rule
FlowI and by Remark Appendix B.12, there exist V1, ŝ, such that Γ `Σ

V1 ↪→ V2 : 0, τ̄ . We take s̄′ = 0.
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N̄ = (allowed F̂ then Nt else Nf) and W (T (m)) 4 F̂ . Here we have N̄ ′ =
Nt, S = S′ and P = ∅. By AllowI, there exist Mt, Nt, ŝt, ŝf , τ̂t and
τ̂f such that Γ `Σ Mt ↪→ Nt : ŝt, τ̂t, and Γ `Σ Mf ↪→ Nf : ŝf , τ̂f , where

s̄ = ŝt ^ F̂ f ŝf , τt ≈ τf and τ̄ = τ̂t f τ̂f . We take s̄′ = ŝt and τ̄ ′ = τ̂t.

Notice that s̄fW (T (m)) = ŝt ^ F̂ f ŝf fW (T (m)) 4 ŝt and τ̄ 4 τ̄ ′.

N̄ = (threadṡk N̂ at d). Here we have N̄ ′ = (), S = S′, P = {N̂n} for some
thread name n, T ′(n) = d and W (d) 4 ṡ. By MigI, we have that there
exists M̂ such that Γ `Σ M̂ ↪→ N̂ : ṡ, unit and τ̄ = unit, and by NilI we
have that Γ `Σ () ↪→ () : 0, unit.

By Lemma Appendix B.16, we can finally conclude that Γ `Σ M ′E ↪→ Ē[N̄ ′] :
s′, τ ′ for some M ′E , s′, τ ′ such that sfW (T (m)) 4 s′ and τ 4 τ ′.

Appendix B.4.2. Preservation of the semantics

Proposition Appendix B.18. Consider a given a typing environment Γ and
reference labeling Σ. If there exist s, τ such that Γ `Σ M ↪→ N : s, τ , then for
all thread names m ∈ Nam we have that {Mm}∼Γ{Nm}.

Proof. We prove that the set

B = {〈{Mm}, {Nm}〉 | m ∈ Nam and ∃s, τ . Γ `Σ M ↪→ N : s, τ}

is a (W,Σ,Γ)-simulation according to Definition 4.14.

Suppose that N = Ē2[N̄ ] and W `Σ,Υ 〈{N̄m}, T, Ŝ〉 d−→̄
F
〈{N̄ ′m} ∪ P̄ ′2, T̄ ′,

¯̂
S′〉.

We start by observing that this implies F = F̄ f dĒ2e, M ′ = Ē2[M̄ ′], P ′2 = P̄ ′2,

T̄ ′ = T ′ and
¯̂
S′ = Ŝ′. We can assume, without loss of generality, that N̄ is the

smallest in the sense that there is no Ê2, N̂ such that Ê2 6= [] and Ê2[N̂ ] = N̄

for which we can write W `Σ,Υ 〈{N̂m}, T, Ŝ〉 d−→̂
F
〈{N̂ ′m} ∪ P ′2, T ′, Ŝ′〉.

By Lemma Appendix B.16, we have Γ `Σ M̄ ↪→ N̄ : s̄, τ̄ , for some M̄ , s̄’
τ̄ such that s 4 s̄, in the proof of Γ `Σ M ↪→ N : s, τ . Furthermore, there
exists Ē1 such that M = Ē1[M̄ ]. We proceed by case analysis on the transition

W `Σ,Υ 〈{N̄m}, T, Ŝ〉 d−→̄
F
〈{N̄ ′m} ∪ P ′2, T ′, Ŝ′〉, and prove that:

• there exist M̄ ′, S′ such thatW `Σ,Υ 〈{M̄m}, T, S〉 d−→̄
F
〈{M̄ ′m} ∪ P ′1, T ′, S′〉

and annot(S′) = Ŝ′, and for which there exist s̄′ and τ̄ ′ such that Γ `Σ

M̄ ′ ↪→ N̄ ′ : s̄′, τ̄ ′.

• If P ′2 = {N ′′n} for some expression N ′′ and thread name n, then there
exist M ′′ and s′′ such that Γ `Σ M ′′ ↪→ N ′′ : s′′, unit.

By case analysis on the structure of N̄ :
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N̄ = (flow F̂ in V2). Here we have N̄ ′ = V2, S = S′ and P ′2 = ∅. By
rule FlowI and Remark Appendix B.12, there exist V1, ŝ, such that
M̄ = (flow F̂ in V1) and Γ `Σ V1 ↪→ V2 : ŝ, τ̄ . We then have W `
〈{M̄m}, T, S〉 d−→

F
〈{V1

m}, T, S〉, so we take M̄ ′ = V1.

N̄ = (allowed F̂ then Nt else Nf) and W (T (m)) 4 F̂ . Here we have that
N̄ ′ = Nt, S = S′ and P ′2 = ∅. By AllowI, there exist Mt, Mf , ŝt,

ŝf , τ̂t and τ̂f such that M̄ = (allowed F̂ then Mt else Mf ) and Γ `Σ

Mt ↪→ Nt : ŝt, τ̂t, and Γ `Σ Mf ↪→ Nf : ŝf , τ̂f , where s̄ = ŝt ^ F̂ f ŝf ,
τt ≈ τf and τ̄ = τ̂t f τ̂f . We take s̄′ = ŝt and τ̄ ′ = τ̂t. We then have

W ` 〈{M̄m}, T, S〉 d−→
F
〈{Mt

m}, T, S〉, so we take M̄ ′ = Mt.

N̄ = (threadṡk N̂ at d). Here we have N̄ ′ = (), S = S′, P = {N̂n} for some
thread name n, T ′(n) = d and W (d) 4 ṡ. By MigI, we have that there
exists M̂ such that M̄ = (threadk N̂ at d) and Γ `Σ M̂ ↪→ N̂ : ṡ, unit and
τ̄ = unit, and by NilI we have that Γ `Σ () ↪→ () : 0, unit. By Proposi-

tion 4.13 we have that. Therefore, W ` 〈{M̄m}, T, S〉 d−→
F
〈{()m}, T, S〉, so

we take M̄ ′ = ().

By Lemma Appendix B.16, we can finally conclude that Γ `Σ Ē1[M̄ ′] ↪→
Ē2[N̄ ′] : s′, τ ′ for some s′, τ ′.


