
Distributed Noninterference
Ana Almeida Matos and Jan Cederquist

Instituto de Telecomunicações (SQIG) and Universidade de Lisboa (IST)
Lisbon, Portugal

Abstract—Noninterference is the classic information flow prop-
erty that establishes the absence of illegal information flows.
Legality of flows is originally defined with respect to a single
security setting that is based on a security lattice that orders
security levels according to their confidentiality and/or integrity.
This paper proposes a natural generalization of noninterference
to a distributed security setting where each computation domain
establishes its own local security lattice. Referred to as distributed
noninterference (DNI), the new security property implies that
information flows respect the allowed flow policy of the domains
where they are computed. The semantic coherence between DNI
and other information flow related properties for distributed
settings is established. We present a type and effect system that
enforces DNI for an expressive distributed higher-order lambda-
calculus with imperative features and code migration.

Index Terms—information flow; noninterference; distribution

I. INTRODUCTION

Today’s most powerful and widely used computation tech-
nologies run on parallel, distributed, and network-oriented
arrangements of processing units, specializing in tasks that
range from large scale data processing, to light mobile dif-
fuse services. These technologies are often interconnected
and layered into continuously evolving computing platforms
that are controlled by parties which might not trust each
other, forming a moving and complex target that defy efforts
directed at ensuring security. The clarification of how the
security principles of confidentiality and integrity apply to
computations that involve multiple computation domains is a
crucial foundational step towards the understanding of security
of real world mobile and distributed applications.

Language-based techniques for ensuring information flow
security offer appealing abstractions for achieving high levels
of assurance in software applications [13]. Information flow
security regards the control of how data of different security
levels can influence the observable behavior of program exe-
cution. The classic property of noninterference establishes that
confidentiality is only preserved by programs when informa-
tion that is labeled with a given security level never influences
that of lower or incomparable levels [10]. The relative degree
of confidentiality is usually determined with respect to a single
security lattice [8]. However, in a distributed scenario, multiple
security policies are established independently by different
parties. The question of what is a noninterferent program
running in a distributed security setting remains open.

Let us consider the example of an organization whose
network of computing resources is organized into a grid.
Workloads are distributed throughout the connected devices
in the form of mobile code for remote evaluation. Each

device forms a computation domain with specific capabilities
and restrictions, and in particular allowed information flow
policies for protecting data and other computing threads that
are running concurrently in the same domain. The distribution
of tasks must take these policies into account, for domains
should not execute code that perform information leaks that do
not comply to them. In order to specify this intuitive security
property we need a formal counterpart to noninterference that
is suitable for distributed settings.

This paper proposes a generalized definition of noninter-
ference that accommodates the reality of that distributed and
mobile programs must obey different security settings at dif-
ferent points of their computation, depending on their location.
It is formalized for a simple and general network model where
computation domains are units of abstract allowed information
flow policies. Our main results include: (1) A new information
flow property, named distributed noninterference, that natu-
rally generalizes classical noninterference to distributed secu-
rity settings. (2) A study of the semantic coherence between
the proposed definition of distributed noninterference and
the properties of (local) noninterference, non-disclosure for
networks and flow policy confinement. (3) A type and effect
system for statically enforcing distributed noninterference for
an expressive distributed higher-order imperative λ-calculus.

A full version of this article is available from the authors.

II. SETTING

Security Setting: The study of confidentiality traditionally
relies on a lattice of security levels [8], corresponding to
reading clearances that are associated to information holders in
the programming language. The idea is that information per-
taining to references labeled with l2 can influence references
labeled with l1 only if l1 is at least as confidential as l2. Flow
policies can be used for relaxing the basic security lattice, by
establishing additional legal flow directions between security
levels. When formalized as downward closure operators on
security lattices, they collapse security levels of a basic lattice
into lower ones [4]. In this view, flow policies can also be
ordered into a lattice according to their permissiveness.

More formally, we assume a basic security lattice L =
〈Lev,v,u,t,>,⊥〉 of confidentiality levels l, j ∈ Lev with
the usual meaning, and consider flow policies A,F ∈ Flo
that are downward closure operators F : Lev → Lev on
L (i.e. they are monotone, idempotent and restrictive). The
security lattice that results from the action of F over L,
written 〈Lev,vF ,uF ,tF ,>F ,⊥F 〉 satisfies: l1 vF l2 if
F (l1) v F (l2), where vF represents the information flows



that are allowed by F ; furthermore, l1 tF l2 = l1 t l2,
l1 uF l2 = F (l1 u l2), ⊥F = ⊥ and >F = F (>). We refer
to information flows that do not comply to L as information
leaks, while those that do not comply to a given flow policy
A, are considered illegal with respect to A.

Flow policies form themselves a lattice 〈Flo,4,f,g,f,Ω〉
with the following meaning: F1 4 F2 means that F1 is at least
as permissive as F2; the meet operation f gives, for any two
flow policies F1, F2, the strictest policy that allows for both F1

and F2; the join operation g gives, for any two flow policies
F1, F2, the most permissive policy that only allows what both
F1 and F2 allow; the most restrictive flow policy f does not
allow any information flows; and the most permissive flow
policy Ω that allows all information flows.

Language Setting: Networks are flat juxtapositions of
domains, each containing a store and a pool of threads, which
are subjected to the local allowed flow policy of the domain.
The basic elements of the language are then references, threads
and domains, whose names are drawn from disjoint countable
sets a, b ∈ Ref , m,n ∈ Nam, and d ∈ Dom 6= ∅, respectively.
References are information containers to which values V ∈Val
of the language are assigned by means of stores S :Ref→Val
that map reference names to values. Threads run concurrently
in pools P : Nam → Exp, which map thread names to
expressions m,n,∈ Exp (denoted as sets of threads), and
their positions in the network are tracked by position-trackers
T :Nam→Dom. The allowed-policy mapping W :Dom→Flo
maps the name of each domain to its allowed flow policy,
which is considered fixed in this model.

Evaluation is defined over configurations 〈P, T, S〉. We
refer to the pairs 〈S, T 〉 as states, and pairs 〈P, T 〉 as thread
configurations. It is parameterized by means of the ‘W `’
turnstile, which fixes the allowed flow policy of each domain
in the network, and is implicitly parameterized by the reference
labeling Σ : Ref → Lev× Typ, whose left projection Σ1

determines the security level of each reference name, and right
projection Σ2 determines the type of values can be assigned to
each reference name, and the thread labeling Υ:Nam→Lev,
that determines the security level of each thread name. The
transitions d−→

F
are decorated with the name of the domain d

where the step takes place and the flow policy F declared
by the evaluation context. The semantics does not depend on
this information, which is used for the purpose of the security
analysis. The relation � denotes the reflexive closure of d−→

F
.

In forthcomming examples, and as a target language for
the type system, we use an expressive ML-like language that
is extended with basic distribution and code mobility features,
such as the one in [3]. Declassification is introduced by means
of flow policy declarations [1] of the form (flow F in M).
They are used to locally weaken the information flow policy
that is declared by the evaluation context, by enabling flows
that comply to F within its lexical scope M . Programs can
inspect the allowed policy of the current domain by means of
the allowed-condition, written (allowed F then Nt else Nf ).
The construct tests whether F is allowed and chooses branches

Nt or Nf accordingly, in practice offering alternative behav-
iors in case the domain is too restrictive. The remote thread
creator (threadl M at d) spawns a new thread with expression
M at domain d, to be executed concurrently with other threads.
It functions as a migration construct when the destination
domain differs from the current one. The confidentiality level
l is associated to the position of the new thread in the network.

III. SECURITY PROPERTY

We now formulate Distributed Noninterference in terms of
an information flow bisimulation [6], which provides a natural
way of relating concurrent programs according to their behav-
ior over “low” parts of the state, and illustrate it with examples.

Low-equality: The notion of low-equality is defined be-
tween states. It includes position trackers because the position
of a thread in the network can reveal information about the
values in the memory (e.g. program III).

Definition 3.1 (=Σ,Υ
F,l ): Given reference and thread label-

ings Σ,Υ, two states 〈T1, S1〉 and 〈T2, S2〉 are said to be
low-equal with respect to a flow policy F and a security level
l, written 〈T1, S1〉 =Σ,Υ

F,l 〈T2, S2〉, if for every reference name
a ∈ Ref , if Σ1(a) vF l then S1(a) = S2(a), and for every
thread name n ∈ Nam, if Υ(n) vF l then T1(n) = T2(n).
Low-equality is an equivalence relation. Note that if F1 4 F2,
then 〈T1, S1〉 =Σ,Υ

F1,l
〈T2, S2〉 implies 〈T1, S1〉 =Σ,Υ

F2,l
〈T2, S2〉.

Store compatibility: When a higher-order language is
considered, values stored in memory can be used by programs
to build expressions that are then executed. In order to avoid
deeming all such programs insecure, memories are assumed to
be compatible with the relevant security goals by means of a
typability condition. We postpone the choice of the predicate
for (W,Σ,Γ)-compatibility to the end of Section V.

Distributed Noninterference: The property is defined as a
bisimulation between thread configurations. The location of a
thread determines which allowed flow policy it should obey at
that point, and is used to place a restriction on the information
flows that occur at that step. In the first low-equality of the
following definition, W (d) specifies how information that is
read during that step is allowed to flow in future steps.

Definition 3.2 (∼Σ,Υ
Γ,l ): Given an allowed-policy mapping

W , reference and thread labelings Σ,Υ, and a typing envi-
ronment Γ, a (Σ,Υ,Γ, l)-bisimulation is a symmetric relation
R on thread configurations that satisfies, for all P1, T1, P2, T2,
and (W,Σ,Γ)-compatible stores S1, S2:

〈P1, T1〉 R 〈P2, T2〉 and W ` 〈P1, T1, S1〉
d−→
F
〈P ′

1, T
′
1, S

′
1〉 and

〈T1, S1〉=Σ,Υ
W (d),l〈T2, S2〉 and (dom(S1

′)\dom(S1))∩dom(S2)=∅
and (dom(T1

′)\dom(T1))∩dom(T2)=∅
implies that ∃P ′

2, T
′
2, S

′
2 s.t.: W ` 〈P2, T2, S2〉� 〈P ′

2, T
′
2, S

′
2〉 and

〈T ′
1, S

′
1〉=Σ,Υ

f,l 〈T
′
2, S

′
2〉 and 〈P ′

1, T
′
1〉 R 〈P ′

2, T
′
2〉

Furthermore, S′1, S
′
2 are still (W,Σ,Γ)-compatible. The largest

(Σ,Υ,Γ, l)-bisimulation is denoted ∼Σ,Υ,
Γ,l .

For any Σ, Υ, l, the set of pairs of thread configurations
where threads are values is an (Σ,Υ,Γ, l)-bisimulation. Fur-
thermore, the union of a family of (Σ,Υ,Γ, l)-bisimulations
is a (Σ,Υ,Γ, l)-bisimulation. Consequently, ∼Σ,Υ,

Γ,l exists.

2



Information flows that take place at each step are captured
by quantifying over all possible pairs of stores that coincide
in the observable level. This enables compositionality of the
property, accounting for the possible changes to the store
that are induced by external threads. Position trackers of
configurations are fixed across steps within the bisimulation
game, reflecting the assumption that changes in the position
of a thread can only be induced by the thread itself (subjective
migration). Note that the above relation is not reflexive. In fact,
only secure programs are related to themselves:

Definition 3.3 (Distributed Noninterference): A pool P sa-
tisfies Distributed Noninterference with respect to an allowed-
policy mapping W , reference labelings Σ,Υ and typing envi-
ronment Γ, if 〈P, T1〉 ∼Σ,Υ

Γ,l 〈P, T2〉 for all security levels l and
position trackers T1, T2 s.t. dom(P ) = dom(T1) = dom(T2)
and T1 =Σ,Υ

f,l T2. We then write P ∈ DNI(W,Σ,Υ,Γ).
Distributed noninterference (DNI) is compositional by set
union of pools of threads, up to disjoint naming of threads.

Noninterference: As expected, local noninterference fol-
lows from Definition 3.3 when networks are collapsed into
a single domain d∗, i.e. when Dom = {d∗}. The resulting
property is parameterized by W (d∗), and coincides with the
view of noninterference as the absence of information leaks (in
the sense defined in Section II) when W (d∗) = f. However,
here we adopt the view of noninterference as the absence of
illegal flows, which is relative to the particular allowed flow
policy. This point is further discussed in Section VI.

Examples: Programs that violate noninterference, such
as the direct leak (b := (! a)) when running at d such that
Σ1(a) 6vW (d) Σ1(b) are also insecure with respect to DNI.
The same holds for indirect leaks via control and termination.

In the following program, information regarding reference
a flows to b via observation of the destination domain:
(if (! a) else (threadl (allowed F then (b := 0) else ()) at d2)

then (threadl (allowed F then (b := 1) else ()) at d1)) (1)
In fact, since the position of threads in the network is part
of the observable state, a migration leak [2] from level Σ1(a)
to level l occurs as soon as the new thread is created. The
information is read before migration, so the leak is only secure
if it is allowed by the policy of the thread’s initial domain.

Let us now consider the simpler program to be executed at d
such that Σ1(a)vW (d)l (where the migration leak is allowed):

(if (! a) then
(threadl (b := 0) at d1) else (threadl (b := 1) at d1)) (2)

Since the two threads produce different changes at the level
of b, then the program is again secure only if the first domain
d allows it, i.e. Σ1(a) vW (d) Σ1(b). The policy of the new
domain d1 only rules over what happens from the point where
the thread enters it. Since the behavior of the code that actually
migrates does not depend on the location of the corresponding
threads, no leak is taking place at this point of the program.

Notice that the declassification operations are transparent to
the property. In particular, program

(threadl (flow F in (b := (! a))) at d) (3)
violates DNI, regardless of F , if Σ1(a) 6vW (d) Σ1(b).

IV. SEMANTIC COHERENCE

This section shows that Distributed Noninterference is co-
herent with the properties of Noninterference, Non-Disclosure
for Networks (NDN) and Flow Policy Confinement (FPC).

Non-Disclosure for Networks: Non-disclosure states that,
at each step performed by a program, information flows respect
the flow policy that is declared by the current evaluation
context. The property is naturally defined by means of a
bisimulation that relates the outcomes of each possible step
that is performed over fresh states that coincide on their
“low” region, where the notion of “low” is customized with
the currently declared flow policy [1], [2]. Similarly to the
definition of DNI, when migration is subjective, resetting
the position tracker arbitrarily is unnecessary. The following
program is intuitively secure (regarding NDN) if W (d) 4 F

(threadl (allowed F then () else Minsec) at d) (4)

as the body of the thread is known to be executed at domain d.
However, if Minsec violates NDN, it is considered insecure by
the definition in [2], as it covers the execution of the allowed
condition at “fresh” locations where F is possibly not allowed.
It is then reasonable to relax the power of the attacker, by
focusing on the behavior of threads when coupled with their
possible locations on the network.

Definition 4.1 (≈Σ,Υ
Γ,l ): Consider an allowed-policy map-

ping W , reference and thread labelings Σ,Υ, and a typing
environment Γ. A (Σ,Υ,Γ, l)-bisimulation is a symmetric
relation R on thread configurations that satisfies, for all
P1, T1, P2, T2, and (W,Σ,Γ)-compatible stores S1, S2:

〈P1, T1〉 R 〈P2, T2〉 and W ` 〈P1, T1, S1〉
d−→
F
〈P ′

1, T
′
1, S

′
1〉 and

〈T1, S1〉=Σ,Υ
F ,l 〈T2, S2〉 and (dom(S1

′)\dom(S1))∩dom(S2)=∅
and (dom(T1

′)\dom(T1))∩dom(T2)=∅
implies that ∃P ′

2, T
′
2, S

′
2 s.t.: W ` 〈P2, T2, S2〉� 〈P ′

2, T
′
2, S

′
2〉 and

〈T ′
1, S

′
1〉=Σ,Υ

f,l 〈T
′
2, S

′
2〉 and 〈P ′

1, T
′
1〉 R 〈P ′

2, T
′
2〉

Furthermore, S′1, S
′
2 are still (W,Σ,Γ)-compatible. The largest

(W,Σ,Υ,Γ, l)-bisimulation is denoted ≈Σ,Υ
Γ,l .

For analogous reasons as for Definition 3.2, ≈Σ,Υ
Γ,l exists.

We now present a weakened version of non-disclosure for
networks, that is defined over thread configurations.

Definition 4.2 (Non-disclosure for Networks): A pool P
satisfies the Non-disclosure for Networks property with respect
to an allowed-policy mapping W , a reference labeling Σ, a
thread labeling Υ and a typing environment Γ, if it satisfies
〈P, T1〉 ≈Σ,Υ

Γ,l 〈P, T2〉 for all security levels l and position
trackers T1, T2 such that dom(P ) = dom(T1) = dom(T2)
and T1 =Σ,Υ

f,l T2. We then write P ∈ NDN (W,Σ,Υ,Γ).
Definition 4.2 is strictly weaker than the old thread pool-

based definition, as is illustrated by Example 4 above.
Notice that this property concerns only the match between

flow declarations and the leaks that are encoded in the pro-
gram. It does not restrict the usage of flow declarations.

Flow Policy Confinement: Flow Policy Confinement
states that the declassifications that are declared by a program
at each computation step complies to the allowed policy of
the domain where the step is performed. Similarly to [3] we

3



define the property co-inductively, on thread configurations.
The location of each thread determines which allowed flow
policy it should obey at that point, and is used to place a
restriction on the flow policies that decorate the transitions.

Definition 4.3 ((W,Σ,Γ)-Confined Thread Configurations):
Given an allowed-policy mappingW , a reference labeling Σ,
and a typing environment Γ, a set C of thread configurations
is a set of (W,Σ,Γ)-confined thread configurations if it
satisfies, for all P, T , and (W,Σ,Γ)-compatible stores S:

〈P, T 〉 ∈ C and W ` 〈P, T, S〉 d−→
F
〈P ′, T ′, S′〉 implies

W (d) 4 F and 〈P ′, T ′〉 ∈ C
Furthermore, S′ is still (W,Σ,Γ)-compatible. The largest set
of (W,Σ,Γ)-confined thread configurations is denoted CΣ,Γ

W .
For analogous reasons as for Definition 3.2, CΣ,Γ

W exists.
Definition 4.4 (Flow Policy Confinement): A pool of

threads P satisfies Flow Policy Confinement with respect to
an allowed-policy mapping W , a reference labeling Σ and
a typing environment Γ, if all thread configurations satisfy
〈P, T 〉 ∈ CΣ,Γ

W . We then write P ∈ FPC(W,Σ,Γ).
Notice that this property speaks strictly about what flow

declarations a thread can do while it is at a specific domain.
It does not deal with information flows.

Combined: While NDN establishes a match between the
leaks that are performed by a program and the declassifications
that are declared in its code, FPC requires that the declassifica-
tions comply to the allowed flow policy of the domain where
they occur. It is thus expected that a notion of DNI, which
ensures that leaks respect the relevant allowed flow policies,
should follow from the combination of the other two.

Theorem 4.5:
NDN (W,Σ,Υ,Γ) ∩ FPC(W,Σ,Γ) ⊆ DNI(W,Σ,Υ,Γ).

To see that the sets are not equal, consider again program 3.
While it is secure regarding DNI if H vW (d) L:
• if F =f it violates NDN, but respects FPC, and
• if F =Ω it respects NDN, but violates FPC if W (d) 64 F .

V. TYPE AND EFFECT SYSTEM

It is clear that DNI is guaranteed by combining enforcement
mechanisms for NDN and FPC. We argue in Section VI for
the practical advantages of using that indirect approach. This
section presents a type and effect system [11] that checks
DNI, guaranteeing that information flows always comply to the
current domain’s allowed flow policy. Seen as a set of syntax-
based rules that ensure security in a program, it contributes to
clarifying the meaning of security of programs.

In a setting where code can migrate at runtime, the imposed
allowed flow policy might change dynamically. This can
happen in particular within the branch of an allowed condition:

(allowed F then (threadl M1 at d) else M2) (5)

Although M1 is chosen only when F is allowed by the initial
domain, by the time it is executed its location might be
different. Analyzing the information leaks that occur in an
expression then requires tracking the possible locations where
threads might be at each point.

[FLOW]
W ; Γ `Σ

j,A N : s, τ

W ; Γ `Σ
j,A (flow F in N) : s, τ

[ALLOW] W ; Γ `Σ
j,AuF Nt : st, τ

W ; Γ `Σ
j,A Nf : sf , τ

j vA st.w, sf .w

W ; Γ `Σ
j,A (allowed F then Nt else Nf ) :sttsft〈⊥,>, j〉, τ

[MIG]
W ; Γ `Σ

l,W (d) M : s, unit

W ; Γ `Σ
j,A (threadl M at d) :〈⊥, lts.w,⊥〉, unit

Figure 1. Type and effect system for Distributed Noninterference (fragment)

Figure 1 presents a fragment of a new type and effect system
for enforcing distributed noninterference over a migrating pro-
gram. It guarantees that when information flows are performed
by a thread, they comply to the allowed flow policy of the
current domain. The typing judgments have the form

W ; Γ `Σ
j,A M : s, τ

meaning that expression M is typable with type τ ∈ Typ
and security effect s in typing context Γ : Var→ Typ, which
assigns types to variables. In addition to the mapping W of
domain names to allowed flow policies, the turnstile has as
parameter the reference mapping Σ, the allowed flow policy
A of the domain where the expression is to be executed, and
the confidentiality level j of the location of M ’s thread. The
security effect s is composed of three security levels: s.r is
an upper-bound on the levels of the references that are read
by M ; s.w is a lower bound on the levels of the references
that are written by M ; s.t is an upper bound on the level of
the references on which the termination of M might depend.
Accordingly, the reading and termination effects are composed
in a covariant way, whereas the writing effect is contravariant.

Our type and effect system requires compliance of all
information flows to the flow relation vA that is determined
by the allowed flow policy A of the current domain (see
Section II). The conditions enforce standard syntactic rules of
the kind “no low writes should depend on high reads”, both
with respect to the values that are read, and to termination
behaviors that might be derived. We present only the rules that
differ from the type system for NDN, and refer the reader to [2]
for further explanations. While the FLOW rule is transparent in
this type system, MIG sets the allowed policy parameter that
is used for typing the new thread with that of the destination
domain. The restriction in ALLOW ensures that the security
level associated to the position of the thread in the network is
at least as permissive as the writing effects of the branches,
in order to prevent migration leaks. The requirements on the
typability of the first branch are weakened with the tested
policy F which is known to be valid in that case.

Soundness: The above type and effect system guarantees
security of networks with respect to DNI:

Theorem 5.1 (Soundness): Consider a fixed allowed-policy
mapping W , reference and thread labelings Σ,Υ, a typ-
ing environment Γ, and a thread configuration 〈P, T 〉
s.t. for all Mm ∈ P there exists s, τ such that
W ; Γ `Σ

Υ(m),W (T (m)) M : s, τ . Then P ∈ DNI(W,Σ,Υ,Γ).

4



We can now specify a (W,Σ,Γ)-compatibility predicate
that is sufficient for our analysis as including a store S if
for every reference a ∈ dom(S) its value S(a) satisfies
Γ `Σ
⊥,Ω S(a) : ⊥,Σ2(a) and also typability with respect to

type systems that enforce NDN [2] and FPC [3].
Precision: The proposed type and effect system is con-

siderably more precise than the combination of the corre-
sponding type and effect systems for NDN and for FPC.
While the enforcement of NDN and FPC regard the more
refined programming discipline surrounding declassification,
distributed noninterference ensures a minimum security goal
of not breaking the allowed flow policy of each domain.

VI. RELATED WORK AND CONCLUSIONS

Migration vs. declassification: When seen as a means for
running code under a different allowed flow policy, migration
exhibits similarities to the notion of declassification as a flow
declaration. However, while a domain’s allowed flow policy
represents a limit that should not be crossed, a declared flow
represents intentions of performing leaks that are rejected by
the strictest baseline security lattice. At a more technical level,
migration has expression in the semantics of the language,
with a potential impact on the observable state, while the flow
declaration is used merely with annotation purposes. In the
considered language setting, domains cannot be nested into
different shades of allowed flow policies. More importantly,
code cannot move in and out of a flow declaration.

Noninterference and declassification: Noninterference[10]
is often seen as the strictest information flow property of
which declassification enabling properties are a weakening.
This conservativity principle was proposed [15] as a sanity
check for declassification mechanisms. Parameterizing nonin-
terference with respect to a downward closure operator on a
basic security lattice [4] offers another perspective on how
noninterference relates to declassification. The parameter can
be used as an abstract allowed flow policy that determines the
particular security lattice which flows should strictly respect.
Then, considering the lattice of noninterference properties
that results from this parameterization, noninterference is not
necessarily the strictest element, but can represent a level of
tolerance to declassification operations – a lower bound to finer
grained declassification properties. In this sense, parameterized
noninterference doesn’t necessarily imply non-disclosure.

Information flow in distributed security settings: Domains’
security assurances can be represented as security levels.
Zdancewic et. al [17] propose in Jif/Split a technique for auto-
matically partitioning programs by placing code and data onto
hosts in accordance with DLM labels [12] in the source code.
Jif/Split ensures that if a host is subverted, the only data whose
confidentiality or integrity is threatened during execution of a
part of the program, is data owned by principals that trust that
host. Chong et. al [7] present Swift as specialization of this
idea for Web applications. Fournet et. al [9] present a compiler
that produces distributed code where communications are
implemented using cryptographic mechanisms, and ensures
that all confidentiality and integrity properties are preserved,

despite the presence of active adversaries. In [18], Zheng
and Myers address the issue of how availability of hosts
might affect information flows in a distributed computation. To
our knowledge, the only work on information flow assuming
distributed allowed flow policies is on FPC [3]. Its relation
to DNI can be understood in combination with the NDN
property [2], as is discussed in detail in Section IV.

Conclusion: We have proposed a generalization of the
noninterference property to a distributed setting where com-
putation domains are units of allowed flow policies. The
property is formalized using a standard bisimulation for in-
formation flow [6], [14]. This allows to prove soundness of
the proposed enforcement mechanism by means of a known
proof method [1]. Bisimulations are a well studied [16] tool
for inspecting the behavior of concurrent programs, and are
amenable to formal verification [5]. We have supported the
adequacy of the formal property by means of examples and
its relation with other relevant properties.

Acknowledgments: This work was partially supported by
the Portuguese FCT, during our visits to the Indes Team at
INRIA and the Language Based Security Group at Chalmers
University of Technology. We thank in particular David Sands,
Niklas Broberg and Bart van Delft for fruitful discussions.

REFERENCES

[1] A. Almeida Matos and G. Boudol. On declassification and the non-
disclosure policy. Journal of Computer Security, 17(5):549–597, 2009.

[2] A. Almeida Matos and J. Cederquist. Non-disclosure for distributed
mobile code. Mathematical Structures in Computer Science, 21(6), 2011.

[3] A. Almeida Matos and J. Cederquist. Informative types and effects for
hybrid migration control. In Runtime Verification - 4th International
Conference. Proceedings, volume 8174 of LNCS. Springer, 2013.

[4] A. Almeida Matos and J. Fragoso Santos. Typing illegal information
flows as program effects. In Proceedings of the 7th Workshop on
Programming Languages and Analysis for Security. ACM, 2012.

[5] G. Barthe and L. Prensa Nieto. Secure information flow for a concurrent
language with scheduling. J. Comput. Secur., 15(6), 2007.

[6] G. Boudol and I. Castellani. Noninterference for concurrent programs
and thread systems. Theoretical Computer Science, 281(1–2), 2002.

[7] S. Chong, J. Liu, A. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng.
Secure web applications via automatic partitioning. In Proc. of 21st
ACM Symposium on Operating Systems Principles. ACM, 2007.

[8] D. E. Denning. A lattice model of secure information flow. Communi-
cations of the ACM, 19(5):236–243, 1976.

[9] C. Fournet, G. Le Guernic, and T. Rezk. A security-preserving compiler
for distributed programs. In Proc. of the 16th ACM Conf. on Computer
and Communications Security. ACM, 2009.

[10] J. A. Goguen and J. Meseguer. Security policies and security models.
In IEEE Symp. on Security and Privacy. IEEE Computer Society, 1982.

[11] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In 15th
ACM Symp. on Princ. of Programming Languages. ACM Press, 1988.

[12] A. C. Myers and B. Liskov. Protecting privacy using the decentralized
label model. ACM Trans. on Soft. Eng. and Methodology, 9(4), 2000.

[13] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE J. on Selected Areas in Communications, 21(1), 2003.

[14] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-
threaded programs. In CSFW’00: 13th IEEE Computer Security Foun-
dations Workshop, pages 200–215. IEEE Computer Society, 2000.

[15] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles.
J. Comput. Secur., 17:517–548, October 2009.

[16] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, New York, NY, USA, 2011.

[17] S. Zdancewic, L. Zheng, N. Nystrom, and A. Myers. Secure program
partitioning. ACM Transactions on Computer Systems, 20(3), 2002.

[18] L. Zheng and A. C. Myers. Making distributed computation trustworthy
by construction. Technical Report TR2006-2040, Cornell Univ., 2006.

5


