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Abstract Flow policy confinement is a property of programs whose de-
classifications respect the allowed flow policy of the context in which
they execute. In a distributed setting where computation domains en-
force different allowed flow policies, code migration between domains
implies dynamic changes to the relevant allowed policy. Furthermore,
when programs consist of more than one thread running concurrently,
the same program might need to comply to more than one allowed flow
policy simultaneously. In this scenario, confinement can be enforced as
a migration control mechanism. In the present work we compare three
type-based enforcement mechanisms for confinement, regarding precision
and efficiency of the analysis. In particular, we propose an efficient hybrid
mechanism based on statically annotating programs with the declassifi-
cation effect of migrating code. This is done by means of an informative
type and effect pre-processing of the program, and is used for supporting
runtime decisions.

1 Introduction

Research in language based security has placed a lot of attention on the study of
information flow properties and enforcement mechanisms [1]. Information flow
security regards the control of how dependencies between information of differ-
ent security levels can lead to information leakage during program execution.
Information flow properties range in strictness from pure absence of information
leaks, classically known as non-interference [2], to more flexible properties that
allow for declassification to take place in a controlled manner [3].

Separating the problems of enabling and of controlling flexible information
flow policies paves the way to a modular composition of security properties that
can be studied independently. Here we consider a distributed setting with run-
time remote thread creation, and the problem of ensuring that declassifications
that are performed by mobile code comply to the flow policy that is allowed at
the computation domain where they are performed. We refer to this property as
flow policy confinement, and treat it as a migration control problem [4,5].

An illustrative scenario could be that of a set of personal mobile appliances,
such as smartphones. Due to their inter-connectivity (web, Bluetooth), they
form networks of highly responsive computing devices with relatively limited
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resources, and that handle sensitive information (personal location, contacts,
passwords). This combination demands for scalable and efficient mechanisms for
ensuring privacy in a distributed setting with code mobility. From an abstract
perspective, each device forms a computation domain with specific capabilities
and restrictions, and in particular information flow policies for protecting data
and other computing threads that are running concurrently in the same domain.
We refer to these policies as the allowed flow policy of the domain. Flow pol-
icy confinement ensures that domains do not execute code that might perform
declassifications that break their own allowed policies.

Let us consider, for example, an application for supporting two users (Alice
and Bob) in choosing the best meeting point and path for reaching each other
by means of public transportation. In order to produce advice that takes into
account the current context (recent user locations, traffic conditions, weather)
threads containing code for building updated travel maps are downloaded by
Alice and Bob during runtime (their travel). The recommended path and meeting
point can be improved by deducing the users’ personal preferences from data that
it collects from the mobile devices (e.g. content of stored images, file types). Users
might, however, have privacy restrictions regarding that data, in the form of
allowed flow policies that the downloaded threads must comply to. The following
naive program creates a thread for gathering data that helps select the meeting
point. Since the meeting point will necessarily be revealed to Bob, this part of
the program should only allowed to run if it respects which private information
Alice accepts to leak to Bob.

1 newthread { // Creates thread at Alice’s device

2 ref zoo=0; ref bookstore=0; // to choose between zoo or bookstore

3 allowed // If allowed by Alice’s policy

4 (L_IMGS < L_BOB /\ // to leak image contents

5 L_FILES < L_BOB) // and file types to Bob

6 flow (L_IMGS < L_BOB /\ // Declares a declassification

7 L_FILES < L_BOB) // with same policy

8 processImgs(zoo); // weighs images with animals

9 searchFiles(bookstore); // weighs e-book files

10 if (zoo > bookstore) // inspects sensitive data...

11 meetAt(ZOO); // and influences meeting point

12 meetAt(BOOKSTORE);

13 meetAt(random); // If not allowed, uses other criteria

14 } at D_ALICE

As the above code is deployed, device D_ALICE must decide whether it is safe to
execute the thread or not. Clearly, the decision must be taken quickly so as to
not disrupt the purpose of the application. Ultimately, it is based on an analysis
of the code, giving special attention to the points where declassifications occur.

This paper addresses the technical problem of how to build suitable enforce-
ment mechanisms that enable domains to check incoming code against their own
allowed flow policies. Previous work [6] introduces, as a proof-of-concept, a run-
time migration control mechanism for enforcing confinement that lacks precision
and efficiency. In this paper we look closely at the problem of the overhead that
is implied by using types and effects for checking programs during runtime.
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We study three type and effect-based mechanisms for enforcing confinement
that place different weight over static and run time: First, we present a purely
static type and effect system. Second, we increase its precision by letting most
of the control be done dynamically, at the level of the operational semantics.
To this end, the migration instruction is conditioned by a type check by means
of a standard type and effect checking system. Third, we provide a mechanism
for removing the runtime weight of typing migrating programs. It consists in
statically annotating programs with information about the declassifying behavior
of migrating threads, in the form of a declassification effect, and using it to
support efficient runtime checks.

This work is formulated over an expressive distributed higher-order impera-
tive lambda-calculus with remote thread creation. This language feature implies
that programs might need to comply to more than one dynamically changing
allowed flow policy simultaneously. The main contributions are:

1. A purely static type and effect system for enforcing flow policy confinement.
2. A type and effect system for checking migrating threads at runtime, that is

more precise than the one in point 1.
3. A static-time informative pre-processing type and effect system for annotat-

ing programs with a declassification effect, for a more efficient and precise
mechanism than the one in point 2.

We start by presenting the security setting (Section 2) and language (Sec-
tion 3). The formal security property of Flow Policy Confinement (Section4)
follows. Then, we study three type and effect-based enforcement mechanisms
(Section 5) and draw conclusions regarding their efficiency and precision. Fi-
nally we discuss related work (Section 6) and conclude (Section 7). An extended
version of this article (available from the authors) presents the detailed proofs.

2 Security Setting

The study of confidentiality traditionally relies on a lattice of security levels [7],
corresponding to security clearances, that is associated to information contain-
ers in the programming language. The idea is that information pertaining to
references labeled with l2 can be legally transferred to references labeled with l1
only if l1 is at least as confidential as l2. In this paper we do not deal explicitly
with security levels, but instead with flow policies that define how information
should be allowed to flow between security levels. Formally, flow policies can be
seen as downward closure operators over a basic lattice of security levels [8].

Flow policies A,F ∈ Flo can be ordered according to their permissiveness by
means of a permissiveness relation 4, where F1 4 F2 means that F1 is at least
as permissive as F2. We assume that flow policies form a lattice that supports a
pseudo-subtraction operation 〈Flo,4,f,g,f, Ω,^〉, where: the meet operation
f gives, for any two flow policies F1, F2, the strictest policy that allows for
both F1 and F2; the join operation g gives, for any two flow policies F1, F2,
the most permissive policy that only allows what both F1 and F2 allow; the
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most restrictive flow policy f does not allow any information flows; and the
most permissive flow policy Ω that allows all information flows. Finally, the
pseudo-subtraction operation ^ between two flow policies F1 and F2 (used only
in Subsection 5.3) represents the most permissive policy that allows everything
that is allowed by the first (F1), while excluding all that is allowed by the second
(F2); it is defined as the relative pseudo-complement of F2 with respect to F1,
i.e. the greatest F such that F f F2 4 F1.

Considering a concrete example of a lattice of flow polices that meets the
abstract requirements defined above can provide helpful intuitions. Flow policies
that operate over the security lattice where security levels are sets of principals
p, q ∈ Pri provide such a case. In this setting, security levels are ordered by
means of the flow relation ⊇. Flow policies then consist of binary relations on
Pri , which can be understood as representing additional directions in which
information is allowed to flow between principals: a pair (p, q) ∈ F , most often
written p ≺ q, is to be understood as “information may flow from p to q”. New
more permissive security lattices are obtained by collapsing security levels into
possibly lower ones, by closing them with respect to the valid flow policy. Writing
F1 4 F2 means that F1 allows flows between at least as many pairs of principals
as F2. The relation is here defined as F1 4 F2 iff F2 ⊆ F ∗1 (where F ∗ denotes
the reflexive and transitive closure of F ): The meet operation is then defined as
f = ∪, the join operation is defined as F1 g F2 = F ∗1 ∩ F ∗2 , the top flow policy
is given by f = ∅, the bottom flow policy is given by Ω = Pri × Pri , and the
pseudo-subtraction operation is given by ^= −.

3 Language

The language extends an imperative higher order lambda calculus that includes
reference and concurrent thread creation, a declassification construct, and a
policy-context testing construct, with basic distribution and code mobility fea-
tures. Computation domains hold a local allowed flow policy, which imposes a
limit on the permissiveness of the declassifications that are performed within the
domain. A remote thread creation construct serves as a code migration primitive.

Variables

Reference Names

x

a

∈
∈

Var

Ref

Flow Policies A,F ∈ Flo

Domain Names d ∈ Dom

Values V ∈ Val ::= () | x | a | (λx.M) | tt | ff

Pseudo-values X ∈ Pse ::= V | (%x.X)

Expressions M,N ∈ Exp ::= X | (M N) | (M ;N) | (if M then Nt else Nf ) |
(refθ M) | (! N) | (M := N) | (flow F in M) |
(allowed F then Nt else Nf) | (thread M at d)

Figure 1. Syntax of Expressions
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3.1 Syntax

The syntax of expressions defined in Figure 1 is based on a λ-calculus extended
with the imperative constructs of ML, conditional branching and boolean values,
where the (%x.X) construct provides for recursive values. Names of references
(a), domains (d), and threads (m,n), are drawn from disjoint countable sets
Ref , Dom 6= ∅ and Nam , respectively. References are information containers
to which values of the language pertaining to a given type in Typ can be assigned.

Declassification is introduced in the language by means of flow policy decla-
rations [9]. They have the form (flow F in M), and are used to locally weaken
the information flow policy that is valid for the particular execution context, by
enabling information flows that comply to the flow policy F to take place within
the scope of the delimited block of code M . Expression M is executed in the
context of the current flow policy extended with F ; after termination the current
flow policy is restored, that is, the scope of F is M . For context-policy awareness,
programs can inspect the allowed flow policy of the current domain by means of
the allowed-condition, which is written (allowed F then Nt else Nf ). The con-
struct tests whether the flow policy F is allowed by the current domain and
executes branches Nt or Nf accordingly, in practice offering alternative behav-
iors to be taken in case the domains they end up are too restrictive. For migration
and concurrency, the thread creator (thread M at d) spawns the thread M in
domain d, to be executed concurrently with other threads at that domain.

Networks are flat juxtapositions of domains, each containing a store and a
pool of threads, which are subjected to the allowed flow policy of the domain.
Threads run concurrently in pools P : Nam → Exp, which are mappings from
thread names to expressions (denoted as sets of threads). Stores S : Ref → Val
map reference names to values. Position-trackers T : Nam → Dom , map thread
names to domain names, and are used to keep track of the locations of threads in
the network. The pool P containing all the threads in the network, the mapping
T that keeps track of their positions, and the store S containing all the references
in the network, form configurations 〈P, T, S〉. The flow policies that are allowed
by each domain are kept by the allowed-policy mapping W : Dom → Flo from
domain names to flow policies, which is considered fixed in this model.

3.2 Operational Semantics

The small step operational semantics of the language is defined in Figure 2. The
‘W `Σ ’ turnstile makes explicit the allowed flow policy of each domain in the
network, and the reference labeling Σ that determines the type of values that
is assigned to each reference name. Other security-related information, such as
security levels, could be added for the purpose of an information flow analysis.

The call-by-value evaluation order is specified by representing expressions
using evaluation contexts.

Evaluation Contexts E ::= [] | (E N) | (V E) | (E;N) | (refθ E) | (! E)

(E := N) | (V := E) | (if E then Nt else Nf ) | (flow F in E)
(1)
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W `Σ 〈{E[((λx.M) V )]m}, T, S〉 −−→
dEe
〈{E[{x 7→ V }M ]m}, T, S〉

W `Σ 〈{E[(if tt then Nt else Nf )]m}, T, S〉 −−→
dEe
〈{E[Nt]

m}, T, S〉

W `Σ 〈E[(if ff then Nt else Nf )]m}, T, S〉 −−→
dEe
〈{E[Nf ]m}, T, S〉

W `Σ 〈{E[(V ;N)]m}, T, S〉 −−→
dEe
〈{E[N ]m}, T, S〉

W `Σ 〈{E[(%x.X)]m}, T, S〉 −−→
dEe
〈{E[({x 7→ (%x.X)} X)]m}, T, S〉

W `Σ 〈{E[(flow F in V )]m}, T, S〉 −−→
dEe
〈{E[V ]m}, T, S〉

W `Σ 〈{E[(! a)]m}, T, S〉 −−→
dEe
〈{E[S(a)]m}, T, S〉

W `Σ 〈{E[(a := V )]m}, T, S〉 −−→
dEe
〈{E[()]m}, T, [a := V ]S〉

W `Σ 〈{E[(refθ V )]m}, T, S〉 −−→
dEe
〈{E[a]m}, T, [a := V ]S〉, a fresh in S

and Σ(a) = θ

W (T (m))4F

W `Σ 〈{E[(allowed F then Nt else Nf)]m}, T, S〉 −−→
dEe

〈{E[Nt]
m}, T, S〉

W (T (m)) 64F

W `Σ 〈{E[(allowed F then Nt else Nf)]m}, T, S〉 −−→
dEe

〈{E[Nf ]m}, T, S〉

W `Σ 〈{E[(thread N at d)]m}, T, S〉−−→
dEe
〈{E[()]m, Nn}, [n := d]T, S〉,

n fresh in T

W `Σ 〈P, T, S〉 −→
F
〈P ′, T ′, S′〉 〈P ∪Q,T, S〉 is well formed

W `Σ 〈P ∪Q,T, S〉 −→
F
〈P ′ ∪Q,T ′, S′〉

Figure 2. Operational Semantics

We write E[M ] to denote an expression where the sub-expression M is placed
in the evaluation context E, obtained by replacing the occurrence of [] in E by
M . The flow policy that is permitted by the evaluation context E is denoted by
dEe. It consists a lower bound (see Section 2) to all the flow policies that are
declared by the context:

d[]e = f, d(flow F in E)e = F f dEe,
dE′[E]e = dEe, when E′ does not contain flow declarations

(2)

The following basic notations and conventions are useful for defining transi-
tions. For a mapping Z, we define dom(Z) as the domain of a given mapping Z.
We say a name is fresh in Z if it does not occur in dom(Z). We denote by rn(P )
and dn(P ) the set of reference and domain names, respectively, that occur in the
expressions of P . We let fv(M) be the set of variables occurring free in M . We
restrict our attention to well formed configurations 〈P, T, S〉 satisfying the con-
ditions that rn(P ) ⊆ dom(S), that dn(P ) ⊆ dom(W ), that dom(P ) ⊆ dom(T ),
and that, for any a ∈ dom(S), rn(S(a)) ⊆ dom(S) and dn(S(a)) ⊆ dom(W ).



Informative Types and Effects for Hybrid Migration Control 7

We denote by {x 7→W}M the capture-avoiding substitution of W for the free
occurrences of x in M . The operation of adding or updating the image of an
object z to z′ in a mapping Z is denoted [z := z′]Z.

The transition rules of our semantics are decorated with the flow policy de-
clared by the evaluation context where the step is performed. The lifespan of the
flow declaration terminates when the expression M that is being evaluated termi-
nates (that is, M becomes a value). In particular, the evaluation of (flow F in M)
simply consists in the evaluation of M , annotated with a flow policy that is at
least as permissive as F . The flow policy that decorates the transition steps
is used only by the rules for (allowed F then Nt else Nf ), where the choice of
the branch depends on whether F is allowed to be declared or not. The thread
creation construct functions as a migration construct when the new domain of
the created thread is different from that of the parent thread. The last rule
establishes that the execution of a pool of threads is compositional (up to the
expected restriction on the choice of new names). Notice that W , representing
the allowed flow policies associated to each domain, is never changed.

For simplicity, we assume memory to be shared by all programs and every
computation domain, in a transparent form. This does not remove the distributed
nature of the model, as programs’ behavior depends on where they are [6].

4 Security Property

In a distributed setting with concurrent mobile code, programs might need to
comply simultaneously to different allowed flow policies that change dynamically.
The property of flow policy confinement deals with this difficulty by placing
individual restrictions on each step that might be performed by a part of the
program, taking into account the possible location where it might take place.

Compatibility. Since we are considering a higher-order language, values stored
in memory can be used by programs to build expressions that are then executed.
In order to avoid deeming all such programs insecure, memories are assumed to
be compatible to the given security setting and typing environment, requiring
typability of their contents with respect to the relevant type system and param-
eters. Informally, a memory S is said to be (W,Σ, Γ )-compatible if for every
reference a ∈ dom(S) its value S(a) is typable. This predicate will be defined for
each security analysis, and can be shown to be preserved by the semantics.

Flow Policy Confinement. The property is defined co-inductively for located
threads, consisting of pairs 〈d,Mm〉 that carry information about the location
d of a thread Mm. The location of each thread determines which allowed flow
policy it should obey at that point, and is used to place a restriction on the flow
policies that decorate the transitions: at any step, they should comply to the
allowed flow policy of the domain where the thread who performed it is located.

Definition 1 ((W,Σ, Γ )-Confined Located Threads). Consider an allowed-
policy mapping W , a reference labeling Σ, and a typing environment Γ . A set C
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of located threads is a set of (W,Σ, Γ )-confined located threads if the following
holds for all 〈d,Mm〉 ∈ C, for all T such that T (m) = d, and for all (W,Σ, Γ )-
compatible memories S:

– W `Σ 〈{Mm}, T, S〉 −→
F
〈{M ′m}, T ′, S′〉 implies W (T (m)) 4 F and also

〈T ′(m),M ′m〉 ∈ C. Furthermore, S′ is still (W,Σ, Γ )-compatible.
– W `Σ 〈{Mm}, T, S〉 −→

F
〈{M ′m, Nn}, T ′, S′〉 implies W (T (m)) 4 F and also

〈T ′(m),M ′m〉, 〈T ′(n), Nn〉 ∈ C. Furthermore, S′ is still (W,Σ, Γ )-compatible.

Note that for any W , Σ, and Γ there exists a set of (W,Σ, Γ )-confined located
threads, like for instance Dom × (Val ×Nam). Furthermore, the union of a
family of sets of (W,Σ, Γ )-confined located threads is a set of (W,Σ, Γ )-confined

located threads. The largest set of (W,Σ, Γ )-confined threads is denoted by CΣ,ΓW .
We say that a threadMm is (W,Σ, Γ )-confined when located at d, if 〈d,Mm〉 ∈

CΣ,ΓW . A well formed thread configuration 〈P, T 〉, satisfying the applicable rules
of a well formed configuration, is said to be (W,Σ, Γ )-confined if all located
threads in {〈T (m),Mm〉 | Mm ∈ P} are (W,Σ, Γ )-confined.

Notice that this property speaks strictly about what flow declarations a
thread can do while it is at a specific domain. In particular, it does not re-
strict threads from migrating to more permissive domains in order to perform a
declassification. More importantly, the property does not deal with information
flows. So for instance it offers no assurance that information leaks that are en-
coded at each point of the program do obey the declared flow policies for that
point. Such an analysis can be done independently, cf. non-disclosure in [9].

5 Enforcement Mechanisms

In this section we start by studying a type system for statically ensuring that
global computations always comply to the locally valid allowed flow policy. This
type system is inherently restrictive, as the domains where each part of the code
will actually compute cannot in general be known statically (Subsection 5.1). We
then present a more precise type system to be used at runtime by the semantics
of the language for checking migrating threads against the allowed flow policy of
the destination domain (Subsection 5.2). Finally, we propose a yet more precise
type and effect system that computes information about the declassification
behaviors of programs. This information will be used more efficiently at runtime
by the semantics of the language in order to control migration of programs.

5.1 Purely Static Type Checking

We have seen that in a setting where code can migrate between domains with
different allowed security policies, the computation domain might change during
computation, along with the allowed flow policy that the program must comply
to. This can happen in particular within the branch of an allowed condition:

(allowed F then (thread (flow F in M1) at d) else M2) (3)
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[Nil] W ;Γ `ΣA () : unit [Bt] W ;Γ `ΣA tt : bool [Bf] W ;Γ `ΣA ff : bool

[Loc] W ;Γ `ΣA a : Σ(a) ref [Var] Γ, x : τ `ΣA x : τ

[Abs]
W ;Γ, x : τ `ΣA M : σ

W ;Γ `ΣA′ (λx.M) : τ
A−→ σ

[Rec]
W ;Γ, x : τ `ΣA X : τ

W ;Γ `ΣA (%x.X) : τ

[Ref]
W ;Γ `ΣA M : θ

W ;Γ `ΣA (refθ M) : θ ref
[Der]

W ;Γ `ΣA M : θ ref

W ;Γ `ΣA (! M) : θ

[Ass]
W ;Γ `ΣA M : θ ref W ;Γ `ΣA N : θ

W ;Γ `ΣA (M := N) : unit
[Seq]

W ;Γ `ΣA M : τ W ;Γ `ΣA N : σ

W ;Γ `ΣA (M ;N) : σ

[Cond]

W ;Γ `ΣA M : bool
W ;Γ `ΣA Nt : τ
W ;Γ `ΣA Nf : τ

W ;Γ `ΣA (if M then Nt else Nf ) : τ

[App]
W ;Γ `ΣA M : τ

A−→ σ W ;Γ `ΣA N : τ

W ;Γ `ΣA (M N) : σ
[Flow]

W ;Γ `ΣA N : τ A 4 F

W ;Γ `ΣA (flow F in N) :τ

[Allow]

W ;Γ `ΣAfF Nt : τ
W ;Γ `ΣA Nf : τ

W ;Γ `ΣA (allowed F then Nt else Nf ) :τ

[Mig]
W ;Γ `ΣW (d) M : unit

W ;Γ `ΣA (thread M at d) : unit

Figure 3. Type and effect system for checking Confinement

In this program, the flow declaration of the policy F is executed only if F has
been tested as being allowed by the domain where the program was started.
It might then seem that the flow declaration is “protected” by an appropriate
allowed construct. However, by the time the flow declaration is performed, the
thread is already located at another domain, where that flow policy might not be
allowed. It is clear that a static enforcement of a confinement property requires
tracking the possible locations where threads might be executing at each point.

Figure 3 presents a new type and effect system [10] for statically enforcing
confinement over a migrating program. The type system guarantees that when
operations are executed by a thread within the scope of a flow declaration, the
declared flow complies to the allowed flow policy of the current domain. The
typing judgments have the form

W ;Γ `ΣA M : τ (4)

meaning that expression M is typable with type τ in typing context Γ : Var →
Typ, which assigns types to variables. In addition to the reference mapping Σ,
the turnstile has as parameter the flow policy A that is allowed by the context,
which includes all flow policies that have been positively tested by the program
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as being allowed at the computation domain where the expression M is running.
Finally, W represents the mapping of domain names to allowed flow policies.

Types have the standard syntax (t is a type variable)

τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref | τ A−→ σ (5)

where the reference type records the type θ of values that the reference contains,
and the functional type records the latent allowed policy A that is used to type
the application of the function to an argument.

Our type system applies restrictions to programs in order to ensure that
flow declarations can only declare flow policies that are allowed by the context
(rule Flow). These restrictions are relaxed when typing the first branch of
allowed conditions, by extending the flow policy allowed by the context with
the policy that guards the condition (rule Allow). In rule Mig, the flow policy
allowed by the context is adjusted to that of the destination computation domain
W (d) that is specified by the (thread M at d) construct.

Note that if an expression is typable with respect to an allowed flow policy
A, then it is also so for any more permissive allowed policy A′. In particular,
due to the Abs rule, the process of typing an expression is not deterministic.

For instance, the expression (λx.()) can be given any type of the form τ
F−→ unit.

We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 3,
with respect to the allowed flow policies of each thread’s initial domain, using
the semantics represented in Figure 2, as Enforcement mechanism I.

Soundness. Enforcement mechanism I guarantees security of networks with re-
spect to confinement, as is formalized by the following result. The (W,Σ, Γ )-
compatibility predicate that is used to define confinement here requires all ref-
erences a ∈ dom(S) to store a value satisfying W ;Γ `Σf S(a) : Σ(a).

Theorem 1 (Soundness of Enforcement Mechanism I). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ
such that W ;Γ `ΣW (T (m)) M : τ . Then 〈P, T 〉 is (W,Σ, Γ )-confined.

Proof. By showing that the set {〈d,Mm〉 |m ∈ Nam and ∃τ. W ;Γ `ΣW (d)M : τ}
is a set of (W,Σ, Γ )-confined located threads, using induction on the inference
of W ;Γ `ΣW (d) M : τ .

Precision. Given the purely static nature of this migration control analysis, some
secure programs are bound to be rejected. There are different ways to increase
the precision of a type system, which are all intrinsically limited to what can
conservatively be predicted before runtime. For example, for the program

(if (! a) then (thread (flowF inM) at d1) else (thread (flowF inM) at d2)) (6)

it is in general not possible to predict which branch will be executed (or, in
practice, to which domain the thread will migrate), for it depends on the contents
of the memory. It will then be rejected if W (d2) 64 F or W (d1) 64 F .
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5.2 Runtime Type Checking

In this subsection we study a hybrid mechanism for enforcing confinement, that
makes use of a relaxation of the type system of Figure 3 during runtime. Migra-
tion is now controlled by means of a runtime check for typability of migrating
threads with respect to the allowed flow policy of the destination domain. The
condition represents the standard theoretical requirement of checking incoming
code before allowing it to execute in a given machine.

The relaxation is achieved by replacing rule Mig by the following one:

[Mig]
Γ `ΣΩ M : unit

Γ `ΣA (thread M at d) : unit
(7)

The new type system no longer imposes future migrating threads to conform to
the policy of their destination domain, but only to the most permissive allowed
flow policy Ω. The rationale is that it only worries about confinement of the
non-migrating parts of the program. This is sufficient, as all threads that are to
be spawned by the program will be re-checked at migration time.

The following modification to the migration rule of the semantics of Figure 2
introduces the runtime check that controls migration (n fresh in T ). The idea is
that a thread can only migrate to a domain if it respects its allowed flow policy:

Γ `ΣW (d) N : unit

W `Σ 〈{E[(thread N at d)]
m}, T, S〉 n−−→

dEe
〈{E[()]

m
, Nn}, [n := d]T, S〉

(8)

The new remote thread creation rule (our migration primitive), now depends on
typability of the migrating thread. The typing environment Γ (which is constant)
is now an implicit parameter of the operational semantics. If only closed threads
are considered, then also migrating threads are closed. The allowed flow policy
of the destination site now determines whether or not a migration instruction
may be consummated, or otherwise block execution.

Notice that, thanks to postponing the migration control to runtime, the type
system no longer needs to be parameterized with information about the allowed
flow policies of all domains in the network, which in practice could be impossible.
The only relevant one are those of the destination domain of migrating threads.

We refer to the enforcement mechanism that consists of statically type check-
ing all threads in a network according to the type and effect system of Figure 3
modified using the new Mig rule represented in Rule (8), with respect to the
allowed flow policies of each thread’s initial domain, using the semantics of Fig-
ure 2 modified according to Rule (7), as Enforcement mechanism II.

Soundness. Enforcement mechanism II guarantees security of networks with
respect to confinement, as is formalized by the following result. The (W,Σ, Γ )-
compatibility predicate that is used to define confinement here requires all ref-
erences a ∈ dom(S) to store a value satisfying Γ `Σf S(a) : Σ(a).



12 Ana Almeida Matos and Jan Cederquist

Theorem 2 (Soundness of Enforcement Mechanism II). Consider a fixed
allowed-policy mapping W , a given reference labeling Σ and typing environment
Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there exists τ
such that Γ `ΣW (T (m)) M : τ . Then 〈P, T 〉 is (W,Σ, Γ )-confined.

Proof. By showing that the set {〈d,Mm〉 | m ∈ Nam and ∃τ . Γ `ΣW (d) M : τ}
is a set of (W,Σ, Γ )-confined located threads, using induction on the inference
of Γ `ΣW (d) M : τ .

Safety, precision and efficiency. The proposed mechanism does not offer a safety
result, guaranteeing that programs never “get stuck”. Indeed, the side condition
of the thread creation rule introduces the possibility for the execution of a thread
to block, since no alternative is given. This can happen in Example 3 (in page 8),
if the flow policy F is not permitted by the allowed policy of the domain of
the branch that is actually executed, then the migration will not occur, and
execution will not proceed. In order to have safety, we could design the thread
creation instruction as including an alternative branch for execution in case the
side condition fails. Nevertheless, Example 3 might have better been written

(thread (allowed F then (flow F in M1) else M2) at d) (9)

in effect using the allowed condition for encoding such alternative behaviors.
Returning to Example 6 (in page 6), thanks to the relaxed Mig rule, this

program is now always accepted statically by the type system. Depending on the
result of the test, the migration might also be allowed to occur if a safe branch
is chosen. This means that enforcement mechanism II accepts more secure pro-
grams. Because of the possibility of blockage mentioned above, an information
flow analysis might reject some of the programs accepted here, in case for in-
stance the reference a is assigned a “high” security level, and a “low” write is
performed after the test. This issue is however orthogonal to our aims here.

A drawback with this enforcement mechanism lies in the computation weight
of the runtime type checks. This is particularly acute for an expressive language
such as the one we are considering. Indeed, recognizing typability of ML expres-
sions has exponential (worst case) complexity [11].

5.3 Static Informative Typing for Runtime Effect Checking

We have seen that bringing the type-based migration control of programs to run-
time allows to increase the precision of the confinement analysis. This is, how-
ever, at the cost of performance. It is possible to separate the program analysis
as to what are the declassification operations that are performed by migrating
threads, from the safety problem of determining whether those declassification
operations should be allowed at a given domain. To achieve this, we now present
an informative type system [8] that statically calculates a summary of all the
declassification operations that might be performed by a program, in the form of
a declassification effect. Furthermore, this type system produces a version of the
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[NilI] Γ `Σ () ↪→() : f, unit [BtI] Γ `Σ tt ↪→ tt : f, bool [BfI] Γ `Σ ff ↪→ff : f, bool

[LocI] Γ `Σ a ↪→ a : f, Σ(a) ref [VarI] Γ, x : τ `Σ x ↪→ x : f, τ

[AbsI]
Γ, x : τ `Σ M ↪→ M̂ : s, σ

Γ `Σ (λx.M) ↪→ (λx.M̂) : f, τ s−→ σ
[RecI]

Γ, x : τ `Σ X ↪→ X̂ : s, τ

Γ `Σ (%x.X) ↪→ (%x.X̂) : s, τ

[RefI]
Γ `Σ M ↪→ M̂ : s, θ′ θ 4 θ′

Γ `Σ (refθ M) ↪→ (refθ M̂) : s, θ ref
[DerI]

Γ `Σ M ↪→ M̂ : s, θ ref

Γ `Σ (! M) ↪→ (! M̂) : s, θ

[AssI]
Γ `Σ M ↪→ M̂ : s, θ ref Γ `Σ N ↪→ N̂ : s′, θ′ θ 4 θ′

Γ `Σ (M := N) ↪→ (M̂ := N̂) : s f s′, unit

[SeqI]
Γ `Σ M ↪→ M̂ : s, τ Γ `Σ N ↪→ N̂ : s′, σ

Γ `Σ (M ;N) ↪→: s f s′, σ

[CondI]

Γ `Σ M ↪→ M̂ : s, bool
Γ `Σ Nt ↪→ N̂t : st, τt
Γ `Σ Nf ↪→ N̂f : sf , τf

τt ≈ τf

Γ `Σ (if M then Nt else Nf ) ↪→(if M̂ then N̂t else N̂f ) : sf stfsf , τtfτf

[AppI]
Γ `Σ M ↪→ M̂ : s, τ

s′−→ σ Γ `Σ N ↪→ N̂ : s′′, τ ′′ τ 4 τ ′′

Γ `Σ (M N) ↪→ (M̂ N̂) : s f s′ f s′′, σ

[FlowI]
Γ `Σ N ↪→ N̂ : s, τ

Γ `Σ (flow F in N) ↪→ (flow F in N̂) : s f F, τ

[AllowI]
Γ `Σ Nt ↪→ N̂t : st, τt
Γ `Σ Nf ↪→ N̂f : sf , τf

τt ≈ τf

Γ `Σ(allowed F then Nt else Nf ) ↪→(allowed F then N̂t else N̂f ) :st^Ffsf , τt f τf

[MigI]
Γ `Σ M ↪→ M̂ : s, unit

Γ `Σ (thread M at d) ↪→ (threads M̂ at d) : f, unit

Figure 4. Informative Type and Effect System for obtaining the Declassification Effect

program that is annotated with the relevant information for deciding, at run-
time, whether its migrating threads can be considered safe by the destination
domain. The aim is to bring the overhead of the runtime check to static time.

The typing judgments of the type system in Figure 4 have the form:

Γ `Σ M ↪→ M̂ : s, τ (10)

Comparing with the typing judgments of Subsection 5.2, while the flow policy
allowed by the context parameter is omitted from the turnstile ‘`’, the security
effect s represents a flow policy which corresponds to the declassification effect :
a lower bound to the flow policies that are declared in the typed expression. The
second expression M̂ is the result of annotating M . The syntax of annotated
expressions differs only in the thread creation construct, that has an additional
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flow policy F as parameter, written (threadF M at d). The syntax of types is
the same as the ones used in Subsections 5.1 and 5.2.

It is possible to relax the type system by matching types that have the same
structure, even if they differ in flow policies pertaining to them. We achieve this
by overloading 4 to relate types where certain latent effects in the first are at
least as permissive as the corresponding ones in the second. The more general
relation ≈ matches types where certain latent effects differ: Finally, we define an
operation f between two types τ and τ ′ such that τ ≈ τ ′:

τ4τ ′ iff τ = τ ′, or τ = θ
F−→σ and τ ′ = θ

F ′

−→σ′ with F 4F ′ and σ4σ′

τ ≈ τ ′ iff τ = τ ′, or τ = θ
F−→ σ and τ ′ = θ

F ′

−→ σ′ with σ ≈ σ′

τf!τ ′ = τ, if τ = τ ′, or θ
FfF ′

−−−→σ f σ′, if τ = θ
F−→σ and τ ′ = θ

F ′

−→σ′

(11)

The 4 relation is used in rules RefI, AssI andAppI, in practice enabling to
associate to references and variables (by reference creation, assignment and ap-
plication) expressions with types that contain stricter policies than required by
the declared types. The relation ≈ is used in rules CondI andAllowI in order
to accept that two branches of the same test construct can differ regarding some
of their policies. Then, the type of the test construct is constructed from both
using f, thus reflecting the flow policies in both branches.

The declassification effect is constructed by aggregating (using the meet op-
eration) all relevant flow policies that are declared within the program. The effect
is updated in rule FlowI, each time a flow declaration is performed, and “grows”
as the declassification effects of sub-expressions are met in order to form that of
the parent command. However, when a part of the program is “protected” by an
allowed condition, some of the information in the declassification effect can be
discarded. This happens in rule AllowI, where the declassification effect of the
first branch is not used entirely: the part that will be tested during execution
by the allowed-condition is omitted. In rule MigI, the declassification effect of
migrating threads is also not recorded in the effect of the parent program, as
they will be executed (and tested) elsewhere. That information is however used
to annotate the migration instruction.

One can show that the type system is deterministic, in the sense that it
assigns to a non-annotated expression a single annotated version of it, a single
declassification effect, and a single type.

Modified operational semantics, revisited. By executing annotated programs, the
type check that conditions the migration instruction can be replaced by a simple
declassification effect inspection. The new migration rule is similar to the one in
Subsection 5.2, but now makes use of the declassification effect (n fresh in T ):

W (d) 4 s

W `Σ 〈{E[(threads N at d)]
m}, T, S〉 n−−→

dEe
〈{E[()]

m
, Nn},[n := d]T, S〉

(12)
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In the remaining rules of the operational semantics the annotations are ignored.
We refer to the mechanism that consists of statically annotating all threads in

a network according to the type and effect system of Figure 4, assuming that each
thread’s declassification effect is allowed by its initial domain, using the seman-
tics of Figure 2 modified according to Rule (12), as Enforcement mechanism III.

Soundness. We will now see that the declassification effect can be used for
enforcing confinement. The (W,Σ, Γ )-compatibility predicate that is used to
define confinement here requires all references a ∈ dom(S) to store a value that
results from annotating some other value V according to Γ `Σf V ↪→ S(a) : Σ(a).

Theorem 3 (Soundness of Enforcement Mechanism III). Consider a
fixed allowed-policy mapping W , a given reference labeling Σ and typing en-
vironment Γ , and a thread configuration 〈P, T 〉 such that for all Mm ∈ P there
exist M̂ , s and τ such that Γ `Σ M ↪→ M̂ : s, τ and W (T (m)) 4 s. Then 〈P̂ , T 〉,
formed by annotating the threads in 〈P, T 〉, is (W,Σ, Γ )-confined.

Proof. By showing that the following is a set of (Σ,Γ )-confined located threads

{〈d, M̂m〉 | m ∈ Nam and ∃M, s, τ . Γ `Σ M ↪→ M̂ : s, τ and W (d) 4 s} (13)

using induction on the inference of Γ `Σ M ↪→ M̂ : s, τ .

Precision and efficiency. The relaxed type system of Subsection 5.2 for checking
confinement, and its informative counterpart of Figure 4, are strongly related.
The following result states that typability according to latter type system is
at least as precise as the former. It is proven by induction on the inference of
Γ `ΣA M : τ .

Proposition 1. Consider a given a typing environment Γ and reference labeling
Σ. If there exist A, τ such that Γ `ΣA M : τ , then there exist M̂ , τ ′ and s such

that Γ `Σ M ↪→ M̂ : s, τ ′ and A 4 s with τ 4 τ ′.

The converse direction is not true, i.e. enforcement mechanism III accepts
strictly more programs than enforcement mechanism II. This can be seen by

considering the secure program where, θ1 = τ
F1−→ σ and θ2 = τ

F2−→ σ:

(if (! a) then (! (refθ1 M1)) else (! (refθ2 M2))) (14)

This program is not accepted by the type system of Section 5.2 because it cannot
give the same type to both branches of the conditional (the type of the derefer-
ence of a reference of type θ is precisely θ). However, since the two types satisfy
θ1 ≈ θ2, the informative type system can accept it and give it the type θ1 f θ2.

A more fundamental difference between the two enforcement mechanisms lays
in the timing of the computation overhead that is required by each mechanism.
While mechanism II requires heavy runtime type checks to occur each time a
thread migrates, in III the typability analysis is anticipated to static time, leaving
only a comparison between two flow policies to be performed at migration time.
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The complexity of this comparison depends on the concrete representation of
flow policies. In the worst case, that of flow policies as general downward closure
operators (see Section 2), it is linear on the number of security levels that are
considered. When flow policies are flow relations, then it consists on a subset
relation check, which is polynomial on the size of the flow policies.

6 Related Work

Controlling declassification. Most previous mechanisms for controlling declassi-
fication [12] target flexible versions of an information flow property. Departing
from this approach, the work by Boudol and Kolundzija [13] on combining access
control and declassification is the first to treat declassification control separately
from the underlying information flow problem. In [13], standard access control
primitives are used to control the access level of programs that perform declas-
sifications in the setting of a local language, ensuring that a program can only
declassify information that it has the right to read.

Controlling code mobility. A wide variety of distributed network models have
been designed with the purpose of studying mechanisms for controlling code
mobility. These range from type systems for statically controlling migration as
an access control mechanism [5,14], to runtime mechanisms that are based on
the concept of programmable domain. In the latter, computing power is explic-
itly associated to the membranes of computation domains, and can be used for
controlling boundary transposition. This control can be performed by processes
that interact with external and internal programs [15,16,4], or by more specific
automatic verification mechanisms [17]. In the present work we abstract away
from the particular machinery that implements the migration control checks,
and express declaratively, via the language semantics, the condition that must
be satisfied for the boundary transposition to be allowed.

Checking the validity of the declassification effect as a certificate is not sim-
pler than checking the program against a concrete allowed policy (as presented
in Subsection 5.2), meaning that it does not consist of a case of Proof Carry-
ing Code. The concept of trust can be used to lift the checking requirements of
code whose history of visited domains provides enough reassurance [17,5]. These
ideas could be applied to the present work, assisting the decision of trusting the
declassification effect, otherwise leading to a full type check of the code.

Hybrid mechanisms. The use of hybrid mechanisms for enforcing information
flow policies is currently an active research area (see [18] for a review of related
work). The closest to ours is perhaps the study of securing information release
for a simple language with dynamic code evaluation in the form of a string eval
command, which includes an on-the-fly information flow static analysis [19].

Focusing on declassification control, the idea of using a notion of declassifica-
tion effect for building a runtime migration control mechanism was put forward
in [6] for a similar language with local thread creator and a basic goto migration
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instruction. In spite of the restrictions that are pointed out in Subsection 5.1
for a static analysis, the type system presented as part of Enforcement Mech-
anism I is more refined than the proof-of-concept presented earlier. Indeed, in
the previous work, migration was not taken into account when analyzing the de-
classifications occurring within the migrating code. So while there the following
program would be rejected if F was not allowed by W (d1)

(thread (thread (flow F in M) at d2) at d1) (15)

the type system of Figure 3 only rejects it if F is not allowed by W (d2). En-
forcement Mechanism II adopts part of the idea in [6] of performing a runtime
type analysis to migrating programs, but uses a more permissive “checking” type
system. Enforcement Mechanism III explores a mechanism that allows to take
advantage of the efficiency of flow policy comparisons. It uses a type and effect
system for calculating declassification effects that is substantially more precise
than previous ones, thanks to the matching relations and operations that it uses.

The concept of informative type and effect system was introduced in [8],
where a different notion of declassification effect was defined and applied to the
problem of dealing with dynamic updates to a local allowed flow policy.

7 Conclusion

We have considered an instance of the problem of enforcing compliance of declas-
sifications to a dynamically changing allowed flow policy. In our setting, changes
in the allowed flow policy result from the migration of programs during execu-
tion. We approach the problem from a migration control perspective. To this
end, we chose a network model that abstracts away the details of the migration
control architecture. This allows us to prove soundness of a concrete network
level security property, guaranteeing that programs can roam over the network,
never performing declassifications that violate the network confinement property.

While our results are formulated for a particular security property – flow pol-
icy confinement – we expect that similar ideas can be used for other properties.
One could add expressiveness to the property by taking into account the history
of domains that a thread has visited when defining secure code migrations. For
instance, one might want to forbid threads from moving to domains with more
favorable allowed flow policies. This would be easily achieved by introducing a
condition on the allowed flow policies of origin and destination domains.

By performing comparisons between three related enforcement mechanisms,
we have argued that the concept of declassification effect offers a good balance
between precision and efficiency. We believe that similar mechanisms can be
applied in other contexts. For future work, we plan to study others instances of
enabling dynamic changing allowed flow policies.
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