
Typing Illegal Information Flows as Program Effects

Ana Almeida Matos

Instituto Superior Técnico
SQIG – Instituto de Telecomunicações

ana.matos@ist.utl.pt

José Fragoso Santos

Inria Sophia Antipolis Méditérranée

jose.santos@inria.fr

Abstract
Specification of information flow policies is classically
based on a security labeling and a lattice of security levels
that establishes how information can flow between security
levels. We present a type and effect system for determin-
ing the least permissive relaxation of a given confidentiality
policy that allows to type a program, given a fixed security
labeling. To this end, sets of illegal information flows are
represented as downward closure operators (here referred to
as flow kernels) on a given lattice of security levels. Illegal
information flows can then be seen as program effects, and
their representation as flow kernels subsumes in granularity
previous lattice-oriented representations of information flow
policies. Effect soundness, optimality and preservation re-
sults are presented for the proposed type and effect system,
for programs written in a concurrent higher-order imperative
lambda-calculus with reference creation.

Our type and effect system provides a mechanism for
deriving the flow kernel that characterizes the illegal flows
that occur within a program, and which can be used to
support runtime decisions of compliance to other policies.
This point is illustrated by means of an application to a
setting where local programs run under the control of a
dynamic allowed flow policy.

Categories and Subject DescriptorsF.3.1 [Semantics of
Programming Languages]: Program analysis

General Terms Security, Languages, Verification

1. Introduction
Information flow security regards the compliance of pro-
gram executions with a policy that specifies how informa-
tion should be allowed to flow in a system. Information flow
policies are usually based on a security lattice that structures
security levels according to their relative degree of security,
and a security labeling that assigns a security level to each
resource of the system [6]. Noninterference [10] is the sim-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLAS’12 June 15, Beijing, China.
Copyright c© 2012 ACM ISBN 978-1-4503-1441-1/12/06. . . $10.00

plest information flow policy, which requires strict preserva-
tion of the meaning of a given ordering and assignment of
security levels.

Since Volpano, Smith and Irvine’s [20] first type system,
a number of static analyses have been studied for enforc-
ing different variations of noninterference [17, 18]. Mostof
these analyses are essentially aimed at distinguishing secure
programs (that abide by a given security policy) from in-
secure programs (that may encode illegal information flows
with respect to the given security policy). Therefore, in most
type systems designed to check information flow policies,
the type assigned to a program is not particularly meaning-
ful. Implicitly, there are fundamentally only two types of
programs: secure programs and insecure ones.

In this paper we present a type-based mechanism that ex-
tends the utility of classical information flow type systems,
for besides allowing to decide typability, it provides informa-
tion about the potential illegal flows that may result from the
execution of any program. To this end, we propose to treat
information flows that deviate from the original confidential-
ity policy as program effects [12], and use a type and effect
system for assigning to each program a summary of these
effects, here referred to asdeclassification effect. This point
builds on previous observations [2, 5] that security levelscan
be seen as memoryregionsin which basic programeffects
such as reading, writing and allocation may occur. The ille-
gal flows that are encoded in a program can then be approx-
imated by recording how the basic effects of subexpressions
are composed by each language construct. For example, in
a conditional expression(if M thenNt elseNf) whereM, Nt

andNf are expressions that might perform reading and writ-
ing operations, the regions that are involved in those opera-
tions can be described by associating reading and writing ef-
fects to each expression. IfM has reading effectl , this means
thatM does not read memory regions above the levell . Du-
ally, if Nt or Nf have a writing effectl ′, this means that they
do not write into memory regions below the levell ′. While
standardcheckingtype systems reject programs for which
l ′ is not at least as confidential thanl , our informativetype
system infers a potential information flow from levell to l ′.

Program effects must be composable in order to obtain,
from the effects of sub-expressions, an effect that represents

the entire expression, possibly updated with its own intrinsic
effects. A semi-lattice of program effects is therefore con-
venient, for which we take the lattice of downward closure
operators (or kernels) [7] on the original lattice of security
levels. The declassification effect of a program then corre-
sponds to a kernel on the original security lattice. Represent-
ing sets of illegal flows by kernels leads to a natural frame-
work for analyzing and enforcing information flow security.

Applications of the proposed framework go beyond stati-
cally deciding program security, as kernels provide valuable
information for efficiently making dynamic security deci-
sions. In this paper we demonstrate one such application,
by considering a scenario where programs execute under the
control of a dynamic runtime allowed flow policy that de-
scribes all the illegal information flows that may take place.
We show that flow kernels present adequate properties for
reasoning within this setting, by viewing the declassification
effect as the least permissive authority to which a program
complies. Indeed, once the flow kernel of a program has been
extracted, its comparison to other flow policies can be done
efficiently, without re-analyzing the program.

The main contributions of this paper are the following:

• A detailed discussion on the use of kernels as a means to
specify relaxations of a given confidentiality policy. This
representation is shown to offer strictly more granularity
than previously used “flow policies”.

• A formulation of bisimulation-based noninterference and
of a type and effect system for enforcing it over an ex-
pressive core-ML language that are explicitly customiz-
able with any given kernel on the original security setting.

• A type and effect system for computing the strictest de-
classification effect to which a program complies. Or
equivalently, for determining the least relaxation of the
original security policy that renders the program secure.

The paper starts with a brief presentation of the language
(Section 2), followed by a exposition on the use of kernels
as security lattices which constitutes the framework for the
remaining sections (Section 3). Then, a parameterizable ver-
sion of noninterference is formulated (Section 4). The fol-
lowing two sections present the corresponding classical in-
formation flow type system (Section 5), and a new infor-
mative type system for calculating the declassification effect
(Section 6). Then, an application to the problem of enabling
external dynamic updates to allowed policies is presented
(Section 7). The paper ends with a discussion of related work
(Section 8) and concludes (Section 9). Proofs can be con-
sulted in the companion technical report.

2. Language
In this section we define the target language of our study, an
imperative higher-orderλ-calculus with reference creation,
a fairly standard core-ML [13] where programs run in a
concurrent setting. Choosing such an expressive language

Variables x,y References a,b,c

Values V ::= () | x | a | (λx.M) | tt | ff
Pseudo-values W ::= V | (ρx.W)
Expressions M,N ::= W | (M N) | (M;N) |

(if M thenNt elseNf) |
(refl ,θ M) | (! N) | (M := N)

Figure 1. Syntax of expressions.

facilitates the argumentation for key ideas of the paper, in
particular the view of the extracted flow kernel in the role
of a program effect. Furthermore, it supports the claim that
they can be extended to any other setting.

Syntax. The language ofexpressions, defined in Figure 1,
is based on a call-by-valueλ-calculus extended with the
imperative constructs of ML, conditional branching and
boolean values (here the(ρx.W) construct provides for re-
cursive values). Variablesx and referencesa,b,c are drawn
from the disjoint countable setsVar andRef, respectively.
This means in particular that reference names are not associ-
ated with any security labels or types at the language level.A
mapping from references to security levels and types will be
established in Section 4, during the security analysis. Nev-
ertheless, reference names can be created at runtime, by a
construct that is annotated with a type and security level that
should be associated with the new reference. As we shall
see, these security annotations do not play any role in the
operational semantics (they will be used at a later stage of
the analysis).

The evaluation relation is a transition relation between
configurations of the form〈P,S〉 where:P ∈ N

Exp is a pool
(multiset) of expressions that run concurrently and themem-
ory or storeS : Ref → Val is a mapping from a finite set
of references to values. The set brackets are omitted when
pools of expressions are singletons.

Operational Semantics. The semantics of the language is
defined as a small step operational semantics on configura-
tions given in Figure 2. The call-by-value evaluation orderis
specified by writing expressions usingevaluation contexts.
We write E[M] to denote an expression where the subex-
pressionM is placed in the evaluation context E, obtained
by replacing the occurrence of[] in E byM.

Evaluation Contexts
E ::= [] | (E N) | (V E) | (E;N) | (refl ,θ E) | (! E) |

(E := N) | (V := E) | (if E thenNt elseNf)

We use some notations and conventions for defining tran-
sitions on configurations. Given a configuration〈P,S〉, the
sets dom(S) and rn(P) denote, respectively, the set of ref-
erence names that are mapped byS, and the set of refer-
ence names that occur in the expressions ofP (this notation
is extended in the obvious way to expressions). The set of

〈E[((λx.M) V)],S〉 −→
ε
〈E[{x 7→V}M],S〉

〈E[(if tt thenNt elseNf)],S〉 −→ε
〈E[Nt],S〉

〈E[(if ff thenNt elseNf)],S〉 −→ε
〈E[Nf],S〉

〈E[(V;N)],S〉 −→
ε
〈E[N],S〉

〈E[(ρx.W)],S〉 −→
ε
〈E[({x 7→ (ρx.W)} W)],S〉

〈E[(! a)],S〉 −→
ε
〈E[S(a)],S〉

〈E[(a := V)],S〉 −→
ε
〈E[()], [a := V]S〉

〈E[(refl ,θ V)],S〉 −−−−−→
(a:θ refl)

〈E[a], [a := V]S〉, a fresh in S

〈P,S〉 −−→
lab

〈P′,S′〉 〈P∪Q,S〉 well formed

〈P∪Q,S〉 −−→
lab

〈P′∪Q,S′〉

Figure 2. Operational semantics.

variables occurring free inM is denoted by fv(M). We re-
strict our attention to well formed configurations〈P,S〉 sat-
isfying the conditions that rn(P)⊆ dom(S), and that, for any
a∈ dom(S), rn(S(a)) ⊆ dom(S). The capture-avoiding sub-
stitution ofW for the free occurrences ofx in M is denoted
by {x 7→W}M. The operation of adding or updating the im-
age of an objectz to z′ in a mappingZ is denoted[z := z′]Z.

For convenience of the analysis that follows, each single
transition of the operational semantics is labeled with infor-
mation regarding the security level and type of references
that are created at runtime. Transitions are thus decorated
with labelslab with the syntax

Labels lab ::= ε | a : θ refl | lab � lab′

of the form a : θ refl , when a reference nameda, type θ
and security levell is created during that step, andε, when
no reference is created. Labels propagate to transitions of
pools of expressions in the obvious way. The relation−−→

lab

∗

denotes the reflexive and transitive closure of the transition
relation−−→

lab′
, wherelab is the concatenation of eachlab′ in

the individual steps. Empty labels (ε) may be omitted.

3. Relaxing security settings
Confidentiality policies are classically founded on the repre-
sentation of confidentiality requirements by alattice of se-
curity levelsL = 〈L,v,u,t,>,⊥〉 and asecurity labeling
that maps each resource to a security level [6]. Intuitively,
information pertaining to references labeled withl2 can be
legally transfered to references labeled withl1 only if l2 v l1,
in which casel1 is said to be at least as confidential thanl2.
Each pair〈L,∆〉 consisting of a security latticeL and a secu-
rity labeling∆ : Ref → L is here referred to as asecurity set-
ting. In this section, we show how downward closure opera-
tors (or kernels) can be used to express arbitrary relaxations
on any given security setting and how to construct the least
permissive relaxation of a security setting that is consistent
with a given set of potentially illegal information flows.

L

l1

l2
l3

l4 l5

l6

l7

k1(L)

l1

l2 l5

l6

l7

k2(L)

l1

l2

l6

l7
Figure 3. An example of two kernels on a given lattice.

As a running example, consider the leftmost confidential-
ity lattice that is depicted in the Hasse diagram of Figure 3.
In this figure, the most confidential security level> corre-
sponds tol1, whereas the lowest level⊥ corresponds tol7.
As usual, information is allowed to flow upwards, for in-
stance from security levell6 to security levell3, sincel6 v l3,
but not froml4 to l5, sincel4 6v l5. Under the security lattice
L and considering a security labeling∆ such that∆(x) = l5
and∆(y) = l4, the program

(x := (! y)) (1)

clearly sets up an illegal information flow.

Kernels as relaxed security settings.An operatork : L →
L, defined on an arbitrary latticeL = 〈L,v,u,t,>,⊥〉, is
a downward closure operatorif it is monotone, idempotent
and restrictive, that is for every levell ∈ L, k(l) v l . The
image of every kernelk : L → L, when equipped with the
same order relation ofL, is also a lattice. In fact, it is a sub-
lattice of L, denoted byk(L) = 〈k(L),vk,tk,uk,⊥k,>k〉,
where for every set of security levelsI ⊆ k(L):

i. for everyl1, l2 ∈ k(L), we havel1 vk l2 if l1 v l2

ii. tkI = tI

iii. ukI = k(uI)

iv. ⊥k = ⊥

v. >k = k(>)

Informally, kernels map elements of a lattice to lower ones,
while preserving their relative order. From an information
flow analysis standpoint, when applied to security lattices,
this means that kernels preserve the original legal informa-
tion flows, and possibly introduce new flows due to the col-
lapsing of security levels. Thus, we overload the notation
so that for two arbitrary security levelsl1, l2 ∈ L we write
l1 vk l2 if k(l1) vk k(l2). We say that a kernel onL admits
an information flow(l1, l2) ∈ L×L, if k(l1) vk k(l2). Analo-
gously, a kernelk is said toadmita set of information flows
F if it admits every flow(l1, l2) ∈ F.

Given a security setting〈L,∆〉, every kernelk onL yields
a new setting〈k(L),k ◦ ∆〉, hereby denoted〈L,∆,k〉. The
new security setting can be viewed as a relaxation of the
original one, since it collapses an arbitrary number of levels
of L into lower ones, possibly allowing information flows
that are not admitted by the initial setting. Concretely, iftwo
referencesa1,a2 ∈Ref are labeled with distinct security lev-
elsl1 andl2 respectively, such thatl1 6v l2, then the content of

a1 cannot be legally transfered toa2. However, the same in-
formation flow is deemed legal when considering a security
setting generated by a kernelk on L such thatk(l1) v k(l2).

In the example of Figure 3, the two rightmost lattices
represent the image of two kernelsk1 andk2 onL, such that:

• k1(l3) = l5, k1(l4) = l6 andk1(l) = l for all other levels.

• k2(l3) = l6, k2(l4) = l6, k2(l5) = l6 andk2(l) = l for all
other levels.

Informally, each security level of the original latticeL that
is not shown in the representation of a kernel is mapped
by the kernel to the highest level that is depicted below it.
For instance, levell3 is collapsed into levell5 by kernelk1,
and into levell6 by kernelk2. As a result, program (1) is
still illegal under the security setting〈k1(L),k1 ◦∆〉, since
k1(l4) = l6 6vk1 k1(l5) = l5, but is legal under the security
setting〈k2(L),k2◦∆〉, sincek2(l4) = l6 vk2 k2(l5) = l6.

Lattice of security settings Given a latticeL = 〈L,v
,u,t,>,⊥〉, the set of all kernels onL, denoted bydco(L),
when ordered according to the usual order relation4 such
that, for any two kernelsk1,k2 : L → L

k1 4 k2 ⇔∀l ∈ L. k1(l) v k2(l)

yields a lattice〈dco(L),4,g,f,Ω,f〉, where for every set
of kernelsK ⊆ dco(L), and for any levell ∈ L we have:

i. (fK)(l) = l if for eachk∈ K, k(l) = l

ii. (gK)(l) = t{k(l) | k∈ K}

iii. f(l) = l

iv. Ω(l) = ⊥

This lattice can be interpreted as alattice of relaxationsof
the original security setting. Accordingly, given two kernels
k1 and k2 on L, k1 is less permissive thank2 if k2 4 k1,
sincek2 collapses more levels of the original lattice into each
other, thus possibly admitting more information flows than
those which are admitted byk1. That is, all the information
flows admitted byk1 are also admitted byk2. Consequently
the composition of a given a kernelk1 with a more permis-
sive kernelk2 always yields the more permissive kernelk2.
These intuitions are precisely stated in the following lemma.

LEMMA 1. Given a latticeL and two kernels k1,k2 on L

such that k2 4 k1, the following holds:

i. k1◦ k2 = k2 ◦ k1 = k2

ii. ∀l1, l2 ∈ L : l1 vk1 l2 ⇒ l1 vk2 l2

Given two arbitrary kernelsk1,k2 on L, the kernelk1 g

k2 is the most permissive kernel that does not permit any
more flows than those which are permitted by bothk1 and
k2. Conversely,k1 f k2 can be seen as the least permissive
kernel that admits all the information flows which are either
allowed by k1 or by k2. The identity mappingf is the
least permissive kernel, since it admits no illegal information
flows with respect to the original lattice (every security level

is mapped to itself) andΩ is the most permissive kernel since
it maps every security level to the bottom of the original
lattice, thus collapsing all levels into the bottom level.

Returning to Figure 3, in order to verify thatk2 4 k1, it
is enough to notice that the lattice corresponding tok2 is a
sub-lattice of the lattice corresponding tok1.

Admitting sets of illegal information flows In this paper,
the kernels onL are used to over-approximate arbitrary sets
of illegal information flows. To this end, we introduce an
operator�: dco(L)× (L×L) → dco(L), that given a kernel
k on L and two levelsl1, l2 ∈ L yields the least permissive
kernel belowk that admits the flow(l1, l2), denoted by�k

[l1, l2] and defined as follows:

�k [l1, l2](l) =

{

k(l u l2) if l v l1
k(l) otherwise

Naturally, if l1 v l2, then�k [l1, l2] = k. One can prove that
given an arbitrary set of information flowsF , the order by
which individual flows are taken fromF to construct the
intended kernel does not influence the result. In the simplest
case, given a kernelk and two flows(l1, l2),(l3, l4) ∈ L×L:

�(�k[l1,l2]) [l3, l4] =�(�k[l3,l4]) [l1, l2]

This allows us to overload the notation and extend the� to
sets of information flowsF , where the operator�: dco(L)×
P (L× L) → dco(L) assigns to each kernelk and arbitrary
set of information flowsF the least permissive kernel below
k that admits all the flows inF :

�k F =

{

k if F = /0
�(�k[l1,l2]) F ′ if F = F ′∪{(l1, l2)}

Throughout the paper,�f F is abbreviated to� F . The fol-
lowing lemma states that�k F satisfies the desired property.

LEMMA 2. Given a lattice of security levelsL, a kernel k
onL and a binary relation F⊆ L×L, the greatest kernel k∗

such that k∗ 4 k and k∗ admits all the information flows in F
is given by�k F.

Note that there is no bijection between the set of kernels
on L and the set of all binary relations (here regarded as
sets of information flows) onL. Indeed, it is easy to see
that the least permissive kernels that admit two given sets
of information flowsF1 andF2, respectively, may coincide.
For instance, in the example shown in Figure 3, kernelk2 is
the least permissive kernel that admits both{(l3, l4),(l3, l5)}
and{(l3, l6)}. In this sense, the least permissive kernel that
admits a given set of information flowsF can be seen as an
over-approximation ofF.

Note that any set of information flowsF ⊆ L×L can be
easily preprocessed in order to reduce the number of recur-
sive calls of the� operator. Firstly, all flows inF that are per-
mitted by the original lattice can be eliminated. Additionally,
for every three security levelsl1, l2, l3, if (l1, l3),(l2, l3) ∈ F ,
then both flows can be equivalently replaced by a single flow
(l1t l2, l3). Conversely, if(l1, l2),(l1, l3)∈F , then both flows
can be equivalently replaced by a single flow(l1, l2 u l3).

Hence, the recursive application of these two rules to all the
flows in F, yields a new set of information flowsF ′ corre-
sponding to the same kernel and which is strictly smaller
than the number of levels of the original security lattice.

3.1 Security levels as sets of principals

In order to compare the granularity of representing security
settings by means of kernels with other approaches, we now
consider a scenario in which confidentiality levels are sets
of principalsp,q∈ Pri that have read-access rights to refer-
ences. Thus, given a referencea∈Ref with labell , principal
p is allowed to read the value ofa if p∈ l . In this scenario,
the base lattice of security levels is given by〈P (Pri),⊇〉.
Observe that/0 corresponds to the highest confidentiality
level since no principal is allowed to read the value of refer-
ences labeled with/0, whereasPri is the lowest confidential-
ity level, since every principal is allowed to read the value
of references labeled withPri. As an example, the leftmost
imagine in Figure 4 depicts the lattice that corresponds to the
set of principalsPri = {A,B,C} (Alice, Bob and Charlie).

A flow relation[2, 14] f is a reflexive and transitive bi-
nary relation onPri that can be used to specify relaxations
over a principal-based security lattice, so that if(p,q) ∈ f ,
then information may flow from principalp to principalq.
That is, information that principalp is allowed to read may
also be read by principalq. As kernels, flow relations can
also be ordered according to their relative permissivity. Nat-
urally, a flow relationf1 is more permissive than a flow re-
lation f2 iff f1 ⊇ f2. In fact, the set of all the flow relations
overPri, denotedF (Pri), ordered under reverse subset in-
clusion is a complete lattice〈F (Pri),4,g,f,Ω,f〉, where
for any family of flow relationsF ⊆ F (Pri):
i. fF = ∪F

ii. gF = ∩F

iii. Ω = Pri ×Pri

iv. f = {(p, p) | p∈ Pri}

An operator on a lattice is said to beco-additiveif it
preserves the meet operation. More precisely, for principal-
based lattices, this means that given an arbitrary lattice
P (Pri), a kernelk : Pri → Pri is co-additive if for every set
L⊆Pri, we havek(

S

L) =
S

{k(l) | l ∈ L}. It is interesting to
observe that there is a one-to-one correspondence between
the set of flow relations and the set of co-additive downward
closure operators on the corresponding lattice. Indeed, every
flow relation f on Pri corresponds to a co-additive down-
ward closure operator on the lattice〈P (Pri),⊇〉 given by:

l ↑ f = {q | ∃p∈ l . (p,q) ∈ f}
Intuitively, the operator maps confidentiality levels to the ac-
tual set of principals that are allowed to read at that level,
in the presence of the flow relationf . So for instance, the
label {Alice, Bob} allows Alice, Bob and Charlie as read-
ers, under the policy{Alice,Charlie}. Conversely, every co-
additive downward closure operatork on 〈P (Pri),⊇〉 corre-

P (Pri)

{A,B,C}

{A,C}
{B,C}

{A,B}

{C} {A} {B}

{ /0} k1(P (Pri)) { /0}

{A,C} {A,B}

{C} {B}
{A}

{A,B,C}

Figure 4. An example of a kernel that cannot be represented
using flow relations.

sponds to a flow relationfk:

fk = {(p,q) | p,q∈ Pri & q∈ k({p})}

For any set of principalsPri, the set of co-additive ker-
nels onP (Pri), when ordered in the usual way, is also a
lattice. In fact, the lattice of co-additive kernels onP (Pri)
is order-isomorphic to the lattice of flow relations onPri.
Hence, given a security setting〈P (Pri),∆〉, where∆ : Ref→
P (Pri), every flow relationf generates a relaxation of the
original security setting given by〈↑ f (P (Pri)),↑ f ◦∆〉.

It is important to understand that, as a consequence of
the above observations, there are kernels onP (Pri) that can-
not be equivalently expressed as flow relations onPri. In
this sense, by representing relaxations over an initial security
setting using arbitrary kernels, more granularity is achieved
than by using flow relations. To illustrate this remark, and
returning to Figure 4, suppose we want to establish a con-
fidentiality policy such that principalA is allowed to read
everything that can be read by bothB andC. This policy is
precisely captured by the following kernelk1 on P (Pri)

• k1({B,C}) = {A,B,C}

• k1(l) = l for every other setl ⊆ {A,B,C}

that is represented in the leftmost lattice of Figure 4. One can
easily check thatk1 is not co-additive, since:

k1({B,C}) = {A,B,C} 6=
[

p∈{B,C}

k1(p) = {B,C}

This is thus an example of a policy that cannot be expressed
using flow relations.

4. Noninterference
In this section we introduce a bisimulation-based definition
of noninterference that is parameterized with a security set-
ting of the form〈L,Σ,k〉, wherek is a kernel onL. The
definition also makes use of areference labelingΣ : Ref →
L×Typ, whose left projectionΣ1 corresponds to the secu-
rity labeling ∆ (see previous section), and right projection
corresponds to thetype labelingΣ2 : Ref → Typ.

Given a security latticeL and a security labelingΣ1, two
memoriesS1 andS2 are said to be indistinguishable at level
l ∈ L with respect to a kernelk, writtenS1 =L,Σ1,k

l S2, if they

coincide in all references assigned to security levels lessor
equal thanl . Formally,S1 =L,Σ1,k

l S2 if and only if for every
referencea∈ Ref, if Σ1(a) vk l , thenS1(a) = S2(a) holds.

The language defined in Section 2 is a higher-order lan-
guage, where values stored in memory can be used by pro-
grams to build expressions that are then executed. For ex-
ample, the expression((! a) ()) can evolve into an insecure
program when running on a memory that maps a referencea
to a lambda-abstraction whose body consists of an insecure
expression. In order to avoid considering all such programs
insecure, it is necessary to make assumptions concerning the
contents of the memory. Here, memories are assumed to be
compatible to the given security setting and typing environ-
ment, requiring typability of their contents with respect to
the type system that is defined in the next section. A memory
S is then said to be(L,Σ,k,Γ)-compatibleif for every refer-
encea∈ dom(S) its valueS(a) satisfiesΓ `k

L,Σ S(a) : Σ2(a).
Since we are considering pools of expressions that run

concurrently, our information flow property is formulated in
terms of a bisimulation [3], based on the small-step seman-
tics defined in Section 2. The following relation pairs pools
of expressions that show the same behavior on the low part
of two states.

DEFINITION 1 (≈L,Σ,k
Γ,l). A (L,Σ,k,Γ, l)-bisimulation is a

symmetric relationR Σ on pools of expressions that satisfies,
for all (L,Σ,k,Γ)-compatible memories S1,S2:
P1 R Σ P2 and〈P1,S1〉 −−→

lab
〈P′

1,S
′
1〉 and S1 =L,Σ,k

l S2 implies

• If lab = ε, then∃P′
2,S

′
2 such that:

〈P2,S2〉 −−→
lab

∗ 〈P′
2,S

′
2〉 and S′1 =L,Σ,k

l S′2 and P′1 R Σ P′
2

• If lab=a : θ refl ′ and a/∈dom(S2), then∃P′
2,S

′
2 such that:

〈P2,S2〉−−→
lab

∗〈P′
2,S

′
2〉 and S′1=

L,[a:=(l ′,θ)]Σ,k
l S′2 and

P′
1R [a:=(l ′,θ)]ΣP′

2

The largest(L,Σ,k,Γ, l)-bisimulation is denoted by≈L,Σ,k
Γ,l .

Note that for anyL, Σ, k and l , the set of pairs of values
is an (L,Σ,k,Γ, l)-bisimulation. Furthermore, the union of
all (L,Σ,k,Γ, l)-bisimulations is the largest(L,Σ,k,Γ, l)-
bisimulation. Since the domain of the stores is extended dur-
ing computation, the reference labelingΣ must also be ex-
tended. In this point, the above definition differs from [2],as
a consequence of keeping the reference labeling independent
from the programming language level.

Due to the partiality of the equality condition defined
by =L,Σ,k

l , the relation≈L,Σ,k
Γ,l is not reflexive. In fact, a

program is bisimilar to itself only if the high part of the state
never interferes with the low part, i.e., if no security leakcan
occur. This motivates the definition of the security property:

DEFINITION 2 ((L,Σ,k,Γ)-Noninterference).A pool of ex-
pressions P satisfies Noninterference with respect to a se-
curity setting(L,Σ,k) and a typing environmentΓ, writ-
ten P satisfies(L,Σ,k,Γ)-Noninterference, if it satisfies
P≈L,Σ,k

Γ,l P for all security levels l∈ L.

The above definition requires information flows occurring at
any computation step and performed by any expression in
the pool to comply with the security setting(L,Σ,k). Mak-
ing the(L,Σ,k) parameters explicit highlights the fact that
the security definition depends on the permissivity of the
considered relaxation of the original security setting. Non-
interference is thus defined as aclassof information flow
properties. In particular, one can prove that for kernelsk1,k2

such thatk2 4 k1, if P satisfies(L,Σ,k1,Γ)-noninterference
thenP satisfies(L,Σ,k2,Γ)-noninterference.

5. Customizing a type and effect system for
information flow

In this section we present a type and effect system [12]
that is designed to accept programs in the language of Sec-
tion 2 that satisfy the noninterference as formulated in the
previous section. The type and effect system, presented in
Figure 5 is therefore formulated in terms of the parame-
ters (L,Σ,k,Γ), where typing judgments are of the form
Γ `k

L,Σ M : s,τ. Their meaning is that an expressionM is
typable with respect to the security latticeL, reference la-
beling Σ and kernelk, with typeτ and security effects, in
the typing contextΓ : Var → Typ, which assigns types to
variables. The security effects is composed of three secu-
rity levels: s.r is the reading effect, an upper-bound on the
security levels of the references that are read byM; s.w is
the writing effect, a lower bound on the security levels of
the references that are written byM; ands.t is thetermina-
tion effect, an upper bound on the levels of the references on
which the termination of expressionM might depend. The
reading and termination effects are composed in a covariant
way, whereas the writing effect is contravariant. Intuitively,
the reading effect is used in combination with the writing ef-
fect to control direct and implicit leaks, and is also used to
determine the termination effect, which is used in combina-
tion with the writing effect to control termination leaks. In
this type system, the termination effect of an expression is
always lower than its reading effect. Types have the follow-
ing syntax (wheret is a type variable):

τ,σ,θ ∈ Typ ::= t | unit | bool | θ refl | τ s
−→ σ

Typable expressions that reduce to a function that takes a
parameter of typeτ and returns an expression of typeσ,
with a latent effects are assigned the function typeτ s

−→ σ.

Explanations to the rational of these rules are similar to the
ones found in the type system of Figure 6 that appears in the
next section, and are given explicitly in [2].

All the operations on security levels (lower bounds, up-
per bounds and comparison between security levels) are ex-
pressed in terms of the latticek(L), corresponding to the
relaxation ofL yielded byk. We use a (join) semi-lattice on
security effects, that is obtained from the pointwise compo-
sition of the lattice of security effects. More precisely,svk s′

iff s.r vk s′.r & s′.wvk s.w & s.t vk s′.t, from which follows

[N IL] Γ `k
L,Σ () : unit [BOOLT] Γ `k

L,Σ tt : bool [BOOLF] Γ `k
L,Σ ff : bool [L OC] Γ `k

L,Σ a : Σ2(a) refΣ1(a)

[VAR] Γ,x : τ `k
L,Σ x : τ [A BS]

Γ,x : τ `k
L,Σ M : s,σ

Γ `k
L,Σ (λx.M) : τ s

−→
k

σ
[REC]

Γ,x : τ `k
L,Σ W : s,τ

Γ `k
L,Σ (ρx.W) : s,τ

[REF]
Γ `k

L,Σ M : s,θ s.r vk l

Γ `k
L,Σ (refl ,θ M) : stk 〈⊥k, l ,⊥k〉,θ refl

[DER]
Γ `k

L,Σ M : s,θ refl

Γ `k
L,Σ (! M) : stk 〈l ,>k,⊥k〉,θ

[A SSIGN]
Γ `k

L,Σ M : s,θ refl Γ `k
L,Σ N : s′,θ s.t vk s′.w

s.r,s′.r vk l

Γ `k
L,Σ (M := N) : stk s′tk 〈⊥k, l ,⊥k〉,unit

[COND]
Γ `k

L,Σ M : s,bool Γ `k
L,Σ Nt : st ,τ Γ `k

L,Σ Nf : sf ,τ s.r vk st .w,sf .w

Γ `k
L,Σ (if M thenNt elseNf) : stk st t

k sf t
k 〈⊥k,>k,s.r〉,τ

[A PP]
Γ `k

L,Σ M : s,τ s′
−→
k

σ Γ `k
L,Σ N : s′′,τ s.t vk s′′.w

s.r,s′′.r vk s′.w

Γ `k
L,Σ (M N) : stk s′tk s′′tk 〈⊥k,>k,s.r tk s′′.r〉,σ

[SEQ]
Γ `k

L,Σ M : s,τ Γ `k
L,Σ N : s′,σ s.t vk s′.w

Γ `k
L,Σ (M;N) : stk s′,σ

Figure 5. A customizable type and effect system for checking information flow.

stk s′ = 〈s.r tk s′.r,s.wuk s′.w,s.t tk s′.t〉 and:
⊥k = 〈⊥k,>k,⊥k〉

We abbreviateΓ `k
L,Σ M : ⊥k,τ by Γ `k

L,Σ M : τ. One can
easily check that security effects that are assigned to an
expression when typed with respect to a kernelk are always
closed underk.

The type system of Figure 5 is similar to the one in [2],
where kernels take the place of the (less generic, see Sub-
section 3.1) flow policies. Another difference lies in the fact
that the reference labeling is here an explicit parameter of
the type system. As a result, in rule LOC, the reference type
is constructed by resorting to the parameterΣ.

The following type and effect preservation result states
that the type of an expression is preserved by reduction, and
that its security effects “weaken” along the computations,as
reads, updates and creation of references are performed and
conditional branches are discarded. Values that are storedin
the initial state are assumed to have the correct type.

THEOREM 3 (Type and effect preservation).Given a secu-
rity setting(L,Σ,k) and typing environmentΓ, if for an ex-
pression M there exist s andτ such thatΓ `k

L,Σ M : s,τ, and
if 〈M,S〉 −−→

lab
〈M′,S′〉 for a memory S that is(L,Σ,k,Γ)-

compatible, then:

• If lab = ε, then there is an effect s′ such that s′ v s and
Γ `k

L,Σ M′ : s′,τ.
• If lab = a : θ refl for some reference name a, typeθ and

security level l, then there is an effect s′ such that s′ v s
andΓ `k

L,[a:=(l ,θ)]Σ M′ : s′,τ.

Given two kernelsk1 andk2 such thatk1 4 k2, every ex-
pressionM that is typable with respect tok2 is also typable
with respect tok1, since all the information flows that are
allowed byk2 are also allowed byk1. Conversely, if every
programc that is typable with respect tok2 is also typable
with respect tok1, thenk1 4 k2. The following lemma for-
malizes this result.

LEMMA 4. Given a security latticeL and a reference label-
ing Σ, and for any two kernels k1,k2 onL, the following two
propositions are equivalent:

• k1 4 k2

• For every program M, ifΓ `k2
L,Σ M : s2,τ for some secu-

rity effect s2 and typeτ, thenΓ `k1
L,Σ M : s1,τ for some

security effect s1.

From the previous lemma, we can easily conclude that
given two kernelsk1 andk2 onL, the most permissive kernel
that types all the programs which are simultaneously typable
with respect tok1 andk2 is k1 g k2. Analogously, the least
permissive kernel that allows typing all the programs that
are either typable with respect tok1, or typable with respect
to k2 corresponds tok1 fk2.

We now formalise soundness of the type system of Fig-
ure 5 with respect to the noninterference property of Defini-
tion 2.

THEOREM 5 (Soundness for Noninterference).Given a se-
curity setting(L,Σ,k) and a typing environmentΓ, if for ev-
ery M∈ P there exist s andτ such thatΓ `k

L,Σ M : s,τ, then
P satisfies(L,Σ,k,Γ)-Noninterference.

[N IL I] Γ `L,Σ () : unit [BOOLTI] Γ `L,Σ tt : bool [BOOLFI] Γ `L,Σ ff : bool [L OCI] Γ `L,Σ a : Σ2(l) refΣ1(l)

[VARI] Γ,x : τ `L,Σ x : τ [A BSI]
Γ,x : τ `L,Σ M : s,σ

Γ `L,Σ (λx.M) : τ s
−→ σ

[RECI]
Γ,x : τ `L,Σ W : s,τ

Γ `L,Σ (ρx.W) : s,τ

[REFI]
Γ `L,Σ M : s,θ

Γ `L,Σ (refl ,θ M) : st〈⊥, l ,⊥,� {(s.r, l)}〉,θ refl
[DERI]

Γ `L,Σ M : s,θ refl

Γ `L,Σ (! M) : st〈l ,>,⊥,Ω〉,θ

[A SSI]
Γ `L,Σ M : s,θ refl Γ `L,Σ N : s′,θ

Γ `L,Σ (M := N) : sts′t〈⊥, l ,⊥,� {(s.t,s′.w),(s.r, l),(s′.r, l)}〉,unit

[CONDI]
Γ `L,Σ M : s,bool Γ `L,Σ Nt : st ,τ Γ `L,Σ Nf : sf ,τ

Γ `L,Σ (if M thenNt elseNf) : stst tsf t〈⊥,>,s.r,� {(s.r,st .w),(s.r,sf .w)}〉,τ

[A PPI]
Γ `L,Σ M : s,τ s′

−→ σ Γ `L,Σ N : s′′,τ

Γ `L,Σ (M N) : sts′ts′′t〈⊥,>,s.r ts′′.r,� {(s.t,s′′.w),(s.r,s′.w),(s′′.r,s′.w)}〉,σ

[SEQI]
Γ `L,Σ M : s,τ Γ `L,Σ N : s′,σ

Γ `L,Σ (M;N) : sts′t〈⊥,>,⊥,� {(s.t,s′.w)}〉,σ

Figure 6. An informative type and effect system for the declassification effect

Note that the type system can be proved sound for concurrent
expressions due to the fact that termination leaks are typed
away from singular expressions.

6. A type system for determining the
declassification effect

In the previous section it was established that, given an
initial security latticeL and a reference labelingΣ, every
program that is typable, using the type system of Figure 5,
with respect to a certain and kernelk, is in fact typable with
respect to all kernelsk′ such thatk′ 4 k. This section presents
a type system that assigns to each program the strictest
kernel with respect to which it is typable. This kernel can
be interpreted as a description of all the potential illegal
information flows that may take place during the execution
of the program. It will be referred to as thedeclassification
effectof the program.

Our approach is based on the observation that the illegal
flows that are encoded in a program can be seen as side ef-
fects of that program. Indeed, when viewing security levels
associated to references as regions of the memory [5], basic
forms of program effects such as reading and writing effects
consist simply of security levels. By identifying sets of in-
formation flows with kernels, we are in fact constructing a
composite form of program effect.

Figure 6 presents the type and effect system for determin-
ing the declassification effect. Typing judgments are of the
form Γ `L,Σ M : s,τ, differing from those of Figure 5 since
the former type system is parameterized by a kernel whereas
this type system is not. Moreover, a fourth components.d
is added to security effects, representing the declassification
effect of the expression, a flow kernel that is a lower bound

on the illegal flows that might occur during the execution of
M, and is composed in a contravariant way.

The type syntax is analogous to the one in the previous
section, where the latent effect on the function type now uses
the new security effects with four components. Moreover,
the semi-lattice of security effects uses the relation

sv s′
de f
⇔ s.r v s′.r & s′.wv s.w & s.t v s′.t & s′.d 4 s.d

which entails that
sts′ = 〈s.r ts′.r,s.wus′.w,s.t ts′.t,s.dfs′.d〉 and:

⊥ = 〈⊥,>,⊥,Ω〉

In each rule, the declassification effect of an expression
is at least as low in the lattice of kernels as is the declassi-
fication effects of its sub-expressions, more precisely it is at
least as low as the meet (f) of those kernels. In some rules,
the resulting kernel is further lowered in order to take in to
account new potentially illegal flows that are detected by the
rule. It is elucidative to notice the correspondence between
the flows that lead to the update of the declassification effect
and those that are restricted by means of thev relation in
the type system of Figure 5. Indeed, the intuitions that justify
them are also analogous.

In rule REFI , the direct flow from the levels.r associated
to the value of the expression to the new reference that is
created at levell is introduced; the corresponding termina-
tion leak is accounted for simultaneously, since also in this
type system the termination effect of an expression is always
lower than its reading effect. In rule ASSI , the declassifica-
tion effect of the assignment expression is updated with the
flow that results from the potential termination leak caused
by the evaluation of the leftmost expression at levels.t, that
could be registered while evaluating the rightmost expres-
sion at levels′.w; furthermore, the values into which the left

and the rightmost expressions are evaluated determine which
reference is written and with which value, which could lead
to a direct leak from the level of their reading effectss.r and
s′.r (respectively) to the levell of the assigned reference (the
corresponding termination leaks are accounted for simulta-
neously). In rule CONDI , the implicit leak from the levels.r
associated to the value of the tested expression into the writ-
ing levelsst andsf of the branches is introduced (as well
as the corresponding termination leaks). Rule APPI registers
the potential termination leak that results from the evaluation
of the leftmost expression at levels.t and is potentially reg-
istered during the evaluation of the rightmost expression at
levels′′.w; furthermore, the values into which the left and the
rightmost expressions are evaluated determine which func-
tion is being applied and to which value, which could be
registered at levels′.w during the evaluation of the body of
the function (similarly regarding the corresponding termi-
nation leaks). Finally, rule SEQI incorporates the potential
termination leak resulting from the evaluation of the left-
most expression from levels.t that could be registered by
the rightmost expression at levels′.w.

As an example of the computation of the declassification
effect consider the following two programs

((al3 := (! bl4)∗ (! al3));(cl5 := (! al3))) (2)

(if ((! bl4) > (! cl5)) then(dl6 := (! dl6)+1) else()) (3)
where the security setting is given by the lattice of Figure 3
with the security labeling that is obtained by assigning each
variable to the level corresponding to its subscript. It is easy
to see that expression (2) corresponds to kernelk1 and ex-
pression (3) corresponds to kernelk2. This example gives
an intuition as to why, when collapsing a level to another
level, the analysis collapses all the levels in between. In ex-
pression (2), after the first assignment, information pertain-
ing to levell3 depends on information pertaining to levell4,
however, sincel4 v l3, the associated kernel is still the iden-
tity kernelf. The second assignment encodes an explicit de-
pendency between levelsl3 andl5 and therefore the analysis
collapses levell3 to l5. However, there is also a dependency
between levelsl4 and l5 (due to the first assignment). This
dependency is assumed sincef(l4) = l4 v f(l3) = l3 and
hence the analysis also collapsesl4 to l6 = l4u l5. In expres-
sion (3), the level of the guard of the if isl1, which entails
a dependency between levelsl6 and l1. Thus, the analysis
collapses levell1 to l6 resulting in kernelk2.

The type and effect system of Figure 6 accepts more pro-
grams than the one in Figure 5. More precisely, it accepts all
programs that are typable with respect to a security labeling
that maps all references to the lowest confidentiality level⊥.
As expected, types and effects (and in particular the declas-
sification effect) are preserved and weakened by reduction,
as the effects are performed.

THEOREM 6 (Type and effect preservation).Given a secu-
rity setting (L,Σ) and typing environmentΓ, if for an ex-
pression M there exist an effect s and a typeτ such that

Γ `L,Σ M : s,τ, and if 〈M,S〉 −−→
lab

〈M′,S′〉 for a a memory S

that is(L,Σ,Γ,Ω)-compatible, then:

• If lab = ε, then there is an effect s′ v s and a typeτ such
thatΓ `L,Σ M′ : s′,τ.

• If lab = a : θ refl for some reference name a, typeθ and
security level l, then there is an effect s′ v s and a typeτ
such thatΓ `

L,[a:=(l ,θ)]Σ M′ : s′,τ.

The following theorem states that the declassification ef-
fect assigned by the type system of Figure 6 to a given pro-
gramM corresponds to the smallest kernel that allows typing
the program with respect to the type system of Figure 5.

THEOREM 7 (Soundness and optimality of the type system).
Given a security latticeL, a reference labelingΣ, a typing
environmentΓ and an expression M such thatΓ `L,Σ M : s,τ
for some typeτ and security effect s, then the following
propositions hold:

i. There is a security effect s′, such thatΓ `s.d
L,Σ M : s′,τ.

ii. If there is a kernel k onL and a security effect s′ such
thatΓ `k

L,Σ M : s′,τ, then k4 s.d.

While the purpose of the type system that was presented
in the previous section was to accept/reject programs accord-
ing to their potential to perform illegal information flows,the
main goal of the type system that is presented here is to ex-
tract a conservative approximation of those flows.

Notice that although the above result is formulated in
terms of single expressions, it can be used in concurrent
settings. Indeed, for a pool of expressions with declassi-
fication effectk1, . . . ,kn, Theorem 7 implies typability of
all expressions with respect to any flow kernelk such that
k 4 k1 f . . .fkn. In general, the principles behind our infor-
mative type system can be applied to any setting that can be
tackled by means of a state-oriented checking-type system.

6.1 Flow relations as declassification effects

In Section 3.1, flow relations were presented as an alternative
means to describe flexible information flow policies, that is,
relaxations of the initial (principal-based) security setting.
Here we show that when taking the lattice of flow relations
as the lattice of declassification effects, there ceases to be
an optimal declassification effect to describe the information
flows that are entailed by each program, i.e., Theorem 2 does
not hold in this restricted setting.

Given a security setting〈L,∆〉 and an expressionM, The-
orem 7 states that the declassification effect computed by the
informative type system corresponds to the least permissive
kernelkM that allows to typeM according to the checking
type system. However, this kernel may not be a co-additive
kernel, i.e. it may not representable as a flow relation. Aim-
ing at an approximation, one might hope to determine the
greatest co-additive kernel that allows to typeM, which by
Theorem 7 is necessarily lower thankM. However, the least
upper bound of all the co-additive kernels that are lower than

k2(P (Pri)) { /0}

{A,C} {A,B}

{C} {A}

{A,B,C}

k3(P (Pri)) { /0}

{A,C} {A,B}

{A} {B}

{A,B,C}

Figure 7. Possible non-optimal co-additive kernels for ac-
cepting program (4).

kM is not necessarily lower thankM. That is, for an arbitrary
kernelkM : L → L, the kernelk∗M : L → L given by

k∗M = g{k′ | k′ 4 kM & k′ is co-additive}

is not necessarily lower thankM. Thus concluding that when
using flow relations as declassification effects there are pro-
grams for which there is no optimal declassification effect.

Returning to the example presented in Section 3.1 for the
set of principalsPri = {A,B,C}, and considering a security
labelingΣ1 : Ref → P (Pri), such thatΣ1(a) = {B,C} and
Σ1(b) = {A}, the program

(b{A} := (! a{B,C})) (4)

has declassification effect�f {({B,C},{A})}, which corre-
sponds to the kernelk1 presented in Figure 4. Sincek1 is not
co-additive, the strictest flow policy to which the above pro-
gram complies must correspond to the strictest co-additive
kernel belowk1. Figure 7 illustrates the two highest co-
additive kernels belowk1, denoted byk2 andk3 respectively.
Sincek2 andk3 are not comparable to each other, we must
conclude that there is no strictest flow policy among the set
of flow policies to which program (4) complies (one must
choose either betweenk2 or k3).

7. Flow kernels for a hybrid analysis
In this section we flesh out a possible application of flow
kernels as a way of instrumenting the dynamic decision of
whether a certain program should be allowed to run, with
some degree of static processing.

Let us consider a scenario where programs run locally
under a dynamic allowed information flow policykA that
describes all the information flows that can take place. In this
scenario, under the security setting〈L,∆〉 and considering
an allowed flow kernelkA, the desired security property that
we aim at corresponds to(L,Σ,kA,Γ)-Noninterference.

SincekA is unknown before program execution, when us-
ing the type and effect system of Figure 5 to certify compli-
ance with the intended security property, the program must
be (re)typed with respect tokA. However, by making use of
the informative type system of Figure 6, one can determine
the declassification effect of the program, which corresponds
to the strictest kernel to which the program complies, thus

avoiding to retype it again. Instead, it is only necessary to
compare the declassification effect of the program with the
allowed flow kernel. In fact, one can deduce from Lemma 4
and Theorems 7 and 5 the following result:

COROLLARY 8 (Usefulness of the declassification effect).
Consider a security latticeL, a reference labelingΣ,

a typing environmentΓ and an expression M such that
Γ `L,Σ M : s,τ for some typeτ and security effect s. Then
for any allowed flow kernel kA we have that:

• if kA 4 s.d then P satisfies(L,Σ,kA,Γ)-Noninterference;
• Γ `kA

L,Σ M : s′,τ for some security effect s′ iff kA 4 s.d.

In other words, this corollary states that it is enough to com-
pare the allowed flow kernel with the extracted declassifica-
tion effect in order to conclude for the security of the expres-
sion. Furthermore, it clarifies that there is no loss in precision
with respect to the checking type and effect system.

In order to make the applicability of this result more
concrete, we extend the language introduced in Section 2
to a scenario in which the allowed flow kernel can change
even during program execution. In order to keep track of
the declassification effect that is associated with each thread,
expressions are given a namen,m∈ Nam, and configura-
tion include a policy mapping from thread names to kernels
D : Nam→ dco(L). This set, together with the poolP con-
taining all the (named) threads in the system, the storeScon-
taining all the references, and the allowed flow kernelkA,
form configurations〈P,S,D,kA〉, over which the evaluation
relation is defined below. For a given pool of named threads
P, the set of thread names that occur in it is given by dom(P).

The first rule is constructed over the semantics defined
in Figure 2, transposing the rules for pools of single ex-
pressions to the new form of configurations, which includes
naming every thread. The assumption of well-formedness in-
cludes, in addition to the requirements described for the base
language, dom(P) ⊆ dom(D).

〈{M},S〉 −−→
lab

〈{M′},S′〉 〈{Mm}∪P,S,D,kA〉 is well formed

〈{Mm}∪P,S,D,kA〉 −→ 〈{M′m}∪P,S′,D,kA〉

The second rule describes how the allowed flow kernel can
change during computations. During this transition, the pool
of threads cannot compute.

†kF P = P′

〈P,S,D,kA〉 −→ 〈P′,S,D,kF〉

Any thread that no longer complies with the new allowed
kernel kF is eliminated, where † preempts threads whose
(original) declassification effect no longer complies withthe
currently allowed kernel:

†kF P =







/0 if P = /0
{Mk}∪†kF P′ if P = P′∪{Mk} andkF 4 k
†kF P′ if P = P′∪{Mk} andkF 64 k

In practice, the preemption operation is a dynamic mech-
anism for ensuring that only threads that comply with the
current allowed flow policy are permitted to execute. How-
ever, it makes use of the declassification effect that was com-
puted statically. In this sense, it implements a simple hybrid
enforcement mechanism. In order to formulate the security
property, we introduce the notion of reachable configuration:

DEFINITION 3 (Reachable configuration).We say that a
configuration〈P′,S′,D,k′A〉 is reachable from configuration
〈P,S,D,kA〉 if and only if

• 〈P′,S′,D,k′A〉 = 〈P,S,D,kA〉, or
• there is a configuration〈P′′,S′′,D,k′′A〉 that is reachable

from 〈P,S,D,kA〉, and〈P′′,S′′,D,k′′A〉 −→ 〈P′,S′,D,k′A〉

The following property is ensured in this setting:

PROPOSITION9 (Confinement to a dynamic flow policy).
Consider a set of threads P, a policy mapping D, and an

initial allowed flow policy kA such that for all Mn ∈ P, we
have thatΓ `L,Σ M : s,θ with kA 4 D(n) 4 s.d. If the con-
figuration〈P′,S′,D,k′A〉 is reachable from〈P,S,D,kA〉, then
P|dom(P′) satisfies(L,Σ,kA,Γ)-Noninterference.

In other words, if a certain allowed flow policykA is ruling
at some point of the computation over a poolP of threads,
then all the original threads are ensured to comply withkA.
The result is restricted to the threads that are in the domain
of P′, for at each point, nothing can be stated about threads
that have been preempted earlier.

The problem of dealing with dynamic allowed flow poli-
cies is a complex one, and it is not within the aims of this
paper to provide a final solution for it. Here we take a strong
yet simple approach, that highlights the usefulness of the de-
classification effect as a means to describe the information
flows that take place within a program. More flexible and
permissive settings could be conceived. For instance, one
could envisage an analysis that only requires the compliance
of the rest of the program that is still to be executed to newly
established allowed flow kernels. While this would lead to
accept more program executions (since by Theorem 6 the de-
classification effect weakens, i.e., becomes stricter), itwould
not ensure that the program does not leak illegal information
(with respect to the current policy) due to past computations.

8. Related work
Type and effect systems for information flow.Gifford and
Lucassen first introduced the concepts of effect and region
in the design of a type and effect system for a higher-order
language with imperative features [12].

Type systems for enforcing a variety of flexible informa-
tion flow policies have been studied extensively [17, 18, 20],
including type systems for higher-order languages with im-
perative features ([2, 5, 15], to name a few). Most works
on functional languages take the orientation of associating
security levels to values, as opposed to the state-oriented

view of [2, 5]. In these works, there is no counterpart to the
informative-type system presented here. A type system for
determining a declassification effect is presented first in [1],
but differs in the fundamental point that while here the de-
classification effect is obtained directly from the actual de-
pendencies that are encoded in programs, in the earlier work
it is based on flow policies that are declared by a declassifi-
cation construct, and are therefore potentially more coarse.

In [2, 5], it is observed that information flow control is
rooted on the notions of reading and writing effects where
regions can be viewed as confidentiality levels that can be
conditioned by a type and effect system. To the best of our
knowledge the view of the actual information flows as a
program effect is novel.

Inference of declassification policies.Recently, Vaughan
and Chong [19] present an expressive language for writing
complex declassification policies, and a dataflow analysis for
inferring them from a simple imperative programming lan-
guage. Their policies are partially ordered by areveals no
more information thanrelation, and provide a least upper
bound operatorand, as well as a bottomReveal(). Rewrite
rules provide anormalization processfor simplifying poli-
cies and establishing equivalences between them. The secu-
rity condition is input-output oriented.

Closer to our representation of security lattices by ker-
nels, is the work on the abstract interpretation [4] view of
information flow by Giacobazzi and Mastroeni. They intro-
duced [9] the notion of abstract noninterference, a weaken-
ing of noninterference given in terms of observers modeled
by means of abstract interpretations of concrete semantics.
In abstract noninterference the power of an observer is mod-
eled as an upward closure operator on the domain of the
program. The same authors [8] also introduce a proof sys-
tem inductive on the syntax of programs that is based on
the derivation of abstract noninterference assertions, which
specify the noninterference degree of a program relatively
to a given model of an attacker. Apart from differences in
language expressivity and treatment of declassification, the
precise connections and differences between this framework
and ours requires further investigation.

Dynamic allowed flow policies Hicks et. al [11] approach
the problem of allowing dynamic external updates of an al-
lowed flow policy, there referred to as the “permission con-
text”, for a purely functional sequential scenario withoutde-
classification, in the context of a dynamic allowed-flow pol-
icy. In their work, changes over the permission context are
restricted. The property that is formulated, dubbed “nonin-
terference between updates”, guarantees that, if an update
occurs during computation, then the rest of that computation
complies with the new policy. The fact that this property al-
lows for the program to implement illegal flows that have
been set up before the update of the allowed policy is recog-
nized by the authors while pointing out that a “better prop-
erty is needed”. While it is not our claim that the property

presented in Section 7 is a better solution, for it can be criti-
cized for being overly restrictive, we believe that the mecha-
nism presented in this paper can be used to instrument more
complex and flexible properties for solving this problem and
others that require dynamic comparisons between policies.

9. Conclusion
Parameterizing noninterference by means of a flow kernel
can be seen as a declassification condition that satisfies
Sabelfeld and Sands’ principles ofsemantic consistency,
conservativityandnon-occlusion[18]. Rocha et. al [16] ar-
gue for a strict separation between the programming and
the specification of the information flow policy that the pro-
gram should comply to. It is observed that most flexible
information flow policies are strongly connected to the use
of program annotations such as declassification operations,
which are often viewed as forms of policy specification in
themselves. Setting aside the fact that declassification decla-
rations can be used for purposes other than policy specifica-
tion, it is clear that it is important to be able to express and
check information flow policies externally to the program.
In this paper we propose an approach to this problem, by
presenting a way of extracting a description of the strictest
information flow policy that each program complies with.

By considering a very expressive programming lan-
guage, and by establishing a connection between a stan-
dard type system for checking information flow and the new
informative-type system for determining the declassification
effect, we pave the way for the design of other enforce-
ment mechanisms based on the extraction of flow kernels
representing a declassification effect to any language and
state-oriented information flow type system that could be
considered. As future work, we plan to generalize our re-
sults one step further in the concurrent setting, in order to
handle distribution and program migration. We envisage a
scenario where the static analysis mechanism that is pro-
posed in this paper can instrument runtime decisions such as
migration control in a distributed setting.

Acknowledgments The authors would like to thank the In-
des team at INRIA and all anonymous reviewers for discus-
sions and comments that have improved the final outcome
of the paper. This work was partially supported by the Por-
tuguese Goverment via the PhD grant SFRH/BD/71471/2010
and the KLog project PTDC/MAT/68723/2006, financed by
the Fundação para a Ciência e Tecnologia.

References
[1] A. Almeida Matos. Flow-policy awareness for distributed

mobile code. InProc. of CONCUR 2009 - Concurrency
Theory, volume 5710 ofLecture Notes in Computer Science.
Springer, 2009.

[2] A. Almeida Matos and G. Boudol. On declassification and
the non-disclosure policy. Journal of Computer Security,
17(5):549–597, 2009.

[3] G. Boudol and I. Castellani. Noninterference for concurrent
programs and thread systems.Theoretical Computer Science,
281(1–2):109–130, 2002.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. InPOPL, pages 238–252, 1977.

[5] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis
of information flow security with mutable state.Journal of
Functional Programming, 15(02), 2005.

[6] D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236–243, 1976.

[7] P. Dwinger. On the closure operators of a complete lattice. In
Indagationes Math., volume 16, pages 560–563, 1954.

[8] R. Giacobazzi and I. Mastroeni. Proving abstract non-
interference. InConf. of the European Association for Com-
puter Science Logic, volume 3210 of LNCS, pages 280–294.
Springer-Verlag, 2004.

[9] R. Giacobazzi and I. Mastroeni. A proof system for ab-
stract non-interference.Journal of Logic and Computation,
20(2):449–479, 2010.

[10] J. Goguen and J. Meseguer. Security policies and security
models. InProc. of the 1982 IEEE Symposium on Security
and Privacy, pages 11–20. IEEE Computer Society, 1982.

[11] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic up-
dating of information-flow policies. InWorkshop on Founda-
tions of Comp. Security, pages 7–18, 2005.

[12] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys-
tems. InPOPL’88: 15th ACM symposium on Principles of
programming languages, pages 47–57. ACM Press, 1988.

[13] R. Milner, M. Tofte, R. Harper, and David MacQueen.The
definition of Standard ML. MIT Press, revised edition, 1997.

[14] A. C. Myers and B. Liskov. Complete, safe information
flow with decentralized labels. In19th IEEE Symposium
on Security and Privacy, pages 186–197. IEEE Computer
Society, 1998.

[15] F. Pottier and V. Simonet. Information flow inference for ml.
ACM Transactions on Programming Languages and Systems,
25(1):117–158, 2003.

[16] B. Rocha, S. Bandhakavi, J. den Hartog, W. Winsborough,
and S. Etalle. Towards static flow-based declassification for
legacy untrusted programs. InSP’10: Proceedings of the
31st IEEE Symposium on Security and Privacy, pages 93–108.
IEEE Computer Society, 2010.

[17] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. IEEE Journal on Selected Areas in Communi-
cations, 21(1):5–19, 2003.

[18] A. Sabelfeld and D. Sands. Declassification: Dimensions and
principles.J. Comput. Secur., 17:517–548, October 2009.

[19] J. Vaughan and S. Chong. Inference of expressive declassi-
fication policies. InProc. of the 2011 IEEE Symposium on
Security and Privacy, pages 180–195. IEEE Computer Soci-
ety, 2011.

[20] D. M. Volpano, G. Smith, and C. E. Irvine. A sound type sys-
tem for secure flow analysis.Journal of Computer Security,
4(2–3):167–188, 1996.

