Typing lllegal Information Flows as Program Effects

Ana Almeida Matos José Fragoso Santos
Instituto Superior Técnico Inria Sophia Antipolis Méditérranée
SQIG - Instituto de Telecomunicacgdes jose.santos@inria.fr

ana.matos@ist.utl.pt

Abstract plest information flow policy, which requires strict pregasr
tion of the meaning of a given ordering and assignment of
security levels.

Since Volpano, Smith and Irvine’s [20] first type system,
a number of static analyses have been studied for enforc-
ing different variations of noninterference [17, 18]. Mo$t

Specification of information flow policies is classically

based on a security labeling and a lattice of security levels
that establishes how information can flow between security
levels. We present a type and effect system for determin-

ing the least permissive relaxation of a given confidertyiali h | il ai ictinauishi
policy that allows to type a program, given a fixed security these analyses are essentially aimed at distinguishingesec

labeling. To this end, sets of illegal information flows are Programs (that abide by a given security policy) from in-

represented as downward closure operators (here referred t SECUré programs (that may encode illegal information flows
as flow kernels) on a given lattice of security levels. lllega With respectto the given security policy). Therefore, insno

information flows can then be seen as program effects, andtYP€ Systems designed to check information flow policies,
their representation as flow kernels subsumes in granglarit (€ tYP€ assigned to a program is not particularly meaning-
previous lattice-oriented representations of infornratiow ful. Implicitly, there are fundamentally only two types of
policies. Effect soundness, optimality and preservateon r Programs: secure programs and insecure ones.

sults are presented for the proposed type and effect system, In this paper we present a type-based mechanism that ex-
for programs written in a concurrent higher-order impeati ends the utility ‘?f classme}l mforma}t.lon.flow type §ystems
lambda-calculus with reference creation. for besides allowing to decide typability, it provides infoa-

Our type and effect system provides a mechanism for tion about the potential illegal flows that may result frora th
deriving the flow kernel that characterizes the illegal flows EX€cution of any program. To this end, we propose to treat
that occur within a program, and which can be used to information flows that deviate from the original confidehtia
support runtime decisions of compliance to other policies. 'Y Policy as program effects [12], and use a type and effect
This point is illustrated by means of an application to a SYStem for assigning to each program a summary of these
setting where local programs run under the control of a effects, here referred to @eclassification effecThis point
dynamic allowed flow policy. builds on previous observations [2, 5] that security lecals

_ _ . . be seen as memorggionsin which basic prograneffects
Categories and Subject Descriptors=.3.1 [Semantics of gych as reading, writing and allocation may occur. The ille-

Programming LanguagégsProgram analysis gal flows that are encoded in a program can then be approx-
General Terms Security, Languages, Verification imated by recording how the basic effects of subexpressions

are composed by each language construct. For example, in
1. Introduction a conditional expressiafif M thenN; elseN;) whereM, N

andNs are expressions that might perform reading and writ-
ing operations, the regions that are involved in those epera
tions can be described by associating reading and writing ef
fects to each expression Nf has reading effedt this means
thatM does not read memory regions above the lévBlu-

ally, if Ny or Nt have a writing effect’, this means that they
do not write into memory regions below the levelWhile
standardcheckingtype systems reject programs for which
Permission to make digital or hard copies of all or part o thiork for personal or I” is not at least as confidential thgnour informativetype
classroom use is granted without fee provided that copesair made or distributed system infers a potential information flow from leveb |’

for profit or commercial advantage and that copies bear titis@and the full citation R ’ .
on the first page. To copy otherwise, to republish, to postewess or to redistribute Program effects must be composable in order to obtain,

to lists, requires prior specific permission and/or a fee. from the effects of sub-expressions, an effect that reptsse
PLAS’12 June 15, Beijing, China.
Copyright(© 2012 ACM ISBN 978-1-4503-1441-1/12/06. . . $10.00

Information flow security regards the compliance of pro-
gram executions with a policy that specifies how informa-
tion should be allowed to flow in a system. Information flow
policies are usually based on a security lattice that sirest
security levels according to their relative degree of siégur
and a security labeling that assigns a security level to each
resource of the system [6]. Noninterference [10] is the sim-

the entire expression, possibly updated with its own istdn
effects. A semi-lattice of program effects is therefore-con
venient, for which we take the lattice of downward closure
operators (or kernels) [7] on the original lattice of setyuri
levels. The declassification effect of a program then corre-
sponds to a kernel on the original security lattice. Represe
ing sets of illegal flows by kernels leads to a natural frame-
work for analyzing and enforcing information flow security.
Applications of the proposed framework go beyond stati-
cally deciding program security, as kernels provide valeiab
information for efficiently making dynamic security deci-
sions. In this paper we demonstrate one such application
by considering a scenario where programs execute under th
control of a dynamic runtime allowed flow policy that de-
scribes all the illegal information flows that may take place

Variables Xy References B,c
Values V o= (| x|al (AxM)|tt]|ff
Pseudo-values W= V| (pxW)
Expressions M = W]|(MN)|(M;N) |

(if M thenN, elseNy) |
(refig M) | (! N) | (M:=N)

Figure 1. Syntax of expressions.

facilitates the argumentation for key ideas of the paper, in

'particular the view of the extracted flow kernel in the role
%f a program effect. Furthermore, it supports the claim that

they can be extended to any other setting.

We show that flow kernels present adequate properties forSyntax. The language oéxpressionsdefined in Figure 1,

reasoning within this setting, by viewing the declassifaat
effect as the least permissive authority to which a program

is based on a call-by-valug-calculus extended with the
imperative constructs of ML, conditional branching and

complies. Indeed, once the flow kernel of a program has beenboolean values (here tHex.W) construct provides for re-

extracted, its comparison to other flow policies can be done
efficiently, without re-analyzing the program.
The main contributions of this paper are the following:

¢ A detailed discussion on the use of kernels as a means to

specify relaxations of a given confidentiality policy. This
representation is shown to offer strictly more granularity
than previously used “flow policies”.

¢ A formulation of bisimulation-based noninterference and
of a type and effect system for enforcing it over an ex-
pressive core-ML language that are explicitly customiz-
able with any given kernel on the original security setting.

¢ A type and effect system for computing the strictest de-
classification effect to which a program complies. Or
equivalently, for determining the least relaxation of the
original security policy that renders the program secure.

The paper starts with a brief presentation of the language
(Section 2), followed by a exposition on the use of kernels
as security lattices which constitutes the framework fer th
remaining sections (Section 3). Then, a parameterizalple ve
sion of noninterference is formulated (Section 4). The fol-
lowing two sections present the corresponding classical in
formation flow type system (Section 5), and a new infor-
mative type system for calculating the declassificatioacff
(Section 6). Then, an application to the problem of enabling
external dynamic updates to allowed policies is presented
(Section 7). The paper ends with a discussion of related work

(Section 8) and concludes (Section 9). Proofs can be con-

sulted in the companion technical report.

2. Language

In this section we define the target language of our study, an
imperative higher-ordex-calculus with reference creation,
a fairly standard core-ML [13] where programs run in a

cursive values). Variablesand references, b, c are drawn
from the disjoint countable selsar and Ref, respectively.
This means in particular that reference names are not associ
ated with any security labels or types at the language lével.
mapping from references to security levels and types will be
established in Section 4, during the security analysis.-Nev
ertheless, reference names can be created at runtime, by a
construct that is annotated with a type and security leal th
should be associated with the new reference. As we shall
see, these security annotations do not play any role in the
operational semantics (they will be used at a later stage of
the analysis).

The evaluation relation is a transition relation between
configurations of the forniP,S) where:P € NEX? is a pool
(multiset) of expressions that run concurrently andrttesn-
ory or storeS: Ref — Val is a mapping from a finite set
of references to values. The set brackets are omitted when
pools of expressions are singletons.

Operational Semantics. The semantics of the language is
defined as a small step operational semantics on configura-
tions given in Figure 2. The call-by-value evaluation order
specified by writing expressions usiegaluation contexts

We write EM] to denote an expression where the subex-
pressionM is placed in the evaluation context E, obtained
by replacing the occurrence fifin E by M.

Evaluation Contexts
E JI(EN)[(VE)[(EN)|(refigE)|('E) |
(E:=N)| (V:=E) | (if E thenN; elseNs)

We use some notations and conventions for defining tran-
sitions on configurations. Given a configuratitPS), the
sets doniS) and rr{P) denote, respectively, the set of ref-
erence names that are mapped3yand the set of refer-
ence names that occur in the expressionB (this notation

concurrent setting. Choosing such an expressive languages extended in the obvious way to expressions). The set of

(E[(AXM) V)], S — (E[{x—V}M],9)
(E[(if tt thenN: elseNt)], S) — (EINJ,S)
(E[(if ff thenN; elseN¢)],S) = (E[N¢],S)
(E[(ViN)],S) — (EIN,S)
(E[(PxW)],) — (E[({x = (pxW)} W)],S)
(E[(' a)],S) — (E[S@),9
(E[(a:=V)],8 — (E[0],[a:=V]9)
(E[(refi g V)], S M (E[a],[a:=V]9S), afreshin S

(P,S) = (P,8) (PUQ,S) well formed

lal

(PUQS — (PUQS)

lal

Figure 2. Operational semantics.

variables occurring free iM is denoted by ffM). We re-
strict our attention to well formed configuratiofR S) sat-
isfying the conditions that ?) C dom(S), and that, for any
ae domS), r(S(a)) € dom(S). The capture-avoiding sub-
stitution of W for the free occurrences afin M is denoted
by {x— W}M. The operation of adding or updating the im-
age of an objectto Z in a mappind is denotedz:= Z]Z.

Figure 3. An example of two kernels on a given lattice.

As a running example, consider the leftmost confidential-
ity lattice that is depicted in the Hasse diagram of Figure 3.
In this figure, the most confidential security levElcorre-
sponds td1, whereas the lowest level corresponds tdy.

As usual, information is allowed to flow upwards, for in-
stance from security levéd to security levels, sincelg C |3,
but not froml4 to Is, sincels IZ Is. Under the security lattice
L and considering a security labelidgsuch thatA(x) =I5
andA(y) = l4, the program

(x:=(1y))

clearly sets up an illegal information flow.

1)

Kernels as relaxed security settingsAn operatok : L —
L, defined on an arbitrary latticé = (L,C,mn,U, T,L), is
adownward closure operatdf it is monotone, idempotent
and restrictive, that is for every leveéle L, k(I) C I. The

For convenience of the analysis that follows, each single jmage of every kernek : L — L, when equipped with the

transition of the operational semantics is labeled witloinf

same order relation of, is also a lattice. In fact, it is a sub-

mation regarding the security level and type of references |attice of £, denoted byk(L) = <k(|_),gk7uk7|—|k7j_k,—|—k>,

that are created at runtime. Transitions are thus decoratedyhere for every set of security levels k(L)

with labelslab with the syntax
Labels lab::= ¢|a:0ref | lab. lab’

of the forma: 6ref;, when a reference nameal type 6
and security level is created during that step, andwhen

i. for everyly,lo e k(L), we havdy CX I, if I3 C 1,
ii. LKl =11

i, T =k(rIl)

no reference is created. Labels propagate to transitions ofiv, | X = |

pools of expressions in the obvious way. The relatliegq*
al

denotes the reflexive and transitive closure of the tramsiti

relation W’ wherelab is the concatenation of eatdb’ in
al

the individual steps. Empty labels)(may be omitted.

3. Relaxing security settings

Confidentiality policies are classically founded on thereep
sentation of confidentiality requirements byadtice of se-
curity levels£ = (L,C,m,U, T, L) and asecurity labeling
that maps each resource to a security level [6]. Intuitively
information pertaining to references labeled wlighcan be
legally transfered to references labeled witbnly if I, C 14,

in which casd; is said to be at least as confidential than
Each pair L,) consisting of a security latticé and a secu-
rity labelingA : Ref — L is here referred to assecurity set-

v. TK=K(T)

Informally, kernels map elements of a lattice to lower ones,
while preserving their relative order. From an information
flow analysis standpoint, when applied to security lattices
this means that kernels preserve the original legal inferma
tion flows, and possibly introduce new flows due to the col-
lapsing of security levels. Thus, we overload the notation
so that for two arbitrary security levelg,l, € L we write
l; CK 1 if k(l1) ¥ k(l2). We say that a kernel on admits
an information flow(l1,12) € L x L, if k(I1) Ck k(l2). Analo-
gously, a kernek is said toadmita set of information flows
F if it admits every flow(l1,15) € F.

Given a security settingZ, A), every kernek on £ yields
a new setting(k(£),k o A), hereby denoteds,A k). The
new security setting can be viewed as a relaxation of the

ting. In this section, we show how downward closure opera- original one, since it collapses an arbitrary number oflieve

tors (or kernels) can be used to express arbitrary relaxatio

of L into lower ones, possibly allowing information flows

on any given security setting and how to construct the least that are not admitted by the initial setting. Concretelywid

permissive relaxation of a security setting that is coesitst
with a given set of potentially illegal information flows.

referencesy,a; € Ref are labeled with distinct security lev-
elsl; andl; respectively, such thét iZ 1o, then the content of

a; cannot be legally transfered #. However, the same in-

is mapped to itself) an@ is the most permissive kernel since

formation flow is deemed legal when considering a security it maps every security level to the bottom of the original

setting generated by a kerrebn £ such thak(l1) C Kk(I2).
In the example of Figure 3, the two rightmost lattices
represent the image of two kerné&lsandk; on £, such that:

* ki(I3) =I5, ki(la) = Ig andky (1) = for all other levels.

® ka(I3) =g, ka(la) = lg, ko(Is) = 1s andka(l) =1 for all
other levels.

Informally, each security level of the original lattiae that

lattice, thus collapsing all levels into the bottom level.

Returning to Figure 3, in order to verify thks < ky, it
is enough to notice that the lattice corresponding.tés a
sub-lattice of the lattice correspondingkp

Admitting sets of illegal information flows In this paper,
the kernels orL are used to over-approximate arbitrary sets
of illegal information flows. To this end, we introduce an
operator: dca(L) x (L x L) — dco(L), that given a kernel

is not shown in the representation of a kernel is mapped i on £, and two leveldy, |, € L yields the least permissive

by the kernel to the highest level that is depicted below it.

For instance, levdk is collapsed into levek by kernelk;,
and into levellg by kernelky. As a result, program (1) is
still illegal under the security settingki(L£),ky o A), since
ki(l4) = lg 2" ky(I5) = Is, but is legal under the security
setting(ka(L), kz o A), sinceka(l4) = lg X2 ka(I5) = l.

Lattice of security settings Given a lattice £L = (L,C
,M,U,T,.1), the set of all kernels ori, denoted bydco(L),
when ordered according to the usual order relatioeuch
that, for any two kernelky, ko : L — L

ki<xk < Vlel k(l) Cka(l)

yields a lattice(dco(L), <, Y, A,Q,U), where for every set
of kernelsKk C dcao(£), and for any level € L we have:

i. (AK)(I)=11ifforeachkeK,k(l) =1

i. (YK)(I)=w{k(l)|keK}
i. O()=1
iv. Q(l)=1
This lattice can be interpreted adadtice of relaxationsof
the original security setting. Accordingly, given two kets

ki1 andks on L, k1 is less permissive thaky if ko < ki,
sinceky collapses more levels of the original lattice into each
other, thus possibly admitting more information flows than
those which are admitted by . That is, all the information
flows admitted byk; are also admitted blg,. Consequently
the composition of a given a kernlel with a more permis-

sive kernekz always yields the more permissive kerkel
These intuitions are precisely stated in the following lesamm

LEMMA 1. Given a lattice£ and two kernels Kk, on L
such that k < k1, the following holds:

i. kyoko =kpoky = ko
i. Viloer i hical, =1 Ckl,

Given two arbitrary kernelks, ko on L, the kernek; Y

kernel belowk that admits the flow(l1,l2), denoted by
[I1,12] and defined as follows:

i [|1,|2](|):{ tg:)mz)

Naturally, if I1 C I, thenry [I1,12] = k. One can prove that
given an arbitrary set of information flows, the order by
which individual flows are taken frorr to construct the
intended kernel does not influence the result. In the simples
case, given a kern&land two flows(l1,12), (I3,14) € L x L:

ifl1C 1y
otherwise

P eliata)) 13:1a] =T (e yiatg)) [12,12]
This allows us to overload the notation and extendrthe
sets of information flow§ , where the operator. dco(L) x
P(L x L) — dco(L) assigns to each kernkland arbitrary
set of information flows- the least permissive kernel below
k that admits all the flows if:
if F=0

rkF = { K .
r’(ﬁsz]) F' ifF= F/U{(ILIZ)}
Throughout the papery; F is abbreviated to F. The fol-
lowing lemma states thai F satisfies the desired property.

LEMMA 2. Given a lattice of security levels, a kernel k

on L and a binary relation FC L x L, the greatest kernefk

such that k < k and K admits all the information flows in F
is given by’ F.

Note that there is no bijection between the set of kernels
on £ and the set of all binary relations (here regarded as
sets of information flows) oh.. Indeed, it is easy to see
that the least permissive kernels that admit two given sets
of information flowsF; andF,, respectively, may coincide.
For instance, in the example shown in Figure 3, kekaés
the least permissive kernel that admits bpth, 14), (I3,15) }
and{(Is,le)}. In this sense, the least permissive kernel that
admits a given set of information flows can be seen as an
over-approximation of.

Note that any set of information flows C L x L can be

ko is the most permissive kernel that does not permit any easily preprocessed in order to reduce the number of recur-

more flows than those which are permitted by bkirand

sive calls of the” operator. Firstly, all flows i that are per-

ko. Converselyk; A ko can be seen as the least permissive mitted by the original lattice can be eliminated. Addititina

kernel that admits all the information flows which are either
allowed byk; or by k.. The identity mappind) is the
least permissive kernel, since it admits no illegal infotiora
flows with respect to the original lattice (every securityde

for every three security levels, I, I3, if (11,13),(I2,13) € F,
then both flows can be equivalently replaced by a single flow
(I1Ul2,13). Conversely, ifl1,12), (I1,13) € F, then both flows
can be equivalently replaced by a single flgh,l>M13).

Hence, the recursive application of these two rules to all th
flows in F, yields a new set of information flows’ corre-
sponding to the same kernel and which is strictly smaller
than the number of levels of the original security lattice.

3.1 Security levels as sets of principals
In order to compare the granularity of representing segurit

settings by means of kernels with other approaches, we now

consider a scenario in which confidentiality levels are sets

of principalsp, q € Pri that have read-access rights to refer-
ences. Thus, given a refererace Ref with labell, principal

p is allowed to read the value afif p € 1. In this scenario,
the base lattice of security levels is given tg(Pri), D).
Observe tha® corresponds to the highest confidentiality
level since no principal is allowed to read the value of refer
ences labeled with, whereasri is the lowest confidential-
ity level, since every principal is allowed to read the value
of references labeled witRri. As an example, the leftmost
imagine in Figure 4 depicts the lattice that correspondseo t
set of principal$ri = {A,B,C} (Alice, Bob and Charlie).

A flow relation[2, 14] f is a reflexive and transitive bi-
nary relation orPri that can be used to specify relaxations
over a principal-based security lattice, so thatgfq) € f,
then information may flow from principgh to principalq.
That is, information that principa is allowed to read may
also be read by principal. As kernels, flow relations can
also be ordered according to their relative permissivigt-N
urally, a flow relationf; is more permissive than a flow re-
lation fo iff f; D f,. In fact, the set of all the flow relations
over Pri, denotedf (Pri), ordered under reverse subset in-
clusion is a complete latticé ¥ (Pri), <, Y, A,Q,U), where
for any family of flow relationd= C (Pri):

i. A\F=UF
i. YF=nF
iii. Q=PrixPri

v. = {(p,p) | pePri}

An operator on a lattice is said to lm®-additiveif it
preserves the meet operation. More precisely, for prirtcipa

based lattices, this means that given an arbitrary lattice

P(Pri), a kernek : Pri — Pri is co-additive if for every set
L C Pri, we havek(UL) = U{k(l) | € L}. Itis interesting to

P(Pri) {0} ki(P(Pri)) {0}
{C} ! B {c} {B)
{A,C} 4 {A,B} {AC} {AB}
{AB,C} {AB,C}

Figure 4. An example of a kernel that cannot be represented
using flow relations.

sponds to a flow relatioffy:

fk={(p,q) | p,ge Pri & gek({p})}

For any set of principal®ri, the set of co-additive ker-
nels on?(Pri), when ordered in the usual way, is also a
lattice. In fact, the lattice of co-additive kernels @{Pri)
is order-isomorphic to the lattice of flow relations &mni.
Hence, given a security settif@(Pri),A), whereA : Ref —
P(Pri), every flow relationf generates a relaxation of the
original security setting given b§f t (P(Pri)), T+ oA).

It is important to understand that, as a consequence of
the above observations, there are kernel®@pri) that can-
not be equivalently expressed as flow relationsRsn In
this sense, by representing relaxations over an initialrsyc
setting using arbitrary kernels, more granularity is aokie
than by using flow relations. To illustrate this remark, and
returning to Figure 4, suppose we want to establish a con-
fidentiality policy such that principaA is allowed to read
everything that can be read by bddrandC. This policy is
precisely captured by the following kerrlglon P(Pri)

e ki ({B,C})={AB,C}
* k(1) =1 for every other set C {A,B,C}

thatis represented in the leftmost lattice of Figure 4. Care ¢
easily check thak; is not co-additive, since:

kl({B’C}) = {Av B’C} # U kl(p) = {B,C}
p<{BC}

This is thus an example of a policy that cannot be expressed
using flow relations.

observe that there is a one-to-one correspondence between _
the set of flow relations and the set of co-additive downward 4. Noninterference

closure operators on the corresponding lattice. Indeeatyev
flow relation f on Pri corresponds to a co-additive down-
ward closure operator on the latti¢@(Pri), D) given by:

I Tr={ql3pel. (p,q) € f}
Intuitively, the operator maps confidentiality levels te #c-
tual set of principals that are allowed to read at that level,
in the presence of the flow relatioh So for instance, the
label {Alice, Bob} allows Alice, Bob and Charlie as read-
ers, under the policyAlice,Charlie}. Conversely, every co-
additive downward closure operatoon (?(Pri), D) corre-

In this section we introduce a bisimulation-based definitio
of noninterference that is parameterized with a security se
ting of the form(L,> k), wherek is a kernel onZ. The
definition also makes use ofraference labeling : Ref —
L x Typ, whose left projectiork; corresponds to the secu-
rity labeling A (see previous section), and right projection
corresponds to thigpe labeling>, : Ref — Typ.

Given a security latticel and a security labeling;, two
memoriesS; and$, are said to be indistinguishable at level

| € L with respect to a kerndd, written$; :f'zl’k S, if they

coincide in all references assigned to security levelsdess The above definition requires information flows occurring at
equal than. Formally,$; :f’zl'k S if and only if for every any computation step and performed by any expression in
referencea € Ref, if Z1(a) X, thenS;(a) = S(a) holds. the pool to comply with the security settirig, >, k). Mak-

The language defined in Section 2 is a higher-order lan- ing the (L,X,k) parameters explicit highlights the fact that
guage, where values stored in memory can be used by prothe security definition depends on the permissivity of the
grams to build expressions that are then executed. For ex-considered relaxation of the original security settingnNo
ample, the expressia! a) ()) can evolve into an insecure interference is thus defined asckssof information flow
program when running on a memory that maps a referance properties. In particular, one can prove that for kerkelk;
to a lambda-abstraction whose body consists of an insecuresuch thak; < kg, if P satisfies(£, Z ki,)-noninterference
expression. In order to avoid considering all such programs thenP satisfies(£,Z ko, I")-noninterference.
insecure, it is necessary to make assumptions concerreng th
contents of the memory. Here, memories are assumed to bd. Customizing a type and effect system for
compatible to the given security setting and typing environ information flow
ment, requiring typability of their contents with respeat t
the type system that is defined in the next section. A memory

Sis thendsaid ;O _béL,lz,k,r)-con_]pfgt;b_lle_ifkfor ever.yzrefer- tion 2 that satisfy the noninterference as formulated in the
encea € dom(S) its valueS(a) satisfie Lz S(a) : 22(a). previous section. The type and effect system, presented in

Since wle are _cofn5|der_|ngﬂpools of exp_re.;,smnsl thg run Figure 5 is therefore formulated in terms of the parame-
concurrently, our information flow property is formulated i . (L£,5,k), where typing judgments are of the form

terms of a bisimulation [3], based on the small-step seman- | . : Lo o
tics defined in Section 2. The following relation pairs pools FF7zM:st. Their meaning is that an expressidhis

) . typable with respect to the security lattice reference la-
of expressions that show the same behavior on the low partbelingz and kernek, with typet and security effect, in

of two states, the typing context” : Var — Typ, which assigns types to
DEFINITION 1 (zﬁf’k). A (L,%Z,k T, 1)-bisimulation is a variables. The security effestis composed of three secu-
symmetric relatior® > on pools of expressions that satisfies, rity levels:sr is thereading effectan upper-bound on the
for all (£,%,k,I")-compatible memories; S5: security levels of the references that are readvys.w is

PLRE P, and(PL,S;) — (P,,S)) and § :ILz,k S implies the writing effect, a Iower_bound on the §ecurity Ieyels of
lab the references that are written B, ands.t is thetermina-
e If lab = ¢, then3P,, S, such that:

In this section we present a type and effect system [12]
that is designed to accept programs in the language of Sec-

tion effect an upper bound on the levels of the references on

, L3k) = . .
(P2, S) —" (P, S) and § =" S,and A R*> P which the termination of expressidvi might depend. The

e Iflab=a: B refy and a dom(S;), then3P5, S, such that: reading and termination effects are composed in a covariant
P “ (P! _Lla=("0)zk way, whereas the writing effect is contravariant. Intugtiy
(P2, SZ?@} (P2, %) and §= S and the reading effect is used in combination with the writing ef
PR E="8)zp) fect to control direct and implicit leaks, and is also used to

The largest £, %, k,I', |)-bisimulation is denoted byﬁz’k. c_ietern_nne the t(_ar_mmatlon effect, which |s_use_d in combina-
_ : tion with the writing effect to control termination leaks |

Note that for anyZ, %, k andl, the set of pairs of values this type system, the termination effect of an expression is

is an (L, Z,k,T",1)-bisimulation. Furthermore, the union of z1ways lower than its reading effect. Types have the follow-

all (£,%,kI,l)-bisimulations is the largestZ, >k, I, I)- ing syntax (wheré is a type variable):
bisimulation. Since the domain of the stores is extended dur - i s
ing computation, the reference labeliignust also be ex- 1,0,8 € Typ :i= t|unit | bool |Bref [T =0

tended. In this point, the above definition differsfrom @, Typaple expressions that reduce to a function that takes a
a consequence of keeping the reference labeling 'ndepe”de”parameter of type and returns an expression of type

from the programming language level. with a latenteffects are assigned the function type> o.

Due to the partiality of the equality condition defined Explanations to the rational of these rules are similar & th

_LTk o LIk :
by =, the relation~p; ™ is not reflexive. In fact, & = oot ngin the type system of Figure 6 that appears in the
next section, and are given explicitly in [2].

program is bisimilar to itself only if the high part of the &ta
All the operations on security levels (lower bounds, up-

never interferes with the low part, i.e., if no security leak
occur. This motivates the definition of the security propert per bounds and comparison between security levels) are ex-

DEFINITION 2 ((£,Z,k,I")-Noninterference)A pool of ex- pressed in terms of the lattid€ £), corresponding to the
pressions P satisfies Noninterference with respect to a se-relaxation of£ yielded byk. We use a (join) semi-lattice on
curity setting(L£,>,k) and a typing environment, writ- security effects, that is obtained from the pointwise compo

ten P satisfies(L,,k,M)-Noninterference, if it satisfies sition of the lattice of security effects. More precisalizk s
P ~5* P for all security levels E L. iff srC*s.r& s.wCKksw& st CXs't, from which follows

INILJFHX S ():unit [BOOLT] T HK S ttibool [BOOLF]IHK s ff ibool [Loc] T HK 5 a:Zs(a) refs, ()
rx:tH s Miso FX:THe s West
FEK S (M) ot % o MHEK S (PXW) 18T
reksMise srcki DEA MHX s M s Bref
r l—‘zz (refig M) : sLK (LK1, LX) Bref

[REC]

[VAR] T, x:THK s x:1 [ABS]

[REF]

R
FHEK 5 (1M) ssUd (LT 1k, 8
st CXs.w

sr,s.r CK|

FEX S (M= N)suks Uk (LK1, LK), unit

rEksM:soref rHX N:s.6

[AssIGN

FKsMisbool THK S Neis, T THKONpiss, 1 srkswsiw
M X 5 (if M thenN; elseNy) : sLKs UK sg LK (LK T sr), T

[ConD]

st Cfg’w
sr,s’rCXd.w
FHEK S (MN) sk Lks Lk (1K T* sruks'r), o
reksMist THE NS0 stCksw
MK s (M;N) isLks, o

rrésMistSo TrEGN:sT

[APH

[SEQ]

Figure 5. A customizable type and effect system for checking inforomafiow.

sLkg = (srukd.r,swrks.w,stKs.t) and: Given two kernels; andk; such thak; < kp, every ex-
k= (kTR (k) pr_essmri\/l that is ty_pable with r(_aspect 1k33 is also typable

] ‘ Ok ‘ _ with respect toks, since all the information flows that are
We abbreviatd™ -} s M : LT by =) s M:1. One can gjiowed byk, are also allowed by;. Conversely, if every
easily check that security effects that are assigned to anprogramc that is typable with respect &» is also typable
expression when typed with respect to a keknate always ith respect tdk, thenk; < kp. The following lemma for-

closed undek. _ S _ malizes this result.
The type system of Figure 5 is similar to the one in [2],

where kernels take the piace of the (|ess generiC, see SubLEMMA 4. Given a SeCUrity latticeL and a reference label-
section 3.1) flow policies. Another difference lies in thetfa ~ ing Z, and for any two kernelsykkz on £, the following two
that the reference labeling is here an explicit parameter of Propositions are equivalent:
_the type system. As a result, in rulek, the reference type o ki < ko
is constructed by resorting to the parameter

The following type and effect preservation result states
that the type of an expression is preserved by reduction, and
that its security effects “weaken” along the computati@ss,
reads, updates and creation of references are performed and From the previous lemma, we can easily conclude that
conditional branches are discarded. Values that are stored given two kerneikl andk2 oncL, the most permissive kernel

¢ For every program M, if” I—EZZ M : s, T for some secu-

rity effect $ and typet, thenl I—ilz M :s,1 for some
security effects

the initial state are assumed to have the correct type. that types all the programs which are simultaneously typabl

THEOREM3 (Type and effect preservatiorGiven a secu- With respect tokg andks is kg Y kz._Analogoust, the least

rity setting(£,=,k) and typing environmert, if for an ex- permissive kernel that allows typing all the programs that

pression M there exist s ardsuch thatf” F - M : 5,1, and are either typable with respectke, or typable with respect

if (M,S) — (M’,S) for a memory S that i$£,% k,I")- to kz corresponds téy A ko. _
lab We now formalise soundness of the type system of Fig-

compatible, then: ure 5 with respect to the noninterference property of Defini-

« If lab = €, then there is an effect such that 5C s and tion 2.
FEk s M ST

o If lab = a: B ref] for some reference name a, typand
security level |, then there is an effettssich that SC s
andr - gz M 1S, T.

THEOREMS5 (Soundness for Noninterferenc&iven a se-
curity setting(L, %, k) and a typing environmeift, if for ev-
ery M € P there exist s and such that” "E,z M :s,1, then

[a P satisfieq £,Z,k,I")-Noninterference.

[NILTF, 5 O:unit [BOOLT| Tk stt:bool [BOOLF]T 5 ff:bool [LOG]T F, 5 a: () refs,

Mx:tk,sM:so Fx:th, s Wist

VARIJ I, X:TF, s X:T ABS REC
[vari] Lz [ABs] TR [Rec] MFLy (PXW) ST
Nr-,+M:s9 MN-,sM:s0ref
[REF] L2 [DER(] L2 !
M, 5 (refig M) :su(L,I, L7 {(sr,1)}),0ref Fhps (PM)su(l,T,1,Q).,6
(Ass] M-,s M:s0ref r-,sN:s,0
S . .
S FEps (Mi=N)rsUsU(LL L P {(st,s.w), (sr,1),(s.r,1)}), unit
N-,s M:sbool N-,sN:s.,1 M+, s Nf:st,T
[COND|] . Ly Ly Lx
I+, 5 (if MthenN; elseNs) : sUis Lisg LI(L, T,sr,F {(Sr,%.W),(SI,Sf.W)}), T
Fl—LzM:s,tic r-,sN:s't
[APR]

My s (MN)ssUsUS U(L, T,srus’rr {(st,s".w),(sr,s.w),(s".r,s.w)}),0
r-,sMist Tk, ;N:s,o
M, s (MiN) :sUS U(L, T, L7 {(st,s.w)}),0

[SEQI]

Figure 6. An informative type and effect system for the declassifaratffect

Note that the type system can be proved sound for concurrenon the illegal flows that might occur during the execution of
expressions due to the fact that termination leaks are typedM, and is composed in a contravariant way.

away from singular expressions. The type syntax is analogous to the one in the previous
section, where the latent effect on the function type novguse
6. A type system for determining the the new security effects with four components. Moreover,
declassification effect the semi-lattice of security effects uses the relation

In the previous section it was established that, given an SE s Cgf srcdr&swiCsw&stCdt&s.d<sd

initial security lattice£ and a reference labeling, every which entails that

program that is typable, using the type system of Figure 5, sUS = (srus.r,swrs.wstus.t,sdis.d) and:

with respect to a certain and kerrelis in fact typable with 1=(LT,1,Q)

respect to all kernele such thak’ < k. This section presents In each rule, the declassification effect of an expression

a type system that assigns to each program the strictests at least as low in the lattice of kernels as is the declassi-

kernel with respect to which it is typable. This kernel can fication effects of its sub-expressions, more precisely dti

be interpreted as a description of all the potential illegal least as low as the meet] of those kernels. In some rules,

information flows that may take place during the execution the resulting kernel is further lowered in order to take in to

of the program. It will be referred to as tldeclassification account new potentially illegal flows that are detected ley th

effectof the program. rule. It is elucidative to notice the correspondence betwee
Our approach is based on the observation that the illegalthe flows that lead to the update of the declassification effec

flows that are encoded in a program can be seen as side efand those that are restricted by means ofheelation in

fects of that program. Indeed, when viewing security levels the type system of Figure 5. Indeed, the intuitions thatfyst

associated to references as regions of the memory [5], basidthem are also analogous.

forms of program effects such as reading and writing effects In rule ReF, the direct flow from the leved.r associated

consist simply of security levels. By identifying sets of in to the value of the expression to the new reference that is

formation flows with kernels, we are in fact constructing a created at level is introduced; the corresponding termina-

composite form of program effect. tion leak is accounted for simultaneously, since also ia thi
Figure 6 presents the type and effect system for determin-type system the termination effect of an expression is atway

ing the declassification effect. Typing judgments are of the lower than its reading effect. In rules%, the declassifica-

form -, > M :s1, differing from those of Figure 5 since tion effect of the assignment expression is updated with the

the former type system is parameterized by a kernel whereadlow that results from the potential termination leak caused

this type system is not. Moreover, a fourth comporedt by the evaluation of the leftmost expression at leslthat

is added to security effects, representing the decladsificta could be registered while evaluating the rightmost expres-

effect of the expression, a flow kernel that is a lower bound sion at leveK.w; furthermore, the values into which the left

and the rightmost expressions are evaluated determinéwhic
reference is written and with which value, which could lead
to a direct leak from the level of their reading effestsand

s.r (respectively) to the levélof the assigned reference (the
corresponding termination leaks are accounted for simulta
neously). In rule ©NDy, the implicit leak from the leves.r
associated to the value of the tested expression into the wri
ing levelss ands; of the branches is introduced (as well
as the corresponding termination leaks). RukerAregisters
the potential termination leak that results from the eviidua

of the leftmost expression at levet and is potentially reg-
istered during the evaluation of the rightmost expression a
levels’.w; furthermore, the values into which the left and the

rightmost expressions are evaluated determine which func-

tion is being applied and to which value, which could be
registered at leved .w during the evaluation of the body of
the function (similarly regarding the corresponding termi
nation leaks). Finally, rule &9, incorporates the potential
termination leak resulting from the evaluation of the left-
most expression from levelt that could be registered by
the rightmost expression at lew&lw.

As an example of the computation of the declassification
effect consider the following two programs

((ang = ("biy) = (Tayy));(cs == (! a))))

(if ((*b,) > (' cg)) then(d, := (! dig) +1) else()) (3)
where the security setting is given by the lattice of Figure 3
with the security labeling that is obtained by assigningeac
variable to the level corresponding to its subscript. Itasye
to see that expression (2) corresponds to kekpelnd ex-
pression (3) corresponds to kerrkel This example gives
an intuition as to why, when collapsing a level to another
level, the analysis collapses all the levels in betweenxin e
pression (2), after the first assignment, information perta
ing to levells depends on information pertaining to levgl
however, sincéy C |3, the associated kernel is still the iden-
tity kernelU. The second assignment encodes an explicit de-
pendency between levdisandls and therefore the analysis
collapses levels to Is. However, there is also a dependency
between level$, andls (due to the first assignment). This
dependency is assumed siriéd4) = I4 C U(I3) = I3 and
hence the analysis also collap$gto Ig = [4M15. In expres-
sion (3), the level of the guard of the if i, which entails
a dependency between levéfsandli. Thus, the analysis
collapses level to I resulting in kerneks.

The type and effect system of Figure 6 accepts more pro-
grams than the one in Figure 5. More precisely, it accepts all
programs that are typable with respect to a security lagelin
that maps all references to the lowest confidentiality level
As expected, types and effects (and in particular the declas
sification effect) are preserved and weakened by reduction
as the effects are performed.

THEOREM6 (Type and effect preservatior(iven a secu-
rity setting (£,%) and typing environmen, if for an ex-
pression M there exist an effect s and a typsuch that

r-,sM:st andif(M,s . (M’,S) for a a memory S
’ al
thatis(L£,%,I,Q)-compatible, then:

e If lab = ¢, then there is an effect & s and a typa such
thatl -, M":s,t.

o If lab = a: B ref] for some reference name a, typand
security level |, then there is an effe¢fss and a typa
suchthal™ -, . g5 M’ : ¢, T.

The following theorem states that the declassification ef-
fect assigned by the type system of Figure 6 to a given pro-
gramM corresponds to the smallest kernel that allows typing
the program with respect to the type system of Figure 5.

THEOREM 7 (Soundness and optimality of the type system).
Given a security lattice, a reference labeling, a typing
environmenf” and an expression M suchthat-, ;s M:s 1

for some typet and security effect s, then the following
propositions hold:

i. There is a security effect,such thaf” -5 M : 8/, 1.

ii. If there is a kernel k onz and a security effect such
thatT X s M 1§, 1, then k< s.d.

While the purpose of the type system that was presented
in the previous section was to accept/reject programs decor
ing to their potential to perform illegal information flonthe
main goal of the type system that is presented here is to ex-
tract a conservative approximation of those flows.

Notice that although the above result is formulated in
terms of single expressions, it can be used in concurrent
settings. Indeed, for a pool of expressions with declassi-
fication effectks,...,k,, Theorem 7 implies typability of
all expressions with respect to any flow kerkeduch that
k<ki A ... Lkn. In general, the principles behind our infor-
mative type system can be applied to any setting that can be
tackled by means of a state-oriented checking-type system.

6.1 Flow relations as declassification effects

In Section 3.1, flow relations were presented as an alt@mati
means to describe flexible information flow policies, that is
relaxations of the initial (principal-based) securitytsef.
Here we show that when taking the lattice of flow relations
as the lattice of declassification effects, there ceasegto b
an optimal declassification effect to describe the inforamat
flows that are entailed by each program, i.e., Theorem 2 does
not hold in this restricted setting.

Given a security setting.,A) and an expressidd, The-
orem 7 states that the declassification effect computedey th
informative type system corresponds to the least pernassiv
kernelky that allows to typeM according to the checking
type system. However, this kernel may not be a co-additive
'kernel, i.e. it may not representable as a flow relation. Aim-
ing at an approximation, one might hope to determine the
greatest co-additive kernel that allows to tyde which by
Theorem 7 is necessarily lower thilap. However, the least
upper bound of all the co-additive kernels that are lowen tha

ko(2(Pri)) {0} ks(2(Pri)) {0} avoiding to retype it again. Instead, it is only necessary to

compare the declassification effect of the program with the
c A A B allowed flow kernel. In fact, one can deduce from Lemma 4
{ch (A} {A} {B} and Theorems 7 and 5 the following result:

{A.C} (AB} {AC) {A,B} COROLLARY 8 (Usefulness of the declassification effect).
Consider a security lattice£, a reference labelingz,
a typing environmenf and an expression M such that
{AB,C} {AB,C} M. s M:st for some typer and security effect s. Then
for any allowed flow kernelkwe have that:

¢ if ka < s.d then P satisfie6L, %, ka, ")-Noninterference;
ol I—EA,Z M : s, 1 for some security effect #f ka < s.d.

Figure 7. Possible non-optimal co-additive kernels for ac-
cepting program (4).

kM is not necessar”y lower tha(m That isl for an arbitrary In other WOI‘dS, this Corollary states that it is enough tocom
kernelky : L — L, the kerneky, : L — L given by pare the allowed flow kernel with the extracted declassifica-

.) . tion effect in order to conclude for the security of the expre
Ky = Y{K' | K <ku & K'is co-additivg sion. Furthermore, it clarifies that there is no loss in mieci

is not necessarily lower thadg. Thus concluding that when with respect to the checking type and effect system.

using flow relations as declassification effects there ave pr In order to make the applicability of this result more
grams for which there is no optimal declassification effect. concrete, we extend the language introduced in Section 2

Returning to the example presented in Section 3.1 for the to a scenario in which the allowed flow kernel can change

set of principalPri = {A,B,C}, and considering a security ~ even during program execution. In order to keep track of
Iabelmg 21 : Ref — 2(Pri), such thatz;(a) = {B,C} and the declassification effect that is associated with eactathr

Z1(b) = {A}, the program expressions are given a namgn € Nam, and configura-
(b= (12)) 4) tion include a policy mapping from thread names to kernels
A= (B} D : Nam— dco(L). This set, together with the poBlcon-

has declassification effett; {({B,C},{A})}, which corre- taining all the (hamed) threads in the system, the sS@@n-
sponds to the kernél presented in Figure 4. Sinég is not taining all the references, and the allowed flow kerkgl
co-additive, the strictest flow policy to which the above-pro form configurationgP, S D, ka), over which the evaluation
gram complies must correspond to the strictest co-additive relation is defined below. For a given pool of named threads
kernel belowk;. Figure 7 illustrates the two highest co- P, the set of thread names that occur in it is given by (®m
additive kernels below, denoted bk, andks respectively. The first rule is constructed over the semantics defined
Sincek; andkz are not comparable to each other, we must in Figure 2, transposing the rules for pools of single ex-
conclude that there is no strictest flow policy among the set pressions to the new form of configurations, which includes
of flow policies to which program (4) complies (one must naming every thread. The assumption of well-formednessin-

choose either betweda or k3). cludes, in addition to the requirements described for tlse ba
_ _ language, doifP) C dom(D).
7. Flow kernels for a hybrid analysis (M1, s> <{|v| 1,S) ({MM UP.S,D,ka) is well formed
In this section we flesh out a possible application of flow
kernels as a way of instrumenting the dynamic decision of <{Mm} UP,S,D,ka) — ({M™}UP,S,D,ka)
whether a certain program should be allowed to run, with)
some degree of static processing. The second rule describes how the allowed flow kernel can

Let us consider a scenario where programs run locally change during computations. During this transition, thel po
under a dynamic allowed information flow polidg that of threads cannot compute.

describes all the information flows that can take place.ig th teP=P
scenario, under the security settiflg,A) and considering
an allowed flow kerneka, the desired security property that (P,S,D,ka) — (P',S,D, k)

we aim at corresponds (@, %, ka, ")-Noninterference.
Sinceka is unknown before program execution, when us-
ing the type and effect system of Figure 5 to certify compli-
ance with the intended security property, the program must
be (re)typed with respect . However, by making use of
the informative type system of Figure 6, one can determine 0 ifP=0
the declassification effect of the program, which corresigon 1, P = {Mk} UtP ifP=PU {Mk} andke < k
to the strictest kernel to which the program complies, thus e P’ ifP=PU {Mk} andkg £ k

Any thread that no longer complies with the new allowed
kernel ke is eliminated, where T preempts threads whose
(original) declassification effect no longer complies vilie
currently allowed kernel:

In practice, the preemption operation is a dynamic mech- view of [2, 5]. In these works, there is no counterpart to the
anism for ensuring that only threads that comply with the informative-type system presented here. A type system for
current allowed flow policy are permitted to execute. How- determining a declassification effect is presented firsijn [
ever, it makes use of the declassification effect that was com but differs in the fundamental point that while here the de-
puted statically. In this sense, it implements a simple fdybr classification effect is obtained directly from the actued d
enforcement mechanism. In order to formulate the security pendencies that are encoded in programs, in the earlier work
property, we introduce the notion of reachable configuratio it is based on flow policies that are declared by a declassifi-
cation construct, and are therefore potentially more ears

In [2, 5], it is observed that information flow control is
rooted on the notions of reading and writing effects where
regions can be viewed as confidentiality levels that can be

DEeFINITION 3 (Reachable configuratiorfVe say that a
configuration(P’, S, D, kj) is reachable from configuration
(P,S,D,ka) if and only if

* (P',S,D,ky) = (P.SD,ka), or conditioned by a type and effect system. To the best of our
e there is a configuratiofP”,S’,D,kj) that is reachable knowledge the view of the actual information flows as a
from (P,S,D,ka), and(P”,S",D,k;) — (P',S,D,K)) program effect is novel.
The following property is ensured in this setting: Inference of declassification policies. Recently, Vaughan

and Chong [19] present an expressive language for writing
complex declassification policies, and a dataflow analysis f
inferring them from a simple imperative programming lan-
guage. Their policies are partially ordered byeaeals no
more information tharrelation, and provide a least upper
bound operatoand as well as a bottorReveal() Rewrite
rules provide anormalization proces$or simplifying poli-

PrROPOSITIONS (Confinement to a dynamic flow policy).
Consider a set of threads P, a policy mapping D, and an
initial allowed flow policy lg such that for all M' € P, we
have that” "L,z M : 5,0 with ka < D(n) < s.d. If the con-
figuration (P’,S,D,K,) is reachable fromP, S, D,ka), then
Plaompy satisfieg L, Z,ka,")-Noninterference.

In other words, if a certain allowed flow polidg is ruling cies and establishing equivalences between them. The secu-
at some point of the computation over a p&obf threads, rity condition is input-output oriented.
then all the original threads are ensured to comply \kjth Closer to our representation of security lattices by ker-

The result is restricted to the threads that are in the domainnels, is the work on the abstract interpretation [4] view of
of P, for at each point, nothing can be stated about threadsinformation flow by Giacobazzi and Mastroeni. They intro-
that have been preempted earlier. duced [9] the notion of abstract noninterference, a weaken-
The problem of dealing with dynamic allowed flow poli- ing of noninterference given in terms of observers modeled
cies is a complex one, and it is not within the aims of this by means of abstract interpretations of concrete semantics
paper to provide a final solution for it. Here we take a strong In abstract noninterference the power of an observer is mod-
yet simple approach, that highlights the usefulness oféhe d eled as an upward closure operator on the domain of the
classification effect as a means to describe the informationprogram. The same authors [8] also introduce a proof sys-
flows that take place within a program. More flexible and tem inductive on the syntax of programs that is based on
permissive settings could be conceived. For instance, onethe derivation of abstract noninterference assertiongtwh
could envisage an analysis that only requires the commianc specify the noninterference degree of a program relatively
of the rest of the program that is still to be executed to newly to a given model of an attacker. Apart from differences in
established allowed flow kernels. While this would lead to language expressivity and treatment of declassificattom, t
accept more program executions (since by Theorem 6 the de{recise connections and differences between this framewor
classification effect weakens, i.e., becomes stricterpiild and ours requires further investigation.
not ensure that the program does not leak illegal informatio Dynamic allowed flow policies Hicks et. al [

. X . 11] approach
(with respect to the current policy) due to past computation

the problem of allowing dynamic external updates of an al-
lowed flow policy, there referred to as the “permission con-
8. Related work text”, for a purely functional sequential scenario withdat
Type and effect systems for information flow.Gifford and classification, in the context of a dynamic allowed-flow pol-
Lucassen first introduced the concepts of effect and regionicy. In their work, changes over the permission context are
in the design of a type and effect system for a higher-order restricted. The property that is formulated, dubbed “nenin
language with imperative features [12]. terference between updates”, guarantees that, if an update
Type systems for enforcing a variety of flexible informa- occurs during computation, then the rest of that computatio
tion flow policies have been studied extensively [17, 18, 20] complies with the new policy. The fact that this property al-
including type systems for higher-order languages with im- lows for the program to implement illegal flows that have
perative features ([2, 5, 15], to name a few). Most works been set up before the update of the allowed policy is recog-
on functional languages take the orientation of assogjatin nized by the authors while pointing out that a “better prop-
security levels to values, as opposed to the state-orientederty is needed”. While it is not our claim that the property

presented in Section 7 is a better solution, for it can b& crit [3] G. Boudol and I. Castellani. Noninterference for coment
cized for being overly restrictive, we believe that the neech programs and thread systeniheoretical Computer Science
nism presented in this paper can be used to instrument more ~ 281(1-2):109-130, 2002.

complex and flexible properties for solving this problem and [4] P. Cousot and R. Cousot. Abstract interpretation: A exifi

others that require dynamic comparisons between policies. lattice model for static analysis of programs by constarctr
approximation of fixpoints. IfPOPL, pages 238-252, 1977.
9. Conclusion [5] K. Crary, A. Kliger, and F. Pfenning. A monadic analysis

of information flow security with mutable statelournal of

Parameterizing noninterferen means of a flow kernel - .
aramete g noninterference by means of a flo erne Functional Programming15(02), 2005.

can be seen as a declassification condition that satisfies _ _ _ _
Sabelfeld and Sands’ principles semantic consistency 6] D. E. Der_mln.g. A lattice model of secure information flow.
conservativityandnon-occlusiorf18]. Rocha et. al [16] ar- Communications of the ACM9(5):236-243, 1976.
gue for a strict separation between the programming and [7] P. Dwinger. On the closure operators of a complete lattio
the specification of the information flow policy that the pro- Indagationes Math.volume 16, pages 560-563, 1954.
gram should comply to. It is observed that most flexible [8] R. Giacobazzi and I. Mastroeni. Proving abstract non-
information flow policies are strongly connected to the use interference. IrConf. of the European Association for Com-
of program annotations such as declassification operations ~ Puter Science Logic, volume 3210 of LN@&ges 280-294.
which are often viewed as forms of policy specification in Springer-Verlag, 2004.
themselves. Setting aside the fact that declassificatiolade ~ [9] R. Giacobazzi and I. Mastroeni. A proof system for ab-
rations can be used for purposes other than policy specifica- stract non-interferenceJournal of Logic and Computation
tion, it is clear that it is important to be able to express and 20(2):449-479, 2010.
check information flow policies externally to the program. [10] J. Goguen and J. Meseguer. Security policies and sgcuri
In this paper we propose an approach to this problem, by modelg. InProc. of the 1982 IEEE Symposmm on Security
presenting a way of extracting a description of the strictes and Privacy pages 11-20. IEEE Computer Society, 1982.
information flow policy that each program complies with. ~ [11] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic up-
By considering a very expressive programming lan- d_atlng of |nformat|on-'flow policies. IiWorkshop on Founda-
guage, and by establishing a connection between a stan- tions of Comp. Securiypages 7-18, 2005.
dard type system for checking information flow and the new [12] J. M. Lucassen and D. K. Gifford. Polymorphic effect sys
informative-type system for determining the declassifirat tems. InPOPL'88: 15th ACM symposium on Principles of
effect, we pave the way for the design of other enforce- programming languagepages 47-57. ACM Press, 1988.
ment mechanisms based on the extraction of flow kernels[13] R. Milner, M. Tofte, R. Harper, and David MacQueeiihe
representing a declassification effect to any language and definition of Standard MLMIT Press, revised edition, 1997.
state-oriented information flow type system that could be [14] A. C. Myers and B. Liskov. Complete, safe information
considered. As future work, we plan to generalize our re- flow with decentralized labels. 1a9th IEEE Symposium
sults one step further in the concurrent setting, in order to ~ ©n Security and Privacypages 186-197. IEEE Computer
handle distribution and program migration. We envisage a Society, 1998.
scenario where the static analysis mechanism that is pro_[15] F. Pottier and V Simonet. Information flow inference fol.
posed in this paper can instrument runtime decisions suchas ~ ACM Transactions on Programming Languages and Systems

migration control in a distributed setting. 25(1):117-158, 2003.
[16] B. Rocha, S. Bandhakavi, J. den Hartog, W. Winsborough,

Acknowledgments The authors would like to thank the In- and S. Etalle. Towards static flow-based declassification fo
des team at INRIA and all anonymous reviewers for discus- legacy untrusted programs. BP’10: Proceedings of the
sions and comments that have improved the final outcome 31st IEEE Symposium on Security and Privaages 93-108.
of the paper. This work was partially supported by the Por- IEEE Computer Society, 2010.

tuguese Govermentvia the PhD grant SFRH/BD/71471/2010[17] A. Sabelfeld and A. C. Myers. Language-based infororati
and the KLog project PTDC/MAT/68723/2006, financed by flow security. IEEE Journal on Selected Areas in Communi-

the Fundac?o para a Ciéncia e Tecnologia. cations 21(1):5-19, 2003.
[18] A. Sabelfeld and D. Sands. Declassification: Dimensiand
References principles.J. Comput. Secyrl7:517-548, October 2009.

[1] A. Almeida Matos. Flow-policy awareness for distribdte ~ [19] J. Vaughan and S. Chong. Inference of expressive dge¢las
mobile code. InProc. of CONCUR 2009 - Concurrency fication policies. InProc. of the 2011 IEEE Symposium on
Theory volume 5710 oL ecture Notes in Computer Science Security and Privacypages 180-195. IEEE Computer Soci-
Springer, 2009. ety, 2011.

[2] A. Almeida Matos and G. Boudol. On declassification and [20] D. M. Volpano, G. Smith, and C. E. Irvine. A sound type sys
the non-disclosure policy. Journal of Computer Security tem for secure flow analysislournal of Computer Security

17(5):549-597, 2009. 4(2-3):167-188, 1996.

