
Typing Secure Information Flow:

Declassification and Mobility

Ana Almeida Matos

Ph.D. Degree

Confered by École Nationale Supérieure des Mines de Paris

Type Doctorat Européen

Subject Informatique temps réel, robotique et automatique

Promotors Gérard Boudol, INRIA Sophia Antipolis

Ilaria Castellani, INRIA Sophia Antipolis

Defense

Date January 31st, 2006

Place Sophia Antipolis, France

Jury Prof. David Sands, Chalmers University of Technology

and University of Göteborg

Prof. Michele Bugliesi, Università Ca’ Foscari

Prof. Roberto Amadio, Université Paris 7

Prof. Vasco Vasconcelos, Universidade de Lisboa

ii

Titre
Typage du flux d’information sûr : déclassification et mobilité
Mots clés
sécurité, flux d’information, systèmes de types,
déclassification, mobilité
Résumé
voir page xix
Synthèse
voir page xxi

iii

Funded by
Portuguese Ministry of Science and Technology

Fundação para a Ciência e Tecnologia (FCT)
POSI/SFRH/BD/7100/2001

Hosts
INRIA Sophia Antipolis, France (main host)
Chalmers University of Technology, Sweden

University of Brighton, England
University of Twente, Netherlands

iv

v

To my beloved ones.

vi

vii

caminante, no hay camino,
se hace camino al andar.

Antonio Machado

viii

Acknowledgments

I am truly grateful to my supervisors Gérard Boudol and Ilaria Castellani for
the availability, guidance and support that they offered me during the last four
years. I hope to have learned from their scientific insight and rigor, as well as
from their many other qualities, which have become a personal reference to me.

I am also thankful to the Mimosa group and INRIA Sophia Antipolis for
providing me excellent working conditions. Sincere recognition goes to the Por-
tuguese Foundation for Science and Technology (FCT), which generously sup-
ported my research and studies for four years, in this inspiring place, between
the Alps and the Mediterranean.

Part of my doctoral studies took place in three one-month research visits
to three major European Universities. I would like to thank Andrei Sabelfeld,
and the ProSec group, for having kindly welcomed me during an exciting re-
search experience at Chalmers Institute of Technology. Special thanks go also
to Matthew Hennessy, and the Foundations of Computation group of the Uni-
versity of Brighton, for orientation and stimulation on my first steps doing
independent research. Thanks are also due to Mariëlle Stoelinga, for having
offered me ideal conditions, at the University of Twente, for a good start in the
quest of writing the present thesis.

Let me now mention Jan Cederquist, Tamara Rezk, Sylvain Schmitz and
other unnamed researchers around the world, who decisively contributed to
enhance my research and career with fruitful discussions, reviews or advice.

Finally, I would like to express my warm gratitude to all those, family and
friends (and pets!), who have nourished my mind and heart during the past
times with plenty of encouragement and love. I have always felt their presence,
in happy and harder times, right here in France, but also all the way from
Portugal, or even from as far away as Laos!

Obrigada!

ix

x ACKNOWLEDGMENTS

Contents

Acknowledgments ix

Contents xi

Abstract xvii

Résumé (in French) xix

Synthèse (in French) xxi
Motivation . xxi

Typage du flux d’information sûr xxi
Problèmes abordés . xxii
Contributions . xxiv

Contenu de la thèse . xxv
Non-interférence en environnement concurrent xxv
Non-divulgation et déclassification xxv
Non-divulgation pour du code mobile xxvi

Conclusion . xxvi
Contributions principales et travaux futurs xxvi
Remarques finales . xxix

1 Introduction 1
1.1 Motivation . 1

1.1.1 Typing Secure Information Flow 1
1.1.2 Addressed Challenges . 2

1.2 Overview . 4
1.2.1 Structure of the Thesis . 4
1.2.2 Contributions . 5

2 Non-interference in Concurrency 7
2.1 Introduction . 7

2.1.1 Basics of Non-interference 8
2.1.2 Typing Away Security Leaks 9
2.1.3 (Pre-)Lattices of Security Levels 11

2.2 An Imperative Concurrent λ-Calculus 13
2.2.1 Syntax . 13
2.2.2 Semantics . 15

2.3 The Non-interference Policy . 18
2.3.1 Principal-Based Security Pre-Lattices 18

xi

xii CONTENTS

2.3.2 A Bisimulation-Based Definition 19
2.3.3 Properties of Secure Programs 21

2.4 Typing Non-interference . 23
2.4.1 A Type and Effect System 23
2.4.2 Typing Conditions . 24
2.4.3 Properties of Typed Expressions 28
2.4.4 Soundness . 29

2.5 Related Work . 32
2.5.1 Types and Effects . 32
2.5.2 Treatment of Termination Leaks 33

3 Non-disclosure and Declassification 35
3.1 Introduction . 35

3.1.1 Limitations of Non-interference 35
3.1.2 A View of Declassification 36
3.1.3 Flow Declaration . 37
3.1.4 From Non-interference to Non-disclosure 38

3.2 Adding a Flow Declaration Construct 38
3.2.1 Syntax . 39
3.2.2 Semantics . 40

3.3 The Non-disclosure Policy . 43
3.3.1 Dynamic Security Pre-lattices 43
3.3.2 A Bisimulation-Based Definition 44
3.3.3 Properties of Secure Programs 46

3.4 Typing Non-disclosure . 49
3.4.1 A Type and Effect System with Flow Policies 49
3.4.2 Relaxed Typing Conditions 50
3.4.3 Properties of Typed Expressions 52
3.4.4 Soundness . 53

3.5 Related Work . 56
3.5.1 Constraining Declassification 56
3.5.2 Enabling Declassification 57

4 Non-disclosure for Mobile Code 63
4.1 Introduction . 63

4.1.1 Information Flow in Code and Resource Mobility 63
4.1.2 Choosing a Calculus for Global Computing 64
4.1.3 From Non-disclosure to Non-disclosure for Networks . . . 65

4.2 An Imperative Mobile λ-Calculus 66
4.2.1 Network Model . 66
4.2.2 Syntax . 66
4.2.3 Semantics . 69

4.3 The Non-disclosure Policy for Networks 72
4.3.1 Global Security Pre-Lattices 72
4.3.2 A Bisimulation-Based Definition 74
4.3.3 Properties of Secure Programs 76

4.4 Typing Non-disclosure for Networks 79
4.4.1 A Type and Effect System with Thread Identifiers 79
4.4.2 Typing Conditions . 81
4.4.3 Properties of Typed Expressions 83

CONTENTS xiii

4.4.4 Soundness . 88
4.5 Related Work . 112

4.5.1 Distribution . 113
4.5.2 Mobility . 113

5 Conclusion 115
5.1 Main Contributions and Future Work 115
5.2 Final Remarks . 117

Bibliography 119

References 119

Index 125

xiv CONTENTS

List of Figures

2.1 Syntax of Security Annotations and Types 13
2.2 Syntax of Expressions . 13
2.3 Syntax of Configurations . 13
2.4 Evaluation Contexts . 16
2.5 Semantics . 16
2.6 Syntax of Typing Judgments (see also Figure 2.1) 25
2.7 Type and Effect System . 25
2.8 The relation TG,low . 30
2.9 The relation RG,low . 31

3.1 Syntax of Security Annotations and Types 39
3.2 Syntax of Expressions . 39
3.3 Syntax of Configurations . 39
3.4 Evaluation Contexts . 41
3.5 Semantics . 41
3.6 Syntax of Typing Judgments (see also Figure 3.1) 51
3.7 Type and Effect System . 51
3.8 The relation TF,low . 54
3.9 The relation RF,low . 55

4.1 Syntax of Security Annotations and Types 68
4.2 Syntax of Expressions . 68
4.3 Syntax of Configurations . 68
4.4 Evaluation Contexts . 71
4.5 Semantics . 71
4.6 Syntax of Typing Judgments (see also Figure 4.1) 80
4.7 Type and Effect System . 80
4.8 The relation T

mj

F,low . 91

4.9 The relation R
mj

F,low . 103

xv

xvi LIST OF FIGURES

Abstract

We address the issue of confidentiality and declassification in a language-based
security approach. We study, in particular, the use of refined type and effect
systems for statically enforcing flexible information flow policies over imperative
higher-order languages with concurrency. A general methodology for defining
and proving the soundness of the type and effect system with respect to such
properties is presented. We consider two main topics:

• The long-standing issue of finding a flexible information control mecha-
nism that enables declassification. Our declassification mechanism takes
the form of a local flow policy declaration that implements a local infor-
mation flow policy.

• The largely unexplored topic of controlling information flow in a global
computing setting. Our network model, which naturally generalizes the
local setting, includes a notion of domain, and a standard migration prim-
itive for code and resources. New forms of security leaks that are intro-
duced by code mobility are revealed.

In both the above settings, to take into account dynamic flow policies we intro-
duce generalizations of non-interference, respectively named the non-disclosure
and the non-disclosure for networks policies. Their implementation is supported
by a concrete presentation of the security lattice, where confidentiality levels are
sets of principals, similar to access control lists.

xvii

xviii ABSTRACT

Résumé (in French)

Nous nous intéressons au sujet de la confidentialité et de la déclassification.
Nous étudions en particulier l’usage d’un système de types et d’effets pour as-
surer de manière statique des politiques de sécurité flexibles pour un langage
d’ordre superieur impératif avec concurrence. Une méthodologie générale pour
définir et prouver la correction du système de types et d’effets pour de telles
proprietés est présentée. Nous considérons deux points principaux :

– La question de trouver un mécanisme flexible de contrôle d’information
qui permet la déclassification. Notre mécanisme de déclassification prend
la forme d’une déclaration de politique locale de flux qui implémente une
politique locale de flux d’information.

– La question jusqu’ici inexplorée de contrôler les flux d’information dans un
environnement global. Notre modèle de réseau, qui généralise l’environne-
ment global, inclut une notion de domaine et une primitive de migration
standard pour le code et les ressources. De nouvelles formes de perte d’in-
formation, introduites par la mobilité du code, sont révélées.

Dans les deux cas mentionnés ci-dessus, pour prendre en compte les politiques
de flux globales nous introduisons des généralisations de la non-interférence,
qui sont nommées non-divulgation et non-divulgation pour les réseaux. Ces
généralisations sont obtenues à l’aide d’une représentation concrète des treillis
de sécurité, où les nivaux de confidentialité sont des ensembles de principaux,
semblables à des listes de contrôle d’accès.

xix

xx RÉSUMÉ (IN FRENCH)

Synthèse (in French)

Motivation

Depuis l’invention des ordinateurs, le problème de la sécurité informatique
a pris une importance croissante. Un de ses principaux objectifs est la confiden-
tialité, c’est-à-dire l’assurance que seules les entités autorisées puissent accéder
à l’information.

Les premiers efforts datent des balbutiements de l’informatique, aboutissant
à partitionner la mémoire et à assurer que les programmes en cours d’exécution
ne puissent accéder aux partitions des autres programmes. Cela constitue un
des premiers exemples de contrôle d’accès, une forme de protection de la confi-
dentialité qui comprend un mécanisme permettant au système d’autoriser ou
d’interdire l’accès à certaines données et l’exécution de certaines actions. Ce-
pendant, une fois une autorisation délivrée, le contrôle d’accès n’est pas en
mesure de réguler la propagation de l’information dévoilée pendant l’exécution
d’un programme [Denning, 1976 ; Lampson, 1973 ; Myers et Liskov, 2000 ;
Sabelfeld et Myers, 2003]. Cette observation a suscité une attention crois-
sante pour le contrôle du flux d’information. Son but est précisément de savoir
et de mâıtriser comment l’information circule dans un système informatique,
afin d’en interdire l’accès aux entités non autorisées.

En quelques décades seulement, les systèmes d’information ont évolué de ma-
chines travaillant en temps partagé vers des réseaux mondiaux d’ordinateurs, où
programmes et données transitent de manière décentralisée. Dans cet environ-
nement d’informatique globale, les problèmes de sécurité sont devenus cruciaux.
En effet, les nouvelles possibilités offertes par la globalisation ont souvent été
exploitées à des fins douteuses (virus, vers, refus de service etc.). Étonnamment,
très peu d’études ont été réalisées sur le contrôle du flux d’information dans les
réseaux. C’est le sujet de cette thèse.

Typage du flux d’information sûr

Nous adoptons une approche langage (voir [Sabelfeld et Myers, 2003]
pour un état de l’art), ce qui signifie que nous restreignons notre attention aux
flux d’information qui ont lieu lors de l’exécution de programmes. De ce fait,
les fuites d’information ne peuvent se produire que lors d’un transfert entre les
objets d’un langage donné.

Afin de spécifier quels échanges d’information sont acceptables, il est naturel
d’attribuer des niveaux de sécurité aux objets (données et canaux), qui ne pour-
ront alors être lus que par des sujets dotés d’accréditations correspondantes. Une

xxi

xxii SYNTHÈSE (IN FRENCH)

relation d’ordre est donnée pour ces niveaux d’accréditation [Denning, 1976],
ce qui signifie que, au cours de l’exécution, l’information est autorisée à transiter
d’un objet à l’autre si l’objet source a un niveau de sécurité plus faible que l’ob-
jet cible. La relation d’ordre sur les niveaux de sécurité détermine les flux légaux.
Ceci a été défini formellement en premier lieu par la notion de dépendance forte
par [Cohen, 1977], et est aussi connu sous le nom de non-interférence dans la
terminologie utilisée par [Goguen et Meseguer, 1982].

Un travail considérable a été consacré à la conception de méthodes permet-
tant d’analyser les flux d’information dans un programme (voir par exemple
[Andrews et Reitman, 1980] pour les premières références). L’analyse peut
être effectuée dynamiquement, en utilisant des vérifications à l’exécution. Ces
méthodes sont critiquables de par leurs coûts importants en calcul et en mémoire,
et aussi parce qu’elles peuvent dévoiler de l’information du fait même de l’échec
d’une vérification à l’exécution [Denning, 1976 ; Myers et Liskov, 1997].
D’un autre côté, des méthodes d’analyse statique des flux d’information ont
été développées, permettant de rejeter les programmes non sûrs avant leur
exécution. On retiendra en particulier l’emploi de systèmes de types, qui a
débuté avec le travail de Volpano, Smith et Irvine [Volpano et al., 1996].
Bien qu’ils n’offrent qu’une analyse approximative, les systèmes de types décida-
bles ont des avantages reconnus, tels que la prévention d’erreurs de programma-
tion. Des systèmes de types qui assurent des flux d’information sécurisés ont été
mis au point pour de nombreux langages (par exemple [Boudol et Castellani,
2002 ; Crary et al., 2005 ; Heintze et Riecke, 1998 ; Pottier et Simonet,
2003 ; Smith, 2001 ; Smith et Volpano, 1998 ; Volpano et Smith, 1997 ;
Volpano et al., 1996 ; Zdancewic et Myers, 2002], et d’autres références
dans [Sabelfeld et Myers, 2003]), incluant des langages réalistes tels que Jif
(ou JFlow, voir [Myers, 1999]) et Flow Caml [Simonet, 2003].

Problèmes abordés

« En dépit de leur longue histoire et de leurs qualités, les mécanismes
de contrôle des flux d’information n’ont pas encore été utilisés avec
succès en pratique. »

[Zdancewic, 2004]

Précision

Une grande part des efforts consacrés au contrôle des flux d’information
consiste à déterminer quels sont les échanges d’information non désirés. Même
en choisissant l’objectif le plus strict, et en s’efforçant de rejeter toutes les fuites
d’information sécurisée, il reste encore un travail de longue haleine avant de pou-
voir décider quelles sortes d’échanges d’information pourraient être exploitées
dangereusement. Ce problème est fortement corrélé au degré d’expressivité du
contexte dans lequel le programme est exécuté. Typiquement, lorsque l’on in-
troduit de nouvelles fonctionnalités dans un langage de programmation, de nou-
velles formes de fuites d’information apparaissent. Il y donc un besoin réel pour
des analyses de sécurité sur des langages qui sont au moins aussi expressifs que
ceux utilisés en pratique. Dans cette thèse nous baserons notre étude sur Core
ML [Milner et al., 1997 ; Wright et Felleisen, 1994], un λ-calcul en appel

MOTIVATION xxiii

par valeur et des constructions impératives que nous enrichissons encore avec
des processus légers concurrents.

Il est aisé de trouver des mécanismes pour sélectionner uniquement les pro-
grammes sûrs : un exemple extrême serait de n’en sélectionner aucun. Valider
autant de programmes sûrs que possible est un tout autre problème. En fait,
déterminer si un programme est sûr est souvent indécidable, ce qui rend les
procédures de rejet des programmes non sûrs forcément excessives. Lors du
développement de systèmes de types pour les flux d’information, la clef semble
être d’identifier les effets des programmes et les niveaux de sécurité de l’infor-
mation dont ces effets dépendent. En formalisant la notion d’effet de manière
de plus en plus détaillée, on devient à même d’exprimer des conditions de plus
en plus précises pour accepter les programmes. Cela est montré dans cette thèse
en considérant un système de types et effets [Lucassen et Gifford, 1988] qui
comprend des effets de lecture, écriture et de terminaison de programmes.

Flexibilité

Il est intéressant de noter que, même dans des systèmes où la sécurité a
une importance cruciale, le plus souvent la non-interférence n’est pas la poli-
tique choisie. En effet, le rejet aveugle de toute possibilité de fuite d’information
empêcherait le fonctionnement de programmes qui sont très courants et très
utiles. Des programmes de vérification de mots de passe ou de chiffrage sont des
exemples typiques, pour lesquels le principe même implique la déclassification
(même très partielle) d’une information secrète pour des observateurs publics.
La non-interférence est donc prohibitivement restrictive pour une utilisation pra-
tique. Cet état de fait a récemment motivé la recherche de propriétés de sécurité
alternatives, plus flexibles que la non-interférence et permettant une forme
de déclassification ou une autre (voir [Volpano, 2000 ; Volpano et Smith,
2000 ; Myers et al., 2004 ; Sabelfeld et Myers, 2004 ; Chong et Myers,
2004 ; Mantel et Sands, 2004 ; Li et Zdancewic, 2005] et une synthèse dans
[Sabelfeld et Sands, 2005]). Cependant, la plupart de ces approches sont in-
fluencées par la crainte de voir la déclassification, une fois permise, être utilisée
pour délivrer plus d’information que ce qui est considéré comme sûr. Il en résulte
que les propriétés de sécurité existantes dans la littérature incluent souvent des
restrictions qui diminuent leur aptitude à remplacer la non-interférence.

Dans cette thèse, nous soutenons que, avant de prévoir des restrictions sur
les utilisations de la déclassification, l’on devrait fournir des moyens flexibles et
simples d’exprimer cette dernière, et nous proposons la non-divulgation comme
une généralisation naturelle de la non-interférence. En particulier, il serait bon
de pouvoir exprimer délibérément des opérations qui impliquent des flux d’in-
formation rejetés par la relation d’ordre sur les niveaux de sécurité. À cette fin,
nous proposons un mécanisme pour étendre localement la relation d’ordre qui
régule les flux permis grâce à une déclaration de flux. Cela permet au program-
meur de configurer la politique de sécurité pour chaque situation particulière à
l’aide de simples conditions de flux sur les niveaux de sécurité.

Intégration

Afin de construire des applications réelles pour la sécurité des flux d’infor-
mation, il est nécessaire de l’intégrer avec les mécanismes de sécurité existants.

xxiv SYNTHÈSE (IN FRENCH)

Comme mentionné plus tôt, l’articulation entre contrôle d’accès et contrôle de
flux d’information est particulièrement importante. Le contrôle d’accès est ty-
piquement assuré par les systèmes d’exploitation grâce à des listes de contrôle
d’accès (listes d’entités autorisées). Les systèmes de contrôle de flux peuvent
être spécifiés en termes concrets de labels de sécurité [Myers et Liskov, 1997 ;
Banerjee et Naumann, 2005]. Dans cette thèse, nous franchissons une étape
supplémentaire, et nous spécifions nos politiques de sécurité en termes de ces
entités. Plus précisément, nos déclarations de flux concernent directement les
relations de flux entre entités, à partir desquelles les relations d’ordre sur les
niveaux de sécurité peuvent être dérivées. De cette manière nous suggérons que
contrôle d’accès et contrôle flexible de flux d’information peuvent être simple-
ment combinés.

À un niveau supérieur, protéger la confidentialité des données est un problème
particulièrement sensible dans un contexte d’informatique globale. Quand infor-
mation et programmes transitent au travers de réseaux, ils sont exposés à des
utilisateurs avec différents intérêts, buts et responsabilités. Ceci motive la re-
cherche de mécanismes pratiques qui assurent le respect de la confidentialité
des informations, tout en minimisant le besoin de se contenter d’une confiance
mutuelle. Dans cette thèse nous présentons une première étude sur les flux d’in-
formation non sûrs introduits par la mobilité dans le contexte d’un langage
distribué avec des états. La pertinence de l’idée selon laquelle l’informatique
globale amène de nouvelles difficultés dans le domaine de l’analyse de flux est
confirmée, puisque nous avons identifié une nouvelle forme de faille de sécurité,
la faille de migration, qui peut apparâıtre dans des environnements distribués
permettant la mobilité.

Contributions

Les contributions au cœur de cette thèse sont :

– L’étude et le développement de systèmes de types et d’effets implémentant
la sécurité des flux d’information pour des langages basés sur un lambda-
calcul impératif d’ordre supérieur avec processus légers et création de
références.

– L’introduction d’une déclaration de flux permettant la déclassification.
La présentation d’une politique de sécurité qui est une généralisation di-
recte de la non-interférence : la politique de non-divulgation. Un nou-
veau système de types et d’effets correct intégrant cette propriété. Cette
contribution est basée sur les travaux publiés dans [Almeida Matos et
Boudol, 2005] et (en ce qui concerne le système de types) dans [Almeida

Matos, 2005].
– L’identification d’une nouvelle faille de sécurité qui apparâıt dans un en-

vironnement impératif quand la mobilité des ressources joue un rôle expli-
cite. La formulation et la formalisation d’une propriété de sécurité, non-
divulgation dans un réseau, qui permet la déclassification dans un envi-
ronnement distribué permettant de la mobilité. Un système de types et
d’effets correct permettant d’assurer cette propriété. Cette contribution
est basée sur [Almeida Matos, 2005].

CONTENU DE LA THÈSE xxv

Contenu de la thèse

Dans les trois chapitres de cette thèse, nous considérons un environnement de
plus en plus complexe. Le chapitre 2 est consacré à l’étude de la non-interférence
dans un langage concurrent d’ordre supérieur, le chapitre 3 à la possibilité d’une
déclassification dans le langage, et le chapitre 4 à un environnement permettant
la mobilité et la déclassification. Dans chacun de ces chapitres, les propriétés de
sécurité des flux d’information sont étudiées, formalisées et assurées par le biais
de systèmes de types.

Non-interférence en environnement concurrent

Le chapitre 2 aborde le problème de la confidentialité dans un environnement
concurrent simple. Son objectif est d’introduire la non-interférence comme une
propriété qui détermine l’absence d’échanges non sûrs d’information, et d’illus-
trer l’utilisation d’un système de types et d’effets pour assurer cette propriété.
Pour cela, nous considérons un langage concurrent expressif : un lambda-calcul
impératif d’ordre supérieur avec processus légers et références. Nous utilisons une
forme particulière de treillis de sécurité, basés sur l’idée d’entités, qui peuvent
être paramétrées par une politique globale des flux. Nous étudions comment
contrôler les failles de sécurité qui peuvent apparâıtre dans ce langage, en par-
ticulier les failles de terminaison et les failles d’ordre supérieur. Le contexte
considéré ici servira de base aux développements présentés tout au long de cette
thèse.

Ce chapitre est organisé comme suit. Dans la première section, nous introdui-
sons quelques idées de base sur l’utilisation de systèmes de types pour rejeter des
flux d’information considérés non sûrs sur le plan de la non-interférence. Dans
la section 2.2, nous définissons un lambda-calcul d’ordre supérieur qui présente
des problèmes de confidentialité dus à l’environnement concurrent simple. Dans
la section 2.3, nous définissons un pré-treillis de sécurité basé sur les entités, et
nous donnons une définition de la non-interférence adaptée à l’environnement
concurrent à partir d’une bisimulation. Dans la section 2.4, nous développons un
système de types qui accepte seulement des programmes avec cette propriété.
Les propriétés de base du langage et du système de types, dont la correction,
sont données dans cette section. Enfin, nous analysons les travaux liés.

Non-divulgation et déclassification

Dans le chapitre 3 nous abordons le problème de la déclassification. L’in-
tention est d’introduire une déclaration de flux qui étend localement la poli-
tique globale de flux dans un λ-calcul d’ordre supérieur impératif avec processus
légers et références, fournissant ainsi un mécanisme permettant d’exprimer la
déclassification dans la portée de la déclaration. Pour cela, nous proposons la
non-divulgation comme une propriété qui généralise la non-interférence et qui
permet la déclassification, et nous démontrons comment employer un système
de types et d’effets pour garantir cette politique. Cette vue dynamique des po-
litiques de flux d’information est mise en place grâce au pré-treillis de sécurité
basé sur les entités présenté au début de la section 2.3. Nous étudions quelles
formes de flux d’information sont permises par la politique de non-divulgation
mais interdites par une politique de non-interférence.

xxvi SYNTHÈSE (IN FRENCH)

Ce chapitre est organisé comme suit. Dans la première section nous justi-
fions le besoin d’exprimer la déclassification, et introduisons la déclaration de
flux comme un outil qui peut être employé sous le contrôle d’une politique de
non-divulgation. Dans la section 3.2, nous présentons une extension au langage
d’ordre supérieur impératif de la section 2.2, auquel nous ajoutons une instruc-
tion de déclaration de flux. Puis, dans la section 3.3, nous introduisons notre
généralisation de la non-interférence, c’est-à-dire la politique de non-divulgation,
qui prend en compte des politiques de contrôle de flux dynamiques. Un système
de types et d’effets est donné pour le langage dans la section 3.4, ainsi que
certaines propriétés de base de ce système, dont la correction. Nous discutons
ensuite de travaux similaires.

Non-divulgation pour du code mobile

Le chapitre 4 aborde les problèmes de confidentialité et de déclassification en
informatique globale d’un point de vue orienté langage. L’objectif est de gérer
les nouvelles formes de failles de sécurité introduites par la mobilité du code,
que nous appelons failles de migration. Nous présentons une généralisation de
la politique de non-divulgation de [Almeida Matos et Boudol, 2005] pour les
réseaux, et un système de types et d’effets pour l’assurer. Nous considérons le
même langage que dans le chapitre précédent, enrichi par une notion de domaine
d’exécution et d’une primitive de migration standard.

Ce chapitre est organisé comme suit. Dans la première section, nous définis-
sons un calcul qui permet d’exprimer les problèmes qui apparaissent avec les
communications en réseau. Dans la section 4.3, nous étudions l’introduction
de politiques multiples pour les flux, et nous formulons une propriété de non-
divulgation utilisable dans un environnement décentralisé. Dans la section 4.4,
nous développons un système de types qui n’accepte que les programmes vérifiant
cette propriété. Enfin, nous étudions des travaux similaires.

Les explications techniques de chacun de ces chapitres sont clairement délimi-
tées, et peuvent être lues indépendamment. Cependant, les langages, les pro-
priétés de sécurité, et les systèmes de types qui sont présentés dans les derniers
chapitres sont construits sur ceux des chapitres précédents. Par la suite, des
remarques sur ce processus incrémental sont faites. Naturellement, les expli-
cations dans les derniers chapitres sont plus avancées, se concentrant sur les
nouvelles fonctionnalités introduites. Les preuves des chapitres 2 et 3 peuvent
être aisément reconstruites à partir de celles du chapitre 4, qui peut être vu
comme une généralisation des deux autres.

Conclusion

Contributions principales et travaux futurs

Nous résumons à présent les principales contributions techniques de cette
thèse, et nous donnons quelques perspectives sur les suites possibles à lui donner.
Nous finissons par quelques remarques sur les principaux points introduits dans
cette thèse.

CONCLUSION xxvii

Politiques de sécurité Nous avons abordé le problème de savoir quels pro-
grammes sont sûrs sur le plan de la confidentialité dans les flux d’information.
Nous avons étudié deux politiques de sécurité majeures : la propriété de non-
interférence classique, qui détermine l’absence de transferts d’information non
sûrs grâce à un ordre statique et global sur les niveaux de sécurité, et une
propriété nouvelle dite de non-divulgation, qui détermine l’absence d’échanges
d’information non sûrs grâce à un ordre dynamique de niveaux de sécurité valide
à ce point.

Les politiques de non-interférence et de non-divulgation ont été définies en
termes de bisimulations, basées naturellement sur des changements d’état ato-
miques. Ceci offre la précision nécessaire pour pouvoir d’une part analyser les
changements en mémoire qui se produisent à chaque étape de l’exécution (ana-
lyse nécessaire dans un environnement concurrent), et d’autre part pour indiquer
la politique de flux valide (nécessaire pour restreindre la portée des déclarations
de flux) en étiquetant la sémantique des changements atomiques. Nous mon-
trons que les relations d’ordre sur les niveaux de sécurité peuvent être exprimées
comme de simples politiques de flux, comme les relations entre entités.

Nous pensons que la non-divulgation est une généralisation naturelle de
la non-interférence classique, et que l’idée d’utiliser une bisimulation sur des
sémantiques de changements atomiques étiquetées pour définir une politique de
sécurité reflétant la nature locale de la déclassification pourrait peut-être être
utilisée dans d’autres cadres. Par exemple, en nous inspirant de la remarque
de Biba selon laquelle l’intégrité est en quelque sorte le dual de la confidentia-
lité (voir [Li et al., 2003 ; Myers et Liskov, 1997]), nous pourrions mettre au
point un cadre théorique similaire pour les aspects d’intégrité des données de la
sécurité, en incluant potentiellement des fonctionnalités de dégradation comme
l’« endorse »de [Li et al., 2003 ; Myers et al., 2004].

Paradigmes Nous avons orienté nos recherches en direction de deux para-
digmes concurrents. L’un est dans un environnement local, où les processus
légers peuvent être créés dynamiquement et exécutés en parallèle sur le même
support de calcul. L’autre est dans environnement distribué avec migration des
processus, où les processus légers sont exécutés dans différents domaines, et où
les localisations relatives des processus et des ressources déterminent les cir-
constances dans lesquelles ils peuvent être exécutés. Dans ce dernier paradigme,
nous avons découvert que de nouvelles formes de failles de sécurité, les failles
de migration, peuvent être encodées. Nous avons trouvé certaines ressemblances
avec les fuites d’informations causées par la localisation des processus dans un
réseau de type “Ambient” [Crafa et al.]. En effet, dans cet article, la visibi-
lité des processus légers dans un réseau est aussi considérée comme sujette aux
contraintes de confidentialité. Cela indiquerait que nos résultats ne sont pas
confinés à notre modèle de réseau particulier.

Nous avons volontairement choisi un modèle simple de la mobilité, cepen-
dant suffisant pour présenter les principes sous-jacents des failles de migration1.

1Le choix de lier statiquement les références aux processus légers, plutôt qu’aux domaines
[Ravara et al.] est justifié par le fait que, dans ce dernier cas, le problème de la confidentialité
des données migrées en même temps que les processus ne se pose pas. De plus, ce cas peut être
imité dans notre modèle en attribuant chacune des références d’un domaine à un processus
léger fixé dans ce domaine, et en ne permettant qu’aux processus légers sans références d’être
déplacés d’un domaine à l’autre.

xxviii SYNTHÈSE (IN FRENCH)

Néanmoins, on peut s’attendre à voir des modèles plus complexes de l’informa-
tique globale avoir des effets intéressants sur l’étude des contrôles de flux d’infor-
mation. Par exemple, la possibilité d’avoir une forme plus générale de migration
qui peut être provoquée par un processus léger sur un autre (migration objec-
tive) va probablement amener de nouveaux moyens d’exprimer des failles de
migration. D’un autre côté, introduire un calcul de conformité [Boudol, 2005a]
comme prérequis pour laisser entrer un processus dans un domaine pourrait
fournir de nouveaux moyens de prévenir les fuites d’information.

Un axe de recherche prééminent pour les modèles d’informatique globale
est consacré à la nature peu fiable des réseaux. Comme indiqué dans [Boudol,
2004], les principes des systèmes réactifs semblent particulièrement adaptés pour
fournir des réactions aux erreurs. Le langage ULM qui y est présenté montre
comment cela peut être réalisé. Il pourrait être intéressant de voir quel impact
l’intégration de ces principes réactifs pourrait avoir dans le modèle utilisé pour
cette thèse.

Fonctionnalités des langages Les langages sur lesquels nous avons basé
notre étude sont simples mais expressifs. Notre point de départ était un lambda-
calcul d’ordre supérieur impératif avec création de processus légers et de référen-
ces. Ce noyau a ensuite été enrichi avec une déclaration de flux qui permet
de paramétrer dynamiquement la relation d’ordre sur les niveaux de sécurité.
Une version du langage utilisant la notion de domaine d’exécution a enfin été
considérée, avec une instruction de migration d’un processus léger et de ses
références.

Notre mécanisme de déclassification, la déclaration de flux, peut être ren-
due encore plus expressif. Il serait particulièrement intéressant d’étendre le lan-
gage de manière à utiliser des niveaux de sécurité de première classe [Tse et
Zdancewic, 2004 ; Zheng et Myers, 2004]. De plus, l’idée de permettre d’in-
troduire des politiques de flux dynamiquement peut certainement être appliquée
à d’autres paradigmes de programmation. Réciproquement, on pourrait imagi-
ner d’autres moyens de restreindre l’usage de déclarations de flux, et adapter
alors la politique de non-divulgation en conséquence.

Mécanismes de certification Pour appliquer les politiques de sécurité sur
les programmes de nos langages, nous avons présenté de nouveaux systèmes
de types et d’effets qui sont motivés par des principes assez similaires. En
particulier, celui du chapitre 3 propose une variante de [Almeida Matos et
Boudol, 2005] qui restreint la déclassification à n’être possible que par le biais
d’opérations de déclassification contenues dans une déclaration de flux. Nous
avons donc mis en évidence la distinction entre notre nouveau paradigme de
déclassification et la déclassification plus classique par dégradation de valeur.

Les preuves de correction des systèmes de types, qui sont expliquées en détail
pour les langages distribués et pour la politique de non-divulgation, sont elles
aussi très semblables. Nous avons de bonnes raisons de penser que le mécanisme
de preuve de correction de type, qui est basé sur celui de [Almeida Matos et
Boudol, 2005], (qui à son tour est basé sur celui de [Boudol et Castellani,
2002]), peut aussi être appliqué à d’autres cas.

Des généralisations immédiates pour le système de types et d’effets pour-
raient être l’introduction de polymorphisme et d’inférence de type [Myers,

CONCLUSION xxix

1999 ; Pottier et Simonet, 2003]. Des raffinements supplémentaires pour-
raient être potentiellement obtenus en considérant un ensemble d’effets plus
riche, comme par exemple la création et la destruction de références, la création
de processus légers, et plus généralement toute action modifiant le contexte
d’une expression dans la machine (abstraite) qui l’évalue.

Remarques finales

La déclaration de flux : encore un mécanisme de déclassification ?

Comme vu dans les discussions du chapitre 3 liées aux travaux similaires (voir
section 3.5), les propositions pour des mécanismes de déclassification fleurissent
dans la littérature. Plutôt que de seulement proposer encore un mécanisme de
déclassification, nous avons suggére un moyen d’affronter « la difficulté [de]
déterminer quelle nature un mécanisme de déclassification devrait avoir et quel
genre de garanties de sécurité il permettrait »[Zdancewic, 2004]. L’idée clef
est que, avant de réfléchir à comment contrôler l’usage de la déclassification, il
serait bon de disposer d’un cadre théorique pour l’exprimer. Nous pensons que
le cadre théorique pour la déclassification que nous avons présenté dans cette
thèse est séduisant pour les raisons suivantes :

– Il fournit un mécanisme simple, mais flexible et puissant pour la déclassifi-
cation. En particulier, il ne comporte pas de restrictions allant au-delà de
la simple déclassification.

– Il inclut une politique de sécurité, la non-divulgation, avec des propriétés
sémantiques satisfaisantes. Nous remarquons que deux de ces propriétés
font partie de celles suggérées par le « bon sens »pour les politiques de
sécurité dans [Sabelfeld et Sands, 2005] : la cohérence sémantique, qui
voudrait que les programmes qui sont sémantiquement équivalents soient
uniformément classés comme sûrs ou non sûrs, et la monotonicité de la
sécurité, qui voudrait que d’une part la non-divulgation soit équivalente
à la non-interférence pour les programmes sans déclassification, et que
d’autre part les programmes ne deviennent pas non sûrs par le simple
ajout de déclarations de flux.

– Il est aisément extensible à d’autres langages et environnements. En par-
ticulier, notre politique de non-divulgation est extensionnelle, c’est-à-dire
définie en termes de sémantique de programme, indépendamment des par-
ticularités du langage.

– Il fournit une technique fiable pour rejeter avec une précision raisonnable
tous les programmes qui ne respectent pas la politique de sécurité.

La première des qualités ci-dessus est peut-être la plus importante de notre
cadre théorique pour la déclassification. En effet, nos déclarations de flux peuvent
exprimer la déclassification avec n’importe quel degré de précision, depuis des
opérations spécifiques jusqu’à des portions entières d’un programme, et ce entre
n’importe quels niveaux de sécurité. Ceci est rendu possible par la manipulation
directe des politiques de contrôle des flux, qui sont de simples relations binaires
entre les entités du système.

Nous notons finalement que, en incorporant notre mécanisme de déclassifica-
tion dans notre étude des contrôles de flux d’information pour réseaux, nous
avons montré sa fiabilité dans un nouvel environnement de calcul.

xxx SYNTHÈSE (IN FRENCH)

Sur la combinaison de la déclassification et de la mobilité

Les thèmes de la déclassification et de la mobilité dans les flux d’informa-
tion sont des problèmes assez indépendants. Il n’est peut-être pas si surprenant
qu’ils puissent être combinés aussi aisément. Cependant, nous devons préciser
que cette facilité est due à la nature hautement décentralisée des déclarations de
flux. Aucun accord global n’est présupposé sur les politiques de déclassification
(comme c’est le cas dans [Mantel et Sands, 2004]). De plus, les changements
de la politique de gestion des flux qui sont opérés dynamiquement par les pro-
grammes ont une portée lexicale, et n’affectent pas le système dans son ensemble.

Les dangers potentiels nés de la déclassification dans un environnement per-
mettant la mobilité du code paraissent peut-être plus frappants que ses avan-
tages. On peut imaginer l’exemple d’un processus léger en cours de migration
contrôlé par une politique de flux très permissive : quand il arrive dans un do-
maine où un autre processus comportant des références secrètes est en cours
d’exécution, il pourrait déclassifier cette information, indépendamment de la
politique de flux de leur propriétaire. Ceci pourrait être exprimé dans notre
langage comme :

d1[(goto d2); (flow H ≺ L in (m.bL :=? (? n.aH)))
m
] ‖ d2[N

n] (1)

Mesuré à l’aune de la non-divulgation pour les réseaux, ce programme est sûr ;
en fait, le processus léger m respecte la politique de flux déclarée quand il
copie la valeur de la référence n.aH dans m.bL. Cependant, on peut voir le
potentiel de formuler d’autres politiques de sécurité qui tiennent compte de
la propriété des informations, ou le potentiel de définir des constructions du
langage qui conditionnent l’exécution de sous programmes à des politiques de
flux plus strictes, ou même le potentiel de mettre au point des conditions de
type pare-feux qui contrôlent l’entrée de processus légers mobiles.

Réciproquement, nous nous tournons vers l’exemple d’un processus léger qui
amène ses propres données dans un site où il devra effectuer des calculs en privé.
Alors, la possibilité de déclarer ses propres politiques de sécurité se transforme
en un avantage. Par exemple, nous pourrions écrire le programme

d1[(goto d2); (flow H ≺ L in (n.bL :=? (? m.aH)))
m
] ‖ d2[N

n]. (2)

Nous n’avons encore que peu d’expérience pratique dans l’utilisation de
systèmes informatiques mobiles, ce qui rend délicat d’évaluer l’importance de
permettre la déclassification dans un environnement mobile. Néanmoins, la
déclassification semble être une fonctionnalité cruciale pour tout langage su-
jet à un contrôle de flux d’information, ce qui justifie a fortiori son inclusion
dans le langage mobile du chapitre 4. De plus, afin d’évaluer les problèmes et
avantages apportés, il est préférable d’étudier la déclassification sur un langage
simple mais expressif, qui peut ensuite être utilisé comme fondation sur laquelle
construire des cadres théoriques plus complexes. Nous pensons que le langage
mobile présenté dans cette thèse est un point de départ fertile pour l’étude des
flux d’information sécurisés dans les réseaux.

Chapter 1

Introduction

1.1 Motivation

Computer security has been an increasingly important matter since computers
have existed. One of its main concerns is confidentiality, the assurance that
information is accessible only by those who are authorized.

First efforts date back to the early times of computing, leading to the defi-
nition of memory partitions and ensuring that running programs do not access
partitions of other programs. This is an early example of access control, an
aspect of confidentiality enforcement that refers to any mechanism by which a
system grants or revokes the right to access some data, or perform some action.
However, once a reading clearance has been given, it is beyond the reach of ac-
cess control to regulate the propagation of the released information as it is being
processed by a program [Denning, 1976; Lampson, 1973; Myers & Liskov, 2000;
Sabelfeld & Myers, 2003]. This observation has led to increased attention on
the control of information flow. The aim of information flow control is precisely
to track and regulate how information flows in a computing system, to prevent
it from falling into the hands of unauthorized parties.

In just a few decades, computational systems have evolved from local time-
sharing machines to complex world wide webs of computing devices, where
programs and data roam in a decentralized fashion. In such a global computing
environment, security issues become particularly crucial. Indeed, the new pos-
sibilities offered by global computing have been often exploited by parties with
hazardous intentions (think of viruses, worms, denial of service attacks etc.).
Surprisingly, very little work has been done on the control of information flow
in networks. This is the general topic of the present thesis.

1.1.1 Typing Secure Information Flow

We take a language based approach (see [Sabelfeld & Myers, 2003] for a review),
which means that we restrict our attention to information flows that take place
within computations of programs. Hence, information leaks can only occur as
information is transferred between the computational objects of a given lan-
guage.

In order to specify which are the allowed information flows, it is natural
to attribute security levels to objects (information containers or channels), to

1

2 CHAPTER 1. INTRODUCTION

be read only by subjects with the corresponding security clearance. Then, an
ordering relation is given for these security levels [Denning, 1976], meaning that,
during computation, information is allowed to flow from one object to another
only if the source object has a lower security level than the target one. That
is, the ordering relation on security levels determines the legal flows, and a
program is secure if, when executing, it never performs illegal flows. This was
first formally stated via a notion of strong dependency by [Cohen, 1977], and was
later captured by the notion of non-interference [Goguen & Meseguer, 1982].

A considerable amount of work has been devoted to the design of methods for
analyzing information flow in programs (see for instance [Andrews & Reitman,
1980] for early references). The analysis can be done dynamically, using run-time
checks. These methods can be criticized for involving an important computa-
tional and storage overhead, or for leaking information by the mere failure of
a run-time check [Denning, 1976; Myers & Liskov, 1997]. As an alternative,
static analysis methods have been developed for information flow, allowing re-
jection of insecure programs before execution. One can highlight the use of type
systems, which started with the work of Volpano, Smith and Irvine [Volpano
et al., 1996]. Although they offer only an approximate analysis, (decidable) type
systems have well-known advantages, like preventing some programming errors
at an early stage. Type systems that enforce secure information flow have been
designed for various languages (e.g. [Boudol & Castellani, 2002; Crary et al.,
2005; Heintze & Riecke, 1998; Pottier & Simonet, 2003; Smith, 2001; Smith
& Volpano, 1998; Volpano & Smith, 1997; Volpano et al., 1996; Zdancewic &
Myers, 2002], and further references in [Sabelfeld & Myers, 2003]), including
for full-fledged languages like Jif (or JFlow, see [Myers, 1999]) and Flow Caml

[Simonet, 2003].

1.1.2 Addressed Challenges

“Despite their long history and appealing strengths, information-
flow mechanisms have not yet been successfully applied in practice.”

[Zdancewic, 2004]

Refinement

Much of the effort in controlling information flow goes into pinning down which
are the unwanted information flows. Even when the most conservative goal is
chosen, and one strives for strictly rejecting every security leak, there is still a
long way to go in understanding which forms of information flow could poten-
tially be exploited harmfully. This issue is strongly related to the expressivity
of the computational context in which programs run. Typically, when intro-
ducing new features in a programming language, new forms of security leaks
appear. There is thus a genuine requirement of performing security analysis for
languages that are at least as expressive as the ones that are used in practice.
In this thesis we shall base our study on Core ML [Milner et al., 1997; Wright &
Felleisen, 1994], a call-by-value λ-calculus extended with imperative constructs
that we further enrich with concurrent threads.

It is easy to find mechanisms for selecting only secure programs – an extreme
example could be the selection of no program at all. A different matter is to have

1.1. MOTIVATION 3

them validate as many secure programs as possible. In fact, security of programs
is often undecidable, which makes procedures for rejecting insecure programs
necessarily excessive. In the design of type systems for information flow, the key
seems to lie in identifying the effects of the programs and the security levels of
the information that those effects depend on. By formalizing the notion of effect
in increasingly detailed manners, one can express increasingly refined conditions
for accepting programs. This is exemplified in this thesis, by considering a type
and effect system [Lucassen & Gifford, 1988] that deals with reading, writing
and termination effects of programs.

Flexibility

It is interesting that, even in systems where security is of crucial importance,
most often non-interference is not the desired policy. Indeed, the blind rejection
of any information leak would disallow programs that are quite common and
very useful. Typical examples are password checkers and encryption programs,
whose whole purpose implies the declassification of secret information (even
if only by a bit) to public observers. Non-interference is thus prohibitively
restrictive to be used in practice. This has recently motivated a lot of research
in alternative security properties that are more flexible than non-interference
and allow some kind of declassification (see [Volpano, 2000; Volpano & Smith,
2000; Myers et al., 2004; Sabelfeld & Myers, 2004; Chong & Myers, 2004; Mantel
& Sands, 2004; Li & Zdancewic, 2005] and an overview in [Sabelfeld & Sands,
2005]). However, most of the approaches are influenced by the concern that,
once allowed, declassification could be misused into leaking more information
than what should be considered “safe”. As a result, security properties that exist
in the literature often include built-in restrictions which impair their suitability
for replacing non-interference.

In this thesis we argue that, prior to envisioning restrictions on the usages
of declassification, one should provide flexible and simple means to express it,
and we propose non-disclosure as a natural generalization of non-interference.
In particular, one would like to have the possibility of expressing operations
that deliberately involve flows of information that are rejected by the underlying
security ordering. To this end, we provide a mechanism for locally extending the
security ordering that regulates the allowed flows by means of a flow declaration
construct. This allows the programmer to customize the security policy to
the particular application that she/he has in mind, by means of simple flow
conditions on the security levels.

Integration

In order to build real applications for information flow security, one must show
how to integrate it with existing security mechanisms. As we have mentioned in
the beginning, the interface between access control and information flow control
is intrinsically relevant. Access control is typically enforced by operating systems
by means of access control lists (lists of authorized principals). Information-flow
systems can be specified in terms of such concrete forms of security labels [Myers
& Liskov, 1997; Banerjee & Naumann, 2005]. In this thesis, we go a step further,
and we specify our security policies also in terms of principals. In particular,
our flow declarations deal directly with flow relations between principals, from

4 CHAPTER 1. INTRODUCTION

which ordering relations on the security levels can be derived. In this way we
suggest that access control and flexible information flow control can be combined
in a simple manner.

At a higher level, protecting confidentiality of data is a concern of particular
relevance in a global computing context. When information and programs move
throughout networks, they are exposed to users with different interests, goals
and responsibilities. This motivates the search for practical mechanisms that
enforce the respect for confidentiality of information, while minimizing the need
to rely on mutual trust. In this thesis we present a first study on insecure
information flows that are introduced by mobility in the context of a distributed
language with states. Substantiating the pertinence that the global computing
setting brings new issues into information flow analysis, we have identified a
new form of security leaks, the migration leaks, which can appear in distributed
settings with mobility.

1.2 Overview

1.2.1 Structure of the Thesis

In the following three chapters, we consider increasingly complex computational
settings. Chapter 2 focuses on the study of non-interference in a higher-order
concurrent language, Chapter 3 on the admittance of declassification in the
language, and Chapter 4 on a setting with mobility and declassification. In each
of these chapters, information flow security properties are studied, formalized,
and enforced by means of type systems.

Chapter 2 introduces the fundamental notion of Non-interference as a prop-
erty that states the inability of secure programs to allow information leaks
to occur during their computations. We consider the particular context
of an imperative higher-order λ-calculus with thread creation. Given the
concurrent setting in which computations take place, Non-interference is
formalized in terms of a bisimulation that uses a small-step semantics for
the language. A type and effect system for accepting secure programs is
given, and its soundness proof is outlined.

Chapter 3 motivates the need for more flexibility in the rejection of programs
where information leaks occur. By introducing a way of changing what is
considered to be an illegal information flow (leak) it is possible to give the
programmer means to declassify information. For this purpose a flow dec-
laration construct is added to the language considered in Chapter 2. A new
security policy, called Non-disclosure, which generalizes Non-interference,
is formulated. A type and effect system that generalizes the one in Chap-
ter 2 is presented, and its soundness proof is outlined.

Chapter 4 turns to the topic of global computing and the information flow
security problems that are specific to this context. The language in Chap-
ter 3 is enlarged so as to reflect the distributed notion of computations, as
well as to allow for the mobility of code and resources. New security leaks
that arise are identified in a generalization of Non-disclosure that we call
Decentralized Non-disclosure. A more complex type and effect system,

1.2. OVERVIEW 5

which generalizes the one in Chapter 3, is presented as well. A soundness
proof is given in detail.

The technical expositions of each of the above chapters are self-contained,
and can be read independently to a large extent. However, the languages,
security properties and type systems that are presented in the latter chapters
build upon the preceding ones. Therefore, remarks underlining this constructive
process will be made. Naturally, explanations in latter chapters will be more
advanced, focusing on the new features that are introduced. The proofs of
Chapters 2 and 3 can be easily reconstructed from the one in Chapter 4, which
can be seen as a generalization of the two.

1.2.2 Contributions

The central contributions of this thesis are:

• The study of the design of type and effect systems implementing infor-
mation flow security, for languages based on an imperative higher-order
λ-calculus with thread and reference creation.

• The introduction of a flow declaration construct for the purpose of declas-
sification. The presentation of a security policy that is a direct general-
ization of Non-interference – the Non-disclosure policy. A new sound type
and effect system for enforcing such a property. This contribution is based
on the published work [Almeida Matos & Boudol, 2005] and (as regards
the type system) [Almeida Matos, 2005].

• The identification of new security leaks that arise in an imperative setting
where mobility of resources plays an explicit role. The formulation and
formalization of a security property – Non-disclosure for Networks – that
allows for declassification in a distributed setting with mobility. A sound
type and effect system for enforcing such a property. This contribution is
based on the published work [Almeida Matos, 2005].

6 CHAPTER 1. INTRODUCTION

Chapter 2

Non-interference in
Concurrency

This chapter addresses the issue of confidentiality for a simple concurrent set-
ting. The purpose is to introduce non-interference as a property that determines
the absence of insecure information flows, and to illustrate the use of a type and
effect system for enforcing that property. To this end, we consider an expressive
concurrent language: an imperative (higher-order) lambda-calculus with thread
and reference creation. We use a specific kind of security lattice, based on the
idea of principals, that can be parameterized by a global flow policy. We study
how to control security leaks that arise in programs of this language, including
termination leaks and higher-order leaks. The context that we consider here will
serve as basis for the developments presented in this thesis.

The chapter is organized as follows. In the next section we introduce some
basic ideas behind using type systems to reject information flows that are con-
sidered insecure from the point of view of non-interference. In Section 2.2 we
define a higher-order calculus that exhibits confidentiality problems that arise
in simple concurrent settings. In Section 2.3 we define a principal-based secu-
rity pre-lattice, and give a bisimulation-based definition of non-interference that
is suitable for a concurrent setting. In Section 2.4 we develop a type system
that only accepts programs satisfying such a property. Basic properties of the
language and of the type system, including soundness, are given in this section.
Finally, we discuss related work.

2.1 Introduction

We informally explain the non-interference property, and give examples of dif-
ferent forms of security leaks, culminating in the higher-order leaks. We provide
intuitions on how to use type systems and security lattices to rule out insecure
information flows. We introduce the concepts of principal and flow policy, and
show how they can be used to give a concrete interpretation of security levels.

7

8 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

2.1.1 Basics of Non-interference

Let us briefly recall the intuition about non-interference in a system with only
two security levels, low (public, L) and high (secret, H). These security levels
are attributed to objects, meaning that the information contained in them can
only be read by subjects with the corresponding security clearance. Informally,
the non-interference property states that information should only be allowed to
flow from lower to higher (more secure) levels. To start with, let us consider
a sequential imperative language, such as the imperative language of Volpano,
Smith and Irvine [Volpano et al., 1996]. The objects of the system are variables,
whose security levels are specified using subscripts (for example aH is a variable
of high security level).

Direct Leaks and Control Leaks

An insecure flow of information, or interference, can be said to occur when the
initial values of high variables influence the final value of low variables. The
simplest case of insecure flow is that of an assignment of the value of a high
variable to a low variable, as in:

bL := aH (2.1)

It is called an explicit insecure flow, and consists of a direct leak of information.
More subtle kinds of flow, called implicit flows, may be induced by the flow of
control (control leaks), as in the program

if aH = tt then bL := tt else bL := ff (2.2)

where at the end of execution the value of bL may give information about aH .
A similar program can be written using a loop:

bL := ff ; (while aH = tt do (bL := tt ; aH := ff)) (2.3)

Other programs may be considered as secure or not depending on the context
in which they might appear. For instance, the program

(while aH = tt do nil); bL := ff (2.4)

may be considered safe in our sequential setting (since whenever it terminates
it produces the same value ff for bL), whereas it may become critical in the
presence of parallelism, as we shall see next.

Termination Leaks

In a sequential setting it makes sense to look only at the output values that
a program may give, thus ignoring all its non-terminating computations (we
refer to this form of non-interference as “basic”). In fact, it is only the output
values of terminating computations that can be used by other programs that
are sequentially composed with that program. Furthermore, if a computation
enters a non-terminating loop, it is not possible for other programs to interrupt
the loop since they will never get their turn to execute. This is no longer true
in a concurrent setting. In fact, Example 2.4 can be used in a program that

2.1. INTRODUCTION 9

always terminates and is insecure in the above sense. In the following program,
suppose that variables cH and c′H are initially assigned the value ff and let ||
be the parallel operator:

if aH then cH := tt else c′H := tt ||
(while ¬cH do nil); bL := ff ; c′H := tt ||
(while ¬c′H do nil); bL := tt ; cH := tt

(2.5)

This program always terminates, and the final value of bL reflects the initial
value of the high variable aH . The insecure flow that occurs here is usually
called a termination leak, since it results from the “termination behavior” of a
portion of the program.

Higher-Order Leaks

The language that we will consider in this chapter is higher-order, which intu-
itively means that programs can be stored in the memory of another program
and executed from it. This enables the emergence of another sort of security
leaks, hereby called higher-order leaks. To illustrate them let us consider a very
rudimentary form of higher-order expressiveness: we assume that variables that
contain programs and are written after a ‘∗’ are executable expressions that
simply return their contents. Then, if the program M is placed in the variable
c, the program ∗ c behaves as the program M . This allows us to write the
following program

(if aH then cH := (bL := tt) else cH := (bL := ff)); ∗ cH (2.6)

which is insecure in that it has the same effect as the program of Example 2.2.
We will come back to the treatment of higher-order security leaks in Sec-

tion 2.4.

2.1.2 Typing Away Security Leaks

In order to reject programs that can exhibit dangerous flows of information,
rules of thumb are conceived to simplify the problem of detecting where they
might occur. Typically they state that programs cannot contain:

• Assignments of high information to low variables (Example 2.1).

• Low assignments in the body of conditionals or loops with high tests (Ex-
amples 2.2 and 2.3).

In a concurrent setting, one additionally wants to reject programs containing:

• Low assignments following conditionals or loops with high tests (Exam-
ple 2.4).

Rules like the above can be used to build type systems for rejecting insecure
programs before their execution. But it is important to understand that these
syntactic rules can only approximate the semantic notion of secure program.
When they are used to reject all insecure programs, some secure ones are nec-
essarily left out too.

10 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Sequential Setting

Typing rules for sequential programs might look like this:

` e : δ δ ≤ θ

` (aθ := e) : θ

` e : δ ` P : θ1 ` Q : θ2 δ ≤ θ1, θ2

` (if e then P else Q) : θ1 ∧ θ2

` e : δ ` P : θ δ ≤ θ

` (while e do P) : θ

(2.7)

In the above rules, similar to those in [Volpano et al., 1996], the greek letters δ
and θ represent security levels. In the simple setting we have considered so far,
they can be either H or L, where the relation L ≤ H means that L is less secret
or equal to H . The relation ≤ is called a flow relation, since it establishes the
direction in which information may flow. The operator ∧ gives the smallest of
two security levels, that is L ∧ L = L, L ∧ H = L and H ∧ H = H . Judgments
` e : δ mean that expression e has reading effect δ – it represents an upper-bound
to the security levels of the variables that are needed to calculate e. Judgments
` P : θ mean that the program P has the writing effect θ – it represents a
lower-bound to the security levels of the variables that are written in P . In this
way, the condition δ ≤ θ in the first rule implies that a high expression cannot
be assigned to a low variable. On the other hand, the same conditions in the
second and third rules imply that there cannot be a low write in P if e is a high
test.

Concurrent Setting

In a concurrent setting, low assignments following conditionals or loops with
high tests can be rejected using rules like the following:

` e : δ δ ≤ θ

` (aθ := e) : (θ, σ)

` e : δ ` P : (θ1, σ) ` Q : (θ2, σ) δ ≤ θ1, θ2

` (if e then P else Q) : (θ1 ∧ θ2, δ ∨ σ)

` e : δ ` P : (θ, σ) δ ∨ σ ≤ θ

` (while e do P) : (θ, δ ∨ σ)

` Q1 : (θ1, σ1) ` Q2 : (θ2, σ2) σ1 ≤ θ2

` (Q1; Q2) : (θ1 ∧ θ2, σ1 ∨ σ2)

(2.8)

The operator ∨ gives the largest of two security levels, that is L ∨ L = L,
L ∨ H = H and H ∨ H = H . In the above rules, similar to the ones in [Smith,
2001; Boudol & Castellani, 2002], programs are assigned both a writing effect θ
and a testing effect σ – it represents an upper-bound to the level of the variables
that are tested in that program. This allows us to write the condition σ1 ≤ θ2

in the rule for sequential composition, implying that if high variables are tested
in the first component, then low variables cannot be written to in the second

2.1. INTRODUCTION 11

component. Notice that in the rules for conditionals and loops, the testing effect
of the program is updated with that of the guard.

2.1.3 (Pre-)Lattices of Security Levels

So far we have considered the simple case where only two security levels are at
hand – high and low. However, the above explanations can be easily extended
to a more general setting, with an arbitrary number of security levels, and a flow
relation for which certain operations “meet” and “join” can always be defined.

Lattices of Security Levels

Following the original works of Bell and La Padula and Denning [Bell & La
Padula, 1976; Denning, 1976], it is standard to let security levels form a lattice
(see for instance the survey [Sandhu, 1993] for the use of security lattices). We
recall some basic definitions regarding partial order relations (reflexive, transi-
tive and anti-symmetric).

Definition 2.1.1 (Least Upper-Bound and Greatest Lower-Bound). Given a
partially ordered set (L,≤) and two elements l1 and l2 of L, we define:

Least Upper-Bound of l1, l2 is an element l that satisfies:

l1 ≤ l
l2 ≤ l
l1 ≤ l3 and l2 ≤ l3 implies l ≤ l3

Greatest Lower-Bound of l1, l2 is an element l that satisfies:

l ≤ l1
l ≤ l2
l3 ≤ l1 and l3 ≤ l2 implies l3 ≤ l

Clearly, due to the anti-symmetry property of partial order relations, if the
least upper-bound element or the greatest lower-bound element of a partial order
exist, they are unique.

Definition 2.1.2 (Lattice). A partially ordered set (L,≤) is a lattice if any
two elements of L have a (unique) least upper-bound and a (unique) greatest
lower-bound with respect to ≤.

In a lattice we can define the meet (∨) and join (∧) operation on elements
of L such that, for any two l1, l2 ∈ L we have

l1 ∧ l2 is the greatest lower-bound of l1 and l2, and

l1 ∨ l2 is the least upper-bound of l1 and l2.

Usually no further precisions are needed as to which kind of lattice is in use,
and the general case is considered. Here we chose to deal with a specific kind
of structure, which besides being convenient for the technical developments in
the following chapters, is intuitive in practice. This structure forms a pre-lattice
which, in spite of not being a lattice, still exhibits the necessary properties.

12 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Pre-lattices of Security Levels

Even though the lattice structure is traditionally used for security levels, it is
sufficient to use a preorder relation (reflexive, transitive but not necessarily anti-
symmetric) as a flow relation. To obtain the corresponding structure, the pre-
lattice, we extend the notion of least upper-bound and greatest lower-bound to
preorder relations in the obvious way. Notice, however, that now these elements
are not necessarily unique. We can then define:

Definition 2.1.3 (Pre-Lattice). A preordered set (L,�) is a pre-lattice if any
two elements of L have a least upper-bound and a greatest lower-bound with
respect to �.

In a pre-lattice one can then define a meet (f) and a join (g) operation on
elements of L that satisfy the same properties as the corresponding operations
for lattices. To this end, one must choose, for each pair of elements l1 and l2,
which of the greatest lower-bounds and least upper-bounds is given by the meet
and join operators, respectively.

We leave the formal definition of the specific pre-lattices that we use in our
framework, as well as the choice of meet and join operators that we adopt, to
a later stage in this chapter (Section 2.3). Nevertheless, the basic ideas behind
them stem from rather simple observations that we point out next.

Principals and Flow Policies

We are interested in the problem of making sure that the subjects of our system
– the principals – can only read information that they are authorized to. For
this reason, we define the security levels of objects to be the sets of principals
that are authorized to read information contained in them. These are similar
to access control lists. From this point of view, given a set Pri of principals,
an object labeled Pri (also denoted ⊥) is a most public one – every principal
is allowed to read it –, whereas the label ∅ (also denoted >) indicates a secret
object, so secret that no principal is allowed to read it.

So far we have considered the case of a flat structure of principals, assum-
ing no communication between them. However, once security levels have been
assigned to objects, these can be used in programs running in different security
environments, with different understandings of how information should be al-
lowed to flow between principals. One might then wish to express that whatever
principal p can read, also principal q can. This gives rise to the idea of a flow
policy, which is a set of such statements. As an example, one could then say
that the assignment

a{p,q} := b{p} (2.9)

respects the flow policy F = {p ≺ q}, while for instance the assignment

a{p,q} := b{q} (2.10)

does not. Hence, in the ordering imposed by the flow policy F , the security
level {q} is lower than {p, q}. The concrete view of security levels as sets of
principals, and of flow policies for specifying flow relations is adopted in the rest
of this chapter.

2.2. AN IMPERATIVE CONCURRENT λ-CALCULUS 13

Principals p, q ∈ Pri

Security Levels l, j, k ⊆ Pri

Effects s ::= 〈l, l, l〉

Type Variables t

Types τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s
−→ σ

Figure 2.1: Syntax of Security Annotations and Types

Variables x, y ∈ Var

Reference Names a, b, c ∈ Ref

Decorated Reference Names ::= al,θ

Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff

Pseudo-values W ∈ Pse ::= V | (%x.W)

Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) |
(ref l,θ M) | (! N) | (M := N) |
(if M then Nt else Nf) |
(thread M)

Figure 2.2: Syntax of Expressions

Threads ::= M (∈ Exp)

Pool of Threads P ∈ N
Exp

Store S : (Ref × 2Pri ×Typ) → Val

Configurations ::= 〈P, S〉

Figure 2.3: Syntax of Configurations

2.2 An Imperative Concurrent λ-Calculus

We now define the language on which we base the study of the present chapter.
We present the syntax of the expressions of the language, including its security
annotations, and the format of configurations; we give the (small step) semantics
for configurations, which is defined using evaluation contexts; we state some
basic properties of the language. The definitions regarding the syntax of the
language are all gathered on page 13, while the ones for the semantics can be
found on page 16.

2.2.1 Syntax

The language of expressions is a call-by-value λ-calculus extended with the
imperative constructs of ML, conditional branching and boolean values. We also
introduce the possibility of dynamically creating concurrent threads. We now
define the syntax of security annotations, types, expressions and configurations.

14 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Security Annotations and Types

According to the intuitions given earlier in this chapter, security levels l, j, k are
sets of principals, which are ranged over by p, q ∈ Pri (see Figure 2.1). They
are apparent in the syntax as they are associated to references (and reference
creators). The security level of a reference is to be understood as the set of
principals that are allowed to read the information contained in that reference.

Types and effects are apparent in the syntax of the language. Their syntax
is given in Figure 2.1, and will be explained in Section 2.4. These annotations
do not play any role in the operational semantics, but are used for the purpose
of proving type soundness.

Expressions

We assume given two disjoint countable sets Var and Ref . Variables x are cho-
sen from a set Var . Names or addresses are given to references (a, b, c ∈ Ref).
Reference names can be created at runtime. We add annotations (subscripts)
to references: they are decorated with their security level and the type of the
values that they can hold. A decorated reference al,θ is a triple made of an ad-
dress a, a type θ and a security level l. In the following we may omit subscripts
whenever they are not relevant, following the convention that the same name
has always the same subscript.

The syntax of expressions is defined in Figure 2.2. Values, ranged over
by V ∈ Val , are special expressions that cannot compute, and include: the
command () that does nothing; the function abstraction (λx.M) with body M
and parameter x; the boolean values tt and ff . The construct (%x.W), which
binds the occurrences of x in the pseudo-value W , is used to express recursive
values – it recursively executes the result of applying (λx.W) to itself.

The set Exp of expressions, ranged over by M, N , includes: the application
(M N) that applies the function that results from computing M to the result
of the computation of N ; the conditional (if M then Nt else Nf) that executes
Nt or Nf depending on whether the computation of M renders tt or ff 1; the
sequential composition (M ; N) that executes N after the execution of M has
terminated; the dereferencing operation (! M) that, after M has executed and
returned a decorated reference name, returns the value that the reference points
to; the assignment (M := N) of the value returned by the computation of N
to the decorated reference name returned by the computation of M ; finally, the
thread creator (thread M), that spawns the thread M , that is to be executed
concurrently, and returns ().

Other useful commands can be derived from the above expressions. For
example, we can write the let construct (let x = N in M) as ((λx.M) N). We
can write recursive functions as (%f.(λx.M)), close to (let rec f = (λx.M) in f)
written in an ML-like notation. We denote by loop the expression (%x.x). We
may encode while loops in the following standard way:

(while M do N)
def
= ((%y.(λx.(if M then (N ; (y x)) else x))) ()) (2.11)

1The notation Nt and Nf is used only for notational convenience to distinguish the
branches, and does not have any further meaning.

2.2. AN IMPERATIVE CONCURRENT λ-CALCULUS 15

Configurations

The evaluation relation is a transition relation between configurations of the
form 〈P, S〉 where: P is a pool (multiset) of threads (expressions) that run
concurrently2; and the memory or store S is a mapping from a finite set of
decorated reference names to values.

2.2.2 Semantics

We now define the semantics of the language as a small step operational se-
mantics on configurations. To this end, we give some useful notations and
conventions. We then describe the transitions on configurations, that are based
on evaluation contexts, and state some properties of the semantics.

Basic Sets and Functions

Given a configuration 〈P, S〉, we define dom(S) as the set of decorated reference
names that are mapped by S. We say that a reference name a is fresh in S
if it does not occur, with any subscript, in dom(S), that is if bl,θ ∈ dom(S)
implies that b 6= a. We denote by rn(P) the set of decorated reference names
that occur in the expressions of P (this notation is extended in the obvious way
to expressions). We let fv(M) be the set of variables occurring free in M .

We restrict our attention to well formed configurations 〈P, S〉 satisfying the
following condition for memories, values stored in memories, and thread names:

• rn(P) ⊆ dom(S), and

• al,θ ∈ dom(S) implies rn(S(al,θ)) ⊆ dom(S), and

• all occurrences of a name in a configuration are decorated in the same
way.

We denote by {x 7→ W}M the capture-avoiding substitution of W for the
free occurrences of x in M . The operation of adding or updating the image of
an object z to z′ in a mapping Z is denoted [z := z′]Z.

Evaluation Contexts

In order to define the evaluation order, it is convenient to write expressions
using evaluation contexts. Intuitively, the expressions that are placed in such
contexts are to be executed first. We write E[M] to denote an expression where
the subexpression M is placed in the evaluation context E, obtained by replacing
the occurrence of [] in E by M . The evaluation contexts of the language define a
call-by-value evaluation order (see Figure 2.4). Evaluation is not allowed under
threads that have not yet been created.

Small Step Semantics

The transitions of our (small step) semantics are defined between configurations.
The evaluation rules are defined in Figure 2.5. We omit the set-brackets for pools

2The notation NExp denotes the power-multiset of the set Exp, i.e., the set of all multisets
of Exp.

16 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Evaluation Contexts E, F ::= [] | (E N) | (V E) | (E; N) |
(ref l,θ E) | (! E) | (E := N) | (V := E) |
(if E then Nt else Nf)

Figure 2.4: Evaluation Contexts

〈E[((λx.M) V)], S〉
()
−→ 〈E[{x 7→ V }M], S〉

〈E[(if tt then Nt else Nf)], S〉
()
−→ 〈E[Nt], S〉

〈E[(if ff then Nt else Nf)], S〉
()
−→ 〈E[Nf], S〉

〈E[(V ; N)], S〉
()
−→ 〈E[N], S〉

〈E[(%x.W)], S〉
()
−→ 〈E[({x 7→ (%x.W)} W)], S〉

〈E[(! al,θ)], S〉
()
−→ 〈E[V], S〉, where S(al,θ) = V

〈E[(al,θ := V)], S〉
()
−→ 〈E[()], [al,θ := V]S〉

〈E[(ref l,θ V)], S〉
()
−→ 〈E[al,θ], [al,θ := V]S〉, if a fresh in S

〈E[(thread N)], S〉
N
−→ 〈E[()], S〉

〈{M}, S〉
()
−→ 〈{M ′}, S′〉

〈{M}, S〉 −→ 〈{M ′}, S′〉

〈{M}, S〉
N
−→ 〈{M ′}, S′〉

〈{M}, S〉 −→ 〈{M ′, N}, S′〉

〈P, S〉 −→ 〈P ′, S′〉 〈P ∪ Q, S〉 is well formed

〈P ∪ Q, S〉 −→ 〈P ′ ∪ Q, S′〉

Figure 2.5: Semantics

2.2. AN IMPERATIVE CONCURRENT λ-CALCULUS 17

that are singletons. We start by defining the transitions of a single thread. These
are decorated with the thread N that is possibly spawned during that transition,
where N = () if no thread is created. The last three rules define the (unlabeled)
transitions of pools of threads; they use the information contained in the label
to add any spawned threads to the pool of threads.

The evaluation of the following expressions depends only on the expressions
themselves: the application of a function with parameter x and body M to
a value V returns the substitution of all free occurrences of x in M by V ; a
conditional with a test on a boolean value V and branches Nt and Nf returns
Nt if the value is tt and Nf if the value is ff ; the sequential composition of
a value and an expression N renders N ; the fix point of a pseudo-value W
bound by x results in the substitution of the free occurrences of x in W by the
expression itself.

The evaluation of some expressions might depend on and change the store:
the creation of a reference of security level l and type θ containing the value
V returns a reference with a name that does not occur so far in the store (say
a), and adds the pair ((a, l, θ), V) to the store; the dereferencing of a reference
returns the value to which the store maps that reference; the assignment of
a value V to a reference al,θ returns () and updates the store by replacing any
occurrence of a pair ((a, l, θ), V ′) (where V ′ is the old value of a) by ((a, l, θ), V).

By the last rule we can see that the execution of a pool of threads is com-
positional.

Properties of the Semantics

One can prove that the semantics preserves the conditions for well-formedness of
configurations. Furthermore, a configuration where the pool of threads consists
of just one expression has at most one transition, up to the choice of new names.

Next we show a simple but crucial property of the semantics, pinpointing
the situations in which two computations of the same thread can split, that
is can yield different threads. Apart from the situations in which two distinct
fresh references are created, this can only occur if the expression is about to
read a reference that is given different values by the memories in the starting
configurations.

Lemma 2.2.1 (Splitting Computations).

If 〈M, S1〉
N1−−→ 〈M ′

1, S
′
1〉 and 〈M, S2〉

N2−−→ 〈M ′
2, S

′
2〉 with M ′

1 6= M ′
2 and dom(S′

2−
S2) = dom(S′

1 − S1), then N1 = () = N2 and there exist E and al,θ such that
M = E[(! al,θ)], and M ′

1 = E[S1(al,θ)], M ′
2 = E[S2(al,θ)] with S′

1 = S1 and
S′

2 = S2.

Proof. Note that the only rule where the state is used is that for E[(! al,θ)]. A

case analysis on the transition 〈M, S1〉
N
−→ 〈M ′

1, S
′
1〉.

The condition dom(S′
2 − S2) = dom(S′

1 − S1) allows us to ignore the differ-
ences in the programs M ′

1 and M ′
2 that might result from the non-deterministic

choice of new reference names.

18 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

2.3 The Non-interference Policy

In this section we formally define non-interference, the security property that
is studied in this chapter. We start by presenting the security pre-lattices in
terms of a flow relation that is parameterized by the global flow policy; then
we exhibit an indistinguishability relation on memories that is based on that
flow relation; we then give a bisimulation definition of non-interference, using
the small-step semantics defined in Section 2.2; finally, the security property is
justified with some examples.

2.3.1 Principal-Based Security Pre-Lattices

We have mentioned that in our approach security levels j, k, l are sets of prin-
cipals p, q ∈ Pri representing read-access rights to references. Our aim is to
insure that information contained in a reference al1 (omitting the type anno-
tation) does not leak to another reference bl2 that gives a read access to an
unauthorized principal p, i.e., such that p ∈ l2 but p /∈ l1. We can interpret the
reverse inclusion of security levels as indicating allowed flows of information: if
l1 ⊇ l2 then the value of a al1 may be transferred to bl2 , since the principals
allowed to read this value from b were already allowed to read it from a. As a
matter of fact, reverse inclusion forms a lattice structure over the set of security
levels.

Remark 2.3.1. Given a set Pri of principals, the pair (2Pri,⊇) is a lattice,
where the meet and join are set union and intersection, respectively.

Now we shall see how the above lattice can be customized by means of
relations on principals. A flow policy is a binary relation over Pri . We let F , G
range over such relations. A pair (p, q) ∈ F is to be understood as “information
may flow from principal p to principal q”, that is, more precisely, “everything
that principal p is allowed to read may also be read by principal q”. We must
point out here that, since we are dealing with confidentiality (and not integrity)
a flow policy will only affect the reading capabilities of programs (and not their
writing capabilities). A pair (p, q) that is a member of a flow policy will most
often be written p ≺ q. We denote, as usual, by F ∗ the reflexive and transitive
closure of F .

We now introduce the preorder on security levels �F that is determined by
the flow policy F . For this purpose we use the notion of F -upward closure of a
security level l, as follows:

l ↑F = {q | ∃p ∈ l. p F ∗ q} (2.12)

The F -upward closure of l contains all the principals that are allowed by the
policy F to read the contents of a reference labeled l. We can now derive (as
in [Myers & Liskov, 1998; Almeida Matos & Boudol, 2005]) a more permissive
flow relation

l1 �F l2
def
⇔ ∀q ∈ l2 . ∃p ∈ l1 . p F ∗ q ⇔ (l1 ↑F) ⊇ (l2 ↑F) (2.13)

and use it to define the pre-lattice that is determined by a flow policy. Notice
that �F extends ⊇ in the sense that �F is larger than ⊇ and that �∅ = ⊇.

2.3. THE NON-INTERFERENCE POLICY 19

Definition 2.3.2 (Security Pre-Lattice). Given a set Pri of principals and a
flow policy F in Pri × Pri, the pair (2Pri,�F) is a pre-lattice, where meet
(fF) and join (gF) are given respectively by the union and intersection of the
F -upward closures:

l1 fF l2 = l1 ∪ l2 l1 gF l2 = (l1 ↑F) ∩ (l2 ↑F) (2.14)

We call these pre-lattices security pre-lattices.

In this chapter the flow policy that determines the security pre-lattice that
is in use is called the global flow policy, since it is vaid for all the threads in the
system.

2.3.2 A Bisimulation-Based Definition

We now define our security property in terms of the above defined flow relation
�G, where G is the global flow policy.

Low-Equality

“Low-equality” is an informal designation of an equality relation that considers
as indistinguishable memories that coincide in their “low part”. The relation
is defined between memories whose references are labeled with security levels.
The low part of a memory is defined with respect to a security level l that is
considered to be “low”, and consequently for all levels lower than l (with respect
to the flow relation �G that is in use). Intuitively, two memories are said to be
low-equal if they have the same low-domain, and if they give the same values to
all references that are labeled with low security levels. Notice that both l and
G are used as parameters.

Definition 2.3.3 (Low Part of a Memory). The low part of a memory S with
respect to a flow policy G and a security level l is given by:

S �G,l def
= {(ak,θ, V) | (ak,θ, V) ∈ S & k �G l}

The low-equality of memories is thus defined:

Definition 2.3.4 (Low-Equality). The low-equality between memories S1 and
S2 with respect to a flow policy G and a security level l is given by:

S1 =G,l S2
def
⇔ S1 �

G,l= S2 �
G,l

This relation is transitive, reflexive and symmetric.

The Security Property

Bisimulations are often used to relate non-deterministic programs according to
their behavior. They provide a natural way of formulating security properties in
non-deterministic settings – see [Sabelfeld & Sands, 2000; Smith, 2001; Boudol &
Castellani, 2002; Focardi & Gorrieri, 1995; Sabelfeld & Sands, 2005] for the use
of bisimulations in stating security properties, and [Lowe, 2004] for a review of
other semantic models for information flow. The idea is that by using a carefully

20 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

designed bisimulation we can express the requirement that two programs are to
be related if they show the same behavior on the low part of two memories.
Then, if a program is shown to be bisimilar to itself, one can conclude that the
high part of the memory has not interfered with the low part, i.e., no security
leak has occurred. A secure program would then be one that is related to itself
by an appropriate bisimulation.

Our security property is based on a notion of bisimulation for sets of threads
P with respect to a low security level and, since the notion of “being low” uses
the flow relation �G, the global flow policy G appears here as a parameter as
well. In the following we denote by� the reflexive closure of the transitions −→.

Definition 2.3.5 ((G, l)-bisimulation). A (G, l)-bisimulation is a symmetric
relation R on multisets of threads such that:

P1 R P2 and 〈P1, S1〉 −→ 〈P ′
1, S

′
1〉 and S1 =G,l S2

and (∗) implies

∃P ′
2, S

′
2 . 〈P2, S2〉� 〈P ′

2, S
′
2〉 and S′

1 =G,l S′
2 and P ′

1 R P ′
2

where:
(∗) dom(S1

′ − S1) ∩ dom(S2) = ∅

The condition dom(S1
′ − S1) ∩ dom(S2) = ∅ guarantees that any reference

that is eventually created by P1 does not conflict with free names of P2.

Remark 2.3.6.

• For any G and l there exists a (G, l)-bisimulation, like for instance the set
Val×Val of pairs of values.

• The union of a family of (G, l)-bisimulations is a (G, l)-bisimulation.

Consequently, there is a largest (G, l)-bisimulation, which is the union of all
(G, l)-bisimulations.

Notation 2.3.7. The largest (G, l)-bisimulation is denoted ≈G,l.

One should observe that the relation ≈G,l is not reflexive. This is in fact
the whole point of the security relation, since as we can see from the follow-
ing definition, it should only be “reflexive” with respect to secure programs.
For instance, the insecure expression (vB := (! uA)) is not bisimilar to itself if
A 6�G B.

Definition 2.3.8 (Non-interference with respect to G). A pool of threads P
satisfies the Non-interference policy (or is secure from the point of view of Non-
interference) with respect to the global flow policy G if it satisfies P ≈G,l P for
all security levels l. We then write P ∈ NI(G).

Examples of Insecure Programs

In the following examples we assume two principals H and L, and a global flow
policy G consisting of the pair L ≺ H . We denote, as usual, references with
security levels {H} or {L} simply by aH or bL, leaving out the type and the
brackets.

2.3. THE NON-INTERFERENCE POLICY 21

The standard examples of direct leaks and of control leaks (see Subsec-
tion 2.1.1), which in our language are written

(aL := (! bH)) (2.15)

(if (! aH) then (bL := tt) else (bL := ff)) (2.16)

do not satisfy Non-interference.
Using a bisimulation approach to security allows us to reject termination

leaks, like for instance

((if (! aH) then () else loop); (bL := tt)) (2.17)

where writing at level L depends on reading at level H (see [Andrews & Reitman,
1980; Boudol & Castellani, 2002; Heintze & Riecke, 1998; Sabelfeld & Myers,
2003; Smith, 2001; Volpano & Smith, 1997] on using bisimulations to prevent
this kind of leaks). This is because one of the branches that might result from
the conditional (loop; (bL := tt)) cannot simulate the other one ((); (bL := tt)) in
its change of the low reference bl. Another example of a termination leak that
arises in higher-order settings is

((! aH)(); (bL := tt)) (2.18)

Indeed, the dereferencing of the high reference aH can be seen as a “high test”
that might result in a terminating or non-terminating branch – take for instance,
(λy.(λx.x)) or (λy.loop) as two possible values of aH in two low-equal memories.
The application of these functions to () unravels two expressions with different
behaviors, analogously to the previous example. Similarly, there is a termination
leak in

(((λx.(x ())) (! aH)); (bL := tt)) (2.19)

since in one step we obtain Example 2.18.
The kind of bisimulation we use has been described as “strong” in [Sabelfeld

& Sands, 2000], since each time a transition is matched, we restart the bisimula-
tion game by comparing the resulting pools of threads in the context of any new
low-equal memories, rather than continuing with the resulting configurations.
This allows us to detect an illegal flow in the program3

(if (! wX) then (if (! wX) then () else (vL := (! uH))) else ()) (2.20)

which can be unraveled by other programs that execute concurrently in the pool
of threads.

2.3.3 Properties of Secure Programs

Security is compatible with composition by set union:

Proposition 2.3.9 (Compositionality).

P ∈ NI(G) and Q ∈ NI(G) implies (P ∪ Q) ∈ NI(G)

Proof. If S1 is a (G, l)-bisimulation such that P S1 P and S2 is a (G, l)-
bisimulation such that Q S2 Q, then S = S1 ∪ S2 is a (G, l)-bisimulation such
that (P ∪ Q) S (P ∪ Q).

3This demanding definition for bisimulations seems also appropriate for dealing with de-
classification as well as for a mobile code scenario, where the shared memory of a system of
threads can be modified by incoming code. We will see this in the following chapters.

22 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Operationally High Threads

There is a class of threads that have the property of never performing any change
in the low part of the memory. These are classified as being “high” according
to their behavior:

Definition 2.3.10 (Operationally High Threads). A set H of threads is said
to be a set of operationally (G, l)-high threads if the following holds for any
M ∈ H:

〈M, S〉
N
−→ 〈M ′, S′〉 implies S =G,l S′

and both M ′, N ∈ H

Even if a thread does contain low assignments or low reference creations,
it can be considered operationally high if these commands are never reached in
any execution, or if the assignments do not change the value of any reference.

Remark 2.3.11.

• For any G and l there exists a set of operationally (G, l)-high threads, like
for instance Val.

• The union of a family of sets of operationally (G, l)-high threads is a set
of operationally (G, l)-high threads.

Therefore, there exists the largest set of operationally (G, l)-high threads:

Notation 2.3.12. The union of all sets of operationally (G, l)-high threads is
denoted by HG,l.

We say that a thread M is an operationally (G, l)-high thread if M ∈ HG,l.

Comparison with Basic Non-interference

Our Non-interference policy generalizes “basic” non-interference for sequential
programs (see Subsection 2.1.1). To see this, let us first recall that the latter is
based on the “big-step” semantics of programs, that is on the relation 〈M, S〉 ⇒
S′ that a program M establishes from an initial state of the memory S to the
final state S′. We say that M satisfies Basic Non-interference if 〈M, S1〉 ⇒
S′

1 and 〈M, S2〉 ⇒ S′
2, for S1 and S2 that differ only regarding confidential

information, implies that also S′
1 and S′

2 are equal as regards public information.
Making the global flow policy explicit in the same way we have done earlier, we
have:

〈M, S1〉 ⇒ S′
1 and 〈M, S2〉 ⇒ S′

2 and S1 =G,l S2 implies S′
1 =G,l S′

2 (2.21)

Let us denote by DExp the set of expressions that are written without using
(thread) and (ref). We will show that the expressions in DExp satisfying Non-
interference with respect to a given global flow policy G also satisfy Basic Non-
interference with respect to G. Letting

∗
−→ denote the reflexive and transitive

closure of −→, the big-step semantics for expressions in DExp can be defined as
follows:

〈M, S〉 ⇒ S′ def
⇔ ∃V ∈ Val . 〈M, S〉

∗
−→ 〈V, S′〉 (2.22)

It is easy to see that the evaluation mechanism is deterministic for M ∈ DExp,
and that if 〈M, S〉 ⇒ S′ then dom(S′) = dom(S). Now assume that M ∈

2.4. TYPING NON-INTERFERENCE 23

DExp ∩ NI(G), 〈M, S1〉
∗
−→ 〈V, S′

1〉 and 〈M, S2〉
∗
−→ 〈V ′, S′

2〉 with S1 =G,l S2.

Then there exist M ′ and S′′
2 such that 〈M, S2〉

∗
−→ 〈M ′, S′′

2 〉, V ≈G,l M ′ and

S′
1 =G,l S′′

2 . Since M is deterministic, we have 〈M ′, S′′
2 〉

∗
−→ 〈V ′, S′

2〉, and from
〈V, S′

1〉 there must be a sequence of transitions matching the move from 〈M ′, S′′
2 〉

to 〈V ′, S′
2〉. This sequence must be empty, and we then have S′

1 =G,l S′
2.

2.4 Typing Non-interference

In this section we present a type and effect system [Lucassen & Gifford, 1988]
that only accepts programs that satisfy Non-interference. We start by defin-
ing the notation used to express the typing judgments and by explaining their
meaning; we then comment on the typing conditions used in the typing rules,
by giving examples of different kinds of security leaks – including higher-order
leaks – that illustrate why each condition is necessary; finally, we conclude by
giving some properties of the type system, including a Subject Reduction and
Soundness theorems.

2.4.1 A Type and Effect System

The type and effect system that we present here selects secure threads by en-
suring the compliance of all information flows to the flow relation that is pa-
rameterized with the global flow policy G. To achieve this, it constructively
determines the effects of each expression, which contain information on the se-
curity levels of the references that the expression reads and writes, as well as
the level of the references on which the termination of the computations might
depend.

Typing Judgments

As defined in Figure 2.6, the judgments of the type and effect system have the
form:

Γ `G M : s, τ (2.23)

The meaning of the parameters is the following:

• The typing context Γ assigns types to variables.

• The expression M is a program.

• The security effect s, of the form 〈s.r, s.w, s.t〉, can be understood as
follows:

– s.r is the reading effect, an upper-bound on the security levels of the
references that are read by M ;

– s.w is the writing effect, a lower bound on the references that are
written by M

– s.t is the termination effect, an upper bound on the level of the
references on which the termination of expression M might depend.

According to these intuitions, in the type system the reading and termi-
nation levels are composed in a covariant way, whereas the writing level
is contravariant.

24 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

• The type τ is the type of the expression M . The syntax of types, which
is given in Figure 2.1, is repeated here, for any type variable t:

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s
−→ σ

Typable expressions that reduce to () have type unit, and those that re-
duce to booleans have type bool. Typable expressions that reduce to a
reference which points to values of type θ and has security level l have
the reference type θ refl. The security level l is used to determine the
effects of expressions that handle references. Expressions that reduce to
a function that takes a parameter of type τ , that returns an expression
of type σ, and with a latent effect s [Lucassen & Gifford, 1988] have the

function type τ
s
−→ σ. The latent effect is the security effect of the body

of the function.

• The flow policy G is the global flow policy. As we have seen, it is used to
parameterize the security pre-lattice, and in particular the flow relation
and meet/join operators. The flow relation is used in the type system for
imposing restrictions on the information flows that the typing rules allow,
and the meet/join operators are used to construct the security effects of
the expressions.

In some of the typing rules we use the join operation on security effects:

Definition 2.4.1.

sgG s′
def
⇔ (s.r gG s′.r, s.w fG s′.w, s.t gG s′.t)

The type and effect system is given in Figure 2.7. Notice that it is syntax
directed, since there is exactly one rule per construction of the language. We
use some abbreviations: we write the flow relation �, meet f and join g with
respect to the global flow policy, instead of �G, fG and gG, respectively; we
also omit the global flow policy that appears as subscript of `G and simply
write `. Whenever we have Γ ` M : 〈⊥,>,⊥〉, τ , we only write Γ ` M : τ .

2.4.2 Typing Conditions

We must now convince ourselves that the type system does indeed select only
safe threads, according to the Non-interference policy, with respect to the se-
curity notion defined in the previous section. We give informal justifications to
each side condition that constrains the typing of expressions and the construc-
tion of the security effects. We start by justifying the parts of the rules that
reject programs that are insecure due to direct leaks and control leaks. We then
look at the use of the termination effect for typing away termination leaks. The
treatment of higher-order leaks is explained last.

Direct Leaks and Control Leaks

The reading and writing effects are respectively introduced by the constructs for
dereferencing (see Der) and creating or updating the memory (see the typing
rules Ref and Ass).

2.4. TYPING NON-INTERFERENCE 25

Typing Environments Γ : Var → Typ

Global Flow Policies G ⊆ Pri ×Pri

Typing Judgments ::= Γ `G M : s, τ

Figure 2.6: Syntax of Typing Judgments (see also Figure 2.1)

[Nil] Γ ` () : unit

[Abs]
Γ, x : τ ` M : s, σ

Γ ` (λx.M) : τ
s
−→ σ

[Rec]
Γ, x : τ ` s, W : τ

Γ ` (%x.W) : τ

[BoolT] Γ ` tt : bool [BoolF] Γ ` ff : bool

[Var] Γ, x : τ ` x : τ [Loc] Γ ` al,θ : θ ref l

[Ref]
Γ ` M : s, θ s.r � l

Γ ` (refl,θ M) : sg 〈⊥, l,⊥〉, θ refl

[Der]
Γ ` M : s, θ ref l

Γ ` (! M) : sg 〈l,>,⊥〉, θ

[Ass]

Γ ` M : s, θ refl Γ ` N : s′, θ
s.t � s′.w

s.r, s′.r � l

Γ ` (M := N) : sg s′ g 〈⊥, l,⊥〉, unit

[Cond]

Γ ` M : s, bool
Γ ` Nt : st, τ
Γ ` Nf : sf , τ

s.r � st.w, sf .w

Γ ` (if M then Nt else Nf) : sg st g sf g 〈⊥,>, s.r〉, τ

[App]

Γ ` M : s, τ
s′

−→ σ Γ ` N : s′′, τ
s.t � s′′.w

s.r, s′′.r � s′.w

Γ ` (M N) : s g s′ g s′′ g 〈⊥,>, s.r g s′′.r〉, σ

[Seq]
Γ ` M : s, τ Γ ` N : s′, σ s.t � s′.w

Γ ` (M ; N) : s g s′, σ

[Thr]
Γ ` M : s, unit

Γ ` (thread M) : 〈⊥, s.w,⊥〉, unit

Figure 2.7: Type and Effect System

26 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Cond. The constraint s.r � st.w, sf .w insures that the branches Nt and Nf

only assign to references with security level greater than the reading level
of M . This prevents control leaks like the one in Example 2.16. Similarly,
in order to reject the program

(if (! aH) then (thread (bL := tt)) else ()) (2.24)

we require the writing level of M to be kept in the effect of (thread M).

Ass. The condition s′.r � l prevents direct flows, as in Example 2.15. Further-
more, the condition s.r � l rules out expressions like

((! aH) := tt) (2.25)

Indeed, the value of the reference aH in different low-equal memories might
be different references, with level L. In these cases, depending on the
contents of aH , different low assignments are performed.

App. The condition s′′.r � s′.w prevents direct flows from the argument of the
function via an assignment occurring in its body, like in

((λx.(bL := x)) (! aH)) (2.26)

Ref. The condition s.r � l excludes flows like the one in the expression:

(refL (! uH)) (2.27)

This program creates a low reference that points to potentially different
values, in case the result of the high dereference is different in the consid-
ered low-equal memories.

Termination Leaks

The termination effect is introduced in conditional (Cond) and application
(App) constructs. In the conclusion of Cond, we add the reading level of the
test to the termination level of the whole expression. This is because the con-
ditional might choose branches with different termination-behavior depending
on the references that it reads in the predicate. As to why the reading lev-
els of both function and argument are recorded in the termination level of the
application (App), consider Example 2.18 and 2.19, respectively. They show
how the application of some argument to a dereferenced value can also unravel
expressions with different termination behavior (thus depending on the refer-
ence that is read). Thread creation expressions (thread M) have no termination
effect, since their evaluation always terminates in one step. Furthermore, since
a spawned thread executes in parallel with its creating thread, the reference it
reads and its termination behavior cannot influence future computations of the
creating thread. Hence, its reading and termination effects are set to ⊥.

Seq. The condition s.t � s′.w prevents termination leaks as in Example 2.17.
Notice that this constraint is not as strict as “no low write after a high
read”, and allows us to accept for instance the secure program of Example
2.37.

2.4. TYPING NON-INTERFERENCE 27

Ass. The condition s.t � s′.w prevents termination leaks, similarly to the pre-
vious example, as in

((if (! aH) then bH else loop) := (bL := tt)) (2.28)

App. the condition s.t � s′′.w rules out the expression

(if (! aH) then λxx else loop)(bL := tt) (2.29)

in a way similar to the two previous examples.

There are some implicit conditions in the type system that prevent termi-
nation leaks. These are treated in the same way as the control leaks presented
earlier, and do not need an explicit condition on the termination effect because
the reading effect is never lower than the termination effect.

Cond. The constraint s.r � st.w, sf .w also insures that the branches Nt and Nf

only assign to references with security level greater than the termination
level of M . This prevents termination leaks like the one in the following
example:

(if (if (! aH) then tt else loop) then (bL := tt) else (bL := tt)) (2.30)

Ass. The condition s′.r � l prevents termination leaks like:

(bL := (if (! aH) then () else loop)) (2.31)

App. The condition s′′.r � s′.w also rejects termination leaks from the argu-
ment of the function via an assignment occurring in its body, like in:

((λx.(vL := x)) (if (! aH) then () else loop)) (2.32)

Ref. The condition s.r � l excludes termination flows like the one in the ex-
pression:

(refL (if (! aH) then () else loop)) (2.33)

Higher-Order Leaks

App. The condition s.r � s′.w excludes expressions that obtain from a high
reference a function with a low latent write effect, and then unravel this
low write effect by applying it to some argument. For instance, it rules
out the following expression

((! aH,θ) ()) (2.34)

where θ = unit
(⊥,L,⊥)
−−−−−→ unit. This program, similar to Example 2.6,

turns out to be dangerous for instance if the value of the reference a is
(λz.(bL,θ′ := V)), with different values for V in different memories.

28 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Derived Typing Rules

We can derive the typing of (let x = N in M), using the typing rules Abs and
App:

Γ ` N : s, τ Γ, x : τ ` M : s′, σ s.r � s′.w

Γ ` (let x = N in M) : s g s′ g (⊥,>, s.r), σ
(2.35)

The derived typing for the while construct, using recursion is:

Γ ` M : s, bool Γ ` N : s′, τ s.r, s′.t � s.w, s′.w

Γ ` (while M do N) : s g s′ g (⊥,>, s.r), unit
(2.36)

In the resulting rule, the security level of the guard expression is recorded as
part of the termination level of the while construct, as in [Boudol & Castellani,
2002; Smith, 2001].

We could have used an encoding of (M ; N) by (let z = M in N), where z 6∈
fv(N) and used a derived typing rule for it. However, due to the update of the
termination effect with the reading effect of N , it would be slightly more restric-
tive than Seq. For instance neither (let x = (wH := (! uH)) in (vL := tt)) nor
((λx(wH := x)((! uH))); (vL := tt)) can be typed (in our type system), whereas
the expression

((wH := (! uH)); (vL := tt)) (2.37)

is accepted. Similarly, the derived typing rules for (refl,θ M) with respect to
(λx.(ref l,θ x))M , for (! M) with respect to ((λx.(! x)) M), and for (M := N)
with respect to (((λx.(λy.(x := y))) M) N) are more restrictive than the typings
that are given by the rules Ref, Der and Ass, respectively.

We have justified all the constraints on information flow that appear in the
typing rules. The completeness of this informal analysis will be established by
the type soundness result.

2.4.3 Properties of Typed Expressions

The same intermediate results are stated in the next two chapters, in settings
that are increasingly complex, but with analogous proofs. For this reason we
omit the details here and refer the reader to Subsection 4.4.3 for a complete
proof.

Subject Reduction

The first main result is Subject Reduction, which states that the type of a thread
is preserved by reduction. When a thread performs a computation step, some
of its effects may be performed by reading, updating or creating a reference,
and some may be discarded when a branch in a conditional expression is taken.
Then the effects of an expression “weaken” along the computations. To prove
it, we assume that the value contained in references of type θ, in the memories
that we are dealing with, have indeed type θ.

Theorem 2.4.2 (Subject Reduction).

If for some s, τ we have Γ ` M : s, τ and 〈M, S〉
N
−→ 〈M ′, S′〉 where all

al,θ ∈ dom(S) satisfy Γ ` S(al,θ) : θ, then ∃s′ such that Γ ` M ′ : s′, τ and

2.4. TYPING NON-INTERFERENCE 29

s′.r � s.r, s.w � s′.w and s′.t � s.t. Furthermore, ∃s′′ such that Γ ` N : s′′, unit

and s.w � s′′.w.

Proof. The main proof is a case analysis on the transition 〈M, S〉
N
−→ 〈M ′, S′〉.

See the detailed proof of Theorem 4.4.7 and preceding lemmas.

Syntactically High Expressions

Some expressions can be easily classified as “high” by the type system, which
only considers their syntax. These cannot perform changes to the “low” memory
simply because their code does not contain any instruction that could perform
them. Since the writing effect is intended to be a lower bound to the level of the
references that the expression can create or assign to, expressions with a high
writing effect can be said to be syntactically high:

Definition 2.4.3 (Syntactically High Expressions). An expression M is syntac-
tically (G, l)-high if there exists Γ, s, τ such that Γ `G M : s, τ with s.w 6�G l.
The expression M is a syntactically (G, l)-high function if there exists Γ, s, τ

such that Γ `G M : τ
s
−→ σ with s.w 6�G l.

We can now state that syntactically high expressions have an operationally
high behavior.

Lemma 2.4.4 (High Expressions). If M is a syntactically (G, l)-high expres-
sion, then M is an operationally (G, l)-high thread.

Proof. See proof of Lemma 4.4.9.

2.4.4 Soundness

The final result of this chapter, soundness, states that the type system only
accepts expressions that are secure in the sense of Definition 2.3.8, for a global
flow policy G. In the remainder of this section we sketch the main definitions
and results that can be used to reconstruct a direct proof of this result. A
similar proof is given in detail for the richer language of Chapter 4.

We first build a symmetric binary relation between typable expressions whose
terminating behaviors do not depend on high references, more precisely, between
those that are typable with a low termination effect. The binary relation should
be such that if the evaluation of two related expressions, in the context of two
low-equal memories should split (see Lemma 2.2.1), then the resulting expres-
sions are still in the relation. This relation, called TG,low, is inductively defined
for a security level low in Figure 2.8.

The next proposition states that TG,low is a kind of “strong bisimulation”

with respect to the transition relation
N
−→.

Proposition 2.4.6 (Strong Bisimulation for Low-Terminating Threads). If we

have M1 TG,low M2 and 〈M1, S1〉
N
−→ 〈M ′

1, S
′
1〉, with S1 =G,low S2 such that a

is fresh for S2 if al,θ ∈ dom(S′
1 − S1), then there exist M ′

2 and S′
2 such that

〈M2, S2〉
N
−→ 〈M ′

2, S
′
2〉 with M ′

1 TG,low M ′
2, S′

1 =G,low S′
2 and dom(S′

1 − S1) =
dom(S′

2 − S2).

Proof. By induction on the definition of TG,low.

30 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Definition 2.4.5 (TG,low). We have that M1 TG,low M2 if Γ `G M1 : s1, τ and
Γ `G M2 : s2, τ for some Γ, s1, s2 and τ with s1.t �G low and s2.t �G low and
one of the following holds:

Clause 1. M1 and M2 are both values, or

Clause 2. M1 = M2, or

Clause 3. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 TG,low M̄2, or

Clause 4. M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 TG,low M̄2, and
l 6�G low, or

Clause 5. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 TG,low M̄2, or

Clause 6. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 TG,low M̄2, and
N̄1 TG,low N̄2, and M̄1, M̄2 both have type θ refl for some θ and l such
that l 6�G low.

Figure 2.8: The relation TG,low

We now define a larger symmetric binary relation on typable expressions.
Similarly to the previous one, it should be possible to relate the results of
the computations of two related expressions in the context of two low-equal
memories. The binary relation RG,low on expressions is defined inductively in
Figure 2.9. The relation RG,low is a kind of “strong bisimulation”, with respect

to the transition relation
N
−→:

Proposition 2.4.8 (Strong Bisimulation for Low Typable Threads). Suppose

that M1 RG,low M2 and that M1 /∈ HG,low. If 〈M1, S1〉
N
−→ 〈M ′

1, S
′
1〉, with S1

=G,low S2 such that a is fresh for S2 if al,θ ∈ dom(S′
1−S1), then there exist M ′

2

and S′
2 such that 〈M2, S2〉

N
−→ 〈M ′

2, S
′
2〉 with M ′

1 RG,low M ′
2, S′

1 =G,low S′
2, and

dom(S′
1 − S1) = dom(S′

2 − S2).

Proof. By induction on the definition of RG,low.

To conclude the proof of the Soundness Theorem, we must exhibit a bisim-
ulation on pools of threads. Consider the following relation:

Definition 2.4.9 (R?
G,low). The relation R?

low is inductively defined as follows:

a)
M ∈ HG,low

{M} R?
G,low ∅

b)
M ∈ HG,low

∅ R?
G,low {M}

c)
M1 RG,low M2

{M1} R?
G,low {M2}

d)
P1 R?

G,low P2 Q1 R?
G,low Q2

(P1 ∪ Q1) R?
G,low (P2 ∪ Q2)

We will now use Strong Bisimulation for Low Typable Threads (Proposition
2.4.8) to prove the following:

Proposition 2.4.10. The relation R?
G,low is a (G, low)-bisimulation.

2.4. TYPING NON-INTERFERENCE 31

Definition 2.4.7 (RG,low). We have that M1 RG,low M2 if Γ `G M1 : s1, τ and
Γ `G M2 : s2, τ for some Γ, s1, s2 and τ and one of the following holds:

Clause 1’. M1, M2 ∈ HG,low, or

Clause 2’. M1 = M2, or

Clause 3’. M1 = (if M̄1 then N̄t else N̄f) and M2 = (if M̄2 then N̄t else N̄f)
with M̄1 RG,low M̄2 and N̄t, N̄f ∈ HG,low, or

Clause 4’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 RG,low M̄2, and
N̄1, N̄2 ∈ HG,low, and M̄1, M̄2 are syntactically (G, low)-high functions,
or

Clause 5’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 Tlow M̄2, and
N̄1 RG,low N̄2, and M̄1, M̄2 are syntactically (G, low)-high functions, or

Clause 6’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 RG,low M̄2 and N̄ ∈
HG,low, or

Clause 7’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 TG,low M̄2, or

Clause 8’. M1 = (ref l,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 RG,low M̄2, and
l 6�G low, or

Clause 9’. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 RG,low M̄2, or

Clause 10’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 RG,low M̄2,
and N̄1, N̄2 ∈ HG,low, and M̄1, M̄2 both have type θ refl for some θ and l
such that l 6�G low, or

Clause 11’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 TG,low M̄2, and
N̄1 RG,low N̄2, and M̄1, M̄2 both have type θ ref l for some θ and l such
that l 6�G low.

Figure 2.9: The relation RG,low

32 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

We now state the main result of the chapter, saying that our type system only
accepts threads that can securely run concurrently with other typable threads.

Theorem 2.4.11 (Soundness for Non-interference). Consider a pool of threads
P and a global flow policy G. If for any M ∈ P there exist Γ, s, and τ such that
Γ `G M : s, τ , then P satisfies the Non-interference policy with respect to G.

Proof. By Clause 2’ of Definition 2.4.7, for all choices of security levels low,
we have that M RG,low M . By Rule c) of Definition 2.4.9, {M} R?

G,low {M}.
Since this is true for all M ∈ P , by Rule d) we have that P R?

G,low P . By
Proposition 2.4.10 we conclude that P ≈G,low P .

The above result is compositional, in the sense that it is sufficient to verify
the typability of each thread separately in order to ensure non-interference for
the whole pool of threads.

2.5 Related Work

2.5.1 Types and Effects

Most studies concerning security for functional languages, regard values as hav-
ing a security level. While this is inevitable in pure functional languages, this
viewpoint has been adopted even where imperative features are considered, for
instance in [Heintze & Riecke, 1998; Pottier & Simonet, 2003; Zdancewic &
Myers, 2002]. However, one might wonder what it means for 4242 to be secret
per se. It could become secret when used for example as a PIN code, but in
that case it is the PIN code in itself that is secret, whatever the value it might
take.

Our standpoint is that security levels are associated with the objects in
which information is stored or communicated, like files, libraries, databases,
channels or references (as in our language). Then, it is the accesses (typically
read or write) that are to be controlled. This scenario is a natural candidate for
the use of a type and effect system [Lucassen & Gifford, 1988], where read and
write accesses are seen as producing security effects that are controlled with flow
constraints. In our approach, effects are security levels that are built from those
that are attached to references (as noted in [Crary et al., 2005], the security
levels of references play the role of regions). Consequently, all pure expressions
(written without (! N) and (M := N)), including values, are secure.

This view is consistent with most studies dealing with imperative languages.
As a matter of fact, our type system appears to be a quite direct generalization
of systems like [Volpano et al., 1996; Smith, 2001; Boudol & Castellani, 2002].
In the work [Volpano et al., 1996] and many others that followed, “expressions”
are either assigned to values or tested in boolean predicates, and are assumed
not to create or update references, and not to have the potential to diverge.
Then the security effect of expressions is reduced to its reading level r – in
our setting, it would have security effect 〈r,>,⊥〉. On the other hand, the
programs, or “commands” in [Volpano et al., 1996], only read the store when
evaluating an expression, and therefore it is enough to record their writing level
w in 〈⊥, w,⊥〉. When termination leaks are considered, the termination level
t (the “guard level” of [Boudol & Castellani, 2002] or the “running time level”

2.5. RELATED WORK 33

of [Smith, 2001]) is added to the security effect of commands, thus obtaining
〈⊥, w, t〉.

A store-oriented view of confidentiality is also followed in the type system of
[Crary et al., 2005], but with an important difference: expressions are assumed
to never write below their read level. Then, the secure program of Example 2.37
is accepted thanks to the “informativeness” predicate, which doesn’t seem to
have a counter-part here. Another difference is that [Crary et al., 2005] does
not consider termination leaks. This is the purpose of our “termination effect”.

2.5.2 Treatment of Termination Leaks

Treatment of termination leaks is beyond the realm of the classical approach
to “basic” non-interference, founded on a big-step semantics, which actually
corresponds to a variant of our type system where the termination effect is
always ⊥. When bisimulation-based approaches are considered, termination
leaks can easily be ruled out for instance by allowing only predicates of the
lowest security level to appear in while loops (see [Volpano & Smith, 1997;
Smith & Volpano, 1998] for instance). However, this is obviously a very severe
restriction. The counter-part in our language would be to restrict the reading
effect of the conditional predicate to ⊥. This is the advantage of using some
form of reading effect in the type system.

The third component in the security effect – distinct from the reading effect
– is a further refinement that addresses the fact that all reads performed by
expressions must be recorded (by the reading effect) even though they do not
always influence the termination behaviors. In fact, we would like to accept
the expression of Example 2.37, but reject Example 2.34. This would not be
possible if we had approximated s.t as s.r.

Our type system could be further improved, by being more refined when
extracting the termination level of an expression. For instance, we would like
to accept the program

(if (! uH) then (vH := tt) else (vH := ff)); (wL := tt) (2.38)

and other similar ones, where it is straightforward to anticipate that both
branches of the conditional terminate. This was done in [Boudol, 2005b], where
the termination level of the above conditional is taken as ⊥.

34 CHAPTER 2. NON-INTERFERENCE IN CONCURRENCY

Chapter 3

Non-disclosure and
Declassification

In this chapter we address the issue of declassification. The purpose is to intro-
duce, in an imperative (higher-order) lambda-calculus with thread and reference
creation, a flow declaration construct that locally extends the global flow pol-
icy, thus providing a mechanism for expressing declassification within the scope
of the declaration. To this end we present non-disclosure as a property that
generalizes non-interference and allows for declassification, and we demonstrate
the use of a type and effect system for enforcing that policy. This dynamic
view of information flow policies is supported by the principal-based security
pre-lattice that was presented in the beginning of Section 2.3. We study the
forms of information flow that are enabled by the non-disclosure policy, but are
forbidden by the non-interference policy.

The chapter is organized as follows. In the next section we motivate the need
for expressing declassification, and introduce the flow declaration as a tool that
can be used under the control of a non-disclosure property. In Section 3.2 we
present an extension of the imperative higher-order language of Section 2.2, to
which we add a flow declaration construct. Then, in Section 3.3, we introduce
our generalization of non-interference, namely the Non-disclosure policy, that
takes into account dynamic flow policies. A type and effect system is given for
the language in Section 3.4, as well as some basic properties of the type system,
including soundness. We then discuss related work.

3.1 Introduction

3.1.1 Limitations of Non-interference

The applicability of non-interference has been a matter of debate for a long time.
One of its problems is that, by definition, it rejects programs that deliberately
declassify information from high security levels to lower ones, thus disabling the
use of programs that are very common and even unavoidable.

A typical example, that was pointed out in [Jones & Lipton, 1975], is the
password checking procedure, whose purpose is to restrict the access to some
service to users that are in possession of a secret password. This could roughly

35

36 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

be written as:

if (inputL = passwordH) then . . . else printL(“Password is wrong.”) (3.1)

These programs reveal, to any user that happens to attempt to “log-in”, at least
one bit of information when rejecting an inputted string. Another example is
the one that delivers a password to users who have paid for the service it gives
access to. This procedure might roughly look like this:

if paid then printL(passwordH) else . . . (3.2)

Clearly, such programs are considered insecure if the pre-lattice of security levels
(see Section 2.1) disallows flows from L to H .

The above examples contain operations that declassify information regarding
secret passwords. They would therefore not be allowed to run in a system whose
policy requires programs to satisfy non-interference. However, one might want
to accept such programs, while still being able to control the information flows
that occur in other parts of the program (e.g. the first program, after the user
has logged-in).

3.1.2 A View of Declassification

The search for mechanisms for allowing information release to occur under the
scrutiny of some information flow control policy is a challenging problem that
has motivated a lot of work. We will comment on this at the end of this chapter.
However, as was observed in [Sabelfeld & Sands, 2005], various approaches to
this issue aim at different goals.

Consider for instance a password checking procedure that returns the root
password instead of a “Yes/No” answer. This program can be considered
“wrong” from a semantical point of view, for releasing information that most
probably was not initially intended. However, the technical challenge of pro-
viding downgrading facilities for having it intentionally accepted is no different
from that for accepting Example 3.1. There are broadly two main approaches
that can be considered:

1. How may we justify that a program is allowed to declassify information,
i.e. that it does not actually reveal “too much”?

Approaches to this question, which seem beyond the reach of static analy-
sis techniques, aim at ensuring that it is not feasible to exploit the allowed
information leakages to obtain “unintended” declassification. Techniques
for achieving this include quantifications of the amount of information
that a program may leak, or the use of complexity-theoretic or probabilis-
tic arguments (see [Clark et al., 2004; Di Pierro et al., 2002; Laud, 2001;
Laud, 2003; Volpano, 2000; Volpano & Smith, 2000], to mention just a
few recent papers).

2. How may we accept such programs in a language-based security setting,
while still preserving some secure information flow property?

This question includes

3.1. INTRODUCTION 37

• The language design issue of conceiving the appropriate tools to pro-
vide a programmer with means to express the intention of declassi-
fying information.

• The semantical formalization issue of expressing the appropriate in-
formation flow property that secure programs should satisfy.

• The security enforcement issue of rejecting programs that do not
satisfy the security property.

Here we tackle the second question, therefore leaving to the programmer the
responsibility for writing a program that meets his own specification, regarding
“what” and “how much” information he intends to release. Nevertheless, we
keep in mind that it would be useful for the programmer to have means to
check that his code implements only the intended information flows.

3.1.3 Flow Declaration

Given that deliberately downgrading programs are to be validated by the pro-
grammer, the programming language should be as flexible as possible in ex-
pressing them. To this end, we introduce in a core language a programming
construct for dynamically manipulating the pre-lattice that establishes the le-
gal information flows between security levels.

Recall (from Section 2.1) that the pre-lattices that we adopt here are derived
from flow policies, which are binary relations that indicate how information may
flow between the principals (or subjects) of the system. It is in fact these flow
policies that are directly manipulated by our new programming construct, which
we call flow declaration. The construct is written (flow F in M), and takes two
parameters: a flow policy F , declaring that the flows expressed in F are valid; a
program M , which is the scope of the flow declaration. The meaning is that M
should comply to the flow policy that holds in the context where (flow F in M)
is executed, extended with F .

As an example, if we have principals A and B, then – using the notation of
the language of the previous chapter, leaving out the type and set brackets in
the security level – the program

(flow A ≺ B in (bB := (! aA))) (3.3)

is legal, since the declaration A ≺ B states that information is allowed to
flow from A to B in the subprogram (bB := (! aA)). This is a declassification
operation – unless, of course, flows from A to B are already allowed by the
context where this program is placed. It should be clear, on the other hand,
that a statement like

(flow C ≺ B in (bB := (! aA))) (3.4)

is not legal, unless the current policy allows information to flow from level A to
C (or B).

Making use of the local nature of the flow declarations, one can write:

((flow A ≺ B in M); (flow B ≺ C in N)) (3.5)

which shows a way of achieving a kind of non-transitive flow relation (see
[Rushby, 1992; Roscoe & Goldsmith, 1999; Bossi et al., 2004]).

38 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Using ‘||’ to express concurrency, one can also have different flow policies
ruling simultaneously in different portions of a program – like in:

(flow A ≺ B in M) || (flow C ≺ D in N) (3.6)

3.1.4 From Non-interference to Non-disclosure

As was pointed out in [Ryan et al., 2001], in spite of its rigidity, non-interference
is still a simple and elegant concept that the security community would like to
retain. It is therefore desirable to find an alternative to non-interference that
would preserve its “spirit”.

Our new confidentiality property, that we call non-disclosure, is designed to
support declassification. It roughly says that a program P is secure if at each
step it satisfies non-interference with respect to the flow policy that holds for this
step.

We have seen in the previous chapter (in Section 2.3) that, particularly
for concurrent settings, non-interference can be conveniently expressed using
bisimulations. These are based on small-step semantics, that specify transitions
between successive states of the program and the memory:

〈P, S〉 −→ 〈P ′, S′〉 (3.7)

Expressing execution by means of small steps, as opposed to using big steps
for describing the final result of a computation, is suitable for treating our flow
declaration construct, where the safety of an execution step is defined locally.
It suffices to label each transition with the flow policy F that is declared by the
evaluation context

〈P, S〉 −→
F

〈P ′, S′〉 (3.8)

in order to have at hand the information about which pre-lattice holds for that
particular step. Hence, our non-disclosure policy will also be formulated in
terms of a bisimulation, similar to the one that is used for non-interference.
The intuition is that, as regards information flow, the memory S should be
considered from the point of view of the current flow policy extended with F .

3.2 Adding a Flow Declaration Construct

We present now the language on which we base the study of the present chapter,
by extending the one that is defined in the previous chapter (here we call it the
core language) with a programming construct for directly manipulating flow
policies – namely the flow declaration construct. We thus obtain an imperative
higher-order λ-calculus with thread and reference creation and declassification.
We only comment on the new features of the language, and refer the reader
to Section 2.2 for further explanations. However, we give the full definitions of
the syntax of the language, the (small step) semantics for configurations that is
now decorated with the flow policies declared by the evaluation contexts, and
also some basic properties of the language. The definitions regarding its syntax
are all gathered in page 39, while the ones for the semantics can be found on
page 41.

3.2. ADDING A FLOW DECLARATION CONSTRUCT 39

Principals p, q ∈ Pri

Security Levels l, j, k ⊆ Pri

Flow Policies F, G ⊆ Pri ×Pri

Effects s ::= 〈l, l, l〉

Type Variables t

Types τ, σ, θ ∈ Typ ::= t | unit | bool | θ ref l | τ
s
−→
F

σ

Figure 3.1: Syntax of Security Annotations and Types

Variables x, y ∈ Var

Reference Names a, b, c ∈ Ref

Decorated Reference Names ::= al,θ

Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff

Pseudo-values W ∈ Pse ::= V | (%x.W)

Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) |
(ref l,θ M) | (! N) | (M := N) |
(if M then Nt else Nf) |
(thread M) | (flow F in M)

Figure 3.2: Syntax of Expressions

Threads ::= M (∈ Exp)

Pool of Threads P ∈ 2Exp

Store S : (Ref × 2Pri ×Typ) → Val

Configurations ::= 〈P, S〉

Figure 3.3: Syntax of Configurations

3.2.1 Syntax

The syntax of the security annotations, types, expressions and configurations
(see Figures 3.1, 3.2 and 3.3) is mostly the same as that defined on Subsec-
tion 2.2.1, with the exception of the usage of flow policies and the flow declara-
tion as a new expression of the language.

Flow Policies

In the previous chapter, a flow policy was used to define a pre-lattice of security
levels. It was called the global flow policy, since it was unique and regarded all
computations. Here we add a way to customize the global flow policy, by locally
extending it in order to obtain the notion of current flow policy that regards
delimited portions of a computation.

40 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Just as in the previous chapter, a flow policy F is a set of pairs of principals,
where a pair (p, q) ∈ F , most often written p ≺ q, is to be understood as
“information may flow from principal p to principal q”, that is, more precisely,
“everything that principal p is allowed to read may also be read by principal q”.

The Flow Declaration Construct

The flow declaration construct is written (flow F in M), where F is a flow policy,
and M is any expression of the language. As we said earlier, the meaning is
that M is executed in the context of the current flow policy extended with F ,
and after termination the current flow policy is restored, that is, the scope of F
is M .

3.2.2 Semantics

We now define the semantics of the language, a small step operational semantics
on configurations. It is mostly the same as the one defined in Subsection 2.2.2,
so we adopt the same notations and conventions that were used for the language
of the previous chapter (for convenience we repeat them here). The differences
are the inclusion of the flow declaration as an evaluation context, and in the
notion of flow policy declared by an evaluation context, which decorates the
transitions. We omit the set-brackets for pools that are singletons.

Basic Sets and Functions

The following definitions and conventions are the same as the ones adopted in
Subsection 2.2.1, which we repeat for completeness.

Given a configuration 〈P, S〉, we define dom(S) as the set of decorated ref-
erences that are mapped by S. We say that a reference name a is fresh in S
if it does not occur, with any subscript, in dom(S), that is if bl,θ ∈ dom(S)
implies that b 6= a. We denote by rn(P) the set of decorated reference names
that occur in the expressions of P (this notation is extended in the obvious way
to expressions). We let fv(M) be the set of variables occurring free in M .

We restrict our attention to well formed configurations 〈P, S〉 satisfying the
following condition for memories, values stored in memories, and thread names:

• rn(P) ⊆ dom(S), and

• al,θ ∈ dom(S) implies rn(S(al,θ)) ⊆ dom(S), and

• all occurrences of a name in a configuration are decorated in the same
way.

We denote by {x 7→ W}M the capture-avoiding substitution of W for the
free occurrences of x in M . The operation of adding or updating the image of
an object z to z′ in a mapping Z is denoted [z := z′]Z.

Flow Contexts

The evaluation contexts of the core language are extended with the flow dec-
laration context (flow F in E), thus giving rise to the evaluation contexts in
Figure 3.4.

3.2. ADDING A FLOW DECLARATION CONSTRUCT 41

Evaluation Contexts E ::= [] | (E N) | (V E) | (E; N) |
(ref l,θ E) | (! E) | (E := N) | (V := E) |
(if E then Nt else Nf) | (flow F in E)

Figure 3.4: Evaluation Contexts

〈E[((λx.M) V)], S〉
()

−−→
dEe

〈E[{x 7→ V }M], S〉

〈E[(if tt then Nt else Nf)], S〉
()

−−→
dEe

〈E[Nt], S〉

〈E[(if ff then Nt else Nf)], S〉
()

−−→
dEe

〈E[Nf], S〉

〈E[(V ; N)], S〉
()

−−→
dEe

〈E[N], S〉

〈E[(%x.W)], S〉
()

−−→
dEe

〈E[({x 7→ (%x.W)} W)], S〉

〈E[(flow F in V)], S〉
()

−−→
dEe

〈E[V], S〉

〈E[(! al,θ)], S〉
()

−−→
dEe

〈E[V], S〉, where S(al,θ) = V

〈E[(al,θ := V)], S〉
()

−−→
dEe

〈E[()], [al,θ := V]S〉

〈E[(ref l,θ V)], S〉
()

−−→
dEe

〈E[al,θ], [al,θ := V]S〉, a fresh in S

〈E[(thread N)], S〉
N

−−→
dEe

〈E[()], S〉

〈{M}, S〉
()
−→
F

〈{M ′}, S′〉

〈{M}, S〉 −→
F

〈{M ′}, S′〉

〈{M}, S〉
N
−→
F

〈{M ′}, S′〉

〈{M}, S〉 −→
F

〈{M ′, N}, S′〉

〈P, S〉 −→
F

〈P ′, S′〉 〈P ∪ Q, S〉 is well formed

〈P ∪ Q, S〉 −→
F

〈P ′ ∪ Q, S′〉

Figure 3.5: Semantics

42 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

The analysis of whether the information flows that occur in M are to be
allowed depends on the flow policies that are declared in the evaluation context
where M is executed. We denote by dEe the flow policy that is permitted
by the evaluation context E. It collects all the flow policies that are declared
using flow declaration constructs into one single flow policy, using set union.
The evaluation contexts that where inherited from the previous chapter do not
affect the flow policy of the context. We then obtain the following definition:

Definition 3.2.1 (Flow Policy Declared by an Evaluation Context). The flow
policy declared by the evaluation context E is given by dEe where:

d[]e = ∅, d(flow F in E)e = F ∪ dEe,
dE′[E]e = dEe, if E′ does not contain flow declarations

Flow Context of a Transition

The labeled transition rules of our semantics are obtained by decorating the
(small step) transitions of the core language with the flow policy declared by
the evaluation context where they are performed – see Figure 3.5. Then, from
a transition of the form

〈E[M], S〉 −→ 〈E[M ′], S′〉 (3.9)

where M does not contain any flow declarations, we obtain the following deco-
rated transition:

〈E[M], S〉 −−→
dEe

〈E[M ′], S′〉 (3.10)

The rule for a flow declaration that ranges over a value (terminated compu-
tation) is:

〈E[(flow F in V)], S〉 −−→
dEe

〈E[V], S〉 (3.11)

Observe that the transitions do not depend on the flow label F that decorates
them. The evaluation of (flow F in M) simply consists in the evaluation of M ,
annotated with a flow policy that comprises (in the sense of set inclusion) F .
The lifespan of the flow declaration terminates when the expression M that is
being evaluated terminates (that is, M becomes a value).

When a new thread is created, the flow policy that is permitted by the
evaluation context of the parent thread is not kept:

〈E[(thread N)], S〉 −−→
dEe

〈{E[()], N}, S〉 (3.12)

As a consequence, the thread that is spawned executes under a more strict flow
policy, which means that it is more constrained, from the confidentiality point
of view, than the thread that launched it1.

1It would have been possible to let the thread that is spawned inherit the parents flow
policy [Almeida Matos & Boudol, 2005]. The rule could be:

〈E[(thread M)], S〉 −−→
dEe

〈{E[()], (flow dEe in M)}, S〉 (3.13)

Here we leave to the programmer the option of declaring a more permissive flow policy for
the thread that is created.

3.3. THE NON-DISCLOSURE POLICY 43

Properties of the Semantics

Just as with the language of the previous chapter, one can prove that the se-
mantics preserves the conditions for well-formedness, and that a configuration
with a single expression has at most one transition, up to the choice of new
names.

The following result states that, if the evaluation of a thread M differs in
the context of two distinct memories while not creating two distinct references,
this is because M is performing a dereferencing operation, which yields different
results depending on the memory.

Lemma 3.2.2 (Splitting Computations).

If 〈M, S1〉
N
−→
F

〈M ′
1, S

′
1〉 and 〈M, S2〉

N ′

−−→
F ′

〈M ′
2, S

′
2〉 with M ′

1 6= M ′
2 and dom(S′

2−

S2) = dom(S′
1 − S1), then N = () = N ′ and there exist E and al,θ such that

F = dEe = F ′, M = E[(! al,θ)], and M ′
1 = E[S1(al,θ)], M ′

2 = E[S2(al,θ)] with
S′

1 = S1 and S′
2 = S2.

Proof. Note that the only rule where the state is used is that for E[(! al,θ)]. By

case analysis on the transition 〈M, S1〉
N
−→
F

〈M ′
1, S

′
1〉.

The above result is analogous to Lemma 2.2.1, but adds the fact that the
flow policies F , F ′ of the transitions are the same as the one that is declared
by the evaluation context E.

3.3 The Non-disclosure Policy

In this section we formally define non-disclosure, the security property that
we study in this chapter. We start by showing how the flow relation behind
the security pre-lattices can be parameterized by the current flow policies; we
then give a bisimulation definition of non-disclosure that relaxes the definition
of non-interference given in Section 2.3, using the small-step semantics defined
in Section 3.2; finally, we justify the security property with some examples.
Explanations will focus mainly on the differences, with respect to the previous
chapter, that are introduced here.

3.3.1 Dynamic Security Pre-lattices

So far we have endowed our language with means for expressing dynamically
evolving flow policies for dealing with declassification. Information about the
flow policy of the evaluation context is now available in the labels that decorate
the transitions. These labels are used to extract the appropriate parameter for
building the current flow policy, without requiring any change in the security
levels that are associated with references – it is only the flow policy that changes.
We are then faced with the issue of maintaining a varying pre-lattice structure
over a given set of security levels. To achieve this, we consider, at each point
of the computation, the security pre-lattices that are derived from the current
flow policy in the same way as in Section 2.3. We recall their definitions here.

We define the preorder on security levels �F that is determined by the flow
policy F . We use the notion of F -upward closure of a security level l (defined

44 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

by l ↑F = {q | ∃p ∈ l. p F ∗ q}) to derive the more permissive flow relation:

l1 �F l2
def
⇔ ∀q ∈ l2 . ∃p ∈ l1 . p F ∗ q ⇔ (l1 ↑F) ⊇ (l2 ↑F) (3.14)

We use the above flow relation to define a range of pre-lattices that are deter-
mined by a flow policy:

Definition 3.3.1 (Security Pre-lattice). Given a set Pri of principals and a
flow policy F in Pri × Pri, the pair (2Pri,�F) is a security pre-lattice, where
meet (fF) and join (gF) are given respectively by the union and intersection
of the F -upward closures:

l1 fF l2 = l1 ∪ l2 l1 gF l2 = (l1 ↑F) ∩ (l2 ↑F)

We will use the mechanism of extending the flow relation with a flow policy F
in the following way: the information flows that are allowed to occur in an
expression M placed in a context E[], under a global flow policy G must satisfy
the flow relation �G∪dEe.

3.3.2 A Bisimulation-Based Definition

We now define our security property in terms of the above defined flow relation
�F , where F is the current flow policy. The definition of the non-disclosure
policy for networks is based on a notion of bisimulation for pools of threads P
with respect to a “low” security level. As usual, the bisimulation expresses the
requirement that P1 and P2 are to be related if, when running over memories
that coincide in their low part, they perform the same low changes. Then, if
P is shown to be bisimilar to itself, one can conclude that the high part of the
memory has not interfered with the low part, i.e., no security leak has occurred.
Using the flow policies that were presented earlier, the notion of being low can
be extended, thus weakening the condition on the behavior of the threads.

Low-Equality

The notion of “low-equality” is the same as in Section 2.3. However, having
a flow policy as a parameter takes its full meaning in this chapter, since the
current flow policy is not fixed. We recall the definition of low part of a memory
and of low-equality of memories with respect to a flow policy F and security
level l:

Definition 3.3.2 (Low Part of a Memory). The low part of a memory S with
respect to a flow policy F and a security level l is given by:

S �F,l def
= {(ak,θ, V) | (ak,θ, V) ∈ S & k �F l}

The low-equality of memories is thus defined:

Definition 3.3.3 (Low-Equality). The low-equality between memories S1 and
S2 with respect to a flow policy F and a security level l is given by:

S1 =F,l S2
def
⇔ S1 �

F,l= S2 �
F,l

3.3. THE NON-DISCLOSURE POLICY 45

As we noted earlier, this relation is transitive, reflexive and symmetric. We
shall use without notice the fact that:

Remark 3.3.4.

F ⊆ F ′ and S1 =F ′,l S2 implies S1 =F,l S2

The Security Property

In the following we denote by � the reflexive closure of the union of the tran-
sitions −→

F
, for all F .

Definition 3.3.5 ((G, l)-bisimulation). A (G, l)-bisimulation is a symmetric
relation R on sets of threads such that:

P1 R P2 and 〈P1, S1〉 −→
F

〈P ′
1, S

′
1〉 and S1 =G∪F,l S2 and (∗)

implies

∃P ′
2, S

′
2 . 〈P2, S2〉� 〈P ′

2, S
′
2〉 and S′

1 =G,l S′
2 and P ′

1 R P ′
2

where:
(∗) dom(S1

′ − S1) ∩ dom(S2) = ∅

When P1 performs a transition within the scope of the local flow policy
F , it is allowed to read “low”-references from the input memory (S1 and S2)
according to the current flow policy G ∪ F . Recall that these references are
labeled with a security level l′ such that l′ �G∪F l. As to the condition imposed
on the output memories S′

1 and S′
2, it suffices2.

The main difference between this definition and the one of Definition 2.3.5
is the stronger premiss S1 =G∪F,l S2. By starting with pairs of memories that
are low-equal “to a greater extent”, i.e. that coincide in a larger portion of the
memory, the condition on the behavior of the program P2 becomes weaker. As
a consequence, this definition potentially relates more programs.

The absence of a condition on the flow policy of the matching move for
P2 enables all expressions without side-effects to be bisimilar, independently of
the flow policy that is declared by their evaluation contexts – for example, the
programs ((); ()) and (flow F in ((); ())).

Remark 3.3.6.

• For any G and l there exists a (G, l)-bisimulation, like for instance the set
Val×Val of pairs of values.

• The union of a family of (G, l)-bisimulations is a (G, l)-bisimulation.

Consequently, there is a largest (G, l)-bisimulation, which is the union of all
(G, l)-bisimulations:

2Imposing the stronger condition S′
1

=G∪F,l S′
2

on the resulting memories would imply
that the program

(if (! aH) then (flow H ≺ L in (bH := 0)) else ())

would be considered insecure. The reason for this is that the assignment to the reference bH

would be observable at level L, and this would reflect a flow of information from the high
reference aH to require them to be indistinguishable from the point of view of the policy that
is restored after the step – the global flow policy G.

46 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Notation 3.3.7. The largest (G, l)-bisimulation is denoted ≈G,l.

We now define the Non-disclosure policy in the same manner as we did for
Non-interference.

Definition 3.3.8 (Non-disclosure with respect to G). A pool of threads P sat-
isfies the Non-disclosure policy (or is secure from the point of view of Non-
disclosure) with respect to the global flow policy G if it satisfies P ≈G,l P for
all security levels l. We then write P ∈ ND(G).

Using the Flow Declaration

In the examples we give next we assume given two principals H and L, and
a global flow policy G consisting of the pair L ≺ H . We denote, as usual,
references with security levels {H} or {L} simply by aH or bL, leaving out the
type and the brackets.

The program
(bL := (flow H ≺ L in (! aH))) (3.15)

is essentially the same as Example 3.3, and is therefore secure. However, the
program

(if (! aH) then (flow H ≺ L in (bL := tt)) else ()) (3.16)

is not secure, since the flow declaration does not encompass the declassification
of the reference aH .

As was observed in Section 2.3 with respect to the bisimulation of the pre-
vious chapter, the kind of bisimulation that we use here can be considered to
be “strong” (as in [Sabelfeld & Sands, 2005]), since each time a transition is
matched, we restart the bisimulation game by comparing the resulting pools of
threads in the context of any new low-equal memories, rather than continuing
with the resulting configurations. This allows us to restore a more restrictive
flow policy after a local flow declaration has been used, as in

(flow H ≺ L in (bL := ! aH)); (b′L′ := ! a′
H′) (3.17)

which is insecure in a context where the flow policy does not consider H ′ to be
lower than L′, even if H = H ′ and L = L′.

3.3.3 Properties of Secure Programs

We could state a compositionality result (with respect to set union), as in Propo-
sition 2.3.9. Another property of our notion of security is that if an expression M
is secure under the global flow policy G∪F , then the expression (flow F in M)
is secure with respect to the global flow policy G:

Proposition 3.3.9.

M ∈ ND(G ∪ F) implies (flow F in M) ∈ ND(G)

Proof. It is easy to see that if R is a (G ∪ F, l)-bisimulation, then the relation

{((flow F in M), (flow F in N)) | M R N}

∪ {(V, (flow F in N)) | V R N & V ∈ Val}

∪ {((flow F in M), V) | M R V & V ∈ Val}

∪ {(V, V ′) | V R V ′ & V, V ′ ∈ Val}

(3.18)

3.3. THE NON-DISCLOSURE POLICY 47

is a (G, l)-bisimulation.

To see why the reverse implication is not true3, suppose that M does not
contain any flow declaration, and that F 6= ∅.

Operationally High Threads

As we did in the previous chapter, we can identify a class of threads that have
the property of never performing any change in the “low” part of the memory.
These are classified as being “high”according to their behavior:

Definition 3.3.10 (Operationally High Threads). A set H of threads is said
to be a set of operationally (G, l)-high threads if the following holds for any
M ∈ H:

〈M, S〉
N
−→
F

〈M ′, S′〉 implies S =G,l S′

and both M ′, N ∈ H

This definition does not differ from that of Definition 2.3.10. Indeed, the
low part of the memories is considered with respect to the parameter G, while
the flow policy of the transitions of the thread is not taken into account. This
is consistent with the definition of bisimulation, where the “observation” of the
memories that result from a step are taken from the point of view of the global
flow policy G.

Remark 3.3.11.

• For any G and l there exists a set of operationally (G, l)-high threads, like
for instance Val.

• The union of a family of sets of operationally (G, l)-high threads is a set
of operationally (G, l)-high threads.

Therefore, there exists the largest set of operationally (G, l)-high threads:

Notation 3.3.12. The union of all sets of operationally (G, l)-high threads is
denoted by HG,l.

We say that a thread M is an operationally (G, l)-high thread if M ∈ HG,l.
Notice that if G ⊆ F , then any operationally (F, l)-high thread is also opera-
tionally (G, l)-high. Furthermore, an operationally >-high thread never modifies
the memory.

3Interestingly, the reverse implication would be true if the definition of (G, l)-bisimulation
had been relaxed by comparing the memories that result from the matching steps with respect
to the empty flow policy, instead of the global flow policy. However, such a change would mean
that non-disclosure would no longer generalize standard non-interference (we will soon see that
it does now). It is not clear, however, whether the definition of non-interference itself could
be relaxed in the same manner.

48 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Comparison with Non-interference

The Non-disclosure policy is equivalent (up to notational issues) to the Non-
interference policy, if we only consider threads that do not contain flow decla-
rations. To see this, let us rewrite the condition for R to be a bisimulation in
the sense of Definition 2.3.5, but using the language of this chapter (excluding
the flow declarations):

P1 R P2 and 〈P1, S1〉 −→
∅

〈P ′
1, S

′
1〉 and S1 =G∪∅,l S2

and (∗) implies:

∃P ′
2, S

′
2 : 〈P2, S2〉� 〈P ′

2, S
′
2〉 and S′

1 =G,l S′
2 and P ′

1 R P ′
2

where:
(∗) dom(S1

′ − S1) ∩ dom(S2) = ∅

(3.19)

For the purpose of this comparison, we shall say that if a pool of threads P
satisfies Non-disclosure in the above sense, then P ∈ NI(G, ∅).

We call derivative of an expression M , any expression M ′ that is attainable
from M by a (possibly empty) sequence of small-step transitions.

Definition 3.3.13 (Derivative of an Expression). We say that an expression
M ′ is a derivative of an expression M if and only if

• M ′ = M , or

• there exist two states S1 and S′
1 and a derivative M ′′ of M such that, for

some F , N :

〈M ′′, S1〉
N
−→
F

〈M ′, S′
1〉

Proposition 3.3.14. Consider a pool of threads P whose expressions do not
contain flow declarations. Then, P ∈ ND(G) if and only if P ∈ NI(G, ∅).

Proof. Suppose P ∈ ND(G). Then, for all security levels l, there exists a
relation S that is a (G, l)-bisimulation according to Definition 3.3.5, and such
that P S P . Then, we have that

S′ def
= {(Q1, Q2) | Q1 S Q2 & Q1, Q2 are derivatives of P} (3.20)

is also a (G, l)-bisimulation according to Definition 3.3.5 and P S′ P . Since P
does not contain flow declarations, then every derivative of P does not contain
flow declarations either. Now, suppose that P1 S′ P2. Then, if

〈P1, S1〉
N
−→
∅

〈P ′
1, S

′
1〉 (3.21)

and S1 =G∪F,l S2 and dom(S1
′ − S1) ∩ dom(S2) = ∅. Since S′ is a (G, l)-

bisimulation according to Definition 3.3.5,

∃P ′
2, S

′
2 : 〈P2, S2〉� 〈P ′

2, S
′
2〉 (3.22)

such that 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉 and P ′

1 S′ P ′
2. Hence, S′ is a (G, l)-bisimulation

according to 3.19, where P S′ P , and we conclude that P ∈ ND(G).

3.4. TYPING NON-DISCLOSURE 49

Now suppose P ∈ NI(G, ∅). Then, for all security levels l, there exists a
relation S that is a (G, l)-bisimulation according to 3.19, and such that P S P .
Now, suppose that P1 S P2. Then, if

〈P1, S1〉
N
−→
F

〈P ′
1, S

′
1〉 (3.23)

and 〈T1, S1〉 =G∪F,l 〈T2, S2〉 and dom(S1
′ − S1) ∩ dom(S2) = ∅, clearly we have

F = ∅. Therefore, since S is a (G, l)-bisimulation according to 3.19,

∃P ′
2, S

′
2 : 〈P2, S2〉� 〈P ′

2, S
′
2〉 (3.24)

where S′
1 =G,l S′

2 and P ′
1 S′ P ′

2. Therefore, S′ is a (G, l)-bisimulation according
to Definition 3.3.5, where P S′ P , and we conclude that P ∈ ND(G).

It is then clear that all the examples of insecure programs given in the previ-
ous chapter do not satisfy non-disclosure. However, if we write these programs
in the context of the flow declaration (flow H ≺ L in []) (since they all involve
leaks from level H to L), they become secure.

3.4 Typing Non-disclosure

In this section we present a type and effect system that only accepts programs
that satisfy Non-disclosure. It extends the one that is presented in Section 2.4,
so we will restrict the explanations to the features that are introduced here.
We start by defining the notation used to express the typing judgments and by
explaining their meaning; we then comment on how the flow policies are used to
relax the typing conditions, in such a way that declassifying programs can now
be accepted; finally, we conclude by giving some properties of the type system,
including a Subject Reduction result, and the Soundness theorem.

3.4.1 A Type and Effect System with Flow Policies

The type and effect system that we present here selects secure threads by en-
suring the compliance of all information flows to the flow relation that is pa-
rameterized with the current flow policy. This consists of the global flow policy
G extended with the local flow policy that is valid for each expression, i.e. the
one that is declared by the evaluation context where the expression is placed.

The Typing Judgments

As defined in Figure 3.6, the judgments of the type and effect system have the
form:

Γ `G,F M : s, τ (3.25)

The meaning of Γ (the typing environment), M (the expression being typed),
s (the security effect of M , including the reading effect, writing effect and ter-
mination effect), and G (the global flow policy§¡) is the same as in the previous
chapter (see Section 2.4). As for the remaining parameters:

50 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

• The flow policy F is the one that is valid in the evaluation context in
which M is to be typed, and contributes to the meaning of operations and
relations on security levels. It is called the flow policy of the context. It
is assumed to contain the global flow policy, which is extended with the
local flow policies declared by the evaluation context.

• The type τ is the type of the expression. The types we use in this chap-
ter are similar to those of Chapter 2. The syntax (that can be seen in
Figure 3.1) is repeated here:

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl | τ
s
−→
F

σ

The only difference is in the function type, that records the “latent flow
policy”, which is assumed to hold when the function is applied to an
argument.

In some of the typing rules we use the join operation on security effects:

Definition 3.4.1.

sgG s′
def
⇔ (s.r gG s′.r, s.w fG s′.w, s.t gG s′.t)

The type and effect system is given in Figure 3.7. Notice that it is syntax
directed. We use some abbreviations: instead of the meet fG and join gG

with respect to the global flow policy we write f, g, respectively; we also omit
the global flow policy that appears as subscript of `G,F and simply write `F ;
whenever we have Γ ` M : 〈⊥,>,⊥〉, τ , we only write Γ ` M : τ .

3.4.2 Relaxed Typing Conditions

Let us look at the features of the type system that enable the acceptance of
programs that are insecure from the point of view on Non-interference, but
secure with respect to the Non-disclosure policy. We therefore focus on the role
of the flow policy that appears as a parameter of the judgments.

To type a flow declaration (flow F in M), the expression M is only required
to be typable in the context of the current flow policy extended with F . To see
why typability with respect to a “larger” flow policy is “easier”, recall that the
conditions that are imposed by the typing rules in fact constrain the flow of
information that is encoded by the expressions to comply with the current flow
relation. Since flow relations that are parameterized with larger flow policies
are weaker, more flows satisfy the conditions that they impose.

The simplest example of a declassification operation is the assignment that
implements the direct flow in Example 2.15. To obtain a valid program that
performs such an operation, it suffices to write:

(flow H ≺ L in (aL := (! bH))) (3.26)

In fact, to type the above program using Flow, Ass and Der, it is enough
that the condition {H} �H≺L {L} holds, which clearly is the case. The same
principle applies to all examples given in the previous chapter.

As pointed out earlier, it is inevitable that some secure programs are rejected
by the type system. For instance, a conditional that tests a high reference

(if (! aH) then M else N) (3.27)

3.4. TYPING NON-DISCLOSURE 51

Typing Environments Γ : Var → Typ

Typing Judgments ::= Γ `G,F M : s, τ

Figure 3.6: Syntax of Typing Judgments (see also Figure 3.1)

[Nil] Γ ` () : unit [Flow]
Γ `F∪F ′ M : s, τ

Γ `F (flow F ′ in M) : s, τ

[Abs]
Γ, x : τ `F M : s, σ

Γ ` (λx.M) : τ
s
−→
F

σ
[Rec]

Γ, x : τ `F s, W : τ

Γ ` (%x.W) : τ

[BoolT] Γ ` tt : bool [BoolF] Γ ` ff : bool

[Var] Γ, x : τ ` x : τ [Loc] Γ ` al,θ : θ ref l

[Ref]
Γ `F M : s, θ s.r �F l

Γ `F (ref l,θ M) : s g 〈⊥, l,⊥〉, θ refl

[Der]
Γ `F M : s, θ refl

Γ `F (! M) : sg 〈l,>,⊥〉, θ

[Ass]

Γ `F M : s, θ refl Γ `F N : s′, θ
s.t �F s′.w

s.r, s′.r �F l

Γ `F (M := N) : s g s′ g 〈⊥, l,⊥〉, unit

[Cond]

Γ `F M : s, bool
Γ `F Nt : st, τ
Γ `F Nf : sf , τ

s.r �F st.w, sf .w

Γ `F (if M then Nt else Nf) : sg st g sf g 〈⊥,>, s.r〉, τ

[App]

Γ `F M : s, τ
s′

−→
F

σ Γ `F N : s′′, τ
s.t �F s′′.w

s.r, s′′.r �F s′.w

Γ `F (M N) : sg s′ g s′′ g 〈⊥,>, s.r g s′′.r〉, σ

[Seq]
Γ `F M : s, τ Γ `F N : s′, σ s.t �F s′.w

Γ `F (M ; N) : sg s′, σ

[Thr]
Γ `∅ M : s, unit

Γ `F (thread M) : 〈⊥, s.w,⊥〉, unit

Figure 3.7: Type and Effect System

52 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

can never be accepted as long as it contains low assignments or reference cre-
ations in either of the branches M or N . While this restriction rejects all
possible control leaks that could be encoded by the conditional, it rejects many
other programs that inoffensively write to low references in their branches (see
[Volpano & Smith, 1999; Agat, 2000; Sabelfeld & Sands, 2005] for some ways of
ensuring, in a simple language, that the branches do not cause any problems).
One practical application of the flow declaration construct is to use, instead,
the program

(flow H ≺ L in (if (! aH) then M else N)) (3.28)

thus neutralizing the effect of the typing restrictions that are imposed by Cond.
As a last example, we show that the level to which a program will downgrade

the contents of a reference cannot be predicted statically. Let M be the following
expression:

(if N then (flow p ≺ q in (aq,θ := ! cp,θ)) else (flow p ≺ r in (br,θ := ! cp,θ)))
(3.29)

Then one can see that M is typable if the condition s.r �G {q, r}, where s.r
is the reading effect of the boolean N , holds. Since there is no constraint
regarding the confidentiality level p of the reference c, the level q or r to which
the contents of p are declassified depends only on the value into which the
boolean N computes.

3.4.3 Properties of Typed Expressions

Similarly to what we did in Section 2.4.3, we omit the details of the proofs here
and refer the reader to Subsection 4.4.3 for the complete proofs.

Subject Reduction

The first main result of this section is Subject Reduction. The Subject Reduc-
tion property states that the type of an expression is preserved by reduction.
The result does not differ from the one stated in the previous chapter (Theorem
2.4.2). In particular, the conditions that state the “weakening” of the security
effects during reduction are the same. This is due to the fact that the flow dec-
larations do not interfere with the construction of the security effects – in the
type system of Figure 3.7 they are built with respect to the global flow policy,
just like in the type system of Figure 2.74.

Theorem 3.4.2 (Subject Reduction).

If for some s, τ we have Γ `F M : s, τ and 〈M, S〉
N
−→
F ′

〈M ′, S′〉 where all al,θ ∈

dom(S) satisfy Γ ` S(al,θ) : θ, then ∃s′ such that Γ `F M ′ : s′, τ and s′.r � s.r,
s.w � s′.w and s′.t � s.t. Furthermore, ∃s′′ such that Γ `∅ N : s′′, unit and
s.w � s′′.w.

Proof. The main proof is a case analysis on the transition 〈M, S〉
N
−→
F ′

〈M ′, S′〉.

See the detailed proof of Theorem 4.4.7 and preceding lemmas.

4In this point, the type system that we present here differs from the one presented in
[Almeida Matos & Boudol, 2005]. We comment on this in the discussion on related work
(Section 3.5).

3.4. TYPING NON-DISCLOSURE 53

Syntactically High Expressions

The notion of a syntactically high expression is defined here as in the previous
chapter (Definition 2.4.3). The difference lies only in the fact that it is defined
with respect to the current flow policy, while in the previous chapter it is of
course defined with respect to the global flow policy.

Definition 3.4.3 (Syntactically High Expressions). An expression M is syntac-
tically (F, l)-high if there exists Γ, s, τ such that Γ `F M : s, τ with s.w 6�F l.
The expression M is a syntactically (F, l)-high function if there exists Γ, s, τ

such that Γ ` M : τ
s
−→
F

σ with s.w 6�F l.

We can now state that syntactically high expressions have an operationally
high behavior.

Lemma 3.4.4 (High Expressions). If M is a syntactically (F, l)-high expres-
sion, then M is an operationally (F, l)-high thread.

Proof. See proof of Lemma 4.4.9.

3.4.4 Soundness

The final result of this chapter, Soundness, states that the type system only
accepts expressions that are secure in the sense of Definition 3.3.8, for a global
flow policy G. In the remaining of this section we sketch the main definitions
and results that can be used to reconstruct a direct proof of this result. A
similar proof is given in detail for the richer language of Chapter 4.

We first build a symmetric binary relation between expressions that are
typable (in the context of a flow relation F) and whose terminating behaviors
do not depend on high references, more precisely, between those that are typable
with a low termination effect. It should be such that if the evaluation of two
related expressions, in the context of two low-equal memories should split (see
Lemma 3.2.2), then the resulting expressions are still in the relation. This
relation, namely TF,low, is inductively defined for a flow policy F and a security
level low in Figure 3.8.

The next proposition states that TF,low is a kind of “strong bisimulation”

with respect to the transition relation
N
−→
F ′

.

Proposition 3.4.6 (Strong Bisimulation for Low-Terminating Threads). If we

have M1 TF,low M2 and 〈M1, S1〉
N
−→
F ′

〈M ′
1, S

′
1〉, with S1 =F∪F ′,low S2 such that

a is fresh for S2 if al,θ ∈ dom(S′
1 − S1), then there exist M ′

2 and S′
2 such that

〈M2, S2〉
N
−→
F ′

〈M ′
2, S

′
2〉 with M ′

1 TF,low M ′
2, S′

1 =F,low S′
2 and dom(S′

1 − S1) =

dom(S′
2 − S2).

Proof. By induction on the definition of TF,low.

We now define a larger symmetric binary relation on expressions that are
typable in the context of a flow relation F . Similarly to the previous one,
it should be possible to relate the results of the computations of two related
expressions in the context of two low-equal memories. Given a flow policy
F and a security level low, we define the binary relation RF,low on expressions

54 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Definition 3.4.5 (TF,low). We have that M1 TF,low M2 if Γ `F M1 : s1, τ and
Γ `F M2 : s2, τ for some Γ, s1, s2 and τ with s1.t �F low and s2.t �F low and
one of the following holds:

Clause 1. M1 and M2 are both values, or

Clause 2. M1 = M2, or

Clause 3. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 TF,low M̄2, or

Clause 4. M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 TF,low M̄2, and
l 6�F low, or

Clause 5. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 TF,low M̄2, or

Clause 6. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 TF,low M̄2, and
N̄1 TF,low N̄2, and M̄1, M̄2 both have type θ refl for some θ and l such
that l 6�F low, or

Clause 7. M1 = (flow F ′ in M̄1) and M2 = (flow F in M̄2) with
M̄1 TF∪F ′,low M̄2.

Figure 3.8: The relation TF,low

inductively in Figure 3.9. The relation RF,low is a kind of “strong bisimulation”,

with respect to the transition relation
N
−→
F ′

:

Proposition 3.4.8 (Strong Bisimulation for Low Typable Threads). Suppose

that M1 RF,low M2 and that M1 /∈ HF,low. If 〈M1, S1〉
N
−→
F ′

〈M ′
1, S

′
1〉, with S1

=F∪F ′,low S2 such that a is fresh for S2 if al,θ ∈ dom(S′
1 − S1), then there exist

M ′
2 and S′

2 such that 〈M2, S2〉
N
−→
F ′

〈M ′
2, S

′
2〉 with M ′

1 RF,low M ′
2, S′

1 =F,low S′
2,

and dom(S′
1 − S1) = dom(S′

2 − S2).

Proof. By induction on the definition of RG,low.

To conclude the proof of the Soundness Theorem, we must exhibit a bisim-
ulation on pools of threads. Consider the following relation:

Definition 3.4.9 (R?
G,low). The relation R?

low is inductively defined as follows:

a)
M ∈ HG,low

{M} R?
G,low ∅

b)
M ∈ HG,low

∅ R?
G,low {M}

c)
M1 RG,low M2

{M1} R?
G,low {M2}

d)
P1 R?

G,low P2 Q1 R?
G,low Q2

(P1 ∪ Q1) R?
G,low (P2 ∪ Q2)

We can now use Strong Bisimulation for Low Typable Threads (Proposition
3.4.8) to prove the following:

Proposition 3.4.10. The relation R∗
G,low is a (G, low)-bisimulation.

3.4. TYPING NON-DISCLOSURE 55

Definition 3.4.7 (RF,low). We have that M1 RF,low M2 if Γ `F M1 : s1, τ and
Γ `F M2 : s2, τ for some Γ, s1, s2 and τ and one of the following holds:

Clause 1’. M1, M2 ∈ HF,low, or

Clause 2’. M1 = M2, or

Clause 3’. M1 = (if M̄1 then N̄t else N̄f) and M2 = (if M̄2 then N̄t else N̄f)
with M̄1 RF,low M̄2 and N̄t, N̄f ∈ HF,low, or

Clause 4’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 RF,low M̄2, and
N̄1, N̄2 ∈ HF,low, and M̄1, M̄2 are syntactically (F, low)-high functions,
or

Clause 5’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 TF,low M̄2, and
N̄1 RF,low N̄2, and M̄1, M̄2 are syntactically (F, low)-high functions, or

Clause 6’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 Rlow,F M̄2 and N̄ ∈
HF,low, or

Clause 7’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 TF,low M̄2, or

Clause 8’. M1 = (ref l,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 RF,low M̄2, and
l 6�F low, or

Clause 9’. M1 = (! M̄1) and M2 = (! M̄2) where M̄1 RF,low M̄2, or

Clause 10’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 RF,low M̄2,
and N̄1, N̄2 ∈ HF,low, and M̄1, M̄2 both have type θ refl for some θ and l
such that l 6�F low, or

Clause 11’. M1 = (M̄1 := N̄1) and M2 = (M̄2 := N̄2) with M̄1 TF,low M̄2, and
N̄1 RF,low N̄2, and M̄1, M̄2 both have type θ refl for some θ and l such
that l 6�F low, or

Clause 12’. M1 = (flow F in M̄1) and M2 = (flow F in M̄2) with
M̄1 RF∪F ′,low M̄2.

Figure 3.9: The relation RF,low

56 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

To conclude, we now state the main result of the chapter, saying that our
type system only accepts threads that can securely run concurrently with other
typable threads.

Theorem 3.4.11 (Soundness for Non-disclosure). Consider a pool of threads
P and a global flow policy G. If for any M ∈ P there exist Γ, s and τ such
that Γ `G,G M : s, τ , then P satisfies the Non-disclosure policy with respect to
the flow policy G.

Proof. By Clause 2’ of Definition 3.4.7, for all choices of security levels low,
we have that M RG,low M . By Rule c) of Definition 3.4.9, {M} R?

G,low {M}.
Since this is true for all M ∈ P , by Rule d) we have that P R?

G,low P . By
Proposition 3.4.10 we conclude that P ≈G,low P .

The above result is compositional, in the sense that it is enough to verify
the typability of each thread separately in order to ensure non-disclosure for the
whole pool of threads.

3.5 Related Work

A lot of work has been done addressing the concern that once declassification
is permitted in a language, it could be inappropriately used to leak more in-
formation than what would be considered “safe”. This has lead to different
forms of constraints on the usage of declassification that is permitted to the
programmer. Another largely orthogonal motivation is to find suitable tools
for expressing declassification and the policies to which it should comply. The
challenge here is rather to enable the programmer to perform declassifications
at will, possibly under the scrutiny of self-imposed specifications.

The recent work [Sabelfeld & Sands, 2005] by Sabelfeld and Sands contains
an exhaustive survey on the literature regarding the subject of declassification.
In particular, they observe that declassification can be controlled according to
four main orthogonal goals as to: what information should be released, when it
should be allowed to happen, who should be authorized to use it, and where in
a system it can be stated. In our comments to related work, we will adopt this
classification, under the two main primary goals mentioned above – to constrain
declassification, or to enable it – and give a few representative examples.

3.5.1 Constraining Declassification

When? In [Volpano, 2000; Volpano & Smith, 2000], Volpano and Smith re-
strict downgrading to occur by means of specific “hard” functions. The idea
is to impose time-complexity based boundaries on the computations that can
reveal some secret value to an attacker. This approach seems more appropriate
for applications where the leakage of information should be justified as safe (in
cryptography, for instance), but is not flexible enough to serve as a general tool
for programmers to leak information at will.

Who? Robust declassification is an example of downgrading that is restricted
to be performed by authorized subjects. It was proposed and then studied in
a series of papers [Myers & Liskov, 1997; Myers, 1999; Zdancewic, 2003; Myers

3.5. RELATED WORK 57

et al., 2004; Tse & Zdancewic, 2004] by Myers and colleagues. The starting
point is a model of security labels that, besides specifying the reading policies
of an object, specifies the owners of those policies, and provides operations for
manipulating those labels. The idea of robust declassification is to ensure that
the policies of an object can only be weakened by a subject that is at least as
trustworthy as the owner of that policy. The aim of defining who is entitled to
perform declassification operations on objects is orthogonal to ours, though it
would be interesting to see whether it could be accommodated in our setting.

What? In another paper [Sabelfeld & Myers, 2004], Sabelfeld and Myers aim
at restricting the use of downgrading so that it cannot be exploited by laundering
attacks. This involves the use of a downgrading mechanism for values – written
declassify (V, L). The use of downgrading operations is only considered safe,
according to the notion of delimited release, provided that the program does not
previously modify data that could influence the value of declassified expressions.
For instance, the program

((aH := ff); (bL := declassify (aH , L))) (3.30)

is considered insecure. On the other hand, the program

((bL := declassify (aH , L)); (cL := aH)) (3.31)

which is similar to the one of Example 3.17, is considered safe, but is ruled out
by the type system. The aim of restricting downgrading of values to release only
the “intended” information is different from our purpose of providing a flexible
tool for performing declassification.

Where? In [Sabelfeld & Sands, 2005], the question of where in a system in-
formation is released is further divided according to two forms of locality: level
locality, specifying the security levels via which information can be downgraded,
and code locality, which restricts the places of a program in which declassifi-
cation can be encoded. A typical example of level locality is intransitive non-
interference [Rushby, 1992; Roscoe & Goldsmith, 1999; Mantel, 2001], which
constrains information to flow according to a non-transitive flow relation. This
means that it is possible to restrict the downgrading of information to follow a
certain predetermined path of security levels.

3.5.2 Enabling Declassification

As was said in the introduction of this chapter (Section 3.1), the problem that
we have addressed is that of enabling declassification, rather than that of con-
straining it as in the above related work. The following examples are in this
sense closer to ours.

When? Chong and Myers introduced declassification policies [Chong & My-
ers, 2004] that express the sequence of levels through which a value can be
downgraded, provided some conditions are satisfied. These conditions are used
in the definition of a generalized noninterference property to mark the steps
where declassification occurs. This bears some resemblance to our transitions
labeled by a local flow relation, although conditions are rather used to single
out sequences of steps that do not involve downgrading operations.

58 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

Who? Ferrari et al. [Ferrari et al., 1997] proposed to attach “waivers” to
methods in an object-oriented language to provide a way of making information
flow from objects to users. Although the authors claim that “only privileged
methods” have associated waivers, there seems to be actually no constraint on
the flow of information they allow. This idea of a waiver is therefore similar to a
local flow relation, though it is not clear whether the notion of “safe information
flow” that the authors define is similar to our Non-disclosure policy (as far as
we can see, this definition does not treat waivers as having a local scope).

What? The work by Li and Zdancewic [Li & Zdancewic, 2005] on relaxed non-
interference provides some control on what (and how) information is released.
To this end, they offer the programmer a way of specifying sophisticated down-
grading policies by means of an expression in a typed λ-calculus. This control is
left in the hands of the programmer, who can freely specify the means by which
information is allowed to be downgraded. Their main result is very close in spirit
to ours, since “the security guarantee [provided by relaxed noninterference] only
assures that the program respects the user’s security policies”.

Where? Following [Sabelfeld & Sands, 2005], our flow declaration mechanism
can be included in the “where” category, even though it does not attempt to
constrain declassification, only to express it. Our answer to the “Where?” ques-
tion could then be “Anywhere.”, both from the level and code locality points
of view. Indeed, flow declarations can encompass declassifications in any por-
tions of the program, and set up flows between any security levels5. In contrast,
in controlled declassification Mantel and Sands [Mantel & Sands, 2004] chose
to restrict declassification to occur at very precise points of the program, and
between levels that are statically fixed.

In spite of the antagonistic choices regarding the flexibility of the declassifica-
tion tool that is studied, Mantel and Sands work is the closest to ours as regards
the way declassification is permitted. We will now make a closer comparison be-
tween controlled declassification and non-disclosure. Later on, we conclude this
chapter with a discussion on the differences between the type system presented
here, and the one presented earlier in [Almeida Matos & Boudol, 2005].

Controlled Declassification vs. Non-disclosure

In addition to a given information flow ordering ≤ on security levels, Mantel
and Sands consider an “exceptional” non-transitive information flow relation
on these levels. The latter relation, which is valid for an entire program, can
be seen to extend (in a non-transitive manner) the basic flow ordering in every
occurrence of a downgrading assignment:

[bl′ := al] (3.32)

5A similar construct for introducing flow policies exists in Flow Caml, but with an im-
portant difference: there it adds the flow policy F to the global security policy, whereas in
our case the declaration is local. Such a construct has been mentioned in [Tse & Zdancewic,
2004] under the name of “delegation”, but it was not formally studied there. In [Hicks et al.,
2005], permission tags are used with the opposite purpose of restricting the range of possible
updates to a global flow policy, serving as assumptions for sound execution.

3.5. RELATED WORK 59

Even if l 6≤ l′, this instruction is considered secure provided that the exceptional
flow relation includes the pair l l′. Using our syntax, it could be expressed
as

(flow F in (bl′ := (! al))) (3.33)

where F would relate l and l′ if and only if l l′. However, as we will see, the
analogy between F and cannot be pushed too far, since both and (≤ ∪)
are non-transitive.

In the work of Mantel and Sands, a security property that generalizes non-
interference is defined using a kind of bisimulation for programs. For this pur-
pose, the small-step semantics is decorated with two notations: a flag (d or o)
that indicates whether the step that is being performed is a downgrading assign-
ment; the “effect” l′ → l, in the case the flag is d, indicating that the level of the
variables that are used by the downgrading assignment are l′ and l respectively
(these can be seen as the reading and writing effect of the operation). For the
cases where the program performs a downgrading assignment, the effect is used
to relax the condition on the resulting state, while securing that the effect is
allowed by the exceptional flow relation, and that no more information than the
one expressed by the effect is leaked.

Concerning the declassification construct that is introduced in the language,
a first difference is that Mantel and Sands choose to restrict declassification
to assignment operations that involve reading and writing single variables. In
contrast, the flow declaration allows the programmer to declare the possibility
of declassification to occur in any portion of the program, ranging from the
fine grained assignment as in Example 3.33, to more complex compositions of
commands. Furthermore, while the exceptional flow relation applies to every
downgrading command in the program, using our flow declaration one can tailor
the basic flow order F to different levels of permissiveness in different portions
of the program. In particular, as was shown in Example 3.29, the particular
downgrading policy that is actually used in a computation cannot be predicted
statically. Using our flow declaration one can have threads run under different
flow policies, as in Example 3.66.

As regards the security property, Mantel and Sands bisimulation is also based
on a decorated small-step semantics that indicates the steps that are subject to
a more flexible flow relation. However, since in their work every downgrading
assignment is subject to the same exceptional flow relation, a flag is sufficient
for this purpose. In contrast, since our flow declaration can express a different
“exceptional” flow relation each time it is used, then information on the declared
flow policy F must be included as well. Furthermore, in our work, the security
property does not make use of the effects of the program – the conditions on the
states use F alone. There is thus no exact counterpart of the l′ → l label that
is found in their work, which makes it hard to compare the conditions that are
imposed for downgrading steps. It is not clear whether similar information on
the effects could be used in our setting, where downgrading operations are not
restricted to such precise forms of assignments with very simple effects (a read
and a write effect, each coinciding with the security level of a single variable).

Attempting to compare the expressivity of both security properties one can
see that they are both expressed by means of an “l-bisimulation”, stating that

6This feature could be used in a language with code mobility (as the one in the following
chapter) to enable threads to migrate with their own flow policies.

60 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

a program P is secure if, for all security levels l, P is l-bisimilar to itself. While
one can see that controlled declassification is not weaker than non-disclosure,
for l-bisimilarity in [Mantel & Sands, 2004] implies l-bisimilarity in our work,
the inverse direction is not true, for various reasons:

1. Their l-bisimulation is strong, since a step must be matched with exactly
one step (as opposed to zero or one steps in our setting). It is well known
that security properties resulting from this kind of bisimulations consider
timing leaks such as the following as insecure:

(if aH then () else ((); ())) (3.34)

2. Their l-bisimulation is even stronger when requiring declassification steps
to match their effect label. For instance, the program

(if c⊥ then [bH := aL] else bH := aL) (3.35)

is considered insecure in their setting (even if H = L), but secure (modulo
a translation like 3.33) in ours.

3. As to the fact that the exceptional flow relation is non-transitive, the
program

(flow A B, B C in (bC := aA)) (3.36)

is insecure (in general) according to controlled declassification because
A 6 C, while it is considered safe in our setting.

4. Perhaps a more interesting example is the program

(flow H ⊥ in (bL := aH)) (3.37)

which is also insecure (in general) according to controlled declassification
even though ⊥ (≤ ∪) H , while it is considered safe in our setting.

A final remark regards the difference in expressivity of the languages and
type systems in question: Mantel and Sands consider a simple while language
with thread creation, but without reference creation or higher-order expressions,
and the type system appears to be more restrictive (it restricts the guards of
the loops to ⊥, for instance), in the line of previous work [Smith & Volpano,
1998; Sabelfeld & Sands, 2000].

Flavors of Non-disclosure

There is a subtlety in the usage of flow declarations that regards the “Where?”
question, and that can be explored using type systems. Consider the program
of Example 3.15, which is safe according to our notion of Non-disclosure, and
which we repeat here:

(bL := (flow H ≺ L in (! aH))) (3.38)

This program is not typable because the assignment is not performed inside the
flow declaration. Another example is

((flow H ≺ L in (if (! aH) then () else loop)); (bL := 0)) (3.39)

3.5. RELATED WORK 61

where information about H is allowed to be downgraded to the level L. Con-
sequently it can be transmitted via the termination behavior of the conditional
and possibly stored in the low level reference b. Notice that the above programs
would be accepted if the flow declaration would encompass the whole assign-
ment, in case of Example 3.38, and the whole sequential composition, in case of
Example 3.39.

We could have used as in [Almeida Matos & Boudol, 2005] a kind of sub-
sumption in the Flow rule, on the security effect, to have the above examples
accepted.

[Flow’]
Γ `F∪F ′ M : s, τ s.r �F∪F ′ r s.t �F∪F ′ t t �F r

Γ `F (flow F ′ in M) : 〈r, s.w, t〉, τ
(3.40)

This rule allows the apparent reading and termination effects of the expression
(flow F ′ in M) to be strengthened, that is, to be considered higher, with respect
to F ′, than the ones of M . Therefore, the security effect of the expression
(flow H ≺ L in (! aH)) that appears in Example 3.38 can be 〈L,>,⊥〉, in which
case the condition {L} �G {L} imposed by the rule Ass is satisfied. However,
one should notice that in the typing rule for flow declaration it is not safe to let
the writing effect appear to be lower, with respect to F ′. Example 3.16 shows
why it would be wrong to do so. Therefore, we cannot allow subsumption for
the writing level.

The value downgrading facility that is provided by the subsumption rule
3.40 can be used to mimic7 the declassify (M, l) operator that is used in some
languages (see [Myers, 1999; Sabelfeld & Myers, 2004] for instance) for down-
grading the value of M to the confidentiality level l = {p1, . . . , pn}

declassify (M, l)
def
= (flow {H ≺ p1, . . . , H ≺ pn} in M) (3.41)

where H is a principal that we assume to be greater than every other principal
in Pri . Indeed, the expression is typable, having l as reading and termination
effects:

Γ `G M : s, τ

Γ `G declassify (M, l) : (l, s.w, l), τ
(3.42)

Another example is

(bL := (flow H ≺ L in encrypt ((! aH), K))) (3.43)

where encrypt is a given encryption function, and K is the encryption key.
Another difference between the type system presented in this chapter and

the one presented in [Almeida Matos & Boudol, 2005] is the fact that in the
latter one the security effects are built using the extended flow relation, while
here they are built with respect to the global flow policy. Using the extended
flow relation, the security effects are “weaker” – i.e. more precise. However,
this does not necessarily imply greater refinement of the type system, since the

7The translation (we give in Example 3.41) is not very precise, since the computation of M

occurs under the flow declaration. An accurate translation can be given using the let construct
[Boudol, 2005b], but it involves other changes to the typing rules that are beyond the scope
of this study. The point is that here we adopt an approach that is “operation-oriented”, as
opposed to “value-oriented”.

62 CHAPTER 3. NON-DISCLOSURE AND DECLASSIFICATION

restrictions that are imposed over those security effects are taken with respect to
the extended flow relation. In fact, one can conjecture that the weaker security
effects of [Almeida Matos & Boudol, 2005] could be simplified in the same way
as here, without loss of generality.

In the absence of subsumption, the declassifying mechanism that is provided
is more in the style of [Sabelfeld & Sands, 2005] that is restricted to assignment
operations. By eliminating subsumption from our type system, here we choose
to restrict purely to the concept of a flow declaration that enables declassification
operations. In this way, we underline the particular style of declassification that
is introduced by the flow declarations, as opposed to the approaches that aim
at downgrading values.

Chapter 4

Non-disclosure for Mobile
Code

This chapter addresses the issue of confidentiality and declassification for global
computing in a language-based security perspective. The purpose is to deal
with new forms of security leaks, which we call migration leaks, introduced by
code mobility. We present a generalization of the non-disclosure policy [Almeida
Matos & Boudol, 2005] to networks, and a type and effect system for enforcing
it. We consider the same language as in the previous chapter, enriched with a
notion of domain and a standard migration primitive.

The chapter is organized as follows. In the next section we define a calculus
that can express confidentiality problems that arise with network communica-
tions. In Section 4.3 we discuss the introduction of multiple flow policies and
formulate a non-disclosure property that is suitable for a decentralized setting.
In Section 4.4 we develop a type system that only accepts programs satisfying
such a property. Finally, we comment on related work.

4.1 Introduction

4.1.1 Information Flow in Code and Resource Mobility

We are interested in controlling information flows in the context of a distributed
setting with code mobility. In order to study the security issues arising in such
a context, we should consider a language where the notion of locality plays a
crucial role: programs are distributed over computation sites, and the possibility
of execution or failure of programs cannot be guaranteed by one domain alone
– it might, for instance, depend on their location. Now the question is: Could
these failures be exploited as covert information flow channels? In the presence
of mobile code, the answer is Yes. New security leaks, that we call migration
leaks, arise from the fact that execution or suspension of programs may now
depend on secret information.

In order to exemplify the new security leaks that appear in a distributed
language with code mobility, we consider for a moment an imperative language
with concurrency in the style of [Smith & Volpano, 1998], such that:

63

64 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

• Threads are named (names are ranged over by n), where Mn denotes a
thread M named n.

• Threads are placed in domains (domain names range over d). The position
of each thread in a network is given by a special “location-variable” (for
a thread n it is denoted by pos(n)).

• Migration is obtained by assigning a new domain name to a variable,
where pos(n) := d means that the thread n migrates to domain d (unless
the value is already d, which means that it is already there).

One can assume different forms of restrictions on how the location-variables can
be accessed. Here we assume that:

• The location-variable pos(n) can only be written to by thread n. This
means that we only consider subjective migration.

• The value of the location-variable pos(n) can only be tested for equality
with the location of the thread that tests it, i.e., a thread located at d can
only test whether pos(n) = d. This means that a thread can only know
which threads are present in its own domain.

We can then write the following program, where a form of busy waiting (for
the arrival of the thread m) is unblocked, depending on the value of a high
variable a (assuming that pos(m) = d, pos(n1) = d1, and pos(n1) = d2):

(if aH then (pos(m) := d1) else (pos(m) := d2))
m ‖

‖ (while pos(m) 6= d1 do nil); (bL := 1)
n1 ‖

‖ (while pos(m) 6= d2 do nil); (bL := 2)n2

(4.1)

Then, depending on the value of the high variable a, different low assignments
would occur to the low variable b.

In the light of the way we treated termination leaks in Chapter 2, such a
program would be rejected as soon as a security level would be associated to
the location-variable pos(m). This is, very roughly, the approach that we will
take in this chapter. However, we consider a more complex language, based on
those studied in the previous chapters.

4.1.2 Choosing a Calculus for Global Computing

The languages studied in Chapters 2 and 3 are local in the sense that resources
are assumed to be accessible to all programs at all times. Such an assumption
does not hold in general for networks. In fact, a network can be seen as a
collection of computation sites – domains – where resources are only accessible
to local programs, and failures can be generated by attempts to access remote
resources. To study the problem of whether these forms of failures can give
rise to information leaks like the ones exemplified above, we must consider a
language where the notion of location of a program and of a resource has an
impact on computations.

The design of network models is a whole research area in itself, and there
exists a wide spectrum of calculi that focus on different aspects of mobility
(find a survey in [Boudol et al., 2002]). Sekiguchi and Yonezawa analyzed in
[Sekiguchi & Yonezawa, 1997] various forms of behavior on accesses to remote

4.1. INTRODUCTION 65

references. In particular, resources of “take-away type” move together with the
threads that own them, while accesses to remote resources of this type result
in failure. In [Boudol, 2004] Boudol adopted this kind of references in the
ULM language, where the “mobile references” approach is combined with the
principles of reactive synchronous languages [Boussinot & Simone, 1996], and
the notion of “suspension” on a remote access replaces that of failure.

Here we are interested in a general and simple framework that addresses the
unreliable nature of resource access in networks, as well as trust concerns that
are raised when computational entities follow different security orientations. To
do this, we add to the language that was considered in the previous chapter a
notion of domain and a standard migration primitive that enables the position
of resources (references) and programs to change during execution. References
are assumed to belong to threads. Migration of a thread to another domain
is accompanied by the simultaneous migration of its references to the same
domain. Inspired by ULM, we assume that accesses to a reference can only be
performed by a program that is located at the same site; remote accesses are
suspended until the references become available1.

To illustrate the suspensive nature of reference access in the language that is
studied in this chapter (see Section 4.2), a read access (that is the dereference)
to a reference named a, is denoted

(? a) (4.2)

while a write access to a, where a value V is assigned to it, is denoted:

(a :=? V) (4.3)

If we consider a to belong to thread m, and the access to be performed at the
domain d, the behavior of each of the above constructs is similar to

(while pos(m) 6= d do nil); (! a) (4.4)

and to
(while pos(m) 6= d do nil); (a := V) (4.5)

respectively. This should give an intuition on how migration leaks as the one in
Example 4.1 can be encoded (see Section 4.3).

4.1.3 From Non-disclosure to Non-disclosure for Networks

The security properties we have at hand, designed for local computations, are
not suitable for treating information flows in a distributed setting with code
mobility. In fact, since the location of references in a network can be itself
a source of information leaks, the notion of safe program must take this into
account. For this purpose, we extend the notion of state, which in the previous
chapter coincided with that of a store S, with a mapping T that tracks the
position of programs in a network.

Since the visibility of threads is a consequence of the possibility/impossibility
of accessing any of its references, we associate to threads a security level that is

1For the sake of simplicity, no mechanisms for recovery from suspension-deadlock are con-
sidered here. A study of the treatment of information leaks that are inherent to the reactive
model can be found in [Almeida Matos et al., 2004].

66 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

a lower bound to the security levels of the references that it can own. We then
extend the usual indistinguishability relation for memories to states that track
the positions of programs in a network. In this way, the formalization of non-
disclosure for networks becomes a straightforward generalization of the local
bisimulation to one that is defined on a small-step semantics with transitions of
the form

〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 (4.6)

and where low-equality is defined for states 〈T, S〉.

4.2 An Imperative Mobile λ-Calculus

We now present the language we will use for studying the security issues intro-
duced by code mobility. It is an extension of the one presented in Chapter 3,
an imperative higher-order λ-calculus with thread and reference creation and
declassification, enriched with the notion of domain and a basic mobility primi-
tive. We first describe our chosen network model: the configuration of networks
and domains, the migration behaviors and the distribution of resources. We
then define the syntax and semantics for the calculus at the local and network
level. We only comment on the new features of the language, and refer the
reader to Sections 2.2 and 3.2 for further explanations. However, we give the
full definitions of the syntax of the language, the (small step) semantics for con-
figurations that incorporates a state that now tracks the positions of threads in
the network, and also some basic properties of the language. The definitions
regarding its syntax are all gathered in page 68, while the ones for the semantics
can be found on page 71.

4.2.1 Network Model

A network consists of a number of domains, places where local computations
occur independently. Threads may execute concurrently inside domains, create
other threads, and migrate to another domain. They can own and create a
memory space, a store that associates values to references, which are addresses
of memory containers. These stores move together with the thread they belong
to, which means that threads and their local references are, at all times, located
in the same domain. However, a thread need not own a reference in order to
access it. Read and write operations on references may be performed if and only
if the corresponding memory location is present in the domain (otherwise they
are implicitly suspended).

4.2.2 Syntax

The language of expressions is an imperative call-by-value λ-calculus that in-
cludes dynamic thread and reference creation, a flow declaration construct and
a migration primitive. The syntax of the security annotations, types and ex-
pressions (see Figures 4.1 and 4.2) is mostly the same as the ones defined in
Subsections 2.2.1 and 3.2.1, with the exception of the thread identifiers that
appear in the functional type (explained in Section 4.4), the domain, thread
and reference names, the suspensive assignment and dereference operations and

4.2. AN IMPERATIVE MOBILE λ-CALCULUS 67

the migration primitive which is a new expression of the language. The syntax
of networks and configurations is defined in Figure 4.3 and explained below.

Names

We assume given four disjoint countable sets Dom 6= ∅, Nam , Var , and Ref .
Names are given to domains (d ∈ Dom), threads (m, n ∈ Nam) and references
(a, b, c), which we also call addresses.

We add annotations (subscripts) to names: decorated thread names carry
the threads security level, while decorated reference names carry the references
security level and the type of the values that they can hold, as well as the
security level of the thread that owns them. Then, a decorated thread name
mj consists of a pair made of a thread name m and a security level j, while
a decorated reference name mj .ul,θ

is a 5-tuple made of a thread name m, its
security level j, a reference identifier u, a type θ and a security level l.

References are lexically associated to the threads that create them: they are
of the form mj .u, where u is an identifier given by the thread. Thread and
reference names can be created at runtime.

In the following we may omit subscripts whenever they are not relevant,
following the convention that the same name has always the same subscript.

Migration and Suspensive Reference Accesses

The language of expressions now includes the migration construct (goto d),
where d is a domain name. The meaning is that the thread that executes the
migration operation should migrate to the domain d.

The commands (? N) and (M :=? N) that appear in the language of ex-
pressions replace the dereferencing and assignment operations on references,
respectively. The different notation is due to the fact that these operations can
potentially suspend, when the reference that is being respectively read or writ-
ten is not accessible. The notation follows [Boudol, 2004], though here we shall
not consider any form of reaction to suspension.

Networks and Configurations

We define stores S (which, as in previous chapters, map decorated reference
names to values), and threads, which are named expressions Mmj (the names
are decorated). Threads run concurrently in pools P , which are mappings from
decorated thread names to expressions (they can also be seen as sets of threads).
Networks are flat juxtapositions of domains, each containing a store and a pool
of threads. Thread and domain names are assumed to be distinct; furthermore,
references are assumed to be located at the same domain as the thread that
owns them (the owner thread’s name is a prefix of the reference’s name) and to
always have the same decorations.

Notice that networks are in fact just a collection of threads and owned refer-
ences that are running in parallel, and whose executions depend on their relative
location. To keep track of the locations of threads and references it suffices to
maintain a mapping from thread names to domain names. This is the pur-
pose of T , a position-tracker, which is a mapping from a finite set of decorated
thread names to domain names. Together with the pool P containing all the

68 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Principals p, q ∈ Pri

Security Levels l, j, k ⊆ Pri

Flow Policies F, G ⊆ Pri ×Pri

Thread Identifiers m̌, ň ∈ ˇNam

Effects s ::= 〈l, l, l〉

Type Variables t

Types τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl,m̌j
| τ

s
−−−→
G,m̌j

σ

Figure 4.1: Syntax of Security Annotations and Types

Variables x, y ∈ Var

Domain Names d ∈ Dom

Thread Names m, n ∈ Nam

Reference Identifiers u, v ∈ Ref

Reference Names a, b, c ::= mj .u

Decorated Thread Names ::= mj

Decorated Reference Names ::= al,θ

Values V ∈ Val ::= () | x | al,θ | (λx.M) | tt | ff

Pseudo-values W ∈ Pse ::= V | (%x.W)

Expressions M, N ∈ Exp ::= W | (M N) | (M ; N) |
(refl,θ M) | (? N) | (M :=? N) |
(if M then Nt else Nf) |
(threadl M) | (flow F in M) |
(goto d)

Figure 4.2: Syntax of Expressions

Threads ::= Mmj (∈ Exp ×Nam × 2Pri)

Pool of Threads P : (Nam × 2Pri) → Exp

Position-Tracker T : (Nam × 2Pri) → Dom

Store S : (Nam × 2Pri ×Ref × 2Pri ×Typ) → Val

Networks X, Y ::= d[P, S] | X ‖ Y

Configurations ::= 〈P, T, S〉

Figure 4.3: Syntax of Configurations

4.2. AN IMPERATIVE MOBILE λ-CALCULUS 69

threads in the network, and the store S containing all the references in the
network, they form configurations 〈P, T, S〉, on which the evaluation relation is
defined in the next subsection. More precisely, given a set D of domain names
in a network, we obtain a configuration of the form 〈P, T, S〉 from a network
d1[P1, S1] ‖ · · · ‖ dn[Pn, Sn], where:

T = {mj 7→ d1|Mmj ∈ P1} ∪ · · · ∪ {mj 7→ dn|Mmj ∈ Pn},

P = P1 ∪ · · · ∪ Pn, and

S = S1 ∪ · · · ∪ Sn.

4.2.3 Semantics

We now define the semantics of the language, a small step operational semantics
on configurations. It is similar to the one defined in Subsection 3.2.2, so we
adopt the same notations and conventions that were used for the language of the
previous chapter (we repeat them here). The main differences are the condition
on the execution of reference accesses, the naming of references according to
the thread that created them, the inclusion of the migration primitive, and the
update of the position of threads in the network.

Basic Sets and Functions

The following definitions and conventions extend the ones adopted in Subsec-
tions 2.2.1 and 3.2.1.

Given a configuration 〈P, T, S〉, we call the pair (T, S) the state of the con-
figuration. We define dom(T), dom(P) and dom(S) as the sets of decorated
names of threads and references that are mapped by T , P and S, respectively.
We say that a thread or reference name is fresh in T or S if it does not occur,
with any subscript, in dom(T) or dom(S), respectively. We denote by tn(P)
and rn(P) the set of decorated thread and reference names, respectively, that
occur in the expressions of P (this notation is extended in the obvious way to
expressions). Furthermore, we overload tn and define, for a set R of reference
names, the set tn(R) of thread names that are prefixes of the names in R.

We restrict our attention to well formed configurations 〈P, T, S〉 satisfying
the following condition for memories, values stored in memories, and thread
names:

• rn(P) ⊆ dom(S), and

• al,θ ∈ dom(S) implies rn(S(al,θ)) ⊆ dom(S), and

• dom(P) ⊆ dom(T), and

• tn(dom(S)) ⊆ dom(T), and

• all threads in a configuration have distinct names, and

• all occurrences of a name in a configuration are decorated in the same
way.

We denote by {x 7→ W}M the capture avoiding substitution of W for the
free occurrences of x in M . The operation of adding or updating the image of
an object z to z′ in a mapping Z is denoted [z := z′]Z.

70 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Suspensive Reference Accesses as Evaluation Contexts

The evaluation contexts of the languages of the previous chapters included the
evaluation of the arguments to the dereference and the assignment operations.
Here these are replaced by the corresponding contexts for the suspensive versions
of those two operations. We now have (? E), (E :=? N) and (V :=? E) added
to the evaluation contexts, thus obtaining the evaluation contexts defined in
Figure 4.4. This point is merely notational, since the operational difference
between the suspensive and non-suspensive versions of these constructs appears
only when the evaluation of the arguments has terminated.

Small Step Semantics

The transitions of our (small step) semantics are defined between configurations.
The evaluation rules are defined in Figure 4.5. As usual we omit the set-brackets
for pools that are singletons. We start by defining the transitions of a single
thread. These are decorated with the thread Nnk that is possibly spawned
during that transition, where Nnk = () if no thread is created. The last three
rules use the information contained in the label to add any spawned threads to
the pool of threads. By the last rule we can see that the execution of a pool of
threads is compositional.

The evaluation of the expressions that depend only on the expression itself
remains unchanged with respect to the ones in the previous chapters. As to
the evaluation of expressions that might depend on and change the state, we
point out that: when a reference is created by a thread m, it is named with a
fresh name m.u after the parent thread, for some fresh reference identifier u;
the dereference and assignment of a reference that belongs to a thread named
n is only performed by a thread named m if m and n are both located at the
same domain; when a thread is created, its new fresh name is added to the
position-tracker; when the (goto d) statement is executed by a thread m, the
position of m in the position-tracker is updated to d.

Summing up, the name of the thread is used in the following rules:

• for the creation of a reference, which is named after the parent thread;

• when a new thread is created, and attached to a domain (namely the
parent’s one);

• in accesses (read or write) to references, which can only be performed if
the accessing thread and the reference are placed in the same domain, as
pointers to the position of the corresponding threads.

Properties of the Semantics

Just as with the language of the previous chapter, one can prove that the se-
mantics preserves the conditions for well-formedness, and that a configuration
with a single expression has at most one transition, up to the choice of new
names.

The following result states that, if the evaluation of a thread Mmj differs in
the context of two distinct states while not creating two distinct reference names
or thread names, this is because Mmj is performing a dereferencing operation,
which yields different results depending on the memory.

4.2. AN IMPERATIVE MOBILE λ-CALCULUS 71

Evaluation Contexts E ::= [] | (E N) | (V E) | (E; N) |
(refl,θ E) | (? E) | (E :=? N) | (V :=? E) |
(if E then Nt else Nf) | (flow F in E)

Figure 4.4: Evaluation Contexts

〈E[((λx.M) V)]mj , T, S〉
()

−−→
dEe

〈E[{x 7→ V }M]mj , T, S〉

〈E[(if tt then Nt else Nf)]
mj , T, S〉

()
−−→
dEe

〈E[Nt]
mj , T, S〉

〈E[(if ff then Nt else Nf)]
mj , T, S〉

()
−−→
dEe

〈E[Nf]
mj , T, S〉

〈E[(V ; N)]mj , T, S〉
()

−−→
dEe

〈E[N]mj , T, S〉

〈E[(%x.W)]
mj , T, S〉

()
−−→
dEe

〈E[{x 7→ (%x.W)}W]
mj , T, S〉

〈E[(flow F in V)]
mj , T, S〉

()
−−→
dEe

〈E[V]
mj , T, S〉

T (nk) = T (mj)

〈E[(? nk.ul,θ)]
mj , T, S〉

()
−−→
dEe

〈E[V]
mj , T, S〉

, where S(nk.ul,θ) = V

T (nk) = T (mj)

〈E[(nk.ul,θ :=? V)]
mj , T, S〉

()
−−→
dEe

〈E[()]
mj , T, [nk.ul,θ := V]S〉

〈E[(refl,θ V)]
mj , T, S〉

()
−−→
dEe

〈E[al,θ]
mj , T, [al,θ := V]S〉, a = mj .u fresh in S

〈E[(threadk N)]
mj , T, S〉

Nnk

−−−→
dEe

〈E[()]
mj , [nk := T (mj)]T, S〉, n fresh in T

〈E[(goto d)]
mj , T, S〉

()
−−→
dEe

〈E[()]
mj , [mj := d]T, S〉

〈{Mmj}, T, S〉
()
−→
F

〈{M ′mj}, T ′, S′〉

〈{Mmj}, T, S〉 −→
F

〈{M ′mj}, T ′, S′〉

〈{Mmj}, T, S〉
Nnk

−−−→
F

〈{M ′mj}, T ′, S′〉

〈{Mmj}, T, S〉 −→
F

〈{M ′mj , Nnk}, T ′, S′〉

〈P, T, S〉 −→
F

〈P ′, T ′, S′〉 〈P ∪ Q, T, S〉 is well formed

〈P ∪ Q, T, S〉 −→
F

〈P ′ ∪ Q, T ′, S′〉

Figure 4.5: Semantics

72 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Lemma 4.2.1 (Splitting Computations).

If 〈Mmj , T1, S1〉
Nnk

−−−→
F

〈M1
′mj , T ′

1, S
′
1〉 and 〈Mmj , T2, S2〉

N ′nk

−−−→
F ′

〈M2
′mj , T ′

2, S
′
2〉

with M1
′mj 6= M2

′mj and dom(T ′
2 − T2) = dom(T ′

1 − T1), dom(S′
2 − S2) =

dom(S′
1 − S1), then Nnk = () = N ′nk and there exist E and al,θ such that

F = dEe = F ′, M = E[(? al,θ)], and M ′ = E[S1(al,θ)], M ′′ = E[S2(al,θ)] with
〈T ′

1, S
′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 = 〈T2, S2〉.

Proof. Note that the only rule where the state is used is that for E[(? al,θ)]. By

case analysis on the transition 〈Mmj , T1, S1〉
Nnk

−−−→
F

〈M1
′mj , T ′

1, S
′
1〉.

Similarly to Lemmas 2.2.1 and 3.2.2, the creation of new reference and thread
names are ignored by means of the conditions dom(T ′

2 − T2) = dom(T ′
1 − T1)

and dom(S′
2 − S2) = dom(S′

1 − S1).

4.3 The Non-disclosure Policy for Networks

In this section we formally define non-disclosure for networks, the security prop-
erty that we study in this chapter. We start by defining the security pre-lattices
in terms of a flow relation that is parameterized by the contexts flow policy,
and discuss the meaning of a “thread flow policy”; then we exhibit an indis-
tinguishability relation on states (that include position-trackers); we then give
a bisimulation definition of non-disclosure for networks, using the small-step
semantics defined in Section 4.2; finally, we justify the security property with
some examples and give some properties of secure programs.

4.3.1 Global Security Pre-Lattices

As in the previous chapter, we have endowed our language with means for
expressing dynamically evolving flow policies for dealing with declassification.
We consider, at each point of the computation, the security pre-lattices that are
derived from a flow policy in a similar way to what was done in Sections 2.3
and 3.3. We repeat the definitions here.

We define the preorder on security levels �F that is determined by the flow
policy F . We use the notion of F -upward closure of a security level l (defined
as before by l ↑F = {q | ∃p ∈ l. p F ∗ q}) to derive the more permissive flow
relation:

l1 �F l2
def
⇔ ∀q ∈ l2 . ∃p ∈ l1 . p F ∗ q ⇔ (l1 ↑F) ⊇ (l2 ↑F) (4.7)

We use the above flow relation to define a range of pre-lattices that are deter-
mined by a flow policy:

Definition 4.3.1 (Security Pre-lattice). Given a set Pri of principals and a
flow policy F in Pri × Pri, the pair (2Pri,�F) is a security pre-lattice, where
meet (fF) and join (gF) are given respectively by the union and intersection
of the F -upward closures with respect to F :

l1 fF l2 = l1 ∪ l2 l1 gF l2 = (l1 ↑F) ∩ (l2 ↑F)

4.3. THE NON-DISCLOSURE POLICY FOR NETWORKS 73

We have seen in the previous chapters that, in the absence of flow declara-
tions, if G is the (global) flow policy to which every thread complies, then �G

determines the allowed flows of information. However, here we are assuming
that every thread in a network has its own flow policy, so an issue arises as to
which flow policy should be considered for validating different information flows.
A practical and conservative approach could be to simply consider the minimum
flow relation �, which clearly all security pre-lattices satisfy. Nevertheless, for
the sake of generality, we can admit the existence of such a global flow policy
G, that is some sort of intersection over all the threads’ flow policies, and use
it to parameterize the flow relation.

In summary, we will use the mechanism of extending the flow relation with
a flow policy in the same ways as in Section 3.3: if G is the global flow policy
(which clearly can be taken to be ∅), the information flows that are allowed to
occur in an expression M placed in a context E[] must satisfy the flow rela-
tion �G∪dEe.

Imposing a Flow Policy

There is another possible view of what it means for a thread to have a flow
policy. The difference between the two views is subtle, so let us illustrate it
with an example, where two threads m and n have flow policies Fm = {p ≺ q}
and Fn = ∅ respectively:

(m.u{p} :=? n.u{p}) (4.8)

Adopted view. If F is the flow policy of a thread, then every flow that occurs
in the network should comply with F .

In other words, the programmer of each thread has his/her own under-
standing of which security pre-lattice computations should comply with,
independently of one another’s. According to this view the above flow can
be considered harmless, since from the point of view of both Fm and Fn,
information in n.u should be allowed to flow to m.u. In fact, we have
{p} ↑Fm

⊆ {p} ↑Fm
and {p} ↑Fn

⊆ {p} ↑Fn
, which respectively implies that

{p} �Fm
{p} and that {p} �Fn

{p}.

Alternative view. If F is the flow policy of a thread n, then all the flows that
occur in the network and that regard n’s references must comply with F .

Since the security levels to be compared have different origins, i.e., their
meaning is given by different flow policies, it is not straightforward to
see how one should parameterize a flow relation to check whether the
above flow should be valid. However, by considering the upward closures
of the security levels that are attached to references, with respect to the
flow policy of the thread that owns the references, one can see that this
flow should be illegal. In fact, {p} ↑Fm

6⊆ {p} ↑Fn
. In other words, the

information in n.u would be leaking to a reference that is accessible by q.

To implement this view, one could require all security levels to be upward
closed w.r.t. their thread’s flow policy. For instance, if the programmer
of a thread believes that principal p can transmit information to q, that
is p ≺ q, then he/she should not include p as an authorized reader of a
reference if he/she is not willing to disclose it to q as well.

74 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Here we do not constrain the security levels that are given to references
to be upward closed in any way, and leave to the programmer the option of
expressing his/her flow policy via the security levels he/she gives to references
that are created by their threads. In practice, adding principals to a security
level restricts write accesses and enlarges read accesses. Regardless of the choice
made for the security levels, flows that comply with the global flow policy G
also comply with every flow policy that extends it, for

∀F . G ⊆ F . l1 ↑G⊇ l2 ↑G implies l1 ↑F⊇ l2 ↑F (4.9)

or in other words:

∀F . G ⊆ F . l1 �G l2 implies l1 �F l2 (4.10)

This observation allows us to have a general notion of security level that is
simply that of a set of principals, independent of the threads flow policies.

4.3.2 A Bisimulation-Based Definition

We now define our security property in terms of the above defined flow relation
�F , where F is the current flow policy.

Low-equality

The notion of “low-equality” is similar to the one in Section 3.3. However, as we
will see towards the end of this section, the position of a thread in the network
can reveal information about the values in the memory. For this reason, we must
use a notion of low-equality that is extended to states. The intuition is that a
thread can access a low reference if and only if it is located at the same domain
as the thread that owns it. Threads that own low references can then be seen
as “low threads”. We are interested in states where low threads are co-located.
Low-equality on states is defined pointwise, for a security level considered as
“low”, as follows:

Definition 4.3.2 (Low Part of a State). The low part of a state 〈T, S〉 is
composed of the low part of a memory S and of the position-tracker T with
respect to a flow policy F and a security level l, which are given by:

T �F,l def
= {(nk, d) | (nk, d) ∈ T & k �F l}

S �F,l def
= {(ak,θ, V) | (ak,θ, V) ∈ S & k �F l}

We say that two states are “low”-equal if they coincide in their “low” part:

Definition 4.3.3 (Low-Equality). The low-equality between states 〈T1, S1〉 and
〈T2, S2〉 with respect to a flow policy F and a security level l is given by the
conjunction of the low-equality between the memories S1 and S2 and the low-
equality between the position-trackers T1 and T2 with respect to the same secu-
rity level and flow policy:

〈T1, S1〉 =F,l 〈T2, S2〉
def
⇔ T1 �

F,l= T2 �
F,l and S1 �

F,l= S2 �
F,l

4.3. THE NON-DISCLOSURE POLICY FOR NETWORKS 75

This relation is also transitive, reflexive and symmetric. We shall use without
notice the fact that:

Remark 4.3.4.

F ⊆ F ′ and 〈T1, S1〉 =F ′,l 〈T2, S2〉 implies 〈T1, S1〉 =F,l 〈T2, S2〉

The Security Property

Now we define a bisimulation for networks, which can be used to relate networks
with the same behavior over low parts of the states. In the following we denote
by � the reflexive closure of the union of the transitions −→

F
, for all F .

Definition 4.3.5 ((G, l)-bisimulation and ≈G,l). A (G, l)-bisimulation is a sym-
metric relation R on sets of threads such that:

P1 R P2 & 〈P1, T1, S1〉 −→
F

〈P ′
1, T

′
1, S

′
1〉 & 〈T1, S1〉 =G∪F,l 〈T2, S2〉

and (∗) implies

∃T ′
2, P

′
2, S

′
2 . 〈P2, T2, S2〉� 〈P ′

2, T
′
2, S

′
2〉 & 〈T ′

1, S
′
1〉 =G,l 〈T ′

2, S
′
2〉 & P ′

1 R P ′
2

where:
(∗) dom(S1

′ − S1) ∩ dom(S2) = ∅ and dom(T1
′ − T1) ∩ dom(T2) = ∅

Remark 4.3.6.

• For any G and l there exists a (G, l)-bisimulation, like for instance the set
Val×Val of pairs of values.

• The union of a family of (G, l)-bisimulations is a (G, l)-bisimulation.

Consequently, there is a largest (G, l)-bisimulation, which is the union of all
(G, l)-bisimulations:

Notation 4.3.7. The largest (G, l)-bisimulation is denoted ≈G,l.

Intuitively, our security property must state that, at each computation step
performed by some thread in a network, the information flow that occurs re-
spects the global flow policy, extended with the flow policy (F) that is declared
by the context where the command is executed.

Definition 4.3.8 (Non-disclosure for Networks with respect to G). A pool of
threads P satisfies the Non-disclosure for Networks policy (or is secure from
the point of view of Non-disclosure for Networks) with respect to the global flow
policy G if it satisfies P ≈G,l P for all security levels l. We then write P ∈
NDN (G).

The non-disclosure definition differs from that of Definition 3.3.8 in that the
position of the “low threads” is treated as “low-information”.

76 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Examples of Insecure Migrations

We leave out the stores in the following examples. Suspension on an access to
an absent reference can be unblocked by other threads. This allows us to write
a program that is similar to Example 2.5, where non-termination is encoded by
a suspended access and unblocked by migration:

d[(if aH then (goto d1) else (goto d2))
nk] ‖

d1[((nk.x> :=? 0); (m1j1 .yL
:=? 1))

m1j1] ‖

d2[((nk.x> :=? 0); (m2j2 .yL
:=? 2))

m2j2]

(4.11)

Then, depending on the value of the high reference a, different low assignments
would occur to the low references m1.yL and m2.yL. The same example can
show a potential leak of information about the positions of the threads m1 and
m2 via their own low references m1.yL, m2.yL.

An analogous but more direct example shows that the mere arrival of a
thread and its references to another domain might trigger a suspended low
assignment:

d[(if aH then (goto d1) else (goto d2))
nk] ‖

d1[(nk.yL :=? 1)
m1j1] ‖

d2[(nk.yL :=? 2)
m2j2]

(4.12)

We have given an intuition on why the position of a thread in a network can
be viewed as information that is accessible via the references that the thread
owns. The security level of that information is thus a lower bound on the
security levels of its references, and is represented by the security level that is
attached to each thread. Consequently, there are other forms of security leaks
regarding the position of threads in the network that must be rejected as well.

The previous examples show how migration of a thread can result in an
information leak from a high reference to a lower one via an “observer” thread.
It is the ability of the observer thread to detect the presence of the first thread
that allows the leak. However, one must also prevent the thread itself from
revealing information about its own position, like via a low assignment that
follows a remote assignment

d[((n.u> :=? 0); (bL :=? 0))
mH

] (4.13)

or a remote dereference

d[((? n.u>); (bL :=? 0))
mH

] (4.14)

or when the low assignment itself is remote:

d[(bL :=? 0)
mH

] (4.15)

4.3.3 Properties of Secure Programs

We could state a compositionality result (with respect to set union), as in Propo-
sition 2.3.9. Another property of our notion of security is that if an expression M
is secure under the global flow policy G∪F , then the expression (flow F in M)
is secure with respect to the global flow policy G, as in Proposition 3.3.9.

4.3. THE NON-DISCLOSURE POLICY FOR NETWORKS 77

Operationally High Threads

As we did in the previous chapters, we can identify a class of threads that have
the property of never performing any change in the “low” part of the memory.
These are classified as being “high” according to their behavior2:

Definition 4.3.9 (Operationally High Threads). A set H of threads is said
to be a set of operationally (F, l)-high threads if the following holds for any
Mmj ∈ H:

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉 implies 〈T, S〉 =F,l 〈T ′, S′〉

and both M ′mj , Nnk ∈ H

This definition is similar to that of Definition 2.3.10. Indeed, the low part of
the states is considered with respect to the parameter F , while the flow policy
of the transitions of the thread is not taken into account.

Remark 4.3.10.

• For any F and l there exists a set of operationally (F, l)-high threads, like
for instance {V mj | V ∈ Val}.

• The union of a family of sets of operationally (F, l)-high threads is a set
of operationally (F, l)-high threads.

Therefore, there exists the largest set of operationally (F, l)-high threads:

Notation 4.3.11. The union of all sets of operationally (F, l)-high threads is
denoted by HF,l.

We say that a thread Mmj is an operationally (F, l)-high thread if {Mmj} ∈
HF,l. Notice that if F ′ ⊆ F , then any operationally (F, l)-high thread is also
operationally (F ′, l)-high.

Comparison with Non-disclosure

The Non-disclosure for Networks policy that is restricted to networks where only
one domain exists is equivalent (up to notational issues) to the Non-disclosure
policy, if we only consider threads that do not contain migration instructions.
To see this, let us rewrite the condition for R to be a bisimulation in the sense of
Definition 3.3.5, but using the language of this chapter (excluding the migration
instructions):

P1 R P2 and 〈P1, T1, S1〉 −→
F

〈P ′
1, T1, S

′
1〉 and S1 =G∪F,l S2

and (∗) and (∗∗) implies:

∃P ′
2, S

′
2 : 〈P2, T2, S2〉� 〈P ′

2, T2, S
′
2〉 and S′

1 =G,l S′
2 and P ′

1 R P ′
2

where:
(∗) dom(S1

′ − S1) ∩ dom(S2) = ∅
(∗∗) I(T1) = I(T2) = {d}

(4.16)

2The notion of “operationally high thread” that we define here should not not be confused
with the notion of “high thread”. The former refers to the security level that is associated
with a thread, while the latter refers to the changes that the thread performs on the state.

78 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

For the purpose of this comparison, we shall say that if a pool of threads P
satisfies Non-disclosure in the above sense, then P ∈ ND(G, d).

We shall use the notion of derivative of an expression M , as in Defini-
tion 3.3.13:

Definition 4.3.12 (Derivative of an Expression). We say that an expression
M ′ is a derivative of an expression M if and only if

• M ′ = M , or

• there exist two states 〈T1, S1〉 and 〈T ′
1, S

′
1〉 and a derivative M ′′ of M such

that, for some F , Nnk :

〈M ′′, T1, S1〉
Nnk

−−−→
F

〈M ′, T ′
1, S

′
1〉

Proposition 4.3.13. Consider a pool of threads P whose expressions do not
contain migration instructions. Then, if we consider a network with a single
domain d, we have that P ∈ NDN (G) if and only if P ∈ ND(G, d).

Proof. Suppose P ∈ NDN (G). Then, for all security levels l, there exists a
relation S that is a (G, l)-bisimulation according to Definition 4.3.5, and such
that P S P . Then, we have that

S′ def
= {(Q1, Q2) | Q1 S Q2 & Q1, Q2 are derivatives of P} (4.17)

is also a (G, l)-bisimulation according to Definition 4.3.5 and P S′ P . Since
P does not contain migration instructions, then every derivative of P does not
contain migration instructions either. Now, suppose that P1 S′ P2. Then, if

〈P1, T1, S1〉
Nnk

−−−→
F

〈P ′
1, T1, S

′
1〉 (4.18)

and S1 =G∪F,l S2 and dom(S1
′ − S1) ∩ dom(S2) = ∅, clearly we also have

〈T1, S1〉 =G∪F,l 〈T2, S2〉 and I(T1) = I(T2) = {d}. Therefore, since S′ is a
(G, l)-bisimulation according to Definition 4.3.5,

∃T ′
2, P

′
2, S

′
2 : 〈P2, T2, S2〉� 〈P ′

2, T
′
2, S

′
2〉 (4.19)

such that 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉 and P ′

1 S′ P ′
2. Since P2 does not contain mi-

gration instructions, then T ′
2 = T2. Clearly, S′

1 =G,l S′
2. Therefore, S′ is

a (G, l)-bisimulation according to 4.16, where P S′ P , and we conclude that
P ∈ ND(G, d).

Now suppose P ∈ ND(G, d). Then, for all security levels l, there exists a
relation S that is a (G, l)-bisimulation according to 4.16, and such that P S P .
Now, suppose that P1 S P2. Then, if

〈P1, T1, S1〉
Nnk

−−−→
F

〈P ′
1, T1, S

′
1〉 (4.20)

and 〈T1, S1〉 =G∪F,l 〈T2, S2〉 and dom(S1
′ − S1) ∩ dom(S2) = ∅, clearly we also

have S1 =G∪F,l S2 and I(T1) = I(T2) = {d}. Therefore, since S is a (G, l)-
bisimulation according to 4.16,

∃P ′
2, S

′
2 : 〈P2, T2, S2〉� 〈P ′

2, T2, S
′
2〉 (4.21)

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 79

where S′
1 =G,l S′

2 and P ′
1 S′ P ′

2. Clearly, 〈T ′
1, S

′
1〉 =G,l 〈T ′

2, S
′
2〉. Therefore,

S′ is a (G, l)-bisimulation according to Definition 4.3.5, where P S′ P , and we
conclude that P ∈ NDN (G).

It is then clear that all the examples of insecure programs given in the
previous chapter, when placed in a single domain, do not satisfy non-disclosure
for networks.

4.4 Typing Non-disclosure for Networks

In this section we present a type and effect system that only accepts programs
that satisfy Non-disclosure for Networks. It extends the one that is presented in
Section 3.4, so we will focus the explanations on the features that are introduced
here. We start by defining the notation used to express the typing judgments
and by explaining their meaning; we then comment on the typing conditions
used in the typing rules, by giving examples of migration leaks that illustrate
why each condition is necessary; finally, we conclude by giving some properties
of the type system, including Subject Reduction and Soundness theorems.

4.4.1 A Type and Effect System with Thread Identifiers

The type and effect system that we present here selects secure threads by en-
suring the compliance of all information flows to the flow relation that rules
in each point of the program. As in the previous chapters, it constructively
approximates the effects of each expression, which include information on the
security levels of the references on which termination or non-termination of the
computations might depend.

A key observation is that here non-termination of a computation might arise
from an attempt to access a foreign reference. In order to distinguish the threads
that own each expression and reference, we associate unique identifiers m̌, ň ∈

ˇNam to names of already existing threads, as well as to the unknown thread
name ‘?’ for those that are created at runtime.

It should now be clear that information on which the position of a thread
n might depend can leak when another thread simply attempts to access one
of n’s references. For this reason, we interpret the threads’ security level –
in fact it represents its “visibility” level – as a lower bound to the references
that it can own, since just by owning a low reference, the position of a thread
can be detected by “low observers”. As we will see soon, the threads’ security
levels are used to reenforce security effects: the writing effect is updated when a
thread migrates, while the termination effect is updated when a remote access
is attempted.

The Typing Judgments

As defined in Figure 4.6, the judgments of the type and effect system have the
form:

Σ, Γ `
m̌j

G,F M : s, τ

The meaning of Γ (the typing environment), M (the expression being typed), s
(the security effect of M), G (the global flow policy) and F (flow policy of the

80 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Thread Name Environment Σ ⊆ ((Nam ∪ {?}) × 2Pri) × (ˇNam × 2Pri)

where Σ ↓Nam×2Pri : (Nam × 2Pri) → (ˇNam × 2Pri)

Typing Environments Γ : Var → Typ

Typing Judgments := Σ; Γ `
m̌j

G,F M : s, τ

Figure 4.6: Syntax of Typing Judgments (see also Figure 4.1)

[Nil] Σ; Γ ` () : unit [Flow]
Σ; Γ `

m̌j

F∪F ′ M : s, τ

Σ; Γ `
m̌j

F (flow F ′ in M) : s, τ

[Abs]
Σ; Γ, x : τ `

m̌j

F M : s, σ

Σ; Γ ` (λx.M) : τ
s

−−−→
F,m̌j

σ
[Rec]

Σ; Γ, x : τ `
m̌j

F W : s, τ

Σ; Γ ` (%x.W) : τ

[BoolT] Σ; Γ ` tt : bool [BoolF] Σ; Γ ` ff : bool

[Var] Σ; Γ, x : τ ` x : τ [Loc] Σ; Γ ` nk.ul,θ : θ ref l,Σ(nk)

[Ref]
Σ; Γ `

m̌j

F M : s, θ
j � l

s.r, s.t �F l

Σ; Γ `
m̌j

F (ref l,θ M) : s g 〈>, l,>〉, θ refl,m̌j

[Der]
Σ; Γ `

m̌j

F M : s, θ refl,ňk

Σ; Γ `
m̌j

F (? M) : s g 〈l,>, (if m̌ 6= ň then j g k else ⊥)〉, θ

[Ass]

Σ; Γ `
m̌j

F M : s, θ refl,ňk
Σ; Γ `

m̌j

F N : s′, θ
s.t �F s′.w

s.r, s′.r, s.t, s′.t, j �F l

Σ; Γ `
m̌j

F (M :=? N) : s g s′ g 〈⊥, l, (if m̌ 6= ň then j g k else ⊥)〉, unit

[Cond]

Σ; Γ `
m̌j

F M : s, bool
Σ; Γ `

m̌j

F Nt : st, τ

Σ; Γ `
m̌j

F Nf : sf , τ
s.r, s.t �F st.w, sf .w

Σ; Γ `
m̌j

F (if M then Nt else Nf) : s g st g sf g 〈⊥,>, s.r〉, τ

[App]

Σ; Γ `
m̌j

F M : s, τ
s′

−−−→
F,m̌j

σ Σ; Γ `
m̌j

F N : s′′, τ
s.t �F s′′.w

s.r, s′′.r, s.t, s′′.t �F s′.w

Σ; Γ `
m̌j

F (M N) : sg s′ g s′′ g 〈⊥,>, s.r g s′′.r〉, σ

[Seq]
Σ; Γ `

m̌j

F M : s, τ Σ; Γ `
m̌j

F N : s′, σ s.t �F s′.w

Σ; Γ `
m̌j

F (M ; N) : s g s′, σ

[Thr]
j �F k ň fresh in Σ Σ, ?k : ňk; Γ `ňk

∅ M : s, unit

Σ; Γ `
m̌j

F (threadl M) : 〈⊥, s.w,⊥〉, unit

[Mig] Σ; Γ `
m̌j

F (goto d) : 〈⊥, j,⊥〉, unit

Figure 4.7: Type and Effect System

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 81

context, also assumed to contain G) is the same as in the previous chapter (see
Section 3.4). The remaining parameters have the following meaning:

• Σ is a binary relation between decorated thread names extended with ‘?k’
(where ‘?’ represents unknown thread names), and the set of decorated
thread identifiers. We define dom(Σ) as {nk | ∃ňk . (nk, ňk) ∈ Σ}. In fact,
the restriction of Σ to the domain Nam × 2Pri (written Σ ↓Nam×2Pri) is
assumed to be a function, where all thread names n are distinct. The only
identifiers that are images of thread names are those that correspond to
threads that have already created a reference – and whose name is the
prefix of that address. The others are related to ?k for some security level
l, which represents the thread names that are created at runtime.

• The thread identifier m̌j identifies the thread to which the expression M
belongs.

• The security level j represents a lower bound to the references that the
thread owns and creates. It corresponds to the security level that is at-
tributed to threads when they are created.

• The type τ is the type of the expression. The types we use in this chap-
ter are similar to those of Chapter 3. The syntax (that can be seen in
Figure 4.1) is repeated here:

τ, σ, θ ∈ Typ ::= t | unit | bool | θ refl,m̌j
| τ

s
−−−→
G,m̌j

σ

It includes annotations that are used to determine the effects of the ex-
pression that is being typed, as in the previous chapters. Similarly, to
calculate them we take into account the level of the references that are
accessed and the flow policy of the context – but, here we also distinguish
between local and foreign references. For this purpose thread identifiers
and security levels appear in the types as well.

In some of the typing rules we use the join operation on security effects:

Definition 4.4.1.

s gG s′
def
⇔ (s.r gG s′.r, s.w fG s′.w, s.t gG s′.t)

The type and effect system is given in Figure 4.7. Notice that it is syntax
directed. We use some abbreviations: we write the flow relation with respect
to the global flow policy as �, meet f and join g, instead of �G, fG and gG,
respectively; we also omit the global flow policy that appears as subscript of `

m̌j

G,F

and simply write `
m̌j

F ; whenever we have ∀F, m̌j . Σ; Γ `
m̌j

F M : 〈⊥,>,⊥〉, τ we
only write Σ; Γ ` M : τ .

4.4.2 Typing Conditions

We must now convince ourselves that the type system indeed selects only safe
threads, according to the Non-disclosure for Networks policy, defined in the
previous section.

82 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

In rule Loc, since the name of the thread that owns the reference is given
in the prefix, the corresponding thread identifier is found using Σ. In rule Ref,
the reference that is created belongs to the thread identified by the superscript
of the ‘`’. We check that the security level that is declared for the new reference
is greater than the level of the thread.

The body of an abstraction (rule Abs) is executed by the thread that applies
it to an argument (see App), in the same flow context of that application. This
is why the thread identifier and flow context of its execution are latent.

In rule Thr, a fresh identifier – image of an unknown thread name repre-
sented by ‘?’ – is used to type the thread that is created. When a runtime
thread is created by another runtime thread, the domain of Σ that is used to
type the nested threads contains more than one entry using ?. The reason why
the value of ? cannot be overwritten when typing nested thread creations is
that we must keep a full record of the image of Σ, in order to guarantee that
new thread identifiers that are attributed by the rule Thr are fresh. As we will
see soon, these are used mainly to distinguish accesses to local references from
accesses to foreign references (that are potentially remote).

Migration Leaks

The usual intuitions on treating termination leaks can be useful to understand
the type system. In fact, suspension of a thread on an access to an absent
reference can be seen as a non-terminating computation that can be unblocked
by migration of concurrent threads. In other words, migration leaks are forms
of termination leaks.

We have seen in Chapter 2 that termination leaks appear when a change
to the low memory depends on the termination of a computation that precedes
it, which in turn depends on high information. Example 4.11 shows how high
information can leak due to a thread (n), in another domain, different from
the one that performs the low assignment (m1 and m2). The key point in this
example is that the synchronization between the two threads is made via the
migration of n to a domain where m1 or m2 is located, at a time where the low
assignments that are bound to occur in m1 and m2 are blocked by a suspension
on an access to one of n’s references.

From the point of view of n, it is not possible to know whether, in the
domains it might migrate to, there are threads that are suspended on its arrival.
But, as long as all the other threads are typable, one can ensure (see below) that
the blocked low assignments are not lower than the accesses that are causing
the suspension (i.e. k � L). Then, the worst case assumed for n, the writing
effect of the migration is updated with the security level of n, a lower bound k
to the level of all its references. Notice that as a consequence, the rule Cond

rejects thread n in a standard manner, since H 6� L. In rule Mig, by adding
the security level of the thread to the write effect of the migration construct,
we thus prevent migrations of threads owning low references from depending on
high information.

From the point of view of m1 and m2, it is not possible to know whether the
arrival of the thread (n) that will unblock their computations depends on high
information or not. But, as long as n is typable, one can insure (as above) that
the level of the information on which the migration of n depends is lower or
equal to the level of n itself (i.e. H � k). Therefore, in rules Der and Ass, the

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 83

termination effect is updated with the level of the thread that owns the foreign
reference we want to access.

In Examples 4.13 and 4.14, the low assignment can only occur if the threads
m and n are located in the same domain. Therefore, also the position of m
might be leaked when the low assignment occurs. This accounts for updating
the termination level of the assignment (Ass) and the dereference (Der) with
the security level of m as well.

Ref. The condition j � k ensures that the references that are created by a
thread respect the security level of the thread, i.e. that they are not lower
(with respect to the global flow policy) than it.

Ass. The insecure program in Example 4.15 is rejected by the condition j �G l
in rule Ass. Similarly, the program in Example 4.12 is rejected if j1
or j2 6� L, to prevent revealing information about the positions of m1

and m2. Notice that, in the typing rule, for the cases where m = n the
condition is satisfied anyway due to the meaning of k. There is an implicit
condition, k � l, which is satisfied by assumption, since the thread n owns
the reference n.yL.

Thr. The condition j �F l rejects the insecure program:

d[(threadL M)
mH] (4.22)

The reason why this program is considered insecure is that the presence of
the high thread m, which should only be “visible” at level H , is indicated
at the level L, at which the created thread is apparent.

4.4.3 Properties of Typed Expressions

Meaning of Effects

Unlike the effects given by the type systems of the previous two chapters, here it
is not true that the termination effect of a typable expression is always downward
bounded by its reading effect. The reason for this is that here termination of
an expression does not depend only on the existence of non-terminating loops
– which depend on tested values –, but also on the possibility of suspension on
accesses to foreign references – which depend on the relative position of threads
in the network.

We check that the intuitive meaning of the effects is indeed captured by our
type system.

Lemma 4.4.2 (Update of Effects).

1. If Σ; Γ `
m̌j

F E[(? nk.ul,θ)] : s, τ then l � s.r. Also, if m 6= n, then k g j �
s.t.

2. If Σ; Γ `
m̌j

F E[(nk.ul,θ :=? V)] : s, τ , then s.w � l. Also, if m 6= n, then
k g j � s.t.

3. If Σ; Γ `
m̌j

F E[(ref l,θ V)] : s, τ , then s.w � l.

4. If Σ; Γ `
m̌j

F E[(goto d)] : s, τ , then s.w � j.

Proof. By induction on the structure of E.

84 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Subject Reduction

In order to establish the soundness of the type system of Figure 4.7 we need a
Subject Reduction result, stating that types that are given to expressions are
preserved by computation. To prove it we follow the usual steps [Wright &
Felleisen, 1994] in detail.

We start by remarking that a value, and more generally a pseudo-value, has
no effect, and that this is properly reflected in the type system. Moreover, the
typing of a pseudo-value does not depend on the thread identifier or current
flow policy:

Remark 4.4.3. If W ∈ Pse and Σ; Γ `
m̌j

F W : s, τ , then for all thread identi-
fiers ňk and flow policies F ′, we have that Σ; Γ `ňk

F ′ W : 〈⊥,>,⊥〉, τ .

The following lemma establishes some standard weakening and strengthening
properties:

Lemma 4.4.4.

1. If Σ; Γ `
m̌j

F M : s, τ and x /∈ dom(Γ) then Σ; Γ, x : σ `
m̌j

F M : s, τ .

2. If Σ; Γ `
m̌j

F M : s, τ and ň fresh in Σ then Σ, ?k : ňk; Γ `
m̌j

F M : s, τ .

3. If Σ; Γ, x : σ `
m̌j

F M : s, τ and x /∈ fv(M) then Σ; Γ `
m̌j

F M : s, τ .

4. If Σ; Γ `
m̌j

G M : s, τ then Σ; Γ `
m̌j

G∪F M : s, τ .

Proof. By induction on the inference of the type judgment.

We now prove two last preliminary lemmas, stating that substitutions and
replacements in contexts preserve types.

Lemma 4.4.5 (Substitution).

If Σ; Γ, x : σ `
m̌j

F M : s, τ and Σ; Γ ` W : σ then Σ; Γ `
m̌j

F {x 7→ W}M : s, τ .

Proof. By induction on the inference of Σ; Γ, x : τ `
m̌j

F M : s, σ, and by case
analysis on the last rule used in this typing proof, using the previous lemma.

Nil. Here {x 7→ W}M = M , and since x /∈ fv(M) then by Lemma 4.4.4 we

have Σ; Γ `
m̌j

F M : s, τ .

Var. If M = x then s = 〈⊥,>,⊥〉, σ = τ and {x 7→ W}M = W . By

Remark 4.4.3, we have Σ; Γ `
m̌j

F W : 〈⊥,>,⊥〉, τ . If M 6= x then
{x 7→ W}M = M , where x /∈ fv(M). Therefore, by Lemma 4.4.4, we

have Σ; Γ `
m̌j

F M : s, τ .

Abs. Here M = (λy.M̄), and Σ; Γ, x : σ, y : τ̄ `ňk

F̄
M̄ : s̄, σ̄ where τ = τ̄

s̄
−−−→
F̄ ,ňk

σ̄. We can assume that y /∈ dom(Γ, x : σ) (otherwise rename y). Therefore
{x 7→ W}(λy.M̄) = (λy.{x 7→ W}M̄). By assumption and Lemma 4.4.4
we can write Σ; Γ, y : τ̄ ` W : σ. By induction hypothesis, Σ; Γ, y : τ̄ `ňk

F̄

{x 7→ W}M̄ : s̄, σ̄. Then, by Abs, Σ; Γ ` (λy.{x 7→ W}M̄) : τ , and in

particular Σ; Γ `
m̌j

F (λy.{x 7→ W}M̄) : s, τ .

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 85

Rec. Here M = (%y.W̄), and Σ; Γ, x : σ, y : τ `ňk

F̄
W̄ : s̄, τ . We can assume that

y /∈ dom(Γ, x : σ) (otherwise rename y). Therefore {x 7→ W}(%y.W̄) =
(%y.{x 7→ W}W̄). By assumption and Lemma 4.4.4 we have Σ; Γ, y : τ `
W : σ. By induction hypothesis, Σ; Γ, y : τ `ňk

F̄
{x 7→ W}W̄ : s̄, τ . Then,

by Rec, Σ; Γ ` (%y.{x 7→ W}W̄) : τ , and in particular we have Σ; Γ `
m̌j

F

(%y.{x 7→ W})W̄ : s, τ .

Cond. Here M = (if M̄ then Nt else Nf) and we have Σ; Γ, x : σ `
m̌j

F M̄ :

s̄, bool, Σ; Γ, x : σ `
m̌j

F Nt : st, τ1 and Σ; Γ, x : σ `
m̌j

F Nf : sf , τ2 with
s̄.r, s̄.t �F st.w, sf .w and s = s̄ g st g sf g 〈⊥,>, s.r〉, τ . By induc-

tion hypothesis, Σ; Γ, x : σ `
m̌j

F {x 7→ W}M̄ : s̄, bool, Σ; Γ, x : σ `
m̌j

F

{x 7→ W}Nt : st, τ1 and Σ; Γ, x : σ `
m̌j

F {x 7→ W}Nf : sf , τ2. Therefore,

Σ; Γ, x : σ `
m̌j

F (if {x 7→ W}M̄ then {x 7→ W}Nt else {x 7→ W}Nf) : s, τ
by rule Cond.

Thr. Here M = (threadk M̄) and for ň fresh in Σ, we have that Σ, ?k :
ňk; Γ, x : σ `ňk

∅ M̄ : s, τ , with τ = unit and s = 〈⊥, s.w,⊥〉. Using as-
sumption and Lemma 4.4.4 we have Σ, ?k : ňk; Γ ` W : σ. By induction

hypothesis, then Σ, ?k : ňk; Γ `
m̌j

∅ {x 7→ W}M̄ : s, τ . Therefore, by rule

Thr, Σ; Γ `
m̌j

F (threadk {x 7→ W}M̄) : s, τ .

Flow. Here M = (flow F̄ in M̄) and Σ; Γ, x : σ `
m̌j

F∪F̄
M̄ : s, τ . By induction

hypothesis, Σ; Γ `
m̌j

F∪F̄
{x 7→ W}M̄ : s, τ . Then, by Flow, Σ; Γ `

m̌j

F

(flow F̄ in {x 7→ W}M̄) : s, τ .

The proofs for the cases Loc, Ref, BoolT, BoolF and Mig are analogous to
the one for Nil, while the proofs for App, Seq, Der and Ass are analogous to
the one for Cond.

Lemma 4.4.6 (Replacement).

If Σ; Γ `
m̌j

F E[M] : s, τ is a valid judgment, then the proof gives M a typing

Σ; Γ `
m̌j

F∪dEe M : s̄, τ̄ for some s̄ and τ̄ such that s̄.r � s.r, s.w � s̄.w and

s̄.t � s.t. In this case, if Σ; Γ `
m̌j

F∪dEe N : s̄′, τ̄ with s̄′.r � s̄.r, s̄.w � s̄′.w and

s̄′.t � s̄.t, then Σ; Γ `
m̌j

F E[N] : s′, τ , for some s′ such that s′.r � s.r, s.w � s′.w
and s′.t � s.t.

Proof. By induction on the structure of E.

E[M] = (if Ē[M] then Nt else Nf). By Cond, we have Σ; Γ `
m̌j

F Ē[M] :

s̄, bool, and Σ; Γ `
m̌j

F Nt : st, τ , Σ; Γ `
m̌j

F Nf : sf , τ with s̄.r, s̄.t �F

st.w, sf .w and s = s̄g st g sf g 〈⊥,>, s̄.r〉. By induction hypothesis, the

proof gives M a typing Σ; Γ `
m̌j

F̂
M : ŝ, τ̂ , for F̂ , ŝ, τ̂ with F̂ = F ∪ dĒe

and ŝ.r � s̄.r, s̄.w � ŝ.w and ŝ.t � s̄.t. Therefore, ŝ.r � s.r, s.w � ŝ.w
and ŝ.t � s.t.

Also by induction hypothesis, Σ; Γ `
m̌j

F̂
Ē[N] : s̄′, τ̄ , for some s̄′ such that

s̄′.r � s̄.r, s.w � s̄′.w and s̄′.t � s̄.t. Since s̄′.r, s̄′.t �F st.w, sf .w, then,

again by Cond, we have Σ; Γ `
m̌j

F (if Ē[N] then Nt else Nf) : s̄′ g st g

sf g 〈⊥,>, s̄′.r〉, τ . We conclude by noting that s̄′.r � s.r, s.w � s̄′.w,
and s̄′.tg s̄′.r � s.t.

86 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

E[M] = (flow F ′ in Ē[M]). By Flow, we have Σ; Γ `
m̌j

F∪F ′ Ē[M] : s, τ . By

induction hypothesis, the proof gives M a typing Σ; Γ `
m̌j

F̂
M : ŝ, τ̂ , for

F̂ , ŝ, τ̂ with F̂ = F ∪ F ′ ∪ dĒe and ŝ.r � s.r, s.w � ŝ.w and ŝ.t � s.t.

Also by induction hypothesis, Σ; Γ `
m̌j

F̂
Ē[N] : s′, τ , for some s′ such that

s′.r � s.r, s.w � s′.w and s′.t � s.t. Then, again by Flow, we have
Σ; Γ `

m̌j

F (flow F ′ in Ē[N]) : s′, τ .

The proofs for the cases E[M] = d(E[M] :=? N)e, E[M] = d(V :=? E[M])e,
E[M] = d(? E[M])e, E[M] = d(E[M] N)e, E[M] = d(V E[M])e, E[M] =
d(E[M]; N)e and E[M] = drefl,θE[M]e, are analogous to the one for E[M] =
(if Ē[M] then Nt else Nf).

Finally we prove Subject Reduction, which states that computation preserves
the type of threads, and that as the effects of an expression are performed,
the security effects of the thread “weaken”. To prove it, we assume that the
value contained in references of type θ in the memories that we are dealing
with have indeed type θ. The differences regarding Subject Reduction for the
previous chapter (Theorem 3.4.2) lie only in the treatment of thread names. In
particular, we ensure that, when a thread is created, it is typable with respect
to a fresh thread identifier, in an environment where Σ is updated accordingly.

Theorem 4.4.7 (Subject reduction).

If for some Σ, Γ, s, τ, F, mj we have Σ; Γ `
Σ(mj)
F M : s, τ and 〈Mmj , T, S〉

Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉 where all al,θ ∈ dom(S) satisfy Σ; Γ ` S(al,θ) : θ, then ∃s′ such

that Σ; Γ `
Σ(mj)
F M ′ : s′, τ , where s′.r � s.r, s.w � s′.w and s′.t � s.t. Fur-

thermore, we have that ∃ň, s′′ such that Σ, ?k : ňk; Γ `ňk

∅ N : s′′, unit where ň is
fresh in Σ, and s.w � s′′.w.

Proof. Suppose that M = Ē[M̄] and 〈M̄mj , T, S〉
N̄nk

−−−→
F̄

〈M̄ ′mj , T̄ ′, S̄′〉. We

start by observing that this implies F ′ = F̄ ∪ dĒe, M ′ = Ē[M̄ ′], N̄nk = Nnk

and 〈T̄ ′, S̄′〉 = 〈T ′, S′〉. We can assume, without loss of generality, that M̄ is the
smallest in the sense that there is no Ê, M̂ , N̂ such that Ê 6= [] and Ê[M̂] = M̄

for which we can write 〈M̂mj , T, S〉
N̂nk

−−−→
F̂

〈M̂ ′mj , T ′, S′〉.

By Lemma 4.4.6, we have Σ; Γ `
Σ(mj)

F∪dĒe
M̄ : s̄, τ̄ in the proof of Σ; Γ `

Σ(mj)
F

Ē[M̄] : s, τ , for some s̄ and τ̄ . We now proceed by case analysis on the transition

〈M̄mj , T, S〉
N̄nk

−−−→
F̄

〈M̄ ′mj , T ′, S′〉, and prove that Σ; Γ `
Σ(mj)

F∪dĒe
M̄ ′ : s̄′, τ̄ , for some

s̄′ such that s̄′.r � s̄.r, s̄.w � s̄′.w and s̄′.t � s̄.t.

M̄ = ((λx.M̂) V). Here we have M̄ ′ = {x 7→ V }M̂ . By rule App, we have

Σ; Γ `
Σ(mj)

F∪dÊe
(λx.M̂) : ŝ, τ̂

ŝ′

−−−−−−−−−→
F∪dÊe,Σ(mj)

σ̂, Σ; Γ `
Σ(mj)

F∪dÊe
V : ŝ′′, τ̂ , where

ŝ′.r � s̄.r, s̄.w � ŝ′.w and ŝ′.t � s̄.t. By Abs, then Σ; Γ, x : τ̂ `
Σ(mj)

F∪dÊe

M̂ : ŝ′, σ̂, and by Remark 4.4.3 we have Σ; Γ ` V : τ̂ . Therefore, by

Lemma 4.4.5, we get Σ; Γ `
Σ(mj)

F∪dÊe
{x 7→ V }M̂ : ŝ′, σ̂.

M̄ = (if tt then Nt else Nf). Here we have M̄ ′ = Nt. By Cond, we have

that Σ; Γ `
Σ(mj)

F∪dÊe
Nt : st, τ̄ , where st.r � s̄.r, s̄.w � st.w and st.t � s̄.t.

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 87

M̄ = (ref l,θ V). Here we have M̄ ′ = mj .ul,θ
(for some mj.u fresh in S). By

Loc, we have Σ; Γ `
Σ(mj)

F∪dÊe
mj .u : 〈⊥,>,⊥〉, θ refl,Σ(mj).

M̄ = (? nk.ul,θ). Here we have M̄ ′ = S(nk.ul,θ). By assumption, we have

Σ; Γ `
Σ(mj)

F∪dÊe
S(nk.ul,θ) : 〈⊥,>,⊥〉, θ.

M̄ = (flow F ′ in V). Here we have M̄ ′ = V . By rule Flow, we have that

Σ; Γ `
Σ(mj)

F∪dÊe∪F ′
V : s, τ . Therefore, by Remark 4.4.3, we have Σ; Γ `

Σ(mj)

F∪dÊe

V : 〈⊥,>,⊥〉, τ̄ .

The proof for the case M̄ = (%x.W) is analogous to the one for M̄ = ((λx.M̂) V),
while the proofs for the cases M̄ = (if ff then Nt else Nf) and M̄ = (V ; M̂)
are analogous to the one for M̄ = (if tt then Nt else Nf), and the ones for

M̄ = (nk.ul,θ :=? V), M̄ = (threadl M̂) and M̄ = (goto d) are analogous to the
one for M̄ = (ref l,θ V)

By Lemma 4.4.6, we can now conclude that Σ; Γ `
Σ(mj)
F Ē[M̄ ′] : s′, τ , for

some s′ such that s′.r � s.r, s.w � s′.w and s′.t � s.t.
Now, if Nnk 6= () (Nnk is created), then ∃l, N̂ : M = Ē[(threadl N̂)] and

N̄ = N̂ . By Lemma 4.4.6, we have Σ; Γ `
Σ(nk)

F̂∪dĒe
(threadl N̂) : ŝ, unit in the proof

of Σ; Γ `
Σ(mj)
F Ē[(threadl N̂)] : s, τ , for some ŝ, and τ̂ . By Thr, for some ň

fresh in Σ we have Σ, ?k : ňk; Γ `ňk

∅ N̂ : ŝ, unit, where ŝ = 〈⊥, s.w,⊥〉.

An expression that is typable in the type system of Figure 4.7 is clearly
typable in the (standard) type system that is obtained by ignoring the security
effects. This means that we could also state the full Type Safety result, which
besides Subject Reduction insures that typable expressions are never blocked
unless they are values.

Syntactically High Expressions

The notion of syntactically high expression that was defined in the previous
chapters is extended to this setting as well. Similarly to Definition 3.4.3, it is
defined with respect to the current flow policy. Furthermore, it takes a new
parameter – the decorated name of the thread of which the expression is part.
In this case, the writing effect is intended to be a lower bound to the level of the
references that the expression can create or assign to, and also to the level of the
thread that the expression appears in, in case it contains migration instructions.

Definition 4.4.8 (Syntactically “High” Expressions). An expression M is syn-

tactically (F, l, mj)-high if there exists Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F M : s, τ

with s.w 6�F l. The expression M is a syntactically (F, l, mj)-high function if

there exists Σ, Γ, s, τ such that Σ; Γ ` M : τ
s

−−−−−→
F,Σ(mj)

σ with s.w 6�F l.

We are now able to prove that syntactically high expressions have an oper-
ationally high behavior.

Lemma 4.4.9 (High Expressions). If M is a syntactically (F, l, mj)-high ex-
pression, then Mmj is an operationally (F, l)-high thread.

88 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Proof. We show that if M is syntactically (F, l, mj)-high, that is if there exists

Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F M : s, τ with s.w 6�F l, and 〈Mmj , T, S〉

Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉 then S′ =F,l S. This is enough since, by Subject Reduction
(Theorem 4.4.7), both M ′ is syntactically (F, l, mj)-high and N is syntac-
tically (F, l, nk)-high. We proceed by cases on the proof of the transition

〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉. The lemma is trivial in all the cases where

〈T, S〉 = 〈T ′, S′〉.

M = E[(al̄,θ̄ :=? V)]. Here S′ = [al̄,θ̄ := V]S and so s.w � l̄ by Lemma 4.4.2.

This implies l̄ 6�F l, hence S′ =F,l S.

M = E[(goto d)]. Here T ′ = [mj := d]T and so s.w � j by Lemma 4.4.2.
This implies j 6�F l, hence T ′ =F,l T .

The proof of the case M = E[(ref l,θ V)] is analogous to the proof for M =
E[(al,θ :=? V)], while the proof for the case M = E[(threadl M0)] is analogous
to the one for M = E[(goto d)].

4.4.4 Soundness

In this section we present and explain the proof of soundness of the type system
of Figure 4.7 with respect to the notion of security of Definition 4.3.8. Proofs
for each intermediate result are preceded by their “Rationale”, which shortly
gives the intuition behind the proof. In particular, the conditions of the typing
rules that are used in the proof are pointed out. Refer to Subsections 2.4.2 and
4.4.2 for examples that justify the need for those conditions.

We set to prove that, under any global flow policy G, all sets of threads P
that are typable using the type system of Figure 4.7 (on page 80) satisfy Non-
Disclosure for Networks, given by Definition 4.3.8 (on page 75). Informally,
this means that, whatever the security level that is chosen to be “low” (here
that security level will be denoted by ‘low ’), the set P always presents the
same behavior according to a weak bisimulation on low-equal states: if two
continuations P1 and P2 of P are related, and if P1 can perform an execution
step over a certain state, then P2 can perform the same low changes to any low-
equal state in zero or one step, while the two resulting continuations are still
related. It is useful to start by analyzing the behavior of the class of expressions
that are typable with a low termination effect, for which we can state a stronger
soundness result.

Behavior of “Low”-Terminating Expressions

Recall that, according to the intended meaning of the termination effect, the
termination or non-termination of expressions with low termination effect should
only depend on the low part of the state. In other words, two computations of a
same thread running under two “low”-equal states should either both terminate
or both diverge. In particular, this implies that termination-behavior of these
expressions cannot be used to leak “high” information when composed with
other expressions (via termination leaks).

The ability of a thread to compute depends on whether its position in the
network is the same as that of the references that it needs to access. This

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 89

means that to guarantee that a step is performed by a thread in two different
states one must assume that it does not suspend on an access to an absent
reference. The following guaranteed-transition result holds for low-equal states
where, if the thread is about to access a reference, then either the thread owns
that reference, or both the thread and the reference have a low security level.

Lemma 4.4.10 (Guaranteed Transitions). Suppose that M is typable for Σ,
Σ(mj), F , and that if M = E[(nk.ul,θ :=? V)] or M = E[(? nk.ul,θ)] then either
j g k �F low or n = m.

If 〈Mmj , T1, S1〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉 such that n̄k̄ is fresh for T2 if n̄k̄ ∈

dom(T ′
1 − T1) and a is fresh for S2 if al,θ ∈ dom(S′

1 − S1) and for some F ′

we have 〈T1, S1〉 =F∪F ′,low 〈T2, S2〉, then there exist M ′
2, T ′

2 and S′
2 such that

〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈M ′
2
mj , T ′

2, S
′
2〉 with 〈T ′

1, S
′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

Rationale. When a typable thread mj is about to perform an assignment
or dereference of a reference that belongs to a thread nk, the execution of
this operation depends on mj and nk being located at the same domain.
By assuming that either both j and k are low, or m and n are the same
thread, we can conclude that, in low-equal states, mj and nk have the same
location. Therefore, if M performs a transition in some state, it is able to
perform it in a low-equal state as well.
When a thread nk is created by mj , we use the condition j �F k of rule
Thr to ensure that either k is high (and therefore its creation does not
change the low state) or mj is a low thread (therefore nk is created at the
same place in two low-equal memories).

Proof. By case analysis on the proof of 〈Mmj , T1, S1〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉. In

most cases, this transition does not modify or depend on the state 〈T1, S1〉, and
we may let M ′

2 = M ′
1 and 〈T ′

2, S
′
2〉 = 〈T2, S2〉.

M = E[(ref l,θ V)]. Here M ′ = E[mj .ul,θ], F = dEe, N n̄k̄ = (), T ′
1 = T1 and

S′
1 = S1 ∪ {mj.ul,θ 7→ V }. Since mj .u is fresh for S2, we also have that

〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈M ′
1
mj , T2, S

′
2 ∪ {mj.ul,θ 7→ V }〉.

M = E[(? nk.ul,θ)]. Here M ′ = E[S1(nk.ul,θ)], F = dEe, N n̄k̄ =

(), and 〈T ′
1, S

′
1〉 = 〈T1, S1〉. We have 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈E[S2(nk.ul,θ)]
mj , T2, S2〉, because T1 =F∪F ′,low T2 and either:

m = n. In this case Mmj cannot suspend.

m 6= n and j g k �F low . In this case T1(mj) = T2(mj) and T1(nk) =
T2(nk). Since T1(mj) = T1(nk), then T2(mj) = T2(nk).

In other words, also in T2 the threads mj and nk are located in the same
domain.

90 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

M = E[(nk.ul,θ :=? V)]. then M ′ = E[()], F = dEe, N n̄k̄ = (), T ′
1 = T1

and S′
1 = [nk.ul,θ := V]S1. Analogously to the previous case, in T2 the

threads mj and nk are located in the same domain, so 〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈E[()]
mj , T2, [nk.ul,θ := V]S2〉.

M = E[(threadk̄ M̄)]. Here M ′ = E[()], F = ∅, N n̄k̄ = M̄ n̄k̄ , T ′
1 =

T1 ∪ {n̄k̄ 7→ T1(mj)}, and S′
1 = S1. Since n is fresh for T2, we

have 〈Mmj , T2, S2〉
N

n̄
k̄

−−−→
F

〈E[()]
mj , T2 ∪ {n̄k̄ 7→ T2(mj)}, S2〉. Notice that

T1∪{n̄k̄ 7→ T1(mj)} =F∪F ′,low T2 ∪ {n̄k̄ 7→ T2(mj)}, because T1 =F∪F ′,low

T2 and if l �F∪F ′ low , then by the condition j �F∪F ′ l in rule Thr also
j �F∪F ′ low , in which case T1(mj) = T2(mj).

M = E[(goto d′)]. Then M ′ = E[()], F = ∅, N n̄k̄ = (), T ′
1 = [mj := d′]T1 and

S′
1 = S1. We have 〈Mmj , T2, S2〉

N
n̄

k̄

−−−→
F

〈E[()]
mj , [mj := d′]T2, S2〉.

The hypotheses of the previous lemma are fulfilled when the termination
effect is low:

Remark 4.4.11. Suppose that M = E[(nk.ul,θ :=? V)] or M = E[(? nk.ul,θ)],

and that for some Σ, mj, F , s and τ we have that Σ; Γ `
Σ(mj)
F M : s, τ . Then,

s.t �F low implies that either j g k �F low or n = m.

We aim at proving that any typable thread Mmj that has a low-termination
effect always presents the same behavior according to a strong bisimulation on
low-equal states: if two continuations M

mj

1 and M
mj

2 of Mmj are related, and if
M

mj

1 can perform an execution step over a certain state, then M
mj

2 can perform
the same low changes to any low-equal state in precisely one step, while the two
resulting continuations are still related. This implies that any two computations
of Mmj under low-equal states should have the same “length”, and in particular
they are either both finite or both infinite. To this end, we design a reflexive
binary relation on expressions with low-termination effects that is closed under
the transitions of Guaranteed Transitions (Lemma 4.4.10).

The definition of T
mj

G,F,low , abbreviated T
mj

F,low when the global flow policy is
G, is given in Figure 4.8. The flow policy F is assumed to contain G. Notice that
it is a symmetric relation. In order to ensure that expressions that are related by
T

mj

F,low perform the same changes to the low memory, its definition requires that
the references that are created or written using (potentially) different values are
high.

Remark 4.4.13. If for some mj, F and low we have that M1 T
mj

F,low M2 and
M1 ∈ Val, then M2 ∈ Val.

We have seen in Splitting Computations (Lemma 4.2.1) that two computa-
tions of the same expression can split only if the expression is about to read a
reference that is given different values by the memories in each of the config-
urations. Since we will be only interested in the case where the two memories
are low-equal, this situation coincides with the case where the reference that
is read is high. From the following lemma one can conclude that the relation

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 91

Definition 4.4.12 (T
mj

F,low).

We have that M1 T
mj

F,low M2 if Σ; Γ `
Σ(mj)
F M1 : s1, τ and Σ; Γ `

Σ(mj)
F M2 : s2, τ

for some Σ, Γ, s1, s2 and τ with s1.t �F low and s2.t �F low and one of the
following holds:

Clause 1. M1 and M2 are both values, or

Clause 2. M1 = M2, or

Clause 3. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2, or

Clause 4. M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) with M̄1 T
mj

F,low M̄2, and
l 6�F low, or

Clause 5. M1 = (? M̄1) and M2 = (? M̄2) with M̄1 T
mj

F,low M̄2, or

Clause 6. M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 T
mj

F,low M̄2, and

N̄1 T
mj

F,low N̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such

that l 6�F low, or

Clause 7. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with
M̄1 T

mj

F∪F ′,low M̄2.

Figure 4.8: The relation T
mj

F,low

T
mj

F,low relates the possible outcomes of expressions that are typable with a low
termination effect, and that perform a high read over low-equal memories.

Lemma 4.4.14. If there exist Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F E[(? al,θ)] : s, τ

with s.t �F low and l 6�F∪dEe low, then for any values V0, V1 ∈ Val such that
Σ; Γ ` Vi : θ we have E[V0] T

mj

F,low E[V1].

Rationale. If a typable expression is about to use a value that results
from a high dereference in such a way that it could influence its termina-
tion behavior, then its termination effect cannot be low (contradicting the
assumption). The type system enforces this by updating the termination
effect of the expression with the reading effect of the dereferencing opera-
tion, in the cases where the value is used: in the predicate of a conditional
(s.r in the termination effect of Cond); to determine the function of an ap-
plication (s.r in the termination effect of App); to determine the argument
of an application (s′′.r in the termination effect of App).
The relation T requires that the references that are (respectively) created
or written using the high dereferenced value are high (see Clauses 4 and
6). This is guaranteed by conditions of the form ‘s.r �F l’, where s is the
security effect of the program that is performing the access, and l is the
security level of the reference that is created or written. More precisely,
conditions are imposed when the dereferenced value is used: to create a

92 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

reference (s.r �F l in rule Ref); to determine a reference that is being as-
signed to (s.r �F l in rule Ass); to determine a value that is being assigned
(s′.r �F l in rule Ass).

Proof. By induction on the structure of E.

E[(? al,θ)] = (? al,θ). We have V0 T
mj

F,low V1 by Clause 1.

E[(? al,θ)] = (E1[(? al,θ)] M). By App we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄
s̄′

−−−−−→
F,Σ(mj)

σ̄ with s̄.r � s.t. By Lemma 4.4.2, we have l � s̄.r. Therefore

l �F s.t, which contradicts the assumption that both s.t �F low and
l 6�F∪E low hold.

E[(? al,θ)] = (V E1[(? al,θ)]). By rule App we have Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄′′, τ̄ with s̄′′.r � s.t. By Lemma 4.4.2, we have l � s̄′′.r.
Therefore l �F s.t, which contradicts the assumption that both s.t �F low
and l 6�F∪E low hold.

E[(? al,θ)] = (if E1[(? al,θ)] then Mt else Mf). By Cond we have that

Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, bool with s̄.r � s.t. By Lemma 4.4.2, we

have l � s̄.r. Therefore l �F s.t, which contradicts the assumption that
both s.t �F low and l 6�F∪E low hold.

E[(? al,θ)] = (E1[(? al,θ)]; M). By Seq we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄ with s̄.t �F s.t. Therefore s̄.t �F low , and since l 6�F∪E low implies
l 6�F∪E1

low , then by induction hypothesis we have E1[V0] T
mj

F,low E1[V1].
By Lemma 4.4.6 and Clause 3 we can conclude.

E[(? al,θ)] = (ref l′,θ′ E1[(? al,θ)]). By rule Ref we have that Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄, τ̄ with s̄.r = s.r �F l′ and s̄.t = s.t. Therefore s̄.t �F low ,
and since l 6�F∪E low implies l 6�F∪E1

low , then by induction hypothesis
we have E1[V0] T

mj

F,low E1[V1]. By Lemma 4.4.2 we have l � s.r, so s.r 6�F

low . Therefore, l′ 6�F low , and we conclude by Lemma 4.4.6 and Clause
4.

E[(? al,θ)] = (? E1[al,θ]). By rule Der we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, τ̄

with s̄.t �F s.t. Therefore s̄.t �F low , and since l 6�F∪E low implies
l 6�F∪E1

low , then by induction hypothesis E1[V0] T
mj

F,low E1[V1]. We
conclude by Lemma 4.4.6 and Clause 5.

E[(? al,θ)] = (E1[(? al,θ)] :=? M). By rule Ass we have that Σ; Γ `
Σ(mj)
F

E1[al,θ] : s̄, θ̄ ref l̄,ˇ̄nk
with s̄.t �F s.t and s̄.r �F l̄. Therefore s̄.t �F low ,

and since l 6�F∪E low implies l 6�F∪E1
low , then by induction hypothesis

E1[V0] T
mj

F,low E1[V1]. On the other hand, by Clause 2 we have M T
mj

F,low M .

By Lemma 4.4.2 we have l � s̄.r, so l �F l̄. Then, we must have l̄ 6�F low ,
since otherwise l �F∪E low . Therefore, we conclude by Lemma 4.4.6 and
Clause 6.

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 93

E[(? al,θ)] = (V :=? E1[(? al,θ)]). By rule Ass we have that Σ; Γ `
Σ(mj)
F V :

s̄, θ̄ ref l̄,ˇ̄nk
, and Σ; Γ `

Σ(mj)
F E1[al,θ] : s̄′, θ with s̄′.t �F s.t and s̄′.r �F l̄.

Therefore s̄′.t �F low , and since l 6�F∪E low implies l 6�F∪E1
low , then by

induction hypothesis E1[V0] T
mj

F,low E1[V1]. On the other hand, by Clause

2 we have V T
mj

F,low V . By Lemma 4.4.2 we have l � s̄′.r, so l �F l̄. Then,

we must have l̄ 6�F low , since otherwise l �F∪E low . We then conclude
by Lemma 4.4.6 and Clause 6.

E[(? al,θ)] = (flow F ′ in E1[(? al,θ)]). By rule Flow we have Σ; Γ `
Σ(mj)
F∪F ′

V : s, τ . By induction hypothesis E1[V0] T
mj

F∪F ′,low E1[V1], so we conclude
by Lemma 4.4.6 and Clause 7.

We can now prove that T
mj

F,low behaves as a kind of “strong bisimulation”:

Proposition 4.4.15 (Strong Bisimulation for Low-Terminating Threads).

If we have M1 T
mj

F,low M2 and 〈M1
mj , T1, S1〉

N
n̄

k̄

−−−→
F ′

〈M ′
1
mj , T ′

1, S
′
1〉, with 〈T1, S1〉

=F∪F ′,low 〈T2, S2〉 such that n is fresh for T2 if n̄k̄ ∈ dom(T ′
1 − T1) and a is

fresh for S2 if al,θ ∈ dom(S′
1 − S1), then there exist T ′

2, M ′
2 and S′

2 such that

〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 T
mj

F,low M ′
2 and 〈T ′

1, S
′
1〉 =F,low

〈T ′
2, S

′
2〉.

Rationale. If M1 and M2 are equal (related by T using Clause 2), then
since they have a low termination effect we can use Guaranteed Transitions
(Lemma 4.4.10) to conclude that M2 can also make a step and perform
the same changes to low-equal memories. If the result of performing the
two steps is different – therefore not falling again in Clause 2 – by Split-
ting Computations (Lemma 4.2.1) we conclude they have performed a high
dereference. In Lemma 4.4.14 we have seen that this implies that the re-
sulting expressions are still in the T relation.
The remaining cases use the fact that M1 is a value if and only if M2 is a
value, to show that if M1 can perform a computation step, then, as long as
suspension cannot occur, so can M2.
Suspension could only occur when the dereference or assignment operations
are eminent (i.e. when all arguments have computed into values). However,
the possibility of suspension on an access to some reference that belongs
to nk is excluded by the fact that the threads M

mj

1 and M
mj

2 are assumed
to have low termination effect. In fact, since if m 6= n the termination of
the threads depends on levels j and k, then both j and k must be low,
which implies that mj and nk have the same position in low-equal memo-
ries. This is guaranteed by the type system in rules Der and Ass, when
the termination effect is updated with j g k.

Proof. By induction on the definition of T
mj

F,low . In the following, we use Subject
Reduction (Theorem 4.4.7) to guarantee that the termination effect of the ex-
pressions resulting from M1 and M2 is still low with respect to low and F . This,

94 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

as well as typability (with the same type) for mj , low and F , is a requirement
for being in the T

mj

F,low relation.

Clause 1. This case is not possible.

Clause 2. Here M1 = M2. By Guaranteed Transitions (Lemma 4.4.10) there

exist T ′
2, M ′

2 and S′
2 such that 〈M

mj

2 , T2, S2〉
N

n̄
k̄

−−−→
F ′

〈M
′mj

2 , T ′
2, S

′
2〉 with

〈T ′
1, S

′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

M ′

2
= M ′

1
. Then we have M ′

1 T
mj

F,low M ′
2, by Clause 2 and Subject Re-

duction (Theorem 4.4.7).

M ′

2
6= M ′

1
. Then by Splitting Computations (Lemma 4.2.1) we have that

(N n̄k̄ = ()) and there exists E and al,θ such that F ′ = dEe, M ′
1 =

E[S1(al,θ)], M ′
2 = E[S2(al,θ)], 〈T ′

1, S
′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉. Since S1(al,θ) 6= S2(al,θ), we have l 6�F∪F ′ low . Therefore,
M ′

1 T
mj

F,low M ′
2, by Lemma 4.4.14 above.

Clause 3. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 T
mj

F,low M̄2. Then
either:

M̄1 can compute. In this case M ′
1 = (M̄ ′

1; N̄) with 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 3 and Sub-

ject Reduction (Theorem 4.4.7) to conclude.

M̄1 is a value. In this case M ′
1 = N̄ and F ′ = ∅, N n̄k̄ = () and 〈T ′

1, S
′
1〉 =

〈T1, S1〉. We have M̄2 ∈ Val by Remark 4.4.13, hence 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈N̄mj , T2, S2〉, and we conclude using Clause 2 and Subject

Reduction (Theorem 4.4.7).

Clause 4. Here M1 = (refl,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 T
mj

F,low M̄2,
and l 6�F low . There are two cases.

M̄1 can compute. In this case M ′
1 = (refl,θ M̄1) with 〈M̄

mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Subject Re-

duction (Theorem 4.4.7) and Clause 4 to conclude.

M̄1 is a value. In this case M ′
1 = al,θ, with a fresh for S1, F ′ = ∅,

N n̄k̄ = () and 〈T ′
1, S

′
1〉 = 〈T2, S1 ∪ {al,θ 7→ M̄1}〉 (and therefore a is

also fresh for S2). Then M̄2 ∈ Val by Remark 4.4.13, and therefore

〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈al,θ
mj , T ′

2, S2 ∪ {al,θ 7→ M̄2}〉. If we let S′
2 =

S2 ∪ {al,θ 7→ M̄2} then 〈T ′
1, S

′
1〉 =F,low 〈T ′

2, S
′
2〉 since l 6�F low . We

conclude using Clause 1 and Subject Reduction (Theorem 4.4.7).

Clause 5. Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 T
mj

F,low M̄2. We
distinguish two sub-cases.

M̄1 can compute. In this case 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We

use the induction hypothesis, Subject Reduction (Theorem 4.4.7) and
Clause 5 to conclude.

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 95

M̄1 is a value. Then M̄1 = nk.ul,θ and M ′
1 ∈ Val , 〈T ′

1, S
′
1〉 = 〈T1, S1〉,

F ′ = ∅ and N n̄k̄ = (). By Remark 4.4.13, M̄2 ∈ Val , and since M1

and M2 have the same type, it must be a reference nk.vl′,θ. Notice
also that T1(nk) = T1(mj).

n 6= m. Then, by rule Der, we have j g k � s.t, and therefore
j g k �F∪F ′ low . Since T1 =F∪F ′,low T2, then T1(mj) = T2(mj)
and T1(nk) = T2(nk).

n = m. Then it is immediate that T2(mj) = T2(nk).

In both the above cases, T2(nk) = T2(mj), and so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M2
′mj , T2, S2〉 with M2

′ ∈ Val . We then conclude using

Clause 1 and Subject Reduction (Theorem 4.4.7).

Clause 6. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 T

mj

F,low M̄2, N̄1 T
mj

F,low N̄2, and M̄1, M̄2 both have type θ refl,ňk
for

some θ and l such that l 6�F low . We distinguish three sub-cases.

M̄1 can compute. In this case 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We

use the induction hypothesis, Subject Reduction (Theorem 4.4.7) and
Clause 6 to conclude.

M̄1 is value, but N̄1 can compute. In this case we have 〈N̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉. By Remark 4.4.13 also M̄2 ∈ Val . We use the

induction hypothesis, Subject Reduction (Theorem 4.4.7) and Clause
6 to conclude.

M̄1 and M̄1 are values. Then M̄1 = nk.ul,θ and M ′
1 = (), 〈T ′

1, S
′
1〉 =

〈T1, {V 7→ M̄1}S1〉, F ′ = ∅ and N n̄k̄ = (). By Remark 4.4.13, also
M̄2, N̄2 ∈ Val , and since M̄1 and M̄2 have the same type, M̄2 must
be a reference nk.vl′,θ′ . Notice that T1(nk) = T1(mj).

n 6= m. Then, by Ass, we have j g k � s.t, therefore j g k �F∪F ′

low . Since T1 =F∪F ′,low T2, then T1(mj) = T2(mj) and
T1(nk) = T2(nk).

n = m. Then it is immediate that T2(mj) = T2(nk).

In both the above cases, T2(nk) = T2(mj), and so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M2
′mj , T2, {V

′ 7→ M̄2}S2〉 with M̄ ′
2 ∈ Val . Since l 6�F low ,

then {V 7→ M̄1}S1 =F∪F ′,low {V ′ 7→ M̄2}S2. We then conclude using
Clause 1 and Subject Reduction (Theorem 4.4.7).

Clause 7. Here we have M1 = (flow F̄ in M̄1) and M2 = (flow F̄ in M̄2) and
M̄1 T

mj

F∪F̄ ,low
M̄2. There are two cases.

M̄1 can compute. In this case 〈M̄
mj

1 , T1, S1〉
N

n̄
k̄

−−−→
F ′′

〈M̄
′mj

1 , T ′
1, S

′
1〉 with

F ′ = F̄ ∪ F ′′. By induction hypothesis, we have 〈M̄
mj

2 , T2, S2〉
N

n̄
k̄

−−−→
F ′′

〈M̄
′mj

2 , T ′
2, S

′
2〉, and M ′

1 T
mj

F∪F̄ ,low
M ′

2 and 〈T ′
1, S

′
1〉 =F∪F̄ ,low 〈T ′

2, S
′
2〉.

Notice that 〈T ′
1, S

′
1〉 =F,low 〈T ′

2, S
′
2〉. We use Subject Reduction (The-

orem 4.4.7) and Clause 4 to conclude.

96 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

M̄1 is a value. In this case M ′
1 = M̄1, F ′ = ∅, N n̄k̄ = () and 〈T ′

1, S
′
1〉 =

〈T1, S1〉. Then M̄2 ∈ Val by Remark 4.4.13, and so 〈M2
mj , T2, S2〉

N
n̄

k̄

−−−→
F ′

〈M̄
mj

2 , T2, S2〉. We conclude using Clause 1 and Subject Re-

duction (Theorem 4.4.7).

We have seen in Remark 4.4.13 that when two expressions are related by
T

mj

F,low and one of them is a value, then the other one is also a value. From a
semantical point of view, when an expression has reached a value it means that
it has successfully completed its computation. We will now see that when two
expressions are related by T

mj

F,low and one of them is unable to resolve into a
value, in any sequence of unrelated computation steps, then the other one is
also unable to do so.

Definition 4.4.16 (Non-resolvable Expressions). We say that an expression
M is non-resolvable, denoted M†, if there is no derivative M ′ of M such that
M ′ ∈ Val.

Lemma 4.4.17. If for some mj, F and low we have that M T
mj

F,low N and M†,
then N†.

Rationale. We prove that if M and N are related by T , and there is a
sequence of memories that defines a path of execution steps from N into a
value, then the sequence of memories can be used to “bring” M into a value
as well. This can be seen using Strong Bisimulation for Low-Terminating
Threads (Proposition 4.4.15), since for each step between two derivatives of
N it guarantees a step between the corresponding two derivatives of M , in
such a way that the relation T is maintained.

Proof. Let us suppose that ¬N†. That means that there exists a finite number
of states 〈T1, S1〉, . . . , 〈Tn, Sn〉 and 〈T ′

1, S
′
1〉, . . . , 〈T ′

n, S′
n〉 and of expressions N1,

. . . , Nn such that

〈N, T1, S1〉 −→ 〈N1, T
′
1, S

′
1〉 and

〈N1, T2, S2〉 −→ 〈N2, T
′
2, S

′
2〉 and

...
〈Nn−1, Tn, Sn〉 −→ 〈Nn, T ′

n, S′
n〉

and such that Nn ∈ Val . By Strong Bisimulation for Low-Terminating Threads
(Proposition 4.4.15), we have that there exists a finite number of states 〈T̄ ′

1, S̄
′
1〉,

. . . , 〈T̄ ′
n, S̄′

n〉 and of expressions M̄1, . . . , M̄n such that

〈M, T1, S1〉 −→ 〈M1, T̄
′
1, S̄

′
1〉 and

〈M1, T2, S2〉 −→ 〈M2, T̄
′
2, S̄

′
2〉 and

...
〈Mn−1, Tn, Sn〉 −→ 〈Mn, T̄ ′

n, S̄′
n〉

such that:
M1 T

mj

F,low N̄1, and . . . , and Mn T
mj

F,low N̄n

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 97

By Remark 4.4.13, we then have that Mn ∈ Val . Since Mn is a derivative of
M , we conclude that ¬M†.

The following lemma deduces operational “highness” of threads from that
of its subexpressions.

Lemma 4.4.18 (Composition of High Expressions). Suppose that Mmj is ty-
pable in Σ and F . Then:

1. If M = (M1 M2) and M1 is a syntactically (F, low , mj)-high function and
either

• M1† and M1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

then Mmj ∈ HF,low .

2. If M = (if M1 then Mt else Mf) and M1
mj , Mt

mj , Mf
mj ∈ HF,low , then

Mmj ∈ HF,low .

3. If M = (refl,θ M1) and l 6�F low and M1
mj ∈ HF,low , then Mmj ∈

HF,low .

4. If M = (M1; M2) and either

• M1† and M1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

then Mmj ∈ HF,low .

5. If M = (M1 :=? M2) and M1 has type θ refl,ňk
with l 6�F low and either

• M1† and M1
mj ∈ HF,low , or

• M1
mj , M2

mj ∈ HF,low ,

then Mmj ∈ HF,low .

6. If M = (flow F ′ in M1) and M1
mj ∈ HF∪F ′,low , then Mmj ∈ HF,low .

Rationale. A construct that does not introduce low effects and that is only
composed of operationally high expressions can be easily seen to be opera-
tionally high: for all the computation steps that can be performed by any
of its derivatives, there is a corresponding one that can be performed by a
derivative of one of its components. Since the components are operationally
high, then the step does not make low changes to the state.
Syntactical highness of a function guarantees that its body, which can be
seen as a subexpression of an application, is operationally high. A reference
creation or assignment that is only composed of operationally high expres-
sions is operationally high for the same reasons, provided that the created
or written reference is high.
When a non-resolvable expression M1 is composed with an expression M2,
as in (M1 M2), (M1; M2) or (M1 := M2), it is enough to require that M1

98 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

is operationally high. In fact, for all the computation steps that can be
performed by any of these expressions’ derivatives, there is a corresponding
one that can be performed by a derivative of M1 – that is, the expression
M2 never gets to be evaluated.

Proof. We give the proof for the case where M = (M1 M2) and M1 is a syntac-
tically (F, low , mj)-high function. The other cases are analogous or simpler.

M1† and M1
mj ∈ HF,low . Let F be a set of threads that includes HF,low ,

and that contains the threads (M1 M2)
mj provided that they are typable

in F , and satisfy M1 /∈ Val and M
mj

1 ∈ F and M1 is a (F, low , mj)-high
function. Assume that an application M = (M1 M2) such that M1† and

M1
mj ∈ HF,low performs the transition 〈Mmj , T, S〉

Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉.

We show that this implies M ′mj , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉.

Since M1 is non-resolvable, M1 cannot be a value, and since M can
compute, then also M1 can compute. We then have M ′ = (M ′

1 M2)

with 〈M1
mj , T, S〉

Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. Since M1

mj ∈ HF,low , then also

M
′mj

1 , Nnk ∈ HF,low , thus M
′mj

1 , Nnk ∈ F , and 〈T ′, S′〉 =F,low 〈T ′, S′〉.
By Subject Reduction (Theorem 4.4.7), M ′

1 is a (F, low)-high function,
and since M1† then M ′

1 /∈ Val . Hence M ′mj ∈ F .

M1
mj , M2

mj ∈ HF,low . Let F be a set of pools of threads that includes
HF,low , and that contains threads (M1 M2)

mj provided they are typable
in F and satisfy M

mj

1 , M
mj

2 ∈ F and M1 is a (F, low , mj)-high func-
tion. Assume that such an application M = (M1 M2) performs the

transition 〈Mmj , T, S〉
Nnk

−−−→
F ′

〈M ′mj , T ′, S′〉. We show that this implies

M ′mj , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉.

M1 and M2 are values. Then M1 = (λx.M̄1), M ′ = {x 7→ M2}M̄1 and
N ′ = (), 〈T ′, S′〉 = 〈T, S〉. Since M1 is a (F, low , mj)-high func-
tion, then by Abs M̄1 is syntactically (F, low , mj)-high, and by Sub-
stitution (Lemma 4.4.5), also M ′ is syntactically (F, low , mj)-high.
Therefore, by High Expressions (Lemma 4.4.9), M ′mj ∈ HF,low .

M1 can compute. Then we have M ′ = (M ′
1 M2) with 〈M1

mj , T, S〉
Nnk

−−−→
F ′

〈M ′
1
mj , T ′, S′〉. Since M1

mj ∈ HF,low , then also M
′mj

1 , Nnk ∈

F and 〈T ′, S′〉 =F,low 〈T ′, S′〉. By Subject Reduction (Theo-
rem 4.4.7) M ′

1 is a (F, low)-high function. Hence M ′ ∈ F .

M1 is a value but M2 can compute. Then we have M ′ = (M1 M ′
2)

with 〈M2
mj , T, S〉

Nnk

−−−→
F ′

〈M ′
2
mj , T ′, S′〉. Since M2

mj , Nnk ∈ HF,low ,

then also M
′mj

2 , Nnk ∈ F and 〈T ′, S′〉 =F,low 〈T ′, S′〉. Hence M ′ ∈
F .

Lemma 4.4.19. If for some mj, F and low we have that M1 T
mj

F,low M2 and
M1 ∈ HF,low , then M2 ∈ HF,low .

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 99

Rationale. The proof relies on the fact that if an expression M1 of the
form (M̄1; N̄1) or (M̄1 := N̄1) is operationally high, in spite of N̄1 not being
operationally high, then M̄1 is non-resolvable. To see this, note that if M1

were not non-resolvable, we would have, for some value V , that (V ; N̄1) or
(V := N̄1) would be derivatives of M1. We can then see that, for all the
computation steps that can be performed by any of N̄1’s derivatives, there
is a corresponding one that can be performed by a derivative of M1. Since
N̄1 is not operationally high, then also M would not be operationally high.
From the fact that an expression is operationally high, we can easily con-
clude that the first subexpression to be evaluated is also operationally high.
Clauses 3 and 6 do not require their second subexpression N̄1 to be opera-
tionally high. However, by the above observation and by Lemma 4.4.17 this
implies that M̄2 is non-resolvable. We can then argue that the expressions
in the T relation have the same “composition”, and conclude that they are
operationally high using Composition of High Expressions (Lemma 4.4.18).

Proof. By induction on the definition of M1 T
mj

F,low M2.

Clause 1. Direct.

Clause 2. Direct.

Clause 3. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. Clearly

we have that M̄1 ∈ HF,low , so by induction hypothesis, also M̄2 ∈ HF,low .
We distinguish two sub-cases:

N̄ ∈ HF,low . Then, M̄2, N̄ ∈ HF,low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M2 ∈ HF,low .

N̄ /∈ HF,low . Then M̄1†, and by Lemma 4.4.17 also M̄2†. Therefore,
by Composition of High Expressions (Lemma 4.4.18) we have that
M2 ∈ HF,low .

Clause 4. Here M1 = (ref l,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 T
mj

F,low M̄2,

and l 6�F low . Clearly we have that M̄1 ∈ HF,low , so by induction hypoth-
esis also M̄2 ∈ HF,low . Therefore, by Composition of High Expressions
(Lemma 4.4.18) we have that M2 ∈ HF,low .

Clause 5. Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 T
mj

F,low M̄2. Clearly

we have that M̄1 ∈ HF,low , so by induction hypothesis also M̄2 ∈ HF,low .
This implies that M̄2 ∈ HF,low .

Clause 6. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 T

mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such

that l 6�F low , and N̄1 T
mj

F,low N̄2. Clearly we have that M̄1 ∈ HF,low , so

by induction hypothesis also M̄2 ∈ HF,low . We distinguish two sub-cases:

N̄2 ∈ HF,low . Then, M̄2, N̄2 ∈ HF,low where M̄2 has type θ refl,ňk
for

some θ and l such that l 6�F low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M2 ∈ HF,low .

100 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

N̄2 /∈ HF,low . Then M̄1†, and by Lemma 4.4.17 also M̄2†. Therefore,
since M̄2 has type θ ref l,ňk

for some θ and l such that l 6�F low ,
by Composition of High Expressions (Lemma 4.4.18) we have that
M2 ∈ HF,low .

Clause 7. Here we have M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2)
with M̄1 T

mj

F∪F ′,low M̄2. Clearly we have that M̄1 ∈ HF,low , so by induc-

tion hypothesis also M̄2 ∈ HF,low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M2 ∈ HF,low .

Behavior of Typable Low Expressions

In this second phase of the proof, we consider the general case of threads that
are typable with any termination level. As in the previous subsection, we show
that a typable expression behaves as a strong bisimulation, provided that it is
operationally low. For this purpose, we make use of the properties identified for
the class of low-terminating expressions by allowing only these to be followed
by low-writes. Conversely, high-terminating expressions can only be followed by
high-expressions (see Definitions 4.3.9 and 4.4.8).

Since we are considering the general case where threads do not necessarily
have a low termination effect we cannot, as we did in the previous section,
state a guaranteed-transition result. However, from Guaranteed Transitions
(Lemma 4.4.10) and Remark 4.4.11 we can guarantee transitions in the cases
M 6= E[(nk.ul,θ :=? V)] and M 6= E[(? nk.ul,θ)], as well as for these two cases
when M is low-terminating. The following lemma covers the remaining cases
by asserting that if M = E[(? al,θ)] when M is not low-terminating, then M is
operationally high (therefore it cannot perform low changes on the state).

Lemma 4.4.20 (Potentially Suspensive Transitions). Suppose that Mmj is ty-
pable in Σ and F , and consider the two cases where M = E[(nk.ul,θ :=? V)] and
M = E[(? nk.ul,θ)] with j g k 6�F low and n 6= m. Then Mmj ∈ HF,low .

Rationale. By Remark 4.4.11, the assumptions j g k 6�F low and n 6= m
indicate that, as far as the type system is concerned, accesses performed
by a thread mj to a reference that belongs to a thread nk under low-equal
memories are potentially suspensive. This means that, according to the
principle that no low-writes can follow high-terminating portions of the
program, then a thread that is performing such an access must be high.
The above mentioned principle is guaranteed by the type system using con-
ditions of the form ‘s.t �F ’ on the effects and security levels representing
writes that are to be performed after the execution of a subprogram with
security effect s. More precisely, conditions are imposed when the foreign
access is used: to create a reference (s.t �F l in rule Ref); to determine a
reference that is being assigned to (s.t �F s′.w and s.t �F l in rule Ass);
to determine a value that is being assigned (s′.t �F l in rule Ass); to de-
termine the predicate of a conditional (s.t �F st.w, sf .w in rule Cond); to
determine a function that is being applied (s.t �F s′.w and s.t �F s′′.w in

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 101

rule App); to determine an argument to which a function is being applied
(s′′.t �F s′.w in rule App); to evaluate the first component of a sequential
composition (s.t �F s′.w in rule Seq).

Proof. By induction on the structure of E. Consider M = E[M0], where either
M0 = (nk.ul,θ :=? V) or M0 = (? nk.ul,θ).

E[M0] = M0. Direct.

E[M0] = (E1[M0] M1). Then by rule App we have that Σ; Γ `
m̌j

F E1[M0] :

s1, τ1
s′

1−−−→
F,m̌j

σ1 and Σ; Γ `
m̌j

F M1 : s′′1 , τ1 with s1.t �F s′′1 .w and s1.t �F

s′1.w. By Remark 4.4.11 we have s1.t 6�F low , and so s′′1 .w 6�F low .
Therefore, s′1.w 6�F low , and s′′1 .w 6�F low , which means that E1[M0] is a
syntactically (F, low , mj)-high function and M1 is (F, low , mj)-high. By
High Expressions (Lemma 4.4.9) we have M1

mj ∈ HF,low . By induction
hypothesis E1[M0]

mj ∈ HF,low . Then, by Composition of High Expres-
sions (Lemma 4.4.18), Mmj ∈ HF,low .

E[M0] = (V E1[M0]). Then by App we have Σ; Γ `
m̌j

F V : s1, τ1
s′

1−−−→
F,m̌j

σ1

and Σ; Γ `
m̌j

F E1[M0] : s′′1 , τ1 with s′′1 .t �F s′1.w. By Remark 4.4.11
we have s′′1 .t 6�F low , and so s′1.w 6�F low . Therefore, s′1.w 6�F low ,
and s′′1 .w 6�F low , which means that V is a syntactically (F, low , mj)-
high function and E1[M0] is (F, low , mj)-high. By induction hypothesis
E1[M0]

mj ∈ HF,low . Then, by Composition of High Expressions (Lemma
4.4.18), Mmj ∈ HF,low .

E[M0] = (if E1[M0] then Mt else Mf). Then by rule Cond we have that

Σ; Γ `
m̌j

F E1[M0] : s1, bool, and Σ; Γ `
m̌j

F Mt : s′1, τ1 and Σ; Γ `
m̌j

F Mf :
s′′1 , τ1 with s1.t �F s′1.w, s′1.w. By Remark 4.4.11 we have s1.t 6�F low ,
and so s′1.w, s′1.w 6�F low . By High Expressions (Lemma 4.4.9) we have
Mt

mj , Mt
mj ∈ HF,low . By induction hypothesis E1[M0]

mj ∈ HF,low .
Then, by Composition of High Expressions (Lemma 4.4.18), Mmj ∈
HF,low .

E[M0] = (E1[M0]; M1). Then by Seq we have that Σ; Γ `
m̌j

F E1[M0] : s1, τ1

and Σ; Γ `
m̌j

F M1 : s′1, τ
′
1 with s1.t �F s′1.w. By Remark 4.4.11 we have

s1.t 6�F low , and so s′1.w 6�F low . By High Expressions (Lemma 4.4.9) we
have M1

mj ∈ HF,low . By induction hypothesis E1[M0]
mj ∈ HF,low . Then,

by Composition of High Expressions (Lemma 4.4.18), Mmj ∈ HF,low .

E[M0] = (ref l,θ E1[M0]). Then by Ref we have that Σ; Γ `
m̌j

F E1[M0] : s1, θ
with s1.t �F l. By Remark 4.4.11 we have s1.t 6�F low , and so l 6�F low .
By induction hypothesis E1[M0]

mj ∈ HF,low . Then, by Composition of
High Expressions (Lemma 4.4.18), Mmj ∈ HF,low .

E[M0] = (? E1[M0]). Easy, by induction hypothesis.

102 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

E[M0] = (E1[M0] :=? M1). Then by Ass we have that Σ; Γ `
m̌j

F E1[M0] :

s1, θ ref l̄,ňk̄
and Σ; Γ `

m̌j

F M1 : s′1, τ1 with s1.t �F s′1.w and s1.t �F l. By

Remark 4.4.11 we have s1.t 6�F low , and so l̄ 6�F low and s′1.w, l 6�F low .
Hence, by High Expressions (Lemma 4.4.9) we have M1

mj ∈ HF,low . By
induction hypothesis E1[M0]

mj ∈ HF,low . Then, by Composition of High
Expressions (Lemma 4.4.18), Mmj ∈ HF,low .

E[M0] = (V :=? E1[M0]). Then by Ass we have Σ; Γ `
m̌j

F V : s1, θ ref l̄,ňk̄

and Σ; Γ `
m̌j

F E1[M0] : s′1, τ1 with s′1.t �F l̄. By Remark 4.4.11
we have s′1.t 6�F low , and so l̄ 6�F low . By induction hypothesis
E1[M0]

mj ∈ HF,low . Then, by Composition of High Expressions (Lemma
4.4.18), Mmj ∈ HF,low .

E[M0] = (flow F ′ in E1[M0]). Then by Flow we have Σ; Γ `
m̌j

F∪F ′ E1[M0] :
s1, τ1. By induction hypothesis E1[M0]

mj ∈ HF∪F ′,low , which implies
E1[M0]

mj ∈ HF,low . Then, by Composition of High Expressions (Lemma
4.4.18), we conclude that Mmj ∈ HF,low .

We now design a binary relation on expressions that uses T
mj

F,low to ensure
that high-terminating expressions are always followed by operationally high
ones. The definition of R

mj

G,F,low , abbreviated R
mj

F,low when the global flow pol-
icy is G, is given in Figure 4.9. The flow policy F is assumed to contain G.
Notice that it is a symmetric relation. In order to ensure that expressions that
are related by R

mj

F,low perform the same changes to the low memory, its defini-
tion requires that the references that are created or written using (potentially)
different values are high, and that the body of the functions that are applied
are syntactically high.

Remark 4.4.22. If M1 T
mj

F,low M2, then M1 R
mj

F,low M2.

The above remark is used to prove the following lemma.

Lemma 4.4.23. If for some mj, F and low we have that M1 R
mj

F,low M2 and
M1 ∈ HF,low , then M2 ∈ HF,low .

Rationale. Similarly to Lemma 4.4.19, the proof rests on the fact that if an
expression M1 of the form (M̄1 N̄1), (M̄1; N̄1) or (M̄1 := N̄1) is operationally
high, in spite of N̄1 not being operationally high, then M̄1 is non-resolvable.
Clauses 5’, 7’ and 11’ do not require N̄1 to be operationally high. However,
by the above observation and by Lemma 4.4.17 this implies that M̄2 is non-
resolvable. Therefore, it is sufficient to conclude that M̄2 is operationally
high.

Proof. By induction on the definition of M1 R
mj

F,low M2.

Clause 1’. Direct.

Clause 2’. Direct.

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 103

Definition 4.4.21 (R
mj

F,low). We have that M1 R
mj

F,low M2 if

Σ; Γ `
Σ(mj)
F M1 : s1, τ and Σ; Γ `

Σ(mj)
F M2 : s2, τ for some Σ, Γ, s1, s2

and τ and one of the following holds:

Clause 1’. M1
mj , M2

mj ∈ HF,low , or

Clause 2’. M1 = M2, or

Clause 3’. M1 = (if M̄1 then N̄t else N̄f) and M2 = (if M̄2 then N̄t else N̄f)
with M̄1 R

mj

F,low M̄2, and N̄t
mj , M̄f

mj ∈ HF,low , or

Clause 4’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, and

N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 are syntactically (F, low , mj)-high func-
tions, or

Clause 5’. M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, and

N̄1 R
mj

F,low N̄2, and M̄1, M̄2 are syntactically (F, low , mj)-high functions,
or

Clause 6’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 R
mj

F,low M̄2, and N̄mj ∈
HF,low , or

Clause 7’. M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2, or

Clause 8’. M1 = (refl,θ M̄1) and M2 = (ref l,θ M̄2) with M̄1 R
mj

F,low M̄2, and
l 6�F low, or

Clause 9’. M1 = (? M̄1) and M2 = (? M̄2) with M̄1 R
mj

F,low M̄2, or

Clause 10’. M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 R
mj

F,low M̄2,

and N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type θ refl,ňk
for some θ

and l such that l 6�F low, or

Clause 11’. M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) with M̄1 T
mj

F,low M̄2,

and N̄1 R
mj

F,low N̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l

such that l 6�F low, or

Clause 12’. M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with
M̄1 R

mj

F∪F ′,low M̄2.

Figure 4.9: The relation R
mj

F,low

104 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

Clause 3’. Here we have that M1 = (if M̄1 then M̄t else M̄f) and that M2 =
(if M̄2 then M̄t else M̄f) with M̄1 R

mj

F,low M̄2 and M̄
mj

t , M̄
mj

f ∈ HF,low .

Clearly we have that M̄1 ∈ HF,low , so by induction hypothesis also M̄2 ∈
HF,low . Therefore, by Composition of High Expressions (Lemma 4.4.18)
we have that M̄2 ∈ HF,low .

Clause 4’. Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, M̄1

and M̄2 are syntactically (F, low , mj)-high functions, and N̄
mj

1 , N̄
mj

2 ∈
HF,low . Clearly we have that M̄1 ∈ HF,low , so by induction hypothe-
sis also M̄2 ∈ HF,low . Therefore, by Composition of High Expressions
(Lemma 4.4.18) we have that M2 ∈ HF,low .

Clause 5’. Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, M̄1

and M̄2 are syntactically (F, low , mj)-high functions, and N̄1 R
mj

F,low N̄2.

Clearly we have that M̄1 ∈ HF,low , so by Lemma 4.4.19 also M̄2 ∈ HF,low .
We distinguish two sub-cases:

N̄1 ∈ HF,low . Then, by induction hypothesis, also N̄2 ∈ HF,low . There-
fore, by Composition of High Expressions (Lemma 4.4.18) we have
that M2 ∈ HF,low .

N̄1 /∈ HF,low . Then M̄1†, and by Lemma 4.4.17 also M̄2†. Therefore,
by Composition of High Expressions (Lemma 4.4.18) we have that
M2 ∈ HF,low .

Clause 6’. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 R
mj

F,low M̄2

and N̄mj ∈ HF,low . Clearly we have that M̄1 ∈ HF,low , so by induc-
tion hypothesis also M̄2 ∈ HF,low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M̄2 ∈ HF,low .

Clause 7’. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. Clearly

we have that M̄1 ∈ HF,low , so by Lemma 4.4.19 also M̄2 ∈ HF,low . We
distinguish two sub-cases:

N̄ ∈ HF,low . Then, M̄2, N̄ ∈ HF,low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M2 ∈ HF,low .

N̄ /∈ HF,low . Then M̄1†, and by Lemma 4.4.17 also M̄2†. Therefore,
by Composition of High Expressions (Lemma 4.4.18) we have that
M2 ∈ HF,low .

Clause 8’. Here M1 = (ref l,θ M̄1) and M2 = (ref l,θ M̄2) where M̄1 R
mj

F,low M̄2,

and l 6�F low . Clearly we have that M̄1 ∈ HF,low , so by induction hypoth-
esis also M̄2 ∈ HF,low . Therefore, by Composition of High Expressions
(Lemma 4.4.18) we have that M2 ∈ HF,low .

Clause 9’. Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 R
mj

F,low M̄2. Clearly

we have that M̄1 ∈ HF,low , so by induction hypothesis also M̄2 ∈ HF,low .
This implies that M̄2 ∈ HF,low .

Clause 10’. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 R

mj

F,low M̄2, and N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type
θ ref l,ňk

for some θ and l such that l 6�F low . Clearly we have that

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 105

M̄1 ∈ HF,low , so by induction hypothesis also M̄2 ∈ HF,low . Therefore,
by Composition of High Expressions (Lemma 4.4.18) we have that M2 ∈
HF,low .

Clause 11’. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 T

mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such

that l 6�F low , and N̄1 R
mj

F,low N̄2. Clearly we have that M̄1 ∈ HF,low , so

by Lemma 4.4.19 also M̄2 ∈ HF,low . We distinguish two sub-cases:

N̄ ∈ HF,low . Then, M̄2, N̄ ∈ HF,low . Therefore, by Composition of High
Expressions (Lemma 4.4.18) we have that M2 ∈ HF,low .

N̄ /∈ HF,low . Then M̄1†, and by Lemma 4.4.17 also M̄2†. Therefore,
by Composition of High Expressions (Lemma 4.4.18) we have that
M2 ∈ HF,low .

Clause 12’. Here M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with
M̄1 R

mj

F∪F ′,low M̄2. Clearly we have that M̄1 ∈ HF,low , so by induction

hypothesis also M̄2 ∈ HF,low . Therefore, by Composition of High Expres-
sions (Lemma 4.4.18) we have that M2 ∈ HF,low .

We have seen in Splitting Computations (Lemma 4.2.1) that two computa-
tions of the same expression can split only if the expression is about to read a
reference that is given different values by the memories in which they compute.
In Lemma 4.4.24 we saw that the relation T

mj

F,low relates the possible outcomes
of expressions that are typable with a low termination effect. Finally, from the
following lemma one can conclude that the above relation R

mj

F,low relates the
possible outcomes of typable expressions in general.

Lemma 4.4.24. If there exist Σ, Γ, s, τ such that Σ; Γ `
Σ(mj)
F E[(? al,θ)] : s, τ

with l 6�F∪dEe low, then for any values V0, V1 ∈ Val such that Σ; Γ ` Vi : θ we
have E[V0] R

mj

F,low E[V1].

Rationale. If a typable expression is about to use a value that results from
a high dereference, then the following situations can occur:
If the termination effect is low, i.e. if the value cannot influence the termi-
nation behavior of the dereference, then by Lemma 4.4.14 any two possible
outcomes are in the relation T (see Clauses 5’, 7’ and 11’).
Otherwise, if the terminating effect is not low, then the type system must
ensure that no low writes follow the high dereference (see Clauses 4’, 6’
and 10’). This is partly guaranteed by conditions of the form ‘s.t �F s′.w’,
where s is the security effect of a subprogram that is performed before an-
other subprogram whose security effect is s′. More precisely, conditions are
imposed when the dereferenced value is used: to determine a reference that
is being assigned to (s.t �F s′.w in rule Ass); to determine a function that
is being applied (s.t �F s′′.w in rule App); to evaluate the first component
of a sequential composition (s.t �F s′.w in rule Seq).
The relation R requires that the references that are created or written using

106 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

the high dereferenced value are high (see Clauses 8’, 10’ and 11’), and that
function applications that use the high dereferenced value are syntactically
high. This is partly guaranteed by conditions of the form ‘s.t �F l′, where s
is the subprogram that performs the high dereference, and l is the security
level of the reference that is created or written. More precisely, conditions
are imposed when the dereferenced value is used: to create a reference
(s.r �F l in rule Ref); to determine a reference that is being assigned to
(s.r �F l in rule Ass); to determine a value that is being assigned (s′.r �F l
in rule Ass); to determine a function that is being applied (s.r �F s′.w in
rule App); to determine an argument to which a function is being applied
(s′′.r �F s′.w in rule App).
When the high dereferenced value is used in the predicate of a conditional,
the branches should be operationally high (see Clause 3’). This is guar-
anteed by the type system with the condition s.r �F st.w, sf .w in rule
Cond.

Proof. By induction on the structure of E.

E[(? al,θ)] = (? al,θ). We have V0 R
mj

F,low V1 by Clause 1’.

E[(? al,θ)] = (E1[(? al,θ)] M). By rule App we have Σ; Γ `
Σ(mj)
F

E1[(? al,θ)] : s̄, τ̄
s̄′

−−−−−→
F,Σ(mj)

σ̄ and Σ; Γ `
Σ(mj)
F M : s̄′′, τ̄ with s̄.r �F s̄′.w

and s̄.t �F s̄′′.w. By Lemma 4.4.2, we have l � s̄.r. Therefore
l �F s̄′.w. Since by hypothesis l 6�F∪dE1e low (therefore l 6�F low),
then s̄′.w 6�F low , that is E1[(? al,θ)] is a syntactically (F, low , mj)-high
function. By Lemma 4.4.6, the same holds for E1[V0] and E1[V1]. By
induction hypothesis we conclude that E1[V0] R

mj

F,low E1[V1].

s̄.t 6�F low . Then s̄′′.w 6�F low (and also s̄′′.w 6� low) so by High Ex-
pressions (Lemma 4.4.9) we have Mmj ∈ HF,low . Therefore, we
conclude E[V0] R

mj

F,low E[V1] by Clause 4’ and Lemma 4.4.6.

s̄.t �F low . Then by Lemma 4.4.14 we have E1[V0] T
mj

F,low E1[V1]. There-

fore, since M R
mj

F,low M by Clause 2’, we conclude that E[V0] R
mj

F,low

E[V1] by Clause 5’ and Lemma 4.4.6.

E[(? al,θ)] = (V E1[(? al,θ)]). By rule App we have that Σ; Γ `
Σ(mj)
F V :

s̄, τ̄
s̄′

−−−−−→
F,Σ(mj)

σ̄ and Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄′′, τ̄ with s̄′′.r �F s̄′.w. By

Lemma 4.4.2, we have l � s̄′′.r, and so l �F s̄′.w. Since by hypothesis
l 6�F∪dE1e low (therefore l 6�F low), then s̄′.w 6�F low , that is V is a
syntactically (F, low , mj)-high function. By Clause 1 we have V T

mj

F,low

V . By induction hypothesis E1[V0] R
mj

F,low E1[V1]. Therefore we conclude

that E[V0] R
mj

F,low E[V1] by Clause 5’ and Lemma 4.4.6.

E[(? al,θ)] = (if E1[(? al,θ)] then Mt else Mf). By Cond we have that

Σ; Γ `
Σ(mj)
F E1[(? al,θ)] : s̄, bool, and Σ; Γ `

Σ(mj)
F Mt : s̄t, τ̄ and

Σ; Γ `
Σ(mj)
F Mf : s̄f , τ̄ with s̄.r �F s̄t.w, s̄f .w. By Lemma 4.4.2, we

have l � s̄.r and so l �F s̄t.w, s̄f .w. Since by hypothesis l 6�F∪dE1e low

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 107

(therefore l 6�F low), then s̄t.w 6�F low and s̄f .w 6�F low . This im-
plies that Mt

mj , Mf
mj ∈ HF,low . By induction hypothesis E1[V0] R

mj

F,low

E1[V1]. Therefore we conclude that E[V0] R
mj

F,low E[V1] by Clause 3’ and
Lemma 4.4.6.

E[(? al,θ)] = (E1[(? al,θ)]; M). By Seq we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄ and Σ; Γ `
Σ(mj)
F M : s̄′, τ̄ ′ with s̄.t �F s̄′.w.

s̄.t 6�F low . Then s̄′.w 6�F low so by High Expressions (Lemma 4.4.9)
we have Mmj ∈ HF,low . By induction hypothesis E1[V0] R

mj

F,low

E1[V1]. We then conclude that E[V0] R
mj

F,low E[V1] by Clause 6’ and
Lemma 4.4.6.

s̄.t �F low . Then by Lemma 4.4.14 we have E1[V0] T
mj

F,low E1[V1]. There-
fore, we conclude using Clause 7’ and Lemma 4.4.6.

E[(? al,θ)] = (ref l̄,θ̄ E1[(? al,θ)]). By Ref we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄ with s̄.r = s.r �F l̄ and s̄.t = s.t. Therefore, since l 6�F∪E low implies
l 6�F∪E1

low , then by induction hypothesis we have E1[V0] R
mj

F,low E1[V1].

By Lemma 4.4.2 we have l � s.r, so s.r 6�F low . Therefore, l̄ 6�F low , and
we conclude by Lemma 4.4.6 and Clause 8’.

E[(? al,θ)] = (? E1[(? al,θ)]). By rule Der we have Σ; Γ `
Σ(mj)
F E1[(? al,θ)] :

s̄, τ̄ . By induction hypothesis E1[V0] T
mj

F,low E1[V1]. We conclude by
Lemma 4.4.6 and Clause 9’.

E[(? al,θ)] = (E1[(? al,θ)] :=? M). By rule Ass we have that Σ; Γ `
Σ(mj)
F

E1[al,θ] : s̄, θ̄ ref l̄,ˇ̄nk
with s̄.r �F l̄ and s̄.t �F s̄′.w. By Lemma 4.4.2 we

have l � s.r, so s.r 6�F low and so l̄ 6�F low .

s̄.t 6�F low . Then s̄′.w 6�F low so by High Expressions (Lemma 4.4.9)
we have Mmj ∈ HF,low . By induction hypothesis E1[V0] R

mj

F,low

E1[V1]. We then conclude that E[V0] R
mj

F,low E[V1] by Clause 10’ and
Lemma 4.4.6.

s̄.t �F low . Then by Lemma 4.4.14 we have E1[V0] T
mj

F,low E1[V1]. There-
fore, we conclude using Lemma 4.4.6, Clause 11’ and Clause 2’ (re-
garding M).

E[(? al,θ)] = (V :=? E1[(? al,θ)]). By rule Ass we have that Σ; Γ `
Σ(mj)
F V :

s̄, θ̄ ref l̄,ˇ̄nk
, Σ; Γ `

Σ(mj)
F E1[al,θ] : s̄′, θ with s̄′.r �F l̄. By Lemma 4.4.2 we

have l � s̄′.r, so l �F l̄. Then, we must have l̄ 6�F low , since otherwise
l �F∪E low . By Clause 1 we have that V T

mj

F,low V , and by induction

hypothesis E1[V0] R
mj

F,low E1[V1]. We then conclude by Lemma 4.4.6 and
Clause 11’.

E[(? al,θ)] = (flow F ′ in E1[(? al,θ)]). By rule Flow we have Σ; Γ `
Σ(mj)
F∪F ′

V : s, τ . By induction hypothesis E1[V0] T
mj

F∪F ′,low E1[V1], so we conclude
by Lemma 4.4.6 and Clause 12’.

108 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

We now state a crucial result of the paper: the relation R
mj

F,low is a sort of
“strong bisimulation”.

Proposition 4.4.25 (Strong Bisimulation for Typable Low Threads).

If M1 R
mj

F,low M2 and M1 /∈ HF,low and 〈M1
mj , T1, S1〉

Nnk

−−−→
F ′

〈M ′
1
mj , T ′

1, S
′
1〉,

with 〈T1, S1〉 =F∪F ′,low 〈T2, S2〉 such that n is fresh for T2 if n ∈ dom(T ′
1 − T1)

and a is fresh for S2 if al,θ ∈ dom(S′
1 − S1), then there exist T ′

2, M ′
2 and

S′
2 such that 〈M2

mj , T2, S2〉
Nnk

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 R
mj

F,low M ′
2 and

〈T ′
1, S

′
1〉 =F,low 〈T ′

2, S
′
2〉.

Rationale. Assuming that M1 (and M2) are not operationally high allows
us to conclude in many cases that a certain subexpression can compute,
using Composition of High Expressions (Lemma 4.4.18). It applies in par-
ticular to potentially suspensive expressions.
If M

mj

1 and M
mj

2 are equal (related by T using Clause 2), then we can reject
the case where mj is accessing a high remote reference, since by Potentially
Suspensive Transitions (Lemma 4.4.20) we would have M

mj

1 operationally
high. We can then proceed as in Strong Bisimulation for Low-Terminating
Threads (4.4.15).

Proof. By induction on the definition of R
mj

F,low . We use Subject Reduction
(Theorem 4.4.7) (Theorem 4.4.7) to guarantee typability (with the same type)
for mj , low and F , which is a requirement for being in the R

mj

F,low relation.
We also use the Strong Bisimulation for Low Terminating Threads Lemma
(Lemma 4.4.15)

Clause 1’. This case is excluded by assumption.

Clause 2’. Here M1 = M2. If M = E[(nk.ul,θ :=? V)] or M = E[(? nk.ul,θ)]
with jgk 6�F low and n 6= m, then by Potentially Suspensive Transitions
(Lemma 4.4.20) we have that Mmj ∈ HF,low , which is rejected by as-
sumption. Otherwise, the proof is analogous to the corresponding case in
Strong Bisimulation for Low-Typable Threads (Lemma 4.4.15): By Guar-
anteed Transitions (Lemma 4.4.10) there exist T ′

2, M ′
2 and S′

2 such that

〈M
mj

2 , T2, S2〉
Nnk

−−−→
F ′

〈M
′mj

2 , T ′
2, S

′
2〉 with 〈T ′

1, S
′
1〉 =F∪F ′,low 〈T ′

2, S
′
2〉.

M ′

2
= M ′

1
. Then we have M ′

1 R
mj

F,low M ′
2, by Clause 2’ and Subject Re-

duction (Theorem 4.4.7).

M ′

2
6= M ′

1
. Then by Splitting Computations (Lemma 4.2.1) we have that

(Nnk = ()) and there exists E and al,θ such that F ′ = dEe, M ′
1 =

E[S1(al,θ)], M ′
2 = E[S2(al,θ)], 〈T ′

1, S
′
1〉 = 〈T1, S1〉 and 〈T ′

2, S
′
2〉 =

〈T2, S2〉. Since S1(al,θ) 6= S2(al,θ), we have l 6�F∪F ′ low . Therefore,
M ′

1 R
mj

F,low M ′
2, by Lemma 4.4.24 above.

Clause 3’. Here we have that M1 = (if M̄1 then M̄t else M̄f) and that M2 =
(if M̄2 then M̄t else M̄f) with M̄1 R

mj

F,low M̄2 and M̄
mj

t , M̄
mj

f ∈ HF,low .

We can assume that M̄
mj

1 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 109

Composition of High Expressions (Lemma 4.4.18). Therefore, M ′
1 =

(if M̄ ′
1 then M̄t else M̄f) with 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We

use the induction hypothesis, Clause 3’ and Subject Reduction (Theorem
4.4.7) to conclude.

Clause 4’. Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 R
mj

F,low M̄2, M̄1

and M̄2 are syntactically (F, low , mj)-high functions, and N̄
mj

1 , N̄
mj

2 ∈
HF,low . We can assume that M̄1 can compute, since otherwise M

mj

1 ∈
HF,low by Composition of High Expressions (Lemma 4.4.18). Therefore,

M ′
1 = (M̄ ′

1 N̄1) with 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the in-

duction hypothesis, Clause 4’ and Subject Reduction (Theorem 4.4.7) to
conclude.

Clause 5’. Here M1 = (M̄1 N̄1) and M2 = (M̄2 N̄2) with M̄1 T
mj

F,low M̄2, M̄1

and M̄2 are syntactically (F, low , mj)-high functions, and N̄1 R
mj

F,low N̄2.
We distinguish two sub-cases:

M̄1 can compute. In this case exists M̄ ′
1 such that 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use Lemma 4.4.15, Subject Reduction (Theorem

4.4.7) and Clause 5’ to conclude.

M̄1 is a value. Then by Remark 4.4.13, M̄2 ∈ Val . We can assume that
N̄

mj

1 , N̄
mj

2 /∈ HF,low , since otherwise M
mj

1 ∈ HF,low by Composition
of High Expressions (Lemma 4.4.18). Then, N̄1 can compute, and

so there exist N̄ ′
1 such that 〈N̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉 with

M ′
1 = (M̄1 N̄ ′

1). We use the induction hypothesis, Clause 5’ and
Subject Reduction (Theorem 4.4.7) to conclude.

Clause 6’. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) where M̄1 R
mj

F,low M̄2

and N̄mj ∈ HF,low . We can assume that M̄
mj

1 /∈ HF,low , since oth-
erwise M

mj

1 ∈ HF,low by Composition of High Expressions (Lemma

4.4.18). Therefore, we have M ′
1 = (M̄ ′

1; N̄) with 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 6’ and Subject

Reduction (Theorem 4.4.7) to conclude.

Clause 7’. Here M1 = (M̄1; N̄) and M2 = (M̄2; N̄) with M̄1 T
mj

F,low M̄2. We
distinguish two sub-cases:

M̄1 can compute. In this case exists M̄ ′
1 such that 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use Lemma 4.4.15, Subject Reduction (Theorem

4.4.7) and Clause 7’ to conclude.

M̄1 is a value. Then M ′
1 = N̄ , F = ∅, Nnk = () and 〈T ′

1, S
′
1〉 = 〈T1, S1〉.

By Remark 4.4.13, M̄2 ∈ Val . Then, we have 〈M
mj

2 , T1, S1〉
Nnk

−−−→
F ′

〈N̄mj , T ′
1, S

′
1〉. We conclude using Lemma 4.4.15 and Clause 2’.

Clause 8’. Here M1 = (ref l,θ M̄1) and M2 = (refl,θ M̄2) where M̄1 R
mj

F,low M̄2,

and l 6�F low . We can assume that M̄
mj

1 /∈ HF,low , since otherwise

110 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

M
mj

1 ∈ HF,low by Composition of High Expressions (Lemma 4.4.18).

Then, M̄1 can compute, and M ′
1 = (ref l,θ M̄1) with 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Subject Reduction (The-

orem 4.4.7) and Clause 8’ to conclude.

Clause 9’. Here M1 = (? M̄1) and M2 = (? M̄2) where M̄1 R
mj

F,low M̄2. We

know that M̄1 can compute, since otherwise M1
mj ∈ HF,low . Then, we

have 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis,

Subject Reduction (Theorem 4.4.7) and Clause 9’ to conclude.

Clause 10’. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 R

mj

F,low M̄2, and N̄
mj

1 , N̄
mj

2 ∈ HF,low , and M̄1, M̄2 both have type

θ ref l,ňk
for some θ and l such that l 6�F low . We can assume that M̄1 can

compute, since otherwise M
mj

1 ∈ HF,low by Composition of High Expres-
sions (Lemma 4.4.18). Therefore, M ′

1 = (M̄ ′
1 :=? N̄1) with 〈M̄

mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉. We use the induction hypothesis, Clause 10’ and

Subject Reduction (Theorem 4.4.7) to conclude.

Clause 11’. Here we have M1 = (M̄1 :=? N̄1) and M2 = (M̄2 :=? N̄2) where
M̄1 T

mj

F,low M̄2, and M̄1, M̄2 both have type θ refl,ňk
for some θ and l such

that l 6�F low , and N̄1 R
mj

F,low N̄2. We can assume that M1 cannot be a

redex, with M̄1, N̄1 ∈ Val , since otherwise M
mj

1 ∈ HF,low by Composition
of High Expressions (Lemma 4.4.18). There are two cases to consider:

M̄1 can compute. Then we have 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈M̄
′mj

1 , T ′
1, S

′
1〉.

We use Lemma 4.4.15, Clause 11’ and Subject Reduction (Theorem
4.4.7) to conclude.

M̄1 is a value but N̄1 can compute. Then by Remark 4.4.13, M̄2 ∈

Val . Then we have 〈N̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′

〈N̄
′mj

1 , T ′
1, S

′
1〉. We conclude

using induction hypothesis, Clause 11’ and Subject Reduction (The-
orem 4.4.7).

Clause 12’. Here M1 = (flow F ′ in M̄1) and M2 = (flow F ′ in M̄2) with
M̄1 R

mj

F∪F ′,low M̄2. We can assume that M̄
mj

1 /∈ HF∪F ′,low , since oth-

erwise M̄
mj

1 /∈ HF,low and by Composition of High Expressions (Lemma

4.4.18) M
mj

1 ∈ HF,low . Therefore 〈M̄
mj

1 , T1, S1〉
Nnk

−−−→
F ′′

〈M̄
′mj

1 , T ′
1, S

′
1〉 with

F ′ = F̄ ∪ F ′′. By induction hypothesis, we have that 〈M̄
mj

2 , T2, S2〉
Nnk

−−−→
F ′′

〈M̄
′mj

2 , T ′
2, S

′
2〉, and that M ′

1 R
mj

F∪F̄ ,low
M ′

2 and also 〈T ′
1, S

′
1〉 =F∪F̄ ,low

〈T ′
2, S

′
2〉. Notice that 〈T ′

1, S
′
1〉 =F,low 〈T ′

2, S
′
2〉. We use Subject Reduction

(Theorem 4.4.7) and Clause 12’ to conclude.

Behavior of Sets of Typable Threads

To conclude the proof of the Soundness Theorem, it remains to exhibit an
appropriate bisimulation on pools of threads.

4.4. TYPING NON-DISCLOSURE FOR NETWORKS 111

The definition of R?
G,F,low , abbreviated R

mj

F,low when the global flow policy
is G, is given in Figure 4.9. The flow policy F is assumed to contain G.

Definition 4.4.26 (R?
G,low). The relation R?

low is inductively defined as follows:

a)
Mmj ∈ HG,low

{Mmj} R?
G,low ∅

b)
Mmj ∈ HG,low

∅ R?
G,low {Mmj}

c)
M1 R

mj

G,low M2

{M1
mj} R?

G,low {M2
mj}

d)
P1 R?

G,low P2 Q1 R?
G,low Q2

P1 ∪ Q1 R?
G,low P2 ∪ Q2

Proposition 4.4.27. The relation R?
G,low is a (G, low)-bisimulation.

Rationale. Operationally high threads can be added to any pool of threads
without affecting its capability of being bisimilar to another pool of threads.
This results from the fact that threads in the set H can only generate threads
that are in H, and none of them can perform changes to the low memory.
Therefore, any step that is performed by an operationally high thread can
be simulated by any pool of threads by doing nothing.
For each of the pairs of threads that are related by R?, we use Strong
Bisimulation for Typable Low Threads (Proposition 4.4.25), and Clause 2’
to prove that the expressions that are related by R

mj

G,low can simulate each
other’s steps, and that any threads that they eventually create are related
by R?.

Proof. First, it is easy to see, by induction on the definition of R?
G,low , that this

relation is symmetric. Now we show, by induction on the definition of R?
G,low ,

that if P1 R?
G,low P2 and 〈P1, T1, S1〉 −→

F
〈P ′

1, T
′
1, S

′
1〉, n is fresh for T2 if n ∈

dom(T ′
1−T1) and a is fresh for S2 if al,θ ∈ dom(S′

1−S1), and if 〈T1, S1〉 =F∪G,low

〈T2, S2〉, then there exist T ′
2, P ′

2 and S′
2 such that 〈P2, T2, S2〉� 〈P ′

2, T
′
2, S

′
2〉 and

P ′
1 R?

G,low P ′
2 and 〈T ′

1, S
′
1〉 =F∪G,low 〈T ′

2, S
′
2〉.

Rule a). Then P1 = {Mmj}, P2 = ∅, and Mmj ∈ HG,low . In this case

〈Mmj , T1, S1〉
()
−→
F

〈M ′mj , T ′
1, S

′
1〉, with P ′

1 = {M ′mj , Nnk}, where we

have M
′mj

1 , Nnk ∈ HG,low and 〈T ′
1, S

′
1〉 =G,low 〈T1, S1〉. We have that

〈P2, T2, S2〉� 〈P2, T2, S2〉 and by transitivity 〈T ′
1, S

′
1〉 =G,low 〈T2, S2〉. By

Rule a) we have {M
′mj

1 } R?
G,low ∅ and {Nnk} R?

G,low ∅. Therefore, by
Rule d), we have P ′

1 R?
G,low ∅.

Rule c). Then P1 = {M1
mj} and P2 = {M2

mj}, and we have M1 R
mj

G,low M2.

By the case for Rule a), we have that P ′
1 R?

G,low ∅ and 〈T ′
1, S

′
1〉 =F∪G,low

〈T ′
2, S

′
2〉. Since M

mj

1 ∈ HG,low , then by Lemma 4.4.23 also M
mj

2 ∈ HG,low ,
so by Rule b) ∅ R?

G,low P2. Then, by Rule d), we have P ′
1 R?

G,low P2. If

M
mj

1 /∈ HG,low , there are two cases to be considered:

P ′

1
= {M ′

1

mj }. Then 〈M1
mj , T1, S1〉

()
−→
F

〈M ′
1
mj , T ′

1, S
′
1〉 and so by Strong

Bisimulation for Typable Low Threads (Proposition 4.4.25) there ex-

ist T ′
2, M ′

2 and S′
2 such that 〈M2

mj , T2, S2〉
()
−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with

112 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

M ′
1 R

mj

G,low M ′
2 and 〈T ′

1, S
′
1〉 =G,low 〈T ′

2, S
′
2〉. Then, by Rule c), we

have {M1
mj} R?

G,low {M2
mj}.

P ′

1
= {M ′

1

mj , Nnk}. Then we have 〈M1
mj , T1, S1〉

Nnk

−−−→
F

〈M ′
1
mj , T ′

1, S
′
1〉

and again by Strong Bisimulation for Typable Low Threads (Proposi-

tion 4.4.25) there exist T ′
2, M ′

2 and S′
2 such that 〈M2

mj , T2, S2〉
Nnk

−−−→
F ′

〈M ′
2
mj , T ′

2, S
′
2〉 with M ′

1 R
mj

G,low M ′
2 and 〈T ′

1, S
′
1〉 =G,low 〈T ′

2, S
′
2〉.

Then, by Rule c) we have {M1
mj} R?

G,low {M2
mj}. By Subject

Reduction (Theorem 4.4.7), by Lemma 4.4.4, and by Clause 2’ we
have N Rnk

G,low N , and so by Rule c) we have {Nnk} R?
G,low {Nnk}.

Therefore, by Rule d), we have {M1
mj , Nnk} R?

G,low {M2
mj , Nnk}.

Rule d). Then P1 = P̄1 ∪ Q̄1 and P2 = P̄2 ∪ Q̄2, with P̄1 R?
G,low P̄2 and

Q̄1 R?
G,low Q̄2. Suppose that 〈P̄1, T1, S1〉 −→

F
〈P̄ ′

1, T
′
1, S

′
1〉 – the case

where Q̄1 reduces is analogous. By induction hypothesis, there exist T ′
2,

P̄ ′
2 and S′

2 such that 〈P̄2, T2, S2〉 � 〈P̄ ′
2, T

′
2, S

′
2〉 with P̄ ′

1 R?
G,low P̄ ′

2 and

〈T ′
1, S

′
1〉 =G,low 〈T ′

2, S
′
2〉. Then, 〈P̄2 ∪ Q̄2, T2, S2〉� 〈P̄ ′

2 ∪ Q̄2, T
′
2, S

′
2〉, and

by Rule d) we have P̄ ′
1 ∪ Q̄1 R?

G,low P̄ ′
2 ∪ Q̄2.

We now state the main result of this chapter:

Theorem 4.4.28 (Soundness for Non-disclosure for Networks.). Consider a
pool of threads P and a global flow policy G. If for all Mmj ∈ P there exist Σ,

Γ, s and τ such that Σ; Γ `
Σ(mj)
G,G M : s, τ , then P satisfies the Non-disclosure

for Networks policy with respect to G.

Proof. By Clause 2’ of Definition 4.4.21, for all choices of security levels low ,
we have that M R

mj

G,Glow M . By Rule c) of Definition 4.4.26 we then have
{Mmj} R?

G,low {Mmj}. Since this is true for all Mmj ∈ P , by Rule d) we have
that P R?

G,low P . By Proposition 4.4.27 we conclude that P ≈G,low P .

The above result is compositional, in the sense that it is enough to verify
the typability of each thread separately in order to ensure non-disclosure for the
whole network. The global flow policy G can be taken as the “intersection” of
the flow policies of all the threads in the network. As was observed earlier this
operation seems too costly and complex to be used in a general case. The result
can be conveniently approximated by the empty flow relation, which gives the
minimum flow security pre-lattice that all threads must satisfy.

4.5 Related Work

To the best of our knowledge, this thesis is the first to study insecure infor-
mation flows that are introduced by mobility in the context of a distributed
language with states. Moreover, it seems to be the first to consider the usage
of declassification in a distributed scenario.

A first step towards the study of confidentiality for distributed systems is to
study a language with concurrency. As we have mentioned earlier in Section 2.5,
Smith and Volpano [Smith & Volpano, 1998] considered non-interference for an

4.5. RELATED WORK 113

imperative multi-threaded language. They recognized termination leaks as an
issue that is specific to concurrent settings, but that is not problematic in se-
quential settings. This line of study was pursued by considering increasingly
expressive languages and refined type systems [Smith, 2001; Boudol & Castel-
lani, 2002; Honda & Yoshida, 2002; Almeida Matos & Boudol, 2005; Boudol,
2005b]. In the setting of synchronous concurrent systems, new kinds of termi-
nation leaks – the suspension leaks – are to be handled. A few representative
studies include [Sabelfeld, 2001; Almeida Matos et al., 2004]. The discussion on
related work will proceed by focusing on type-based approaches for enforcing
information flow control policies in settings with distribution and mobility.

4.5.1 Distribution

Already in a distributed setting, but where interaction between domains is re-
stricted to the exchange of values (no code mobility), Mantel and Sabelfeld
[Mantel & Sabelfeld, 2004; Sabelfeld & Mantel, 2002] have provided a type sys-
tem for preserving confidentiality for different kinds of channels established over
a publicly observable medium.

Sharing our underlying aim of studying the distribution of code under decen-
tralized security policies, Zdancewic et al. [Zdancewic et al., 2002] have however
set the problem in a very different manner. They have considered a distributed
system of potentially corrupted hosts and of principals that have different levels
of trust on these hosts. They then proposed a way of partitioning the program
and distributing the resulting parts over hosts that are trusted by the concerned
principals.

4.5.2 Mobility

Progressing rather independently we find a field of work on mobile calculi that
are purely functional concurrent languages. In [Kırlı, 2000], mobility of functions
as values is studied for a deterministic language with only two sites. To mention
a few representative works on process calculi, we have Honda et al.’s paper on
the π-calculus [Honda et al., 2000], and Hennessy and Riely’s study for the
security π-calculus [Hennessy & Riely, 2002].

Castagna, Bugliesi and Craffa seem to have been the first to approach the
study of non-interference for a language with distribution and mobility [Crafa
et al., 2002]. This work was done for Boxed Ambients [Bugliesi et al., 2001],
a purely functional process calculus derived from Mobile Ambients [Cardelli &
Gordon, 2000] that the authors had previously used as a framework for dis-
tributed resource access security [Bugliesi et al., 2001]. Non-interference is
stated by means of a contextual equivalence and a sound type system is pre-
sented. However, a unique lattice representing the flow policy was considered,
and no declassification mechanisms are contemplated.

Distribution in Boxed Ambients (abbreviated BA) is hierarchical, where mo-
bility consists of having ambients (n) enter or exit the boundaries of neighboring
or parent ambients, (respectively by means of the ‘in n’ and ‘out n’ primitives).
Communication can occur locally via an unnamed channel (‘〈M〉’ for output of
M , ‘(x)P ’ for an input followed by P), or across boundaries, between parent

114 CHAPTER 4. NON-DISCLOSURE FOR MOBILE CODE

and child, via a channel with the child’s name (‘(x)nP ’ and ‘〈M〉nP ’ for com-
munication with the child n, ‘(x)↑P ’ and ‘〈M〉↑P ’ for communication with the
parent). The execution of both the communication and migration instructions
depend on the presence of ambients at certain (neighboring) positions, and are
otherwise suspended (in the same sense that our dereference and assignment
operations suspend in the absence of the thread they belong to).

Since ambient names correspond simultaneously to places of computation,
to subjects of migration, and to resources for passing values, and because it is
purely functional, it is hard to establish a correspondence between BA and the
language in this thesis. However, some analogies can be drawn at this point.
Roughly speaking, security levels are associated to ambient names (we write nl

for an ambient n that has security level l), as they are here to references and
threads. Similarly to this thesis, the knowledge of the position of an ambient
of level l is considered as l-level information. Message passing between parent
and child involves a synchronization that respects the position of those two
“domains”, as it happens here for the accesses to foreign references. Migration
is also identified as a way of revealing the position of “high-ambients” to lower
levels, though the dangerous usages of migration are rejected rather differently.
To facilitate the comparison, we will now exhibit a couple of programs (from
[Crafa et al., 2002]) that are insecure in BA, and explain them in light of the
concepts that were used in this thesis. Comparisons on the security property
and type system are left for future work.

In the following insecure program, the high ambient n is located inside the
low ambient m. Ambient m should perform an input on a channel that belongs
to n, and then output some expression M over its outward channel. Ambient n
should output expression N over its outward channel. At the top level there is an
expression that can read over a channel that belongs to m and then perform P .

mL[(x)nH .〈M〉↑ ‖ nH [〈N〉↑]] ‖ (x)mL .P (4.23)

Notice that P can only be performed after a communication has been established
over mL’s channel. In turn, this can only happen after a communication has
been established in m over nH ’s channel. Therefore, the execution of P depends
on the transmission of information about the location of the high ambient n,
over a low channel.

In another example, migration plays an important role. Two ambients m
and n are placed at the top level, besides an expression that is willing to receive
a value through a channel that belongs to m, before it can execute P . Ambient
m contains instructions to first enter into n and then to exit it, after which
expression M should be outputted over its outward channel.

(x)mL .P ‖ mL[in nH .out nH .〈M〉↑] ‖ nH[] (4.24)

Also in this example, P can only be performed after a communication has been
established over (low) m’s channel. This can only happen if the high level
ambient n is located at the same level as the low ambient m. Therefore, the
execution of P depends on the transmission of information about the location
of the high ambient n, over a low channel.

Chapter 5

Conclusion

In this final chapter we summarize the main technical contributions of this
thesis, and give some perspective on future work. We end with some concluding
remarks on the main ideas introduced in this thesis.

5.1 Main Contributions and Future Work

Security Policies We have addressed the issue of what is a secure program
from the point of view of confidentiality in information flow. We studied two
main security policies: the classical non-interference property, that determines
the absence of information flows that are insecure according to a static and
global ordering of security levels and a new non-disclosure property, that deter-
mines the absence of information flows that are insecure according to a dynam-
ically chosen ordering of security levels that is valid at that point.

Non-interference and non-disclosure policies were defined in terms of bisim-
ulations, naturally based on small step transitions. This provides the necessary
refinement to, on one hand, scrutinize the changes in memory that occur at
each computation step (necessary in concurrent settings), and on the other, to
pinpoint the valid flow policy (necessary to restrict the scope of the flow policy
declarations) by decorating the small step semantics. We show that the or-
derings of security levels can be expressed in terms of simple flow policies, like
relations on principals.

We believe that non-disclosure is a natural generalization of classical non-
interference, and that the idea of using bisimulations on labeled small step
semantics to state a security property that reflects the local nature of declassi-
fication could perhaps be used in other settings. For instance, following Biba’s
remark that integrity is in a sense dual to confidentiality (see [Li et al., 2003;
Myers & Liskov, 1997]), we could design a similar framework for the integrity
aspect of security, possibly including downgrading facilities like the “endorse”
constructs of [Li et al., 2003; Myers et al., 2004].

Computation Models We have directed our study towards two main con-
currency paradigms. One, in a local setting, where threads can be created
dynamically and execute in parallel in the same computational medium. An-
other, in a distributed setting with thread migration, where threads execute in

115

116 CHAPTER 5. CONCLUSION

different domains, and the relative location of threads and resources determines
the circumstances in which they can execute. In the latter, we found that new
forms of security leaks – the migration leaks – could be encoded. Some resem-
blance was found with the leaks of information which can be caused by the
position of threads in an ambient-like network [Crafa et al., 2002]. Indeed, in
that work, the visibility of threads in a network is also considered to be subject
to confidentiality requirements. This seems to indicate that our results are not
confined to our particular network model.

We purposely chose a simple model of mobility, sufficient to expose the prin-
ciples behind migration leaks1. Nevertheless, one can expect more complex
models of global computing to have interesting impacts on the study of infor-
mation flow control. For instance, having a more general form of migration that
can be induced by a thread upon another (objective migration) is likely to bring
out new ways of expressing migration leaks. On the other hand, introducing
membrane computation [Boudol, 2005a] as a prerequisite for a thread to enter
a domain could provide for new ways of controlling information leaks.

One prominent research direction in models for global computing addresses
the failure-prone nature of networks. As was pointed out in [Boudol, 2004], the
principles of reactive systems seem particularly suitable for providing forms of
reaction to failures. The ULM language that was presented there shows how this
can be done. It could be interesting to see the impact of similarly integrating
the reactive principles in the model that we used in this thesis.

Language Features The languages upon which we performed our study
are simple but expressive. Our starting point was an imperative higher-order
lambda-calculus with thread and reference creation. The core language was then
enriched with a flow declaration construct that allows a dynamic customization
of the security ordering. A location-aware version of the core language, with a
migration instruction that changes the position of a thread and its references,
was considered last.

Our declassification mechanism – the flow declaration construct – can be
made even more expressive. In particular it would be interesting to extend the
language in order to have first-class security levels [Tse & Zdancewic, 2004;
Zheng & Myers, 2004]. Moreover, the idea of using a construct for dynamically
introducing flow policies can certainly be applied to various other programming
paradigms. Conversely, one could think of restricting the usage of the flow
declaration construct in some sensible ways, and adapt the non-disclosure policy
accordingly.

Enforcement Mechanisms To enforce the security policies on the programs
of our languages we have presented new type and effect systems that are mo-
tivated by rather similar principles. In particular, the one of Chapter 3 offers
a variant of [Almeida Matos & Boudol, 2005] that restricts declassification to
occur by means of declassification operations that are contained within a flow

1The choice of having references statically linked to threads, rather than to domains [Ravara
et al., 2003] is justified by the fact that the latter setting would not have raised the problem of
the confidentiality of data that is transported along with threads. Furthermore, that setting
can be mimicked in the one presented here, by attributing each of the domains’ references to
a thread that does not leave the corresponding domain, and by having other threads (that
would not own any reference) move between domains.

5.2. FINAL REMARKS 117

declaration. We have thus highlighted the distinction between our new declassi-
fication paradigm and the more common declassification by value downgrading.

The type soundness proofs, which we explained in detail for the distributed
language and for the non-disclosure policy, are also closely related. We have thus
reasons to believe that the type soundness proof mechanism, which is based on
the one given in [Almeida Matos & Boudol, 2005] (in turn related to the one
for [Boudol & Castellani, 2002]), can be applied to other settings as well.

Some obvious topics for improvements of the type and effect system could
be to incorporate polymorphism and type inference [Myers, 1999; Pottier &
Simonet, 2003]. Further refinements could perhaps be obtained by considering a
richer set of effects, including for instance the creation and deletion of references,
the creation of threads, and more generally any action that modifies the context
of an expression in the (abstract) machine that evaluates it.

5.2 Final Remarks

The Flow Declaration – Yet Another Declassification Mechanism?

As we have seen in the discussions on related work of Chapter 3 (see Section 3.5),
proposals of declassification mechanisms abound in the literature. More than
providing just another declassification mechanism, here we have suggested a way
to face the “challenge [of] determining what the nature of a downgrading mech-
anism should be and what kinds of security guarantees it permits” [Zdancewic,
2004]. The key idea is that before thinking of how to control the usage of declas-
sification, one should possess a good framework to express it. We believe that
the declassification framework that was presented in this thesis is attractive for
the following reasons:

• It provides a simple, yet flexible and powerful declassification mechanism
– the flow declaration. In particular, it does not incorporate restrictions
that go beyond the basic purpose of expressing declassification.

• It includes a security policy – non-disclosure – with satisfactory seman-
tical properties. We point out two such properties that are among those
suggested as “sanity checks” for security policies in [Sabelfeld & Sands,
2005]: semantic consistency, meaning that programs that are semantically
equivalent are coherently classified as secure or insecure; monotonicity of
security, meaning that, on one hand, non-disclosure is equivalent to non-
interference for programs that do not use declassification, while on the
other hand, programs do not become insecure when flow declarations are
added to them.

• It is easily extendable to other languages and settings. In particular our
non-disclosure property is extensional, i.e. defined in terms of program
semantics, independently of the particularities of the language.

• It provides a sound technique for rejecting in a reasonably precise way all
programs that do not satisfy the security property.

The first of the above merits is perhaps the strongest contribution of our declas-
sification framework. Indeed, our flow declarations can express declassification

118 CHAPTER 5. CONCLUSION

with any level of refinement, from specific operations to whole portions of a
program, and between any security levels. This is achieved by directly ma-
nipulating flow policies, that are simply binary relations on the principals of a
system.

Finally, we note that, by incorporating our declassification mechanism in our
study of information flow control for networks, we have shown its robustness
when used in new computation settings.

On Combining Declassification and Mobility

The topics of declassification and mobility in information flow are rather inde-
pendent problems. It is perhaps not surprising that the two could be combined
with little technical effort. However, we must point out that this facility is
rooted in the highly decentralized nature of the flow declarations. No global
agreement is assumed about the flow policies for declassification (as in [Mantel
& Sands, 2004]). Moreover, the changes to the flow policy that are dynamically
performed by programs have a local scope, and do not affect the whole system.

The potential dangers that are opened by allowing declassification in a mo-
bile setting could perhaps seem to be more striking than its advantages. One
can imagine the example of a migrating thread executing under a very permis-
sive flow policy: once it arrives at a domain where another thread that owns
secret references is computing, it can declassify that information, independently
of the owners flow policy. This could be encoded in our language as follows:

d1[(goto d2); (flow H ≺ L in (m.bL :=? (? n.aH)))
m
] ‖ d2[N

n] (5.1)

According to non-disclosure for networks, this program is secure – in fact, thread
m complies with the declared flow policy when copying the value of the reference
n.aH to m.bL. However, one can see the potential of formulating other security
policies that take into account the ownership of information, or of defining
language constructs that condition the execution of subprograms to be executed
under more strict flow policies, or even setting up of fire-wall-like conditions that
control the entrance of mobile threads.

Dually, we find the example of a mobile thread that brings its own data to
some site where it should perform private computations. Then, the possibility
of declaring its own flow policies turns into an advantage. For instance, we could
write the program:

d1[(goto d2); (flow H ≺ L in (n.bL :=? (? m.aH)))
m
] ‖ d2[N

n] (5.2)

There is little practical experience in using mobile computing systems, which
makes it hard to evaluate the particular relevance of allowing declassification in
a mobile computing setting. Nevertheless, declassification seems to be a crucial
feature in any language that is subject to information flow control, which a
fortiori justifies the option of including it in the mobile language of Chapter 4.
Moreover, in order to evaluate the problems or advantages that it might bring,
it is favorable to study declassification on a simple, yet expressive, language,
which can then be used as a starting point on which to build more complex
frameworks. We believe that the mobile language presented in this thesis is a
fertile starting ground for the study of secure information flow in networks.

References

Agat, J. 2000. Transforming out timing leaks. In: Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM Press.

Almeida Matos, A. 2005. Non-disclosure for Distributed Mobile Code. In:
Proceedings of the 25th International Conference: Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2005). Lecture
Notes in Computer Science, vol. 3821. Springer.

Almeida Matos, A. & Boudol, G. 2005. On declassification and the non-
disclosure policy. In: Proceedings of the 18th IEEE Computer Security
Foundations Workshop (CSFW’05). IEEE Computer Society.

Almeida Matos, A. & Boudol, G. & Castellani, I. 2004. Typing non-
interference for reactive programs. In: Proceedings of the Workshop on
Foundations of Computer Security, vol. 31. Turku Center for Computer
Science.

Andrews, G. R. & Reitman, R. P. 1980. An axiomatic approach to infor-
mation flow in programs. ACM Transactions on Programming Languages
and Systems, 2(1), 56–76.

Banerjee, Anindya & Naumann, David A. 2005. Stack-based access control
and secure information flow. Journal of Functional Programming, 15(2),
131–177.

Bell, D. E. & La Padula, L. J. 1976. Secure computer system: unified
exposition and multics interpretation. Technical Report MTR-2997. The
MITRE Corporation.

Bossi, A. & Piazza, C. & Rossi, S. 2004. Modelling downgrading in infor-
mation flow security. In: Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW’04). IEEE Computer Society.

Boudol, G. 2004. ULM, a core programming model for global computing.
In: Programming Languages and Systems: 13th European Symposium on
Programming. Lecture Notes in Computer Science, vol. 2986. Springer-
Verlag.

Boudol, G. 2005a. A generic membrane model. In: Global Computing:
IST/FET International Workshop. Lecture Notes in Computer Science,
vol. 3267. Springer-Verlag.

119

120 REFERENCES

Boudol, G. 2005b. On typing information flow. In: International Colloquium
on Theoretical Aspects of Computing. Lecture Notes in Computer Science,
vol. 3722. Springer-Verlag.

Boudol, G. & Castellani, I. 2002. Noninterference for concurrent programs
and thread systems. Theoretical Computer Science, 281(1), 109–130.

Boudol, G. & Castellani, I. & Germain, F. & Lacoste, M. 2002. Anal-
ysis of formal models of distribution and mobility: state of the art. Mikado
Deliverable D1.1.1.

Boussinot, F. & Simone, R. 1996. The SL synchronous language. Software
Engineering, 22(4), 256–266.

Bugliesi, M. & Castagna, G. & Crafa, S. 2001. Boxed Ambients. Lecture
Notes in Computer Science, 2215, 38–63.

Cardelli, L. & Gordon, A. D. 2000. Mobile Ambients. Theoretical Com-
puter Science, 240(1), 177–213.

Chong, S. & Myers, A. C. 2004. Security policies for downgrading. In:
Proceedings of the 11th ACM conference on Computer and communications
security. ACM Press.

Clark, D. & Hunt, S. & Malacaria, P. 2004. Quantified interference:
information theory and information flow. In: Proceedings of the Workshop
on Issues in the Theory of Security 2004.

Cohen, E. 1977. Information transmission in computational systems. In:
Proceedings of the sixth ACM symposium on Operating systems principles.
ACM Press.

Crafa, S. & Bugliesi, M. & Castagna, G. 2002. Information flow secu-
rity for Boxed Ambients. In: International Workshop on Foundations of
Wide Area Network Computing. Electronic Notes in Theoretical Computer
Science, vol. 66(63). Elsevier Science Publishers.

Crary, K. & Kliger, A. & Pfenning, F. 2005. A monadic analysis of
information flow security with mutable state. Journal of Functional Pro-
gramming, 15(02).

Denning, D. E. 1976. A lattice model of secure information flow. Communi-
cations of the ACM, 19(5), 236–243.

Di Pierro, A. & Hankin, C. & Wiklicky, H. 2002. Approximate non-
interference. In: Proceedings of the 15th IEEE Computer Security Founda-
tions Workshop (CSFW’02). IEEE Computer Society.

Ferrari, E. & Samarati, P. & Bertino, E. & Jajodia, S. 1997. Provid-
ing flexibility in information flow control for object oriented systems. In:
Proceedings of the 1997 IEEE Symposium on Security and Privacy. IEEE
Computer Society.

Focardi, R. & Gorrieri, R. 1995. A classification of security properties for
process algebras. Journal of Computer Security, 3(1), 5–33.

REFERENCES 121

Goguen, J. A. & Meseguer, J. 1982. Security policies and security models.
In: Proceedings of he 1992 IEEE Computer Society Symposium on Research
in Security and Privacy. IEEE Computer Society.

Heintze, N. & Riecke, J. G. 1998. The SLam calculus: programming with
secrecy and integrity. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM Press.

Hennessy, M. & Riely, J. 2002. Information flow vs. resource access in the
asynchronous pi-calculus. ACM Transactions on Programming Languages
and Systems, 24(5), 566–591.

Hicks, M. & Tse, S. & Hicks, B. & Zdancewic, S. 2005. Dynamic updating
of information-flow policies. In: Proceedings of the International Workshop
on Foundations of Computer Security (FCS).

Honda, K. & Yoshida, N. 2002. A uniform type structure for secure informa-
tion flow. In: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages POPL ’02. ACM Press.

Honda, K. & Vasconcelos, V. & Yoshida, N. 2000. Secure information
flow as typed process behaviour. In: Programming Languages and Systems:
9th European Symposium on Programming. Lecture Notes in Computer
Science, vol. 1782. Springer-Verlag.

Jones, A. K. & Lipton, R. J. 1975. The enforcement of security policies for
computation. In: Proceedings of the fifth ACM symposium on Operating
systems principles. ACM Press.

Kırlı, D. 2000. Mobile functions and secure information flow. In: Proceed-
ings of the 27th International Colloquium on Automata, Languages, and
Programming.

Lampson, B. W. 1973. A note on the confinement problem. Communications
of the ACM, 16(10), 613–615.

Laud, P. 2001. Semantics and program analysis of computationally secure
information flow. In: Programming Languages and Systems: 10th European
Symposium on Programming. Lecture Notes in Computer Science, vol. 2028.
Springer-Verlag.

Laud, P. 2003. Handling encryption in an analysis for secure information flow.
In: Programming Languages and Systems: 12th European Symposium on
Programming. Lecture Notes in Computer Science, vol. 2618. Springer-
Verlag.

Li, P. & Zdancewic, S. 2005. Downgrading policies and relaxed noninterfer-
ence. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM Press.

Li, P. & Mao, Y. & Zdancewic, S. 2003. Information integrity policies.
In: Proceedings of the First Workshop on Formal Aspects in Security and
Trust (FAST).

122 REFERENCES

Lowe, G. 2004. Semantic models for information flow. Theoretical Computer
Science, 315(1), 209–256.

Lucassen, J. M. & Gifford, D. K. 1988. Polymorphic effect systems. In:
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM Press.

Mantel, H. 2001. Information flow control and applications – bridging a gap.
In: Formal Methods for Increasing Software Productivity: International
Symposium of Formal Methods Europe. Lecture Notes in Computer Science,
vol. 2021. Springer-Verlag.

Mantel, H. & Sabelfeld, A. 2004. A unifying approach to the security of
distributed and multi-threaded programs. Journal of Computer Security,
11(4), 615–676.

Mantel, H. & Sands, D. 2004. Controlled declassification based on intran-
sitive noninterference. In: Programming Languages and Systems: Second
Asian Symposium. Lecture Notes in Computer Science, vol. 3302. Springer-
Verlag.

Milner, R. & Tofte, M. & Harper, R. & MacQueen, D. 1997. The
definition of Standard ML (Revised). The MIT Press.

Myers, A. & Liskov, B. 1998. Complete, safe information flow with decen-
tralized labels. In: 19th IEEE Computer Society Symposium on Research
in Security and Privacy. IEEE Computer Society.

Myers, A. & Sabelfeld, A. & Zdancewic, S. 2004. Enforcing robust de-
classification. In: Proceedings of the 17th IEEE Computer Security Foun-
dations Workshop (CSFW’04). IEEE Computer Society.

Myers, A. C. & Liskov, B. 1997. A decentralized model for information flow
control. In: Proceedings of the sixteenth ACM symposium on Operating
systems principles SOSP ’97. ACM Press.

Myers, A. C. & Liskov, B. 2000. Protecting privacy using the decentralized
label model. ACM Transactions on Software Engineering and Methodology,
9(4), 410–442.

Myers, Andrew C. 1999. JFlow: Practical mostly-static information flow
control. In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM Press.

Pottier, F. & Simonet, V. 2003. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, 25(1), 117–158.

Ravara, A. & Matos, A. & Vasconcelos, V. T. & Lopes, L. 2003. Lex-
ically scoping distribution: what you see is what you get. In: FGC: Foun-
dations of Global Computing. Electronic Notes in Theoretical Computer
Science, vol. 85(1). Elsevier Science Publishers.

Roscoe, A. W. & Goldsmith, M. H. 1999. What is intransitive noninterfer-
ence? In: Proceedings of the 1999 IEEE Computer Security Foundations
Workshop. IEEE Computer Society.

REFERENCES 123

Rushby, J. 1992. Noninterference, transitivity, and channel-control security
policies. Technical Report CSL-92-02. SRI.

Ryan, P. & McLean, J. & Millen, J. & Gligor, V. 2001. Non-interference:
who needs it? In: Proceedings of the 14th IEEE Workshop on Computer
Security Foundations. IEEE Computer Society.

Sabelfeld, A. 2001. The impact of synchronization on secure information
flow in concurrent programs. In: Proceedings of Andrei Ershov 4th Inter-
national Conference on Perspectives of System Informatics. Lecture Notes
in Computer Science, vol. 2244. Springer-Verlag.

Sabelfeld, A. & Mantel, H. 2002. Static confidentiality enforcement for
distributed programs. In: Static Analysis : 9th International Symposium.
Lecture Notes in Computer Science, vol. 2477. Springer-Verlag.

Sabelfeld, A. & Myers, A. 2003. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1).

Sabelfeld, A. & Myers, A. 2004. A model for delimited information re-
lease. In: International Symposium on Software Security (ISSS’03). Lec-
ture Notes in Computer Science, vol. 3233. Springer-Verlag.

Sabelfeld, A. & Sands, D. 2000. Probabilistic noninterference for multi-
threaded programs. In: Proceedings of the 13th IEEE Computer Security
Foundations Workshop (CSFW’00). IEEE Computer Society.

Sabelfeld, A. & Sands, D. 2005. Dimensions and principles of declassifi-
cation. In: Proceedings of the 18th IEEE Computer Security Foundations
Workshop (CSFW’05). IEEE Computer Society.

Sandhu, R. S. 1993. Lattice-based access control models. Computer, 26(11),
9–19.

Sekiguchi, T. & Yonezawa, A. 1997. A calculus with code mobility. In:
Proc. 2nd IFIP Workshop on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS). Chapman and Hall.

Simonet, V. 2003. The Flow Caml System: documentation and user’s manual.
Technical Report 0282. Institut National de Recherche en Informatique et
en Automatique (INRIA).

Smith, G. 2001. A new type system for secure information flow. In: Proceedings
of the 14th IEEE Workshop on Computer Security Foundations. IEEE
Computer Society.

Smith, G. & Volpano, D. 1998. Secure information flow in a multi-threaded
imperative language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. ACM Press.

Tse, S. & Zdancewic, S. 2004. Run-time principals in information-flow type
systems. In: IEEE Symposium on Security and Privacy. IEEE Computer
Society.

124 REFERENCES

Volpano, D. 2000. Secure introduction of one-way functions. In: Proceedings
of the 13th IEEE Computer Security Foundations Workshop (CSFW’00).
IEEE Computer Society.

Volpano, D. & Smith, G. 1997. Eliminating covert flows with minimum typ-
ings. In: Proceedings of the 10th Computer Security Foundations Workshop
(CSFW ’97). IEEE Computer Society.

Volpano, D. & Smith, G. 1999. Probabilistic noninterference in a concurrent
language. Journal of Computer Security, 7(2-3).

Volpano, D. & Smith, G. 2000. Verifying secrets and relative secrecy. In:
Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. ACM Press.

Volpano, D. & Smith, G. & Irvine, C. 1996. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3), 167–187.

Wright, A. K. & Felleisen, M. 1994. A syntactic approach to type sound-
ness. Inf. Comput., 115(1), 38–94.

Zdancewic, S. 2003. A type system for robust declassification. In: Pro-
ceedings of the Nineteenth Conference on the Mathematical Foundations of
Programming Semantics.

Zdancewic, S. 2004. Challenges for information-flow security. In: 1st Inter-
national Workshop on the Programming Language Interference and Depen-
dence (PLID’04).

Zdancewic, S. & Myers, A. C. 2002. Secure information flow via linear
continuations. Higher Order Symbol. Comput., 15(2-3), 209–234.

Zdancewic, S. & Zheng, L. & Nystrom, N. & Myers, A. C. 2002. Secure
program partitioning. ACM Transactions on Computer Systems, 20(3),
283–328.

Zheng, L. & Myers, A. 2004. Dynamic security labels and noninterference.
In: Proceedings of the 2nd International Workshop on Formal Aspects in
security and Trust (FAST).

Index

access control, 1, 4

bisimulation
for non-disclosure, 40, 48, 49, 51,

57, 59, 63, 82
for non-disclosure for networks,

34, 70, 80, 83, 99, 115, 119
for non-interference, 21, 22, 31,

32, 35, 51

confidentiality, 1

declassification, 3, 23, 37–40, 60, 61,
125, 126

derivative of an expression, 51, 83

expression, 15, 16, 25, 53, 71, 86

flow policy
declared, 3, 40, 43, 45, 53, 80
global, 20–22, 24, 26, 41, 47–49,

53, 77, 86, 120
flow relation, 10–12, 20, 46, 55, 61, 62,

77

greatest lower-bound, 12

higher-order language, 9, 41, 70

information flow control, 1

join, 12, 19, 20, 26, 47, 77

language based approach, 1
lattice, 11, 12, 12, 19
least upper-bound, 11, 12
low part

of a memory, 20, 21, 23, 47, 50,
79

of a position-tracker, 79
of a state, 79, 82

low-equality
between memories, 21, 47, 48, 79

between position-trackers, 79
between states, 79

meet, 12, 19, 20, 26, 47, 77
mobility, 4, 23, 63, 67, 69, 70, 121, 126

non-disclosure, 3, 37, 40, 64, 70
for networks, 67, 70
Non-disclosure, 49, 51, 53, 59, 82
Non-disclosure for Networks, 80,

82, 87, 120
non-interference, 7, 35, 40

Basic Non-interference, 24
limitations of, 37
Non-interference, 22, 24, 26, 34,

51
non-resolvable expression, 103

operationally high thread, 23, 31, 50,
56, 82, 93, 103, 107

pre-lattice, 12, 20, 39, 46, 77
principal, 13, 15, 19, 39, 47, 77

security effect, 3
testing effect, 11
writing effect, 10, 25, 26, 31, 84

security leak
control leak, 8, 22, 26, 55
direct leak, 8, 22, 26, 55
higher-order leak, 9, 29
migration leak, 67, 87
termination leak, 9, 22, 28, 35, 68,

87, 94, 120, 121
timing leak, 64

security level, 2, 8, 13, 15, 15, 19, 22,
34, 49, 71, 78, 80

security pre-lattice, 20, 26, 47, 77
store, 16, 17, 70, 73
syntactically high

expression, 31, 56, 93
function, 31, 56, 93

125

126 INDEX

value, 15, 21, 34, 45, 48, 80
variable, 15, 16, 25, 43, 68

well formed configuration, 16, 17, 43,
45, 74, 76

