
On Declassification and the Non-Disclosure Policy(*)

Ana Almeida Matos Ǵerard Boudol
INRIA

06902 Sophia Antipolis – France

Abstract

We address the issue of declassification in a language-based
security approach. We introduce, in a Core ML-like lan-
guage with concurrent threads, a declassification mecha-
nism that takes the form of a local flow policy declaration.
The computation in the scope of such a declaration is al-
lowed to implement information flow according to the lo-
cal policy. This dynamic view of information flow policies
is supported by a concrete presentation of the security lat-
tice, where the confidentiality levels are sets of principals,
similar to access control lists. To take into account declas-
sification, and more generally dynamic flow policies, we in-
troduce a generalization of non-interference, that we call
the non-disclosure policy, and we design a type and effect
system for our language that enforces this policy.

1. Introduction

This paper addresses the issue of declassification in a
language-based security approach. We are therefore more
generally concerned with the confidentiality aspect of se-
curity. It has often been argued (see [11, 19, 31, 38]
for instance) that the standard techniques used for ac-
cess control are not enough to fully protect confidential
information. Ideally, one would like to have a way of con-
trolling how this information is used by subjects having
the required clearance. Indeed, it is useless to restrict ac-
cess to confidential information if one does not have
some guarantee that the authorized subjects will not pub-
licly disclose a significant part of this information. In
other words, one should be interested in how informa-
tion flows in a computer system, especially when the “sub-
jects” are programs roaming over the web, that are not
easily amenable to non-disclosure agreement.

Since Bell and La Padula and Denning’s pioneering
works [3, 11], the classical approach to secure information
flow is to use a lattice of security levels (see for instance
the survey [40] for the use of security lattices). The objects

(*) Work partially supported by the CRISS project of the ACI Sécurit́e
Informatique. The first author is supported by the PhD scholarship
POSI/SFRH/BD/7100/2001.

of a system are then labelled by security levels, and infor-
mation is allowed to flow from one object to another if the
source object has a lower confidentiality level than the tar-
get one. That is, the ordering relation on security levels de-
termines the legal flows, and a program is secure if, roughly
speaking, it does not set up illegal flows from inputs to out-
puts. This was first formally stated via a notion ofstrong
dependencyby Cohen in [9], and is also referred to asnon-
interferenceaccording to the terminology used by Goguen
and Meseguer in [16].

A lot of work has been devoted to the design of methods
for analyzing information flow in programs (see for instance
[2] for early references), even though this has not always
been related to a security property like non-interference by
a soundness result. Some of these methods consist in run-
time checks, and have been criticized for various reasons,
like for the fact that they generally suffer from the “label
creep problem” (see [38]). More importantly, the failure of
a run-time check can serve as a covert channel [11, 30]. As
an alternative, static analysis methods have been developed
for information flow. One can highlight the use of type sys-
tems, which started with the work of Volpano, Smith and
Irvine [50]. Although they offer only approximate analysis,
type systems have well-known advantages, like in prevent-
ing some programming errors at an early stage. Indeed, in
the context of a security policy like the one provided by a
flow lattice of security levels, it is an error not to comply
with the policy, and a type safety result should in this case
establish that well-typed programs are secure. Type systems
for secure information flow have been designed for various
languages (see e.g. [6, 10, 17, 33, 42, 43, 47, 50, 54], and
further references in [38]), culminating with Jif (or JFlow,
see [29]) and Flow CAML [41] as regards the size of the lan-
guage. In this paper we shall base our study on Core ML
[28, 51], a call-by-valueλ-calculus extended with impera-
tive constructs that we enrich with concurrent threads.

The classical non-interference property has been a mat-
ter of debate from various points of view (see [36]). A fun-
damental observation, which was made very early (e.g. in
[18]), is that non-interference rules out, by its very defini-
tion, programs that deliberatelydeclassifyinformation from
a confidential level to a more public one. These programs

are quite common and very useful, making it hard to use
non-inteference in practice. A standard example is a pass-
word checking procedure, which delivers to any user the re-
sult of comparing a submitted password with secret infor-
mation contained in a database, thus leaking a bit of con-
fidential information. Another one is encryption, where se-
cret information is encoded into a ciphertext that can be read
by anyone. Besides these classical security issues, some
new circumstances where downgrading information is re-
quired arise in the context of networked systems. A typical
example is the one of a service selling electronic informa-
tion, like articles in a journal for instance. The contents of
an article have to be kept secret from the client of such a
service until he has paid for it, or has identified himself as
a subscriber. Then the designer of the electronic purchase
service has to provide a procedure that dynamically declas-
sifies information, depending on informations provided by
the client. To support this kind of programming, it would be
useful for the programmer to have means to check that his
code implements only the intended information flows. Our
goal here is to provide the programmer with such a support.

The incompatibility of information flow security (in its
current setting) with declassification is a challenging prob-
lem that has motivated a lot of work. We will comment
on this later. This paper intends to contribute to its solu-
tion by proposing a turn on how the problem is set. Our
view is that there are two different issues to be consid-
ered:

1. How may wejustify that a program is allowed to
declassify information, i.e. that it is not actually re-
vealing “too much”?

2. How may weacceptsuch programs in a language-
based security setting, while still preserving some se-
cure information flow property?

To illustrate this distinction, let us imagine for a while a
password checking procedure that returns the root pass-
word, instead of a “yes/no” answer. Although the first is
most probably wrong, the two programs are no different
from the point of view of information flow: they both dis-
close information from the security level of the secret pass-
word database. One should therefore be able to reject the
first by a semantical program analysis, while the second
should be accepted in a language supporting downgrading
facilities.

There is clearly a quantitative aspect to the first ques-
tion. Indeed, some researchers who have studied it have pro-
posed to quantify the amount of information that a program
may leak, or to use complexity-theoretic or probabilistic ar-
guments to establish that it is not feasible to exploit the al-
lowed information leakage (see [7, 12, 21, 22, 46, 49], to
mention just a few recent papers). Justifying declassifica-
tion is a very interesting research problem which is by no

means easy – in fact, justifying practically sound encryp-
tion mechanisms is a whole research domain – and seems
to be beyond the reach of static analysis techniques. How-
ever, in our view, it is theprogrammerwho has responsibil-
ity for solving the first question, ofwhat, or how muchin-
formation he intends to declassify in his program, whereas
the (designer of the)programming languagehas to provide
an answer to the second question above. This is the lan-
guage design issue that we address.

Given that deliberately downgrading programs are val-
idated by the programmer, the programming language
should be as flexible as possible in expressing them. To
this end, we introduce in our core language a program-
ming construct for directly manipulating flow relations, na-
mely a flow declarationconstruct(flow F in M) where
F is a flow policy, i.e. a binary relation on security lev-
els, andM is any expression of the language. The meaning
is thatM is executed in the context of the current flow pol-
icy extended withF , and after termination the current pol-
icy is restored, that is, the scope ofF is M . For instance,
if we have security levelsA(lice) and B(ob), then – us-
ing the ML notation! x for dereferencing, andxA, yB for
memory locations with confidentiality levelA andB – a
program like:

(flow A ≺ B in yB
.. ! xA) (1)

is legal, since in the context of the relationA ≺ B, infor-
mation is allowed to flow fromA to B. With respect to the
current flow policy, this is a declassification operation – un-
less, obviously, the current policy already says that informa-
tion may flow fromA to B. Moreover, this expression ap-
pears to read at the confidentiality levelB for the rest of the
program. Then the expressionyB

.. (flow A ≺ B in ! xA)
is also legal, and has the same meaning as the previous one.
It should be clear, on the other hand, that a statement like
yB

.. (flow C ≺ B in ! xA) is not legal, unless the cur-
rent policy allows information to flow from levelA to C (or
B). Another example is

(flow A ≺ B in M) ; (flow B ≺ C in N)

that shows a way to achieve a kind of non-transitive flow re-
lation (see [4, 34, 35]).

A similar construct for introducing flow policies exists in
Flow CAML , but with an important difference: there it adds
the flow relationF to the global security policy, whereas in
our case the declaration islocal. Such a construct has been
mentioned in [44] under the name of “delegation”, but it was
not formally studied there. The operationdeclassify(M, `),
that is used in some languages (see [29, 39] for instance)
to downgrade the value ofM to the confidentiality level̀,
may be represented as – again using ML notations

let x = (refH M) in (flow H ≺ ` in ! x)

where(refH M) creates a new memory address with secu-
rity levelH and contentsM (that is, the value ofM), andH
is a security level that is higher (w.r.t the current flow policy)
than any other one. This interpretation of the declassifica-
tion operation as a local operator on the flow policies seems
to have never been pointed out. Furthermore, the flow dec-
laration construct allows us to express more precise ways of
declassifying, by specifying the levels from which informa-
tion may flow.

We should point out here that, contrarily to most stud-
ies concerning security for functional languages (with the
exception of [10]), we do not regard values as having a se-
curity level – there is no “secret0” or “public 100” for in-
stance. Our standpoint is that confidentiality levels are asso-
ciated with the objects in which information is stored (or the
channels on which it is communicated), like files, databases
or references in the case of ML, and that what is to be con-
trolled is the access to the object (typically read or write).
This is consistent with most studies dealing with impera-
tive languages, and has the pleasant consequence that the
security type system is just a standardtype and effect sys-
tem [26], with flow constraints, where the security levels
play the role ofregions(as noted in [10]). In the construct
(flow F in M), only the effects ofM , and the resulting con-
fidentiality level of the expression are concerned with the
flow relationF ; the final value ofM , which has no confi-
dentiality status, is not.

Once declassification is permitted in the language, a
question is: what kind of security property do we have
that takes declassification into account? And what means
could we have to ensure that programs have this prop-
erty? Not surprisingly, here the answer to this second ques-
tion will be: a type and effect system. To answer the first
one, we must find an alternative to non-interference. In
the language-based security approach, and more specifi-
cally in concurrent settings, this property is often based
on the small-step semantics, where one specifies transitions
(P, µ) → (P ′, µ′) between successive states of the pro-
gram and the memory. This is well suited for our approach,
where declassification is based on a dynamically evolving
structure of the lattice of confidentiality levels. Indeed, the
scope of a local flow policy is only a portion of the compu-
tation, and this has to be reflected in the semantics in order
to state a security property. The way we do this is by dec-
orating each transition with a label, which is the local flow
policy that is in force for this particular step:

(P, µ) −→
F

(P ′, µ′) (2)

The intuition is that, as regards information flow, the mem-
ory µ should be considered from the point of view of the
current flow policy extended withF . That is, ifF says that
information is allowed to flow from level̀ to level`′, what
is read at level̀ at this step may be regarded as having level

`′. Then our new confidentiality property, which is a gener-
alization of non-interference that we call thenon-disclosure
policy, roughly says that a programP is secure if at each
(small) step it satisfies non-interferencewith respect to the
flow policy that holds for this step. More precisely, given
that P performs the transition (2) above under the mem-
ory µ, and given thatν is a memory which only differs from
µ regarding confidential information with respect to the cur-
rent flow policy extended withF , then there is a transition
(P, ν) −→

F ′
(P ′′, ν′) from P under memoryν such thatν′

is again equal toµ′ as regards public information. More-
over, since we have to check this at every possible step, we
shall also require that the programsP ′ andP ′′ have simi-
lar behaviours, from the confidentiality point of view. For
instance, program (1) satisfies this property, since the refer-
encexA may be considered as having the levelB under the
flow relationA ≺ B.

The main technical contribution of this paper is a proof
that the type and effect system we design for our core lan-
guage with declassification enforces the non-disclosure pol-
icy. We thus provide a direct generalization of the standard
result regarding type systems for information flow. We shall
start by introducing dynamic flow policies, which provide a
way to deal with declassification that, up to our knowledge,
has never been formally explored before. This is supported
by a specific notion of security (pre-)lattice, which is also
new. These will appear in the next section, where we present
the language and its operational semantics. Then, in Sec-
tion 3, we introduce our generalization of non-interference,
namely the non-disclosure policy, that takes into account
dynamic flow policies. A sound type and effect system is
given for the language in Section 4, featuring the notion of
a “termination effect” that allows us to deal with a strong
notion of security, while still providing a flexible type sys-
tem. We then briefly discuss related work and conclude.
For lack of space, the proofs are omitted; they can be found
in the full version of the paper.

2. The Language

2.1 Security (pre-)lattices

As we said in the Introduction, we will use dynami-
cally evolving flow relations for dealing with declassifi-
cation. However, the security levels associated with ref-
erences that appear in the expressionM are the same
as those in(flow F in M) – it is only the flow pol-
icy that changes. We are then faced with the issue of main-
taining a (varying) lattice structure over a given set of
security levels, since we shall use the meet and join op-
erations in the type system, as usual. As a matter of
fact, a “pre-lattice” structure turns out to be more conve-
nient for our purpose. We callpre-lattice a pair (L,�)

M, N . . . ∈ Expr W | (if M then N else N ′) | (MN) expressions
| M ; N | (ref`,θ N) | (! N) | (M .. N)
| (thread M) | (flow F in M)

W ∈W V | %xW pseudo-values
V ∈ Val x | u`,θ | λxM | tt | ff | () values

Figure 1: Syntax

where� is a preorder onL, that is a reflexive and transi-
tive (but not necessarily anti-symmetric) relation, such that
for anyx, y ∈ L there exist a meetx f y and a joinx g y
for x andy, satisfying

x f y � x

x f y � y

z � x & z � y ⇒ z � x f y

and
x � x g y

y � x g y

x � z & y � z ⇒ x g y � z

Now we will define our security pre-lattices, where the set
of security levels is fixed, and only the flow relations may
vary. We assume given a setP of principals, ranged over by
p, q . . . A confidentiality levelis any set of principals, that
is any subset̀ of P. The intuition is that whenever̀is the
confidentiality label of an object, i.e. a reference, it repre-
sents a set of programs that are allowed to get the value of
the object, i.e. to read the reference. From this point of view,
a reference labelledP (also denoted⊥) is a most public one
– every program is allowed to read it –, whereas the label∅
(also denoted>) indicates a secret reference, so secret that
no one is allowed to read it. We can interpret the reverse in-
clusion of security levels as indicating allowed flows of in-
formation: if a referencex is labelled`, and` ⊇ `′ then the
value ofx may be transferred to a referencey labelled`′,
since the programs allowed to read this value fromy were
already allowed to read it fromx.

The dynamically varying information flow policies are
determined by relations on principals. This is slightly dif-
ferent from what we informally presented in the Introduc-
tion, where, for simplicity, a flow relation was assumed to
relate security levels. However, as we shall see, a relation on
principals induces a preorder on security levels. Aflow pol-
icy is a binary relation overP. We letF , G . . . range over
such relations. A pair(p, q) ∈ F is to be understood as “in-
formation may flow from principalp to principalq”, that is,
more precisely, “everything that principalp is allowed to
read may also be read by principalq”. We must point out
here that, since we are dealing with confidentiality (and not
integrity) a flow policy will only affect the reading capabil-
ities of programs (and not their writing capabilities). As a

member of a flow policy, a pair(p, q) will most often be
writtenp ≺ q. We denote, as usual, byF ∗ the preorder gen-
erated byF (that is, the reflexive and transitive closure of
F). Then we introduce thepreorder on confidentiality lev-
elsdetermined by the flow relationF :

` �F `′ ⇔def ∀q ∈ `′. ∃p ∈ `. p F ∗ q

which is denoted� (instead of⊇) whenF = ∅. We shall
use without notice the fact that

G ⊆ F & ` �G `′ ⇒ ` �F `′

It is not difficult to see that the preorder�F induces a pre-
lattice structure on the set of confidentiality levels, where a
meet is simply the union, and a join of` and`′ is

{ q | ∃p ∈ `. ∃p′ ∈ `′. p F ∗ q & p′ F ∗ q }

This observation justifies the following definition.

DEFINITION (SECURITY PRE-LATTICES) 2.1.
A confidentiality levelis any subset ` of the set P of prin-
cipals. Given a flow policy F ⊆ P × P , the confidential-
ity levels are pre-ordered by the relation

` �F `′ ⇔def ∀q ∈ `′. ∃p ∈ `. p F ∗ q

The meetand join, w.r.t. F , of two security levels ` and `′

are respectively given by ` ∪ `′ and
` gF `′ = { q | ∃p ∈ `. ∃p′ ∈ `′. p F ∗ q & p′ F ∗ q }

2.2 Syntax and operational semantics

The language is a call-by-valueλ-calculus extended with
the imperative constructs of ML, conditional branching and
boolean values. We also introduce the possibility of dy-
namically creating concurrent threads, and of declassifying
computations. Clearly, the latter is the main novelty, and one
could probably deal with other programming paradigms in a
similar way, by adding local flow declarations. The syntax is
given in Figure 1, wherex is any variable,F is any flow pol-
icy that is most often written as a listp1 ≺ q1, . . . , pn ≺ qn

of pairs of principals, andu`,θ is a triple made of a mem-
ory addressu – or location, orreference–, a typeθ (see
Section 4 below) and a label` which is a confidentiality
level. The label̀ , most often writtenp1, . . . , pn instead of
{p1, . . . , pn}, is similar to an access control list. We use lo-
cations explicitly decorated with types and confidentiality

((if tt then M else N), µ) −→
∅

(M,µ)

((if ff then M else N), µ) −→
∅

(N,µ)

((λxMV), µ) −→
∅

({x 7→V }M,µ)

(V ; N,µ) −→
∅

(N,µ)

((ref`,θ V), µ) −→
∅

(u`,θ, µ ∪ {u`,θ 7→V }) u fresh forµ

((! u`,θ), µ) −→
∅

(V, µ) µ(u`,θ) = V

((u`,θ
.. V), µ) −→

∅
((), µ[u`,θ

.. V])

(%xW, µ) −→
∅

({x 7→%xW}W,µ)

((flow F in V), µ) −→
∅

(V, µ)

(M,µ) −→
F

(M ′, µ′)

(E[M], µ) −−−−→
F∪dEe

(E[M ′], µ′) (E[(thread M)], µ) −→
∅

((E[()] ‖ (flow dEe in M)), µ)

(P, µ) −→
F

(P ′, µ′)

((P ‖ Q), µ) −→
F

((P ′ ‖ Q), µ′)

(P, µ) −→
F

(P ′, µ′)

((Q ‖ P), µ) −→
F

((Q ‖ P ′), µ′)

Figure 2: Operational Semantics

labels for the purpose of the proof of type soundness. How-
ever, as we shall see, these annotations do not have any role
in the operational semantics, and therefore they do not have
to appear in an implementation (although in a mobile code
setting, one would like to keep these annotations in order
to perform security checks when loading a piece of code).
We denote byloc(M) the set of decorated locations occur-
ring in M . These addresses are regarded as providing the
inputsof the expressionM .

For typing reasons, we do not regard sequential composi-
tion as a derived construct, and we do not regard the imper-
ative constructsref, ! and.. as first-class functions. Indeed,
the typing of(ref`,θ N) will generally be different from the
typing of (λx(ref`,θ x)N) for instance. Applying the con-
structref`,θ to a valueV creates a new reference with initial
valueV . Here, as we shall see, the value is assumed to be of
typeθ, and the confidentiality level̀will be assigned to the
created reference. While the typeθ could probably be in-
ferred, as in ML, it seems natural for security purposes to
explicitly assign a confidentiality level to the created ref-
erence. In a pure type and effect inference approach, with
an unlabelledref function, we would only get constraints
that this level should satisfy. The construct%xW , which is a
binder for the variablex in W , provides a way to deal with
recursive values. As a matter of fact, given that the set of
values is quite limited in our core language, the only inter-
esting case is that of recursive functions, i.e.%fλxM , which
could be denoted(let rec f = λxM in f) in an ML-like no-
tation. We denote byloop the expression%xx, and we may

use the following standard abbreviation:

(while M do N) =def (%yλx(if M then N ; (y()) else ())())

We let fv(M) be the set of variables occurring free inM ,
and we denote by{x 7→W}M the capture-avoiding sus-
btitution of W for the free occurrences ofx in M , where
W ∈W. The evaluation relation is a transition relation be-
tween configurations of the form(P, µ) whereP is a pro-
cess, written according to the following syntax:

P, Q . . . ∈ Proc M | (P ‖ Q)

andµ, thememory(or heap), is a mapping from a finite set
dom(µ) of decorated references to values. The operation of
updating the value of a reference in the memory is denoted,
as usual,µ[u`,θ

.. V]. We say that the nameu is fresh for
µ if v`,θ ∈ dom(µ) ⇒ v 6= u. To define the operational
semantics, we introduce evaluation contexts:

E | F[E] | (flow F in E)
F (if then M else N) | (N) | (V)

| ; N | (ref`,θ) | (!) | (.. N) | (V ..)

and we denote bydEe the flow policy enforced by the con-
textE. This is defined as follows:

d e = ∅
dF[E]e = dEe

d(flow F in E)e = F ∪ dEe

The labelled transition rules are given in Figure 2. As one
can see, the transitions do not depend on the types and la-
bels of memory locations. Observe also that the flow labelF
of the transitions plays no role in determining the resulting
configuration. To evaluate(flow F in M), we simply evalu-
ateM , until termination (that is, whenM is a value). Then
(flow F in M) is operationally the same asM , and the con-
text (flow F in) should disappear at compile time. We de-
note somewhat abusively by→ the relation given by

(P, µ) → (P ′, µ′) ⇔def ∃F. (P, µ) −→
F

(P ′, µ′)

and we let
∗→ denote the reflexive and transitive closure of

the relation→. We shall actually only consider transitions
from well-formedconfigurations: a configuration(P, µ) is
well-formed if loc(P) ⊆ dom(µ) and for anyu`,θ∈dom(µ)
we haveloc(µ(u`,θ)) ⊆ dom(µ). It is easy to see that well-
formedness is preserved by transitions.

To conclude this section, we introduce another kind of
transitions which is useful for the proof of type soundness.

These transitions, denoted(M,µ) N−→
F

(M ′, µ′), should be

read as follows: the expressionM , in the context of the
memoryµ, performs a step, assuming the local flow pol-
icy F , and resulting in the new expressionM ′ and mem-
ory µ′, while possibly spawning the expressionN as a new
thread to execute (withN = () if M actually does not spawn
any thread). This formalizes the evaluation steps of an ex-
pressionM as the “main thread”. Formally, this is defined
as−→

F
, with N = (), except for:

(E[(thread N)], µ)
(flow dEe in N)−−−−−−−−−→

∅
(E[()], µ)

The following lemma relates these transitions with the ones
that we have used to describe the operational semantics:

LEMMA 2.2.

(i) If (M,µ) N−→
F

(M ′, µ′) then either N = () and

(M,µ) −→
F

(M ′, µ′) or (M,µ) −→
F

((M ′ ‖ N), µ′).

(ii) If (M,µ) −→
F

(P, µ′) then either P is an expression and

(M,µ)
()−→
F

(P, µ′) or (M,µ) N−→
F

(M ′, µ′) for some M ′

and N such that P = (M ′ ‖ N).

Next we make a simple but crucial observation, stating that,
if the evaluation of an expressionM differs in the con-
text of two distinct memories while not creating two dis-
tinct references, this is becauseM is performing a derefer-
encing operation, which yields different results depending
on the memory. Apart from non-deterministically choosing
new references, this is the only way for computations of ex-
pressions to split.

LEMMA 2.3.
If (M,µ) N−→

F
(M ′, µ′) and (M,ν) N ′

−−→
F ′

(M ′′, ν′) with

M ′ 6= M ′′ and dom(ν′ − ν) = dom(µ′ − µ), then N =
() = N ′ and there exist E and u`,θ such that F = dEe = F ′,
M = E[(!u`,θ)], and M ′ = E[µ(u`,θ)], M ′′ = E[ν(u`,θ)]
with µ′ = µ and ν′ = ν.

3. The non-disclosure policy

In this section we introduce our security property. The def-
initions that follow could be formulated in an abstract way,
that is for any semantic framework consisting of a given
labelled transition system, where the transitions have, as
above, the form

(P, µ) −→
F

(P ′, µ′)

However, we instantiate here the definitions with the notion
of a process that we have introduced in the previous section.

To state the security property, we use, as it is standard,
a notion ofmemory equalityrelative to a given confiden-
tiality level: two memoriesµ andν are equal up to level̀
if they assign the same value to every location with secu-
rity level lower thaǹ (this is sometimes referred to as “low
equality” of memories). However, there is an implicit pa-
rameter in this notion, which is the flow relation used to de-
termine that a level is lower thaǹ. Since the flow policy is
not fixed in our setting, we make it explicit in the notion of
memory equality. Furthermore, we will compare two mem-
ories only with respect to the references they share. The low
equality of memories is thus defined:

µ lF,` ν ⇔def ∀u`′,θ ∈ dom(µ) ∩ dom(ν).
`′ �F ` ⇒ µ(u`′,θ) = ν(u`′,θ)

This relation is not transitive, but it is reflexive and symmet-
ric. We shall use without notice the fact that

G ⊆ F & µ lF,` ν ⇒ µ lG,` ν

Our security property is defined in terms ofbisimulations
(see [6, 14, 37, 42] for the use of bisimulations in stating se-
curity properties, and [25] for a review of various other ap-
proaches). Bisimulations are relations on states of transition
systems, that relate two states whenever any transition of ei-
ther of these states can be “matched” by a transition of the
other. Following [37], here we shall make use of this notion
in a slightly non-standard way, since we shall call “bisimu-
lation” a relation between processesP , rather than config-
urations(P, µ). Moreover, such a relation is parameterized
upon a flow policyG, which is the current flow relation.

DEFINITION (BISIMULATION) 3.1.
A (G, `)-bisimulation is a symmetric relation R on pro-
cesses such that if

P RQ & (P, µ) −→
F

(P ′, µ′) & µ lF∪G,` ν &

u`′,θ ∈ dom(µ′ − µ) ⇒ u is fresh for ν

then there exist Q′ and ν′ such that

(Q, ν) ∗→ (Q′, ν′) & P ′RQ′ & µ′ lG,` ν′ &
dom(ν′ − ν) ⊆ dom(µ′ − µ)

It is implicit in this definition that the configurations(P, µ)
and(Q, ν) are well-formed. This implies in particular that
loc(P) ⊆ dom(µ) and loc(Q) ⊆ dom(ν). The definition
says that the transition

(P, µ) −→
F

(P ′, µ′)

has to be matched by a transition from(Q, ν), whenever
P RQ, and the memoriesµ andν satisfy some conditions.
The first one, namely thatµ lF∪G,` ν, can be interpreted as
follows: sinceP is performing a transition within the scope
of the current flow policyG extended with the local flow
relationF , it is allowed to read references from the input
memory according to the policyF ∪ G. That is, in the in-
put memoriesµ and ν, “low” means less thaǹ with re-
spect toF ∪ G. The condition “u`′,θ ∈ dom(µ′ − µ) ⇒
u is fresh forν” simply means that ifP creates a new ref-
erence, then we assume that the created name does not con-
flict with other names under consideration. Indeed, this new
name can always be chosen so that it satisfies this con-
straint. The conclusion is that the state(Q, ν) should be
able to evolve, possibly in several steps, into a configuration
(Q′, ν′), satisfying the following constraints: first,P ′RQ′

means that no mismatch should occur in future computa-
tions. Next, we requireµ′ lG,` ν′, thus considering the
outputµ′ of the step(P, µ) −→

F
(P ′, µ′) from the point of

view of the flow policy that is restored after it, that isG.
This means in particular that the local flow policyF does
not affect the level of references from the writing, or out-
put point of view (recall thatp ≺ q means that “everything
that principalp is allowed to read may also be read by prin-
cipalq”). Finally dom(ν′ − ν) ⊆ dom(µ′ − µ) ensures that
Q only creates a reference to matchP ’s transition ifP it-
self has created a reference, in which case we require the
new location names to be the same. We need this in order to
get the transitivity of the greatest bisimulation. The reader
may have noticed that there is no condition on the flow pol-
icy of the matching moves forQ. This is because we wish
to consider all thepureprograms, written without(! N) and
(M .. N), to be bisimilar.

As mentioned above, the notion of bisimulation we use
is stronger than the standard one, since if the transition
(P, µ) −→

F
(P ′, µ′) is matched by(Q, ν) ∗→ (Q′, ν′), we

restart the bisimulation game by comparing the processes
P ′ andQ′, in the context of any new low equal memories,
rather than the configurations(P ′, µ′) and(Q′, ν′). This al-
lows us to restore a more restrictive flow relation after a lo-
cal flow relation has been used, as in

(flow H ≺ L in vL
.. ! uH) ; wL

.. ! u′H (3)

where the second assignment implements an illegal flow
(denoting simply byH, L . . . a singleton security level
{H}, {L} . . . assigned to a reference). Defining bisimu-
lations over processes, rather than between configurations,
also allows us to detect an illegal flow in the program

(if ! wX then (if ! wX then () else vL
.. ! uH) else ())

This demanding definition for bisimulations seems also ap-
propriate for dealing with a mobile code scenario, where the
shared memory of a system of threads can be modified by
incoming code.

REMARKS AND NOTATION 3.2.

(i) For any G and ` there exists a (G, `)-bisimulation, like
for instance the set Val × Val of pairs of values.
(ii) The union of a family of (G, `)-bisimulations is a
(G, `)-bisimulation. Consequently, there is a largest (G, `)-
bisimulation, which we denote ◊G,`. This is the union of all
such bisimulations.

One should observe that◊G,` is apartial equivalence rela-
tion. That is, this relation is not reflexive. Indeed, a process
which is not bisimilar to itself, likevL

.. ! uH if H 6�G L,
is not secure. As in [37], our definition states that a pro-
gram is secure if it is bisimilar to itself:

DEFINITION (THE NON-DISCLOSUREPOLICY) 3.3.
A process P satisfies the non-disclosure policy(or is secure
from the confidentiality point of view) with respect to the
flow policy G if it satisfies P ◊G,` P for any `. We then
write P ∈ND(G).

It is easily seen that the setND(G) is non-empty. For in-
stance, any value is secure. An important property of our
notion of security is that if an expressionM does not vi-
olate the current flow policyG extended with a local pol-
icy F , then the expression(flow F in M) is secure with re-
spect to the current flow relation:

PROPOSITION3.4.

M ∈ND(F ∪G) ⇒ (flow F in M) ∈ND(G)

Then for instance a program like the one of example (1) is
secure. Another property is that security is compatible with
parallel composition:

PROPOSITION(COMPOSITIONALITY) 3.5.

P ∈ND(G) & Q ∈ND(G) ⇒ (P ‖ Q) ∈ND(G)

Our non-disclosure policy generalizes the usual non-inter-
ference property for sequential programs (without declassi-
fication). To see this point, let us first recall that the latter
is based on the “big-step” semantics of programs, that is on
the relation(P, µ) ⇒ µ′ that a programP establishes from
an initial state of the memoryµ to the final stateµ′. Namely,
P is non-interferingif (P, µ) ⇒ µ′ and(P, ν) ⇒ ν′, for µ
and ν that differ only regarding confidential information,
implies thatµ′ andν′ are equal as regards public informa-
tion, that is:

(P, µ) ⇒ µ′ & (P, ν) ⇒ ν′ & µ lG,` ν ⇒ µ′ lG,` ν′

Let us denote for a while byDExpr the set of expres-
sions written without usingthread, flow and ref, and let
us show that the expressions inDExpr satisfying the non-
disclosure policy with respect to a given flow policyG are
non-interfering. The big-step semantics for expressions in
DExpr can be defined as follows:

(M,µ) ⇒ µ′ ⇔def ∃V ∈ Val . (M,µ) ∗−→ (V, µ′)

It is easy to see that the evaluation mechanism is deter-
ministic for M ∈ DExpr , and that if(M,µ) ⇒ µ′ then
dom(µ′) = dom(µ). Now assume thatM ∈ DExpr ∩
ND(G), (M,µ) ∗−→ (V, µ′) and (M,ν) ∗−→ (V ′, ν′) with
µ lG,` ν. Then there existM ′ andν′′ such that(M,ν) ∗−→
(M ′, ν′′), V ◊G,` M ′ andµ′ lG,` ν′′. SinceM is deter-
ministic, we have(M ′, ν′′) ∗−→ (V ′, ν′), and from(V, µ′)
there must be a sequence of transitions matching the move
from (M ′, ν′′) to (V ′, ν′). This sequence must be empty,
and we then haveµ′ lG,` ν′.

Now let us see some examples. We assume given two
principalsH andL, and a current flow relationG consist-
ing of the pairL ≺ H. We shall denote references with
security levels{H} or {L} simply by uH or vL (leaving
out the type), as usual. Since, as we have just seen, the
non-disclosure policy implies the standard non-interference
property for expressions ofDExpr , it is obvious that the
standard examples of explicit and implicit flow, namely:

vL
.. ! uH (4)

(if ! uH then vL
.. tt else vL

.. ff) (5)

do not satisfy the non-disclosure policy, whereas these pro-
grams are secure in the context of the flow declaration
(flow H ≺ L in). Since we follow a bisimulation ap-
proach to security, we also reject termination leaks, like for
instance

(if ! uH then () else loop) ; vL
.. tt (6)

where writing at levelL depends on reading at levelH (we
refer to [2, 6, 17, 38, 42, 47] for discussions about this kind
of leaks). Another example of a termination leak is

((! uH)()) ; vL
.. tt (7)

Indeed, the value of the referenceu could beλyλxx or
λy loop. Similarly, there is a termination leak in

(λx(x())(! uH)) ; vL
.. tt (8)

since the value of the referenceu might beλyy or λy loop.
We shall put a constraint on sequential composition in the
type system to rule out such programs. However, this con-
straint will not be as strict as “no low write after a high
read”, because we would like to accept for instance the fol-
lowing (secure) program:

(wH
.. ! uH) ; (vL

.. tt) (9)

Regarding the flow declaration construct, we notice for in-
stance that the program

vL
.. (flow H ≺ L in ! uH) (10)

which is essentially the same as example (1), is secure, as
well as

(if ! uH then wH
.. tt else ())

whereas

(if ! uH then (flow H ≺ L in vL
.. tt) else ()) (11)

is not. The reason is that the flow declarationH ≺ L is a
way of giving (temporarily) the same reading capabilities to
the principalsH andL, whereas it does not affect the writ-
ing capabilities of a program. A type system for informa-
tion flow has to take this into account.

4. The type and effect system

The types we use in the type and effect system are quite
standard. Namely, a reference typeθ ref` records the typeθ
of values the reference contains, as well as the “region”`
where it is created. Here this is theconfidentiality levelof
the reference, indicating who is allowed to read it. A func-
tion type records thelatent effect[26] of a function of that
type, which is the effect the function may have when ap-
plied to an argument. It also records the “latent flow rela-
tion”, which is assumed to hold when the function is ap-
plied to an argument. The syntax of types is

τ, σ, θ t | bool | unit | θ ref` | (τ s−→
F

σ)

wheret is any type variable ands is any “security effect”
– see below. The judgements of the type and effect system
have the form

G; Γ ` M : s, τ

whereG is a flow relation,Γ is a typing context, assign-
ing types to variables,s is a security effect, that is a triple
(`0, `1, `2) of confidentiality levels, andτ is a type. The in-
tuition is:

G; Γ ` u`,θ : ⊥, θ ref`

(LOC)
G; Γ, x : τ ` x : ⊥, τ

(VAR)

F ; Γ, x : τ ` M : s, σ

G; Γ ` λxM : ⊥, (τ s−→
F

σ)
(ABS)

G; Γ ` () : ⊥, unit
(NIL)

G; Γ ` tt : ⊥, bool
(BOOLT)

G; Γ ` ff : ⊥, bool
(BOOLF)

G; Γ ` M : s, bool G; Γ ` Ni : si, τ s.r �G s0.w ∪ s1.w

G; Γ ` (if M then N0 else N1) : s g s0 g s1 g (⊥,>, s.r), τ
(COND)

G; Γ ` M : s, τ
s′

−→
F

σ G; Γ ` N : s′′, τ s.t �G s′′.w s.r g s′′.r �G s′.w

F,G; Γ ` (MN) : s g s′ g s′′ g (⊥,>, s.r g s′′.r), σ
(APP)

G; Γ ` M : s, τ G; Γ ` N : s′, σ s.t �G s′.w

G; Γ ` M ; N : s g s′, σ
(SEQ)

G; Γ ` M : s, θ

G; Γ ` (ref`,θ M) : s, θ ref`

(REF)
G; Γ ` M : s, θ ref`

G; Γ ` (! M) : s g (`,>,⊥), θ
(DEREF)

G; Γ ` M : s, θ ref` G; Γ ` N : s′, θ s.t �G s′.w, s.r g s′.r �G `

G; Γ ` (M .. N) : s g s′ g (⊥, `,⊥), unit
(ASSIGN)

G; Γ ` M : s, unit

G; Γ ` (thread M) : (s.r, s.w,⊥), unit
(THREAD)

G; Γ, x : τ ` W : s, τ

G; Γ ` %xW : s, τ
(REC)

F,G; Γ ` M : s, τ s.r �G∪F r s.t �G∪F t �G r

G; Γ ` (flow F in M) : (r, s.w, t), τ
(FLOW)

Figure 3: The Type and Effect System

• G is the current flow policy that is in force when eval-
uatingM ;

• `0, also denoted bys.r, is thereading effect, that is an
upper bound (up to the current flow relation) of the se-
curity levels of the references the expressionM may
read. This may be regarded as the security level, or
more preciselythe confidentiality level of the expres-
sionM ;

• `1, also denoteds.w, is the writing effect, that is a
lower bound (w.r.t. the relation�) of the level of refer-
ences that the expressionM may update;

• `2, also denoteds.t, is an upper bound (w.r.t. the cur-
rent flow relation) of some of the levels of derefer-
encing the expressionM may perform. This is used
to avoid termination leaks, and therefore we call this
thetermination effect– although the intention is not to
guarantee termination.

With respect to the various type systems for information
flow, the main novelty here is theG parameter in the typing

context, which is used to relax the constraints on how in-
formation may flow in a piece of code to type (such a flow
relation in the typing context also appears, under the name
of a “hierarchy”, in [44]). The termination effect is similar
to the “guard level” of [6] and to the “running time level”
of [42]. According to the intuition above, in the type sys-
tem the reading and termination levels will be composed
in a covariant way, whereas the writing level is contravari-
ant, and not concerned with the flow relations between prin-
cipals. Then we abusively denote by⊥ and> the triples
(⊥,>,⊥) and (>,⊥,>) respectively. In the typing rules
for compound expressions, we will use the join operation
on security effects:

s gG s′ =def (s.r gG s′.r, s.w ∪ s′.w, s.t gG s′.t)

as well as the following convention:

CONVENTION.
In the type system, when the security effects occurring in
the context of a judgement G; Γ ` M : s, τ involve the join

operation g, it is assumed that the join is taken w.r.t. G, i.e.
it is gG.

The typing system is given in Figure 3. Notice that this sys-
tem is syntax-directed: there is exactly one rule per con-
struction of the language. Let us comment on some of the
rules, justifying the side conditions that constrain the typ-
ing of an expression, as well as the resulting effect of the
expression. We see that the reading and writing effects are
respectively introduced by the functions for dereferencing
and updating the memory – rules (DEREF) and (ASSIGN).
We notice that an expression(thread M) has no termina-
tion effect, since its evaluation terminates in one step. In-
deed, the non-termination ofM as a thread cannot influence
the computations in the thread that spawned it. The con-
straints on information flow are implemented in the rules
(COND), (APP), (SEQ) and (ASSIGN). In the former, the
constraints.r �G s0.w ∪ s1.w means that the branchesN0

andN1 may only write at a level which is greater, with re-
spect to the current flow relationG, than the reading level
of the predicate. This is to prevent indirect flows, like in ex-
ample (5). A slightly more subtle example is

(if ! uH then (thread vL
.. tt) else ())

which also shows why we record the writing level of the
body M of the thread in the effect of(thread M). In the
conclusion of (COND), we record the reading level of the
predicate as the termination level of the whole expression.
This, combined with the conditions.t �G s′.w in the (SEQ)
rule, is to prevent termination leaks as in example (6). This
example is essentially the same as

((if ! uH then λxx else loop)(vL
.. tt))

which is ruled out by the conditions.t �G s′′.w in the
(APP) rule. In this rule, the conditions′′.r �G s′.w is to
prevent a direct flow, like in

(λx(vL
.. x)(! uH))

The conditions.r �G s′.w is meant to exclude expressions
that read a secret function that writes in a public location,
and unravel this effect by applying it. For instance, it rules

out an expression like((! u`,θ)()) whereθ = unit
(⊥,`′,⊥)−−−−−→

unit and ` is not lower thaǹ ′. Indeed, the value of the
referenceu might beλz(v`′,θ′ .. V), with different val-
ues forV in different memories (see [52] for a similar ex-
ample). Example (7) shows why the reading level of the
function is recorded in the termination level of the appli-
cation, and example (8) justifies that we record the read-
ing level of the argument in the termination level of the ap-
plication. We can use the typing rules for abstraction and
application to derive the typing of thelet construct, that is

(let x = N in M) = (λxMN), namely:

G; Γ ` N : s, τ G; Γ, x : τ ` M : s′, σ s.r �G s′.w

G; Γ ` (let x = N in M) : s g s′ g (⊥,>, s.r), σ

The reader may also check that the typing ofM ; N is
slightly more liberal than the one of(let z = M in N),
wherez 6∈ fv(N) – and similarly for(ref`,θ M), (! M) and
(M .. N) with respect to(λx(ref`,θ x)M), (λx(! x)M)
and((λxλy(x .. y)M)N) –, since we do not have to record
the reading effect of the componentM in the termination
effect of M ; N . For instance neither(let x = (wH

..
! uH) in (vL

.. tt)) nor (λx(wH
.. x)(! uH)) ; (vL

.. tt)
can be typed, whereas the expression of example (9) is ac-
cepted. This explains our syntax for the imperative part of
the language.

The conditions′.r �G ` in the rule (ASSIGN) is to pre-
vent a direct flow, like in example (4). With the condition
s.r �G ` we rule out the expression(! uH) .. tt . Indeed,
the value of the referenceu might be different locations
with level L in different memories. Finally the condition
s.t �G s′.w is to prevent termination leaks, as in

(if ! uH then wH else loop) .. (vL
.. tt)

These examples show that all the constraints put on infor-
mation flow in the typing rules for conditional branching,
application, sequential composition and assignment are in
fact necessary. Regarding recursion, the reader can check
for instance that a derived typing for thewhile construct is

G; Γ ` M : s, bool

G; Γ ` N : s′, τ s.r g s′.t �G s.w g s′.w

G; Γ ` (while M do N) : s g s′ g (⊥,>, s.r), unit

As in [6, 42], we record the confidentiality level of the
boolean guard expression in the termination level of the
while construct.

To type a flow declaration(flow F in M), we have to
type M in the context of the current flow policy extended
with F . In the (FLOW) rule, we use a kind of subsump-
tion for the security effect. Namely, the apparent reading
and termination effects of the expression(flow F in M) are
allowed to be higher, with respect toF , than the ones of
M . For instance, one can check that the following is a valid
proof of typing (leaving out the type annotation of refer-
ences):

H ≺ L,L ≺ H; Γ ` uH : ⊥, τ

H ≺ L,L ≺ H; Γ ` (! uH) : (H,>,⊥), τ

L ≺ H; Γ ` (flow H ≺ L in (! uH)) : (L,>,⊥), τ
H ≺ L

and therefore one can see that the type system accepts the
expression of example (10). Another example is

vL
.. (flow H ≺ L in encrypt(!uH ,K))

where encrypt is a given encryption function, andK is
the encryption key. Subsumption in the (FLOW) rule will
be used in the proof of the Subject Reduction property (1).
However, one should notice that in the typing rule for flow
declaration we do not allow subsumption for the writing
level. Example (11) shows why it would be wrong to do
so.

The way we build the termination effect of an expres-
sion allows us to accept the expression of example (9). This
would not be the case if we had approximateds.t ass.r by
dealing with security effects of the form(r, w). The clas-
sical approach to “weak” non-interference, based on a big-
step semantics, actually corresponds to a variant of our type
system wheres.t = ⊥, but obviously this is too weak to en-
sure the non-disclosure policy. We could think of further re-
fining our type system by building the termination level in
a more clever way, since clearly secure programs such as

(if ! uH then vH
.. tt else vH

.. ff) ; wL
.. tt

are still rejected by our type system. For instance,
we would like to say that the termination level of
(if ! uH then M else N) may be taken as⊥ if we know
that bothM and N terminate. However, little is known
on how to ensure termination in a higher-order imper-
ative language. Indeed, it is well-known since Landin’s
work [20] that circular higher-order references intro-
duce non-termination, like for instance in (usingref with-
out subscripts)

(let x = (ref λyy) in x .. λy((! x)y) ; ((! x)V))

which has the type ofV . Nevertheless, if we know for a fact
that bothM andN do not cause any trouble (see [1, 37, 48]
for some ways of ensuring this in a simple language), we
may compensate for the inflexibility of the type system as
regards(if ! uH then M else N) for instance by writing in-
stead:

(flow H ≺ ⊥ in (if ! uH then M else N))

Our type system rejects in the same way expressions that
are regarded as involving atiming leak(see [18, 38, 43]),
like

(if ! uH then M else ()) ; vL
.. ff (12)

whereM is an expression that takes some time to compute,
like () ; · · · ; (), although program (12) is generally secure
in the sense of Definition 3.3. Such a program should be re-
garded as unsecure if some specific scheduling discipline
were to be taken into account (cf. [6, 37, 43]). We leave for
further investigations the question as to whether our type

(1) The proof we have for our Soundness Theorem uses all the features of
the type system, apart from the fact that the reading level of the body
M of a thread is recorded in the effect of(thread M).

system is also adequate to deal with scheduling disciplines
(we plan to do this for the cooperative concurrency of ULM
[5]), but we observe that it does not restrict the confidential-
ity level of the predicate in a conditional branching to be⊥,
as suggested in [43, 47]. In this respect, our system is close
to the ones of [6, 42].

As a last example, let us examine a program showing
that the flow policy under which the value of a reference
will be put cannot be predicted statically. LetM be the fol-
lowing expression:

let f = λxλy if x then (flow p ≺ q in vq,θ
.. ! y)

else (flow p ≺ r in wr,θ
.. ! y)

in ((fN)up,θ)

Then one can see that the following typing is admissible:

G; Γ ` N : s, bool s.r �G {q, r}

G; Γ ` M : s g (p, {q, r}, s.r), unit

As we explained above, the constraints.r �G {q, r} is to
prevent termination leaks, since the evaluation ofN could
terminate or not, depending on the values read in the mem-
ory. One should notice that there is no constraint relatingp,
the confidentiality level of the referenceu, with q or r. This
means that the value of this reference can be dowgraded to
either levelq or r, depending on the value computed for the
booleanN .

As previously announced, the main technical result of
our paper is a type soundness property. To prove it, we rely,
as usual, on a Subject Reduction property, which states that
the type of an expression is preserved by reduction. Re-
garding the effects, some may be performed, by reading or
updating a reference, and some may be discarded, when a
branch in a conditional expression is taken. Then the effects
of an expression “decrease” along the computations, and, in
particular, its confidentiality level becomes less critical. The
Subject Reduction property is formulated using the reduc-
tion of the “main thread” in an expression:

PROPOSITION(SUBJECTREDUCTION) 4.1.

If G; Γ ` M : s, τ and (M,µ) N−→
F

(M ′, µ′) with u`,θ ∈
dom(µ) ⇒ G; Γ ` µ(u`,θ) : ⊥, θ then G; Γ ` M ′ : s′, τ
and G; Γ ` N : s′′, unit for some s′ and s′′ such that
s′.r gG s′′.r �G s.r, s.w � s′.w ∪ s′′.w and s′.t �G s.t.

Finally our main result is that the type and effect system
provides a way to garantee that confidentiality is preserved
by programs:

THEOREM (SOUNDNESS).
If M is typable in the context of a flow policy G, that is if
for some Γ, s and τ we have G; Γ ` M : s, τ , then M sat-
isfies the non-disclosure policy with respect to G, that is
M ∈ND(G).

To prove this result, for any security level` we exhibit a
(G, `)-bisimulation that contains the pair(M,M) for any
G-typable expressionM . Such a relation is built by examin-
ing the possible cases for pairs(P,Q) such that(M,µ) →
(P, µ′) and (M,ν) → (Q, ν′), whereµ andν satisfy the
condition of Definition 3.1 of bisimulations. Lemma 2.3
shows that, starting from a given expressionM in the con-
text of two different memories, the evaluation process may
only branch (toP andQ) when the expression comes to
read a reference. This is the basis for building our bisimu-
lations. The details are given in the full version of the pa-
per.

To conclude this section, we notice that we could add
to the language areading clearanceconstruct(M : `), with
the intention that it is accepted only if the expressionM
reads references with confidentiality level below`, with re-
spect to the current flow policy. The typing of such a con-
struct is obvious:

G; Γ ` M : s, τ s.r �G `

G; Γ ` (M : `) : s, τ

This is sound because, ifG; Γ ` M : s, τ , thens.r is an up-
per bound of the confidentiality level of the references that
the expressionM may read (thanks to the (THREAD) rule
that records the reading level of the threadsM may spawn).

5. Conclusion and related work

We have proposed a way to face the “challenge[of] de-
termining what the nature of a downgrading mechanism
should be and what kinds of security guarantees it permits”
[53]. Taking the view that one should distinguish the ques-
tions of what or how muchcan be revealed, from that of
how it can be revealed, we addressed the second question
by proposing a simple and powerful construct for declas-
sification based on dynamically varying flow policies. Al-
though this idea has already been mentioned in the litera-
ture (see [44]), it does not seem to have been previously
studied in a formal way (in [45] it is shown that if the down-
grading relations used in a program do not modify the secu-
rity lattice under some level`, then the program is secure up
to this level). Our main achievement is the design of a se-
curity property that is a natural generalization of classical
non-interference, based on dynamic flow policies. We no-
tice that the idea of stating the security property in a way
that reflects thelocal nature of declassification, that is, using
a decorated small-step semantics, could perhaps be used in
other settings. Moreover, we have shown that, for programs
written in an expressive, higher-order imperative core lan-
guage, this property can be enforced by static analysis. The
idea of using a construct for dynamically introducing flow
policies can certainly be applied to various other program-
ming paradigms.

The language-based security approach is now well es-
tablished – though not widely used –, and there is no ques-
tion that lattices of information flow provide a good basis
for ensuring end-to-end confidentiality properties. Indeed,
checking that a program does not violate a given flow pol-
icy by means of a type system which enforces the exten-
sional property of non-interference, is regarded as provid-
ing a reasonable security guarantee. Therefore we believe
that checking, piece by piece, that a program does not vio-
late local flow policies should provide a similar guarantee,
while allowing us to deal with declassification. Borrowing
an example from [52], we may then write a piece of code
to release precious information held in a safe placeA by
Alice, to Bob who wishes to purchase it, provided a pay-
ment has indeed been done:

if paid then (flow Alice ≺ Bob in B .. ! A) else · · ·

without checking further that this intended leak of informa-
tion is justified. In some other cases, where a program has
to be certified against high security standards for instance,
one would have to provide a formal proof that a declassi-
fied portion of code satisfies some specification, like that of
not releasing too much information. This justification is left
to the programmer, whereas our programming language de-
sign provides him with a flexible programming construct for
declassification, together with a static checking technique to
prevent some errors.

In this respect, our approach contrasts with most pre-
vious works on declassification in a language-based secu-
rity setting that aimed at imposing constraints, at a linguis-
tic level, on this operation – sometimes without justifying
such constraints, for lack of an extensional notion of secu-
rity. For instance, in [46, 49], Volpano and Smith restrict
downgrading to occur by means of specific “hard” func-
tions. This is certainly relevant for some applications, espe-
cially those involving cryptography, but is less appropriate
for applications where the programmer intends to let infor-
mation leak in some places (like in the example above). An-
other example of constrained downgrading isrobust declas-
sificationwhich was proposed, and then studied in a series
of papers [29, 30, 31, 32, 44, 52] by Myers and colleagues.
The idea of robust declassification is to allow this operation
only for extending the reading clearances assigned by the
owner of an object, and to control it by requiring that this
operation runs under appropriate authority. This was first
conceived as a run-time constraint, and was later approxi-
mated in a type system by means of integrity levels. Com-
pared to our approach, robust declassification is obviously
more restrictive (for instance one can only set up flows from
lower to higher levels). However, it would be interesting to
see whether we can accomodate our setting to deal with it
(even though it is not very clear that the “robustness prop-
erty” of [32] is related to our non-disclosure property). An

obvious idea would be to restrict the use of(flow F in M)
to the case whereF only allows to declassify the contents
of references that have been created by the thread executing
this piece of code, and then to see how our security prop-
erty can be made more accurate for this case.

In another paper [39], Sabelfeld and Myers introduce a
different way of restricting declassification, with the idea
that downgrading is acceptable provided that the program
does not modify data if that could influence the value of
declassified expressions, therefore addressing the question
of what is downgraded. For instance, the programuH

..
ff ; vL

.. declassify(uH , L) is not regarded as safe accord-
ing to the definition ofdelimited release. On the other hand,
a program likevL

.. declassify(uH , L) ; wL
.. uH , which

is similar to the one of example (3), is considered safe, but is
ruled out by the type system. The type system, based on the
idea that “variables under declassification may not be up-
dated prior to declassification”, might be difficult to extend
to a more sophisticated language, with a less predictable or-
der of execution than the one considered in [39].

More recently, Chong and Myers introduceddeclassi-
fication policies[8], that specify the levels through which
a value can be downgraded. This also involves conditions,
which are supposed to be satisfied in order to perform the
declassification steps. These are used in the definition of
a generalized noninterference property to mark the steps
where declassification occurs. This bears some resemblance
to our transitions labelled by a local flow relation, although
conditions are rather used to single out sequences of steps
that do not involve downgrading operations. The declassi-
fication policies of [8] look a bit inflexible since, as far as
we can see, there is no possibility for a value to be used in
another way than the one prescribed by the specific policy
assigned to it. Therefore it seems that, with these policies,
the programmer must accurately anticipate the run-time be-
haviour of the declassified values. By contrast, in our setting
a reference can be involved in various declassification sce-
narios, and this does not have to be reflected in its type.

Closer to ours is the work by Ferrari & al. [13], who pro-
posed to attach “waivers” to methods in an object-oriented
language to provide a way of making information flow from
objects to users. Although the authors claim that “only priv-
iledged methods” have associated waivers, there seems to
be actually no constraint on the flow of information they al-
low. This idea of a waiver is therefore similar to a local flow
relation, though it is not clear whether the notion of “safe
information flow” that the authors define is similar to our
non-disclosure property (as far as we can see, this defini-
tion does not treat waivers as having a local scope). A work
that is also close to ours, at least as regards the motivations,
is the one by Li and Zdancewic [24]. After having made
the initial decision that “instead of studyingwhocan down-
grade the data[like in the work on robust declassification],

we take an orthogonal direction and studyhowdata can be
downgraded”, they intend to offer the programmer a way
of specifying sophisticateddowngrading policies. There-
fore we can say we share the same motivations. However,
the ways we take from this starting point differ consider-
ably. Li and Zdancewic introduce a very sophisticated no-
tion of a downgrading policy (an expression in a typedλ-
calculus), where we use flow relations between principals,
which look easy to use in practice. Our non-disclosure prop-
erty also looks simpler than the notion ofrelaxed noninter-
ference, which is based on program equivalence (in the lan-
guage of downgrading policies). Their main result is again
very close in its spirit to ours, since “the security guaran-
tee[provided by relaxed noninterference]only assures that
the program respects the user’s security policies”. There-
fore it would be interesting to compare in greater details the
two approaches, especially from the point of view of ex-
pressiveness.

Finally, the work that is the closest to ours is the one
by Mantel and Sands [27]. In addition to a given lattice
structure of security levels, they consider an extra relation
on these levels, that can be used in specific instructions –
namely, assignments of the formv`′ .. (! u`) – to down-
grade information: in such an instruction, the flow from`
to `′ should be allowed by the “exceptional” flow relation.
In our syntax, we would write this as(flow ` ≺ `′ in v`′ ..
(! u`)) (where` ≺ `′ means{ p ≺ q | p∈` & q∈`′ }). Then
Mantel and Sands introduce a security property generaliz-
ing classical non-interference, defined by means of a notion
of bisimulation with respect to transitions annotated by a
flow relation, and they show a type soundness result. There-
fore one can see that this is very close to what we did in
this paper (the two works were done independently, and a
precise comparison of our security properties remains to be
made). There are some differences, however. A first differ-
ence is that Mantel and Sands choose to restrict declassifi-
cation to very specific instructions, whereas we allow any
computation to be declassified. From a pragmatic point of
view, the main difference we see is that in their work, de-
classification is governed by a specific global flow policy
– the “exceptional” flow relation – that cannot be manipu-
lated by programs. We think that it could be useful in prac-
tice to have the ability of choosing various ways of down-
grading, depending on the point in the program where this
is performed, without necessarily complying with a prede-
termined, global downgrading policy. Moreover, such a dy-
namic view seems to be needed in order to deal with mo-
bile code, where agents migrate with their own flow pol-
icy. Another noticeable – though not related to declassifica-
tion – difference is that we are using a higher-order impera-
tive language, whereas Mantel and Sands consider a simple
while language with threads, where there is no interaction
between commands and expressions. Moreover, our type

system appears to be less restrictive (as regards thewhile
construct for instance).

Some obvious topics for further investigations are poly-
morphism and type inference [29, 33], dynamic labels [44,
55], and more generally first-class security levels. One
could also wish to deal with a richer set of effects, includ-
ing for instance the creation and deletion of references, the
creation of threads, and more generally any action that mod-
ifies the context of an expression in the (abstract) machine
evaluating it. We are currently working on using the idea of
local flow policies in a mobile code setting, and more pre-
cisely in the ULM language [5]. Indeed, a mobile agent may
carry its own flow policy, and run in various sites, each hav-
ing their own, local flow policies, and therefore this is a sce-
nario where one has to deal with various flow relations. Re-
garding declassification, one may think our approach is too
permissive, since it allows any program to declassify any-
thing, provided that no other flow than the declared ones is
implemented. Therefore it would be interesting to see how
we could restrict the usage of the flow declaration construct
in some sensible ways, and adapt the non-disclosure pol-
icy accordingly. We have mentioned a possible way of do-
ing this in discussing the work on robust declassification. It
would also be interesting to find a simple notion of “secu-
rity error”, that could be used as a basis for designing er-
ror messages in a type inference approach. Finally, we ob-
serve that, following Biba’s remark that integrity is dual to
confidentiality in some sense (see [23, 31]), we may design
a framework for the integrity aspect of security in a simi-
lar way to what we did for confidentiality. It could support,
in particular, dowgrading facilities like the “endorse” con-
struct of [23] (which is also considered in [32], but with
a different semantics). Although the expectations are even
stronger regarding integrity than confidentiality (see [23]
for instance), it would be interesting, from a practical point
of view (cf. [53]), to have in a programming language such
flexible downgrading facilities with respect to integrity.

References

[1] J. AGAT, Transforming out timing leaks, POPL’00 ()
40-53.

[2] G.R. ANDREWS, R.P. REITMAN , An axiomatic approach
to information flow in programs, ACM TOPLAS, Vol. 2
No. 1 () 56-76.

[3] D.E. BELL , L. J. LA PADULA , Secure computer system:
unified exposition and Multics interpretation, Mitre Corp.
Rep. MTR-2997 Rev. 1 ().

[4] A. B OSSI, C. PIAZZA , S. ROSSI, Modelling downgrading
in information flow security, CSFW’04 ().

[5] G. BOUDOL, ULM , a core programming model for global
computing, ESOP’04, Lecture Notes in Comput. Sci. 2986
() 234-248.

[6] G. BOUDOL, I. CASTELLANI , Non-interference for con-
current programs and thread systems, Theoretical Comput.
Sci. Vol. 281, No. 1 () 109-130.

[7] D. CLARK , S. HUNT, P. MALACARIA , Quantified interfer-
ence: information theory and information flow, WITS’04
().

[8] S. CHONG, A.C. MYERS, Security policies for downgrad-
ing, 11th ACM Conf. on Computer and Communications
Security ().

[9] E. COHEN, Information transmission in computational sys-
tems, 6th ACM Symp. on Operating Systems Principles
() 133-139.

[10] K. CRARY, A. KLIGER, F. PFENNING, A monadic analysis
of information flow security with mutable state, J. of Func-
tional Programming, Vol. 15 No. 2 () 249-291.

[11] D.E. DENNING, A lattice model of secure information flow,
CACM Vol. 19 No. 5 () 236-243.

[12] A. D I PIERRO, C. HANKIN , H. WIKLICKY , Approximate
non-interference, CSFW’02 () 1-15.

[13] E. FERRARI, P. SAMARATI , E. BERTINO, S. JAJODIA,
Providing flexibility in information flow control for object-
oriented systems, IEEE Symp. on Security and Privacy
() 130-140.

[14] R. FOCARDI, R. GORRIERI, A classification of security
properties for process algebras, J. of Computer Security,
Vol. 3 No. 1 () 5-33.

[15] R. FOCARDI, S. ROSSI, Information flow security in dy-
namic contexts, CSFW’01 () 307-319.

[16] J.A. GOGUEN, J. MESEGUER, Security policies and secu-
rity models, IEEE Symp. on Security and Privacy ()
11-20.

[17] N. HEINTZE, J. RIECKE, The SLam calculus: program-
ming with secrecy and integrity, POPL’98 () 365-377.

[18] A.K. JONES, R.J. LIPTON, The enforcement of security
policies for computation, 5th ACM Symp. on Operating
Systems Principles () 197-206.

[19] B.W. LAMPSON, A note on the confinement problem,
CACM Vol. 16 No. 10 () 613-615.

[20] P.J. LANDIN , The mechanical evaluation of expressions,
Computer Journal Vol. 6 () 308-320.

[21] P. LAUD , Semantics and program analysis of computation-
ally secure information flow, ESOP’01, Lecture Notes in
Comput. Sci. 2028 () 77-91.

[22] P. LAUD , Handling encryption in an analysis for secure in-
formation flow, ESOP’03, Lecture Notes in Comput. Sci.
2618 () 159-173.

[23] P. LI , Y. MAO, S. ZDANCEWIC, Information integrity poli-
cies, Formal Aspects of Security and Trust Workshop
().

[24] P. LI , S. ZDANCEWIC, Downgrading policies and relaxed
noninterference, POPL’05 () 158-170.

[25] G. LOWE, Semantic models of information flow, Theoreti-
cal Comput. Sci. 315 () 209-256.

[26] J.M. LUCASSEN, D.K. GIFFORD, Polymorphic effect sys-
tems, POPL’88 () 47-57.

[27] H. MANTEL , D. SANDS, Controlled declassification based
on intransitive noninterference, APLAS’04, Lecture Notes
in Comput. Sci. 3302 () 129-145.

[28] R. MILNER, M. TOFTE, R. HARPER, D. MACQUEEN, The
definition of Standard ML (Revised), The MIT Press
().

[29] A. M YERS, JFlow: practical mostly-static information flow
control, POPL’99 ().

[30] A.C. MYERS, B. LISKOV, A decentralized model for infor-
mation flow control, ACM Symp. on Operating Systems
Principles () 129-142.

[31] A.C. MYERS, B. LISKOV, Protecting privacy using the de-
centralized label model, ACM Trans. on Soft. Eng. and
Methodology, Vol. 9 No. 4 () 410-442.

[32] A.C. MYERS, A. SABELFELD, S. ZDANCEWIC, Enforcing
robust declassification, CSFW’04 ().

[33] F. POTTIER, V. SIMONET, Information flow inference for
ML, ACM TOPLAS Vol. 25 No. 1 () 117-158.

[34] A.W. ROSCOE, M.H. GOLDSMITH, What is intransitive
noninterference?, CSFW’99 ().

[35] J. RUSHBY, Noninterference, transitivity, and channel-
control security policies, Comput. Sci. Lab. SRI Interna-
tional, Tech. Rep. CSL-92-02 ().

[36] P. RYAN , J. MCLEAN, J. MILLEN , V. GLIGOR, Non-
interference, who needs it?, CSFW’01 ().

[37] A. SABELFELD, D. SANDS, Probabilistic noninterference
for multi-threaded programs, CSFW’00 ().

[38] A. SABELFELD, A.C. MYERS, Language-based
information-flow security, IEEE J. on Selected Ar-
eas in Communications Vol. 21 No. 1 () 5-19.

[39] A. SABELFELD, A.C. MYERS, A model for delimited in-
formation release, Intern. Symp. on Software Security, Lec-
ture Notes in Comput. Sci. to appear ().

[40] R.S. SANDHU , Lattice-based access control models, IEEE
Computer Vol. 26 No. 11 () 9-19.

[41] V. SIMONET, The Flow Caml system: documentation and
user’s manual, INRIA Tech. Rep. 0282 ().

[42] G. SMITH , A new type system for secure information flow,
CSFW’01 ().

[43] G. SMITH , D. VOLPANO, Secure information flow in a
multi-threaded imperative language, POPL’98 ().

[44] S. TSE, S. ZDANCEWIC, Run-time principals in
information-flow type systems, IEEE Symp. on Secu-
rity and Privacy ().

[45] S. TSE, S. ZDANCEWIC, A design for a security-typed
language with certificate-based declassification, ESOP’05,
Lecture Notes in Comput. Sci. to appear ().

[46] D. VOLPANO, Secure introduction of one-way functions,
CSFW’00 () 246-254.

[47] D. VOLPANO, G. SMITH , Eliminating covert flows with
minimum typings, CSFW’97 () 156-168.

[48] D. VOLPANO, G. SMITH , Probabilistic noninterference in a
concurrent language, CSFW’98 () 34-43.

[49] D. VOLPANO, G. SMITH , Verifying secrets and relative se-
crecy, POPL’00 () 268-276.

[50] D. VOLPANO, G. SMITH , C. IRVINE, A sound type system
for secure flow analysis, J. of Computer Security, Vol. 4, No
3 () 167-187.

[51] A. WRIGHT, M. FELLEISEN, A syntactic approach to type
soundness, Information and Computation Vol. 115 No. 1
() 38-94.

[52] S. ZDANCEWIC, A type system for robust declassification,
MFPS’03, ENTCS Vol. 83 ().

[53] S. ZDANCEWIC, Challenges for information-flow security,
PLID’04 ().

[54] S. ZDANCEWIC, A.C. MYERS, Secure information flow
via linear continuations, HOSC Vol. 15 No. 2-3 () 209-
234.

[55] L. ZHENG, A.C. MYERS, Dynamic security labels and
noninterference, Formal Aspects of Security and Trust
Workshop ().

