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Many different kinds of task 
schedulers are available to 
software developers of em-
bedded and real-time systems. 
They range from a simple cyclic 
executive that you can build 
“at home,” to the many priority-
based pre-emptive schedulers 
that are available commercially 
and beyond. 

Table 1 shows a number of 
task schedulers, including the 
sorts of software tasks and hard-
ware device interfaces they sup-
port. Depending on the nature 
of your application and your I/O 
requirements, you can choose 
the appropriate one from a wide 
spectrum of schedulers that will 
be described here. 

The endless loop 
For very simple embedded 
systems, the most basic way to 
write application software is as 
an endless loop. The activities 
programmed within the loop are 
executed in sequence. Branches 
and nested loops are okay, as 
long as when the code is done 
executing, it loops back to the 
beginning for another go-round. 

For example (in pseudocode) : 

DO FOREVER
Request Input Device make a 

Measurement
Wait for the Measurement to be 

ready
Fetch the Value of the Measure-

ment
Process the Value of the Measure-

ment
IF Value is Reasonable
THEN Prepare new Result using 

Value
ELSE Result will be an Error Re-

port
Request Output Device deliver 

the Result
Wait for the Result to be output
Con!rm that output is OK
END DO

This style of programming works 
well in some simple embedded 
systems, especially if the software 
can complete the sequence of 
code and loop around quickly 
enough. But in other embedded 
systems, this style of program-
ming will result in performance 
that is too slow. Keep in mind 
that interrupts from hardware 
devices can’t be handled in this 
style of programming. Devices 
interact with software in the 
loop only when polled. 

Basic cyclic executive 
In more complex embedded 
systems, the idea of the end-
less loop can be extended. 
These systems have hundreds 
or thousands of lines of code, 
so software designers like to 
organise the code into sepa-
rate units referred to as tasks. 
These tasks (sometimes also 
called processes) should be 
as independent as possible so 
that they deal with separate 
application issues and interact 
very little with one another. 

In a software design using 
a basic cyclic executive, these 
tasks execute in standard se-
quence within an inf initely 
repeating loop, as shown in 
Figure 1. This is much like the 
endless loop design, but now 
dealing with large tasks. 

These tasks can pass infor-
mation to one another easily, 
by writing and reading shared 
data. That’s because every task 
a lways  runs to complet ion 
before another task begins run-
ning. So there’s no danger of a 
task getting incomplete data 
from another task. 

Here too, interrupts from 
hardware devices can’t be han-
dled. Devices must be polled, if 
they are to interact with tasks 
in the loop. 

In some sense, this can be 
thought of as “real-time” task 
scheduling, if all of the software 
in the loop executes quickly and 
the loop can execute repeatedly 
at a very rapid rate. 

Time-driven cyclic executive 
For some applications, the view 
of “real-time” taken by a basic 
cyclic executive is not precise 
enough. A basic cyclic executive 
tries to run its tasks as quickly 
and as often as possible. In more 
sophisticated applications, pre-
cision of timing is often more 
important than raw speed. 

A time-driven cyclic executive 
can begin to address this re-
quirement. In this scheme, one 
hardware timer interrupt is used 
to trigger the execution of all 

tasks. The tasks execute one af-
ter another, each one running to 
completion before the next one 
begins. For a time-driven cyclic 
executive to work correctly, the 
final task in the chain of tasks 
must complete its execution 
before the next timer interrupt 
arrives, as shown in Figure 2. 
The rate of hardware timer in-
terrupts is the rate at which the 
tasks must execute. 

Although a hardware timer 
interrupt is involved here, tasks 
can still pass information to 

Table 1: Some categories of task schedulers
Task scheduler 
type

Task execution Device I/O

Endless loop No tasks Polled only

Basic cyclic executive As often as possible Polled only

Time-driven cyclic 
executive

Single frequency Polled only

Multi-rate cyclic 
executive

Multiple frequencies, 
at higher precision

Polled only

Multi-rate executive 
with interrupts

Multiple frequencies, 
at higher precision

Polled and 
interrupt-driven

Priority-based 
preemptive 
scheduler

Periodic and non-
periodic tasks

Polled and 
interrupt-driven

Deadline scheduler Periodic and non-
periodic tasks

Polled and 
interrupt-driven
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one another easily, by writing 
and reading shared data. Every 
task runs to completion before 
another task begins running. 
Interrupts from hardware devices 
(other than the timer) cannot be 
handled in this style of program-
ming. Devices must be polled, if 
they are to interact with tasks. 

Multi-rate cyclic executive 
The time-driven cyclic executive 
assumes that all tasks need to 
run at the same rate of repeti-
tion. But in some applications, 
different tasks may need to run 
at different rates. 

A modi!ed time-driven cyclic 
executive, called the multi-rate 
cyclic executive, can handle this 
need reasonably well in cases 
where a higher rate is an integer 
multiple of the “base” rate. 

The idea is simple. In a multi-
rate cyclic executive, the base-
rate tasks run once per timer 
interrupt, and a higher rate task 
runs a number of times per 
timer interrupt. That number is 
the integer multiple of the base 
rate. The repeated executions of 
the higher rate task should be 
as equally spaced as possible 
within the sequence of tasks 
following a timer interrupt. 

Often the base-rate period 
is called the “major cycle,” and 
higher rates identify so-called 
“minor cycles.” 

The example illustrated here 
shows a system of 10 tasks which 
execute at the base rate (for ex-
ample, 10Hz, if the timer delivers 
10 interrupts per second). In ad-
dition, an eleventh task, marked 
by a star, executes at 40Hz, four 
times the base rate. This is done 
by having the starred task appear 
four times in the chain of task ex-
ecution which follows each timer 
interrupt, as shown in Figure 3. 

Limitations of cyclic 
executives 
Cyclic executives have been 
shown to solve a number of 
problems, while remaining 
fairly simple to implement. With 
the help of a hardware timer 
interrupt, they can run tasks at a 
regular rate. They can even run 
different tasks at different rates. 

Tasks can communicate with 
one another through shared 
data, without special concern 
about data integrity. Hardware 
devices (other than the timer) 
are polled, rather than interrupt 
driven. 

The limitation that hardware 
devices must be polled when 
using a cyclic executive is often 
a serious one. If the device is 
not polled frequently enough, 
important transient occurrences 
might be missed. If the device is 
polled too frequently, much of 
the processor’s power might be 
wasted. For these reasons, inter-
rupt-driven peripheral devices are 
usually preferable for I/O. 

Another objection to cyclic ex-
ecutives is that the timing of task 
execution can’t be controlled 
precisely. Even when hardware 
timing is used to trigger the ex-
ecution of a chain of tasks, only 
the first task in the chain has its 
start time determined precisely 
by hardware. The second task 
in the chain starts to run when-
ever the first ends, and so on. 
If these tasks contain code of 
varying processor loading such 
as data-dependent loops, all 
later tasks in the chain will run 
at times influenced by load on 
previous tasks. 

Even if all tasks do not contain 
code of varying processor load-
ing, timing of individual tasks is 
only approximate. This can be 
seen in the illustrated example 
of the multi-rate cyclic execu-
tive. In Figure 3, the starred task 
is required to execute at a rate 
of 40Hz. In other words, there 
should be precisely 25ms (or 
25,000microseconds) between 
successive execution starts for 
the starred task. If the diagram is 
viewed as a circle where a com-
plete circumference represents 
one 10Hz base period, then the 
starred task should execute at 
angles of precisely 0 degrees, 90 
degrees, 180 degrees, and 270 
degrees. But it does not. Some-
times it executes somewhat early, 
sometimes, a tad late. It all de-
pends on when the previous task 
!nished, and how long the fol-
lowing task will take. Remember, 
each task must run to completion 
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and cannot be “interfered with” 
in mid-execution. 

Some software designers 
have tried to solve these timing 
problems by actually counting 
machine cycles of the computer 
instructions to be executed by 
each task, in order to figure out 
precisely how long each task 
would take. Then the designer 
would determine exactly how 
much of a certain task could ex-
ecute before a precisely timed 
task needed to run. This part 
of the task would be allowed 
to run, and then the precisely 
timed task would be inserted for 
execution, and the remainder of 
the delayed task would run later. 
Effectively, the task would be 
cut in two. See Figure 4. 

This “solution” gives rise to 
several new problems: 
• If the tasks involved in a mid-

task switch share some data 
structures, those data could 
end up in an inconsistent 
state because of the mid-task 
switch. This could result in 
a numeric error in the out-
puts of either of the tasks 
involved. 

• Every time software mainte-
nance causes some code to 
be changed or added in the 
tasks which run before the 
mid-task switch, machine 
cycles need to be re-count-
ed and task timings recalcu-
lated. A task might need to 
be cut apart differently for 
the mid-task switch in this 
new code situation.

 
In other words, this "solution" 

is an error-prone and excruciat-
ingly tedious method of build-
ing software.  Rather than a 
solution, this should be offered 
as an example of an attempt to 
use a cyclic executive beyond its 
realm of usefulness. 

Cyclic executives should not 
be used in situations where tim-
ing requirements are so precise 
and critical that you would con-
sider "surgically" cutting a task 
into two sections. 

Multi-rate executive for 
periodic tasks 
If all tasks are periodic, but at dif-

fering rates of execution, then a 
multi-rate executive can often be 
better than a cyclic executive. In 
such a scheduler, timer interrupts 
must be delivered at a rate that 
is the lowest common multiple 
of all the rates of the tasks. And 
at each timer interrupt (or “tick”), 
tasks can be made to execute. 

For example, if tasks need 
to execute at 50Hz, 60Hz, and 
100Hz, then timer interrupts must 
be delivered at a rate of 300Hz. 
The 100Hz task will be made 
to execute on every third tick. 
The 60Hz task will be made to 
execute on every fifth tick. And 
the 50Hz task will be made to 
execute on every sixth tick. 

If tasks do not need to be 
time-synchronised with each 
other, they could be executed 
at ticks that are o"set from one 
another. For example, the three 
tasks above need not all be run 
at tick 0. Perhaps the 100Hz task 
would be run for the !rst time at 
tick 0, the 60Hz task at tick 1, and 
the 50Hz task at tick 2. 

A simpler example is shown 
in Figure 5. Here we have only 
two rates, with the higher rate or 
“minor cycle” being four times the 
lower rate or “major cycle.” 

Every task must run to comple-
tion before another task begins 
running. As with cyclic execu-
tives, tasks can pass information 
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to one another easily, by writing 
and reading shared data. All 
hardware devices (other than the 
timer) must be polled. 

Caution: adding interrupts 
The restriction to polled hardware 
devices in all the previous types 
of schedulers is a serious one. 
Modern hardware I/O devices 
are typically interrupt driven. 
But interrupt-driven devices can 
cause problems of their own, if 
they are not handled properly 
in software. 

Very often, if an interrupt 
service routine (ISR) tries to pass 
data to the very task it is inter-
rupting, the task may not handle 
the passed data properly. For 
example, a task may begin pro-
cessing some data and then an 
interrupt service routine might 
update the data, followed by 
the task reading the data again 
for purposes of further process-
ing. The net result would be that 

part of the data processing in 
the task is done on an old value, 
and another part is done on a 
new value for the same data, re-
sulting in possible inconsistent 
outputs from the task. 

Another example is when 
a task and an interrupt service 
routine communicate through a 
shared data table. If an interrupt 
occurs and is serviced while the 
task is in the midst of reading 
from the table, the task might 
well read “old” data from part of 
the table and “new” data from 
other parts of the table. This 
combination of old and new 
data might lead to erroneous 
results. See Figure 6. 

The integrat ion of  inter -
rupt-driven software with task 
schedulers requires special care, 
particularly in terms of informa-
tion exchange between ISRs 
and tasks. 

Multi-rate executive with 
interrupts 
One clever idea for avoiding the 
pitfalls we have seen when ISRs 
and tasks interact is to have the 
ISRs write their input data into 
one set of bu"ers, and the tasks 
use data from a completely sepa-
rate set of bu"ers. At every clock 
tick (of the multi-rate executive 
for periodic tasks, for example), 
interrupts are turned o" and in-
put data are copied from the ISR 

bu"ers to the task bu"ers. Then 
interrupts are turned back on, 
and the tasks scheduled for that 
tick are permitted to execute. This 
is shown in Figure 7. 

In this way, data can be trans-
ferred from ISRs to tasks without 
danger of inconsistent data (since 
interrupts are disabled during the 
data transfer). But interrupts are 
re-enabled and active while the 
actual application tasks are run-
ning. This technique works when 
all scheduled tasks !nish running 
before the next clock tick. 

This kind of scheduler be-
comes quite  complex ,  and 
should not be written as a 
weekend “garage” project. With 
this scheduler, every task runs 
to completion before another 
task begins running. As with 
previous kinds of executives, 
tasks can pass information to 
one another easily by writing 
and reading shared data. 

Hardware devices are no lon-
ger restricted to polled only. 
They can be interrupt-driven. 
However, information delivered 
by an interrupt and acquired 
into software by an ISR is not 
immediately passed onward 
to a task for further processing. 
ISR data are transferred to task 
buffers only after the next timer 
interrupt. In some applications, 
this could be an unacceptable 
delay or complication. 

Getting faster response: 
preemptive scheduling 
The schedulers which have been 
surveyed so far are called non-
preemptive, because switching 
between tasks only takes place 
when one task has fully com-
pleted its execution and anoth-
er task wants to start its execu-
tion (from its beginning). Faster 
response can often be obtained 
by going over to a “preemptive” 
scheduler. With a preemptive 
scheduler, switching between 
tasks can take place at any point 
within the execution of a task 
(even when the task isn’t yet 
done executing its code). 

For example, when an inter-
rupt occurs, its ISR might want 
to say something like “I don’t 
care which task was execut-

ing before my interrupt, and I 
don’t want to wait for the next 
timer tick. I would like Task 67 
to begin executing right now!” 
A preemptive scheduler can do 
this, as shown in Figure 8. 

However ,  a  pr e e m p t i v e 
scheduler is orders of magni-
tude more complex than any 
non-preemptive scheduler. And 
such a scheduler gobbles up 
lots of RAM stacks, for storage 
of task “contexts” and other 
task status information. Such 
a scheduler could not be writ-
ten in a month of Sundays as 
a “garage” project. Some com-
mercially available RTOSes often 
have preemptive schedulers as 
their underlying “engines.” 

With a preemptive scheduler, 
hardware devices can be either 
polled or interrupt-driven. In-
formation delivered by an inter-
rupt and acquired into software 
by an ISR can be immediately 
passed onward to a task for 
further processing. 

Caution:  preemptive sched-
ulers bring up new issues 

Preemptive schedulers o"er 
the software developer many 
benefits, beyond what can be 
achieved with simpler “home-
made” schedulers.  But their 
sophistication brings up new 
issues, of which a software de-
veloper must be aware. 

One of these is the matter of 
which tasks may be preempted 
and which may not? The answer 
is to assign a priority number to 
each task. Tasks of higher priority 
can preempt tasks of lower prior-
ity. But tasks with lower priority 
cannot preempt tasks of higher 
priority. A preemptive scheduler 
needs to be told the priority of 
each task that it can schedule. 

A second issue that a soft-
ware developer must consider 
is: tasks that can be preempted, 
and which can preempt oth-
ers, cannot be allowed to pass 
information to one another by 
writing and reading shared data. 
The simple methods for passing 
information between tasks that 
worked with non-preemptive 
schedulers no longer work with 
preemptive schedulers. 
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The problem in passing infor-
mation between tasks by writing 
and reading shared data can be 
described as follows (see Figure 
9): if one task preempts another 
while the second task is in the 
midst of reading from a shared 
data table, the second task might 
read “old” data from part of the 
table and “new” data from an-
other part of the table after the 
!rst (preempting) task writes new 
data into the table. This combina-
tion of old and new data might 
lead to erroneous results. 

This is, in fact, the same prob-
lem that occurs if an ISR and a 
task try to communicate by writ-
ing and reading shared data, as 
discussed earlier. 

In order to help the software 
developer prevent these prob-
lems, an operating system that 
has a preemptive scheduler 
should provide mechanisms for 
passing information between 
tasks (and also to/from ISRs). The 
mechanisms provided vary in 
di"erent operating systems. For 
example, most RTOSes provide 
a message queue mechanism 
and semaphores. RTOSes meet-
ing the OSEK standard that is 
gaining popularity in automotive 
applications provide mecha-
nisms called resources, events, 
alarms, and messages. In some 
RTOSes, the message queues 
are “global” entities (all tasks 
can perform all operations on 
them); in others, the message 
queues are “owned” entities 
(only  the “owner”  task  can 
get the messages). Figure 10 

shows an interrupt-triggered 
task delivering a message to a 
task it has preempted, using a 
message queue. 

One of these mechanisms 
must be used every time informa-
tion is to be passed between 
tasks, in order to ensure reli-
able delivery in a preemptible 
environment. 

Deadline scheduling 
Users of o"-the-shelf, prior-
ity-based preemptive schedulers 
sometimes have the following 
objection: “where do I tell the 
scheduler what are the deadlines 
for my tasks, so that the scheduler 
will make sure they’re met?” The 
fact of the matter is that you can’t 
tell these schedulers about task 
deadlines. They don’t want that 
kind of information. All they want 
to be told is each task’s prior-
ity; they do all of their their task 
scheduling based on the priority 
numbers. The mapping between 
deadlines and priorities is not 
often straightforward. Rate 
monotonic analysis can be used 
in certain situations, but it’s of-
ten downright impossible to be 
sure that tasks will meet their 
deadlines if you use a prior-
ity-based preemptive scheduler 
with fixed task priorities. 

An alternative kind of pre-
emptive task scheduler is called 
a deadline scheduler. This kind 
of scheduler tries to give execu-
tion time to the task that is most 
quickly approaching its dead-
line. This is typically done by the 
scheduler changing priorities 

of tasks on-the-fly as they ap-
proach their individual dead-
lines. The popular, commercially 
available off-the-shelf RTOSes 
don’t offer deadline scheduling. 
But you can see how they work 
and build one of your own (see 
Ellison’s book in References). 

Spectrum of schedulers 
This has been just a short in-
troduction to the world of task 
schedulers. Depending on the 
nature of your application and 
your I/O requirements, you can 
choose from a wide spectrum 
of schedulers. They range from 
a simple cyclic executive that 
you can build “at home,” to the 
many full-featured, priority-based 

preemptive schedulers available 
commercially, and to even more 
sophisticated schedulers. 
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