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Abstract. We examine an 1880 theorem of Laguerre [49] concerning polynomials with all
real roots and a 1968 inequality of Samuelson [103] for the maximum and minimum devi-
ation from the mean, and establish their equivalence. The bounds provided by Laguerre’s
Theorem involve the first three coefficients of an n-th degree polynomial while Samuelson’s
Inequality is in terms of the standard deviation (and the mean) of a set of n real numbers
(observations). We present eight proofs of this Laguerre-Samuelson inequality and survey
the literature; we also give various extensions and applications in statistics and matrix
theory. We include some historical and biographical information and present an extensive
bibliography with over 100 entries.

1. Introduction and mise-en-scéne

1.1. The Laguerre-Samuelson Inequality. Throughout this paper zi,

Z9,..., Ty will denote n real numbers with (arithmetic) mean
1 n
1.1 T=—=)
(1.1) - ; i

(1.2) s= =D (z:—1)%= % <i z? — n£2> .
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Then

(13) z-svyn—-1<z;<z+svyn—-1 forall j =1,2,...,n
or equivalently

(1.4) (z; —2)* < (n—1)s forall j =1,2,...,n.

Equality holds in (1.4) if and only if all the z; other than z; are equal and
so then z; is either the largest or the smallest of the z;; equality holds on
the left (right) of (1.3) if and only if the n — 1 largest (smallest) z; are all
equal.

We see, therefore, that given the mean and standard deviation of a set of
real numbers, their minimum is bounded below and their maximum bounded
above. These bounds are often referred to as “Samuelson’s Inequality” in
the statistical literature! in view of the inequalities established in 1968 by
the American economist and Nobel laureate Paul Anthony Samuelson? (b.
1915) in the Journal of the American Statistical Association [103].

The inequalities (1.3) were (almost certainly first) established in 1880 by the
well-known French mathematician Edmond Nicolas Laguerre® (1834-1886)
in the Nouvelles Annales de Mathématiques (Paris) [49]. Laguerre’s results
were obtained in a completely different notation and context?.

Laguerre’s interest focused on n-th degree polynomials with all roots real.
Let z1,z2,...,z, denote the roots, all of which we will assume to be real, of
the n-th degree polynomial equation with n > 2:

(1.5) f(z) = apz™ + a1zt + apx™ 2+ -+ + ap_17 + a, = 0.

Since we will assume that this polynomial has degree n we will now suppose,
without loss of generality, that

(1.6) ag = 1.

1Cf. e.g., Arnold [3], Borwein, Styan and Wolkowicz [16], Chaganty and Vaish [26],
Farnum [31], Kabe [45], M&rgaritescu [57], Mathew and Nordstrom [59], Murty [76], Pa-
tel, Kapadia and Owen [92] (p. 263), Puntanen [99] (Example 6.16, pp. 275-276), and
Wolkowicz and Styan [121].

For an “autobiographical account of his career” see Samuelson [105].

3For a biographical account see Brezinski [20].

“While several authors in the mathematical literature refer to Laguerre (cf. e.g., Lupag
[62], Madhava Rao and Sastry [54], Mitrinovi¢ [71], pp. 210-211, Popoviciu [97], Sz.-Nagy
[112], [113], [114], and Weber [120], pp. 364-371, the only author who we could find in the
statistical literature to do so was Rodica-Cristina Vod [118] in 1983 (in Romanian), who
also references Mihaileanu [67].



Let

n n
(1.7) t1 = sz and ty = Zx?
=1 =1

(1.8) a1 =- le =—1 and  ag = Zfﬂifﬂj = 3(t] — ta).
i=1 1<j

Laguerre [49] proved that

19) -2 —bvn—1<z;<-Z4b/n—1 forallj=1,2,...,n,
n n
where
(n—1)a? 2ay y/Nt2— G
n n n
using (1.8). It follows at once that
(1.11) —% =z and b=s,

respectively the mean and the standard deviation defined in (1.1) and (1.2)
above, and so the inequalities (1.9) coincide with (1.3).

Laguerre [49], however, did not observe that —a;/n and b were in fact the
mean and standard deviation® of the roots z; ; his interest was in obtaining
bounds for the roots, whenever they are all real, of an n-th degree polynomial
given the first three coefficients—in our formulation the first of these: a9 = 1,
cf. (1.6)8.

In this paper we will, therefore, refer to the inequalities (1.3) or (1.4) as the
“Laguerre-Samuelson Inequality”.

While “Samuelson’s Inequality” is certainly the most popular name for (1.3),
the name “Extreme Deviations Inequality” is also used in the (relatively
recent) statistical literature’; in 1974 Arnold used “extreme deviance” in

®The term “standard deviation” was introduced in 1893 (by Karl Pearson (1857-1936)
“in a lecture to the Royal Society”, cf. Hart [37], p. 626; Stigler [110], p. 328, “although
the idea was by then nearly a century old”, cf. Abbott [1], p. 105.

5Laguerre [49] did not assume that ap = 1 and so his results involve a1/ao and a2/ao
instead of our a1 and as.

"Cf. Dwass (1975) [30], O’Reilly (1976) [91], and Quesenberry (1974) [100].



the title of his paper [3], while “How deviant can you be?” is the title of the
seminal paper by Samuelson (1968) [103]; the 1992 survey paper by Olkin
[89] is entitled “A matrix formulation on how deviant an observation can
be”. Much earlier, however, the term “extreme deviate” appears in the title
of the 1948 paper by Nair [79] and “extreme observation” in the titles of
the papers by Hartley and David (1954) [38] and McKay (1935) [60]. In
the hydrology journal Water Resources Research, Kirby (1974) [47] uses
“standardized maximum deviate”.

Wolkowicz and Styan (1988) call (1.3) the “Samuelson-Nair Inequality” in
their Encyclopedia of Statistical Sciences entry [125], while Arnold and Bal-
akrishnan in their 1989 monograph Relations, Bounds and Approximations
for Order Statistics [4] present many inequalities related to and including
the Laguerre-Samuelson Inequality in their Section 3.2 entitled “Variations
on the Samuelson-Scott theme”8.

The Indian statistician Keshavan Raghavan Nair? (b. 1910) established the
Laguerre-Samuelson Inequality (1.3) in his 1947 Ph.D. thesis [77], publish-
ing his proof a year later in 1948 in the Journal of the Indian Society of
Agricultural Statistics (Delhi) [78], cf. also Nair [82], [83]. J. M. C. Scott!©
established several inequalities (see §1.4 below) on ordered absolute devia-
tions |z; — Z| in the Appendix to the 1936 paper [94] by Egon Sharpe Pear-
son (1895-1980), assisted by C. Chandra Sekar in Biometrika (London); as
noted by Arnold and Balakrishnan [4] (Theorem 3.2, p. 44) the Laguerre-
Samuelson Inequality is a special case of one of Scott’s inequalities.

1.2. The Brunk Inequalities. Now let us arrange the z;’s in nondecreas-
ing order:

(112) Tmin = Z(n) < L(n-1) <4 < Z(2) < I(1) = Tmax

so that z(; is the j-th largest. Then:

(1.13) z+ \/7% < Bynax = w1 < T+ 5V — 1
and
(1.14) T—sVn—1< Tmin=12@) <Z— i

Vn—1

8Cf. [4], Theorem 3.3, pp. 45-46, for six proofs of the Laguerre-Samuelson Inequality; a
further proof using the arithmetic-geometric mean inequality is proposed in [4] as Exercise
7, p. 62.

9For an “autobiographical article” see Nair [83].

10We believe J. M. C. Scott was at the Cavendish Laboratory, Cambridge, England, in
the mid-50s, but have no further biographical information.
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The right-hand inequality in (1.13) and the left-hand inequality in (1.14) are
the Laguerre-Samuelson inequality (1.3). The left-hand inequality in (1.13)
and the right-hand inequality in (1.14) were established (possibly for the first
time) in 1959 by Hugh Daniel Brunk (b. 1919), also in the Journal of the
Indian Society of Agricultural Statistics [22], and so we will refer to them as
the “Brunk Inequalities”. Unaware of Brunk’s results these inequalities were
established again by Boyd (1971) [18], Hawkins (1971) [40] and Wolkowicz
and Styan (1979) [121].

Equality holds on the left of (1.13) if and only if equality holds on the left
of (1.14) if and only if:

_ S _
$(1)::$(n—1):$+7m &nd :L'(n):.’ﬂ—svn—l;

equality holds on the right of (1.13) if and only if equality holds on the right
of (1.14) if and only if:

S

w(l)za_c—i—svn—l and x(g):---:x(n)zi—

i

n —

1.3. The Boyd-Hawkins Inequalities. For the k-th largest observation
or “order statistic” z(x) we have the following inequalities

(1.15)  Z—s\/:20 <z <z+s\/25E fork=2,...,n—1;

equality holds on the left of (1.15) if and only if

By = = oo = T+ s\ TEEE and ag = =) = 3-8/
Vn k-

and on the right of (1.15) if and only if

.’E(l):---:x(k):E-f—S\/% and T(k+1) = " = T(n) =T — 8

If we put £ =1 in (1.15) then we obtain the same upper bound for zpyayx =
z(1) as in (1.13) but a weaker lower bound. Similarly, if we put k¥ = n in
(1.15) then we obtain the same lower bound for zpi, = T(p) as in (1.14) but
a weaker upper bound.

The inequalities (1.15) were established (possibly for the first time!l) in
1971 by A. V. Boyd [18] in the Publikacije Elektrotehnickog Fakulteta Uni-
verziteta u Beogradu, Serija Matematika i Fizika (Belgrade)'? (in English)

"Rodica-Cristina Vod3 [118], p. 547, comments (in Romanian) that (1.15) “este si el
inclus partial in rezultatul lui Laguerre” (p. 547) or (in English) “can be partially derived
from an old inequality due to Laguerre” (p. 548): no further details are given.

12The masthead of this journal also carries the French subtitle: Publications de la Faculté
d’Electrotechnique de I'Université i Belgrade, Série Mathématiques et Physique.



and, also in 1971, by Douglas M. Hawkins [40] in the Journal of the Ameri-
can Statistical Association; see also Wolkowicz and Styan [121], [122], [123].
As observed by Arnold and Balakrishnan [4] (p. 49) and Wolkowicz and
Styan [121], the inequalities (1.15) are “implicit” in the papers by Mallows
and Richter (1969) [55] and Arnold and Groeneveld (1979) [7], while Scott
(1936) [108] gives (without proof) the inequality

n—2
2 b

(1.16) Ty <ZT+s

the special case of the upper bound in (1.15) for k£ = 2.
We will call (1.15) the “Boyd-Hawkins Inequalities”.

1.4. The Scott Inequalities. The first (explicit) proof of the Laguerre-
Samuelson Inequality in the statistical literature was almost certainly that
given in 1936 by J. M. C. Scott [108] in the Appendix to the paper by Pearson
and Chandra Sekar [94]; the Laguerre-Samuelson Inequality appears there
as a special case of (1.19a), the first of three inequalities below, cf. Arnold
and Balakrishnan [4], Theorem 3.2, p. 44, where it is observed that “Scott’s
ingenious constructive proof is apparently the only proof available in the
literature.”

Let us define the absolute deviations:

(1.17) 0 = |z — Z|; 1=1,...,n,

and let d(; denote the i-th largest absolute deviation so that

(1.18) S(ny < 8(n1) < -+ < 81y

Of course the i-th largest absolute deviation d(;) will not, in general, be equal
to |.’E(Z) — I

Then
(1.19a) djy < s j&(f;.)a)_l for j odd and j # n,
(1.19b) 8y < s\/atery for n odd,
(1.19¢) 3Gy < s\/% for j even.

We note that j = 1 in (1.19a) corresponds to the Laguerre-Samuelson In-
equality (1.4). The inequality (1.19b) is, of course, quite different to the



Brunk Inequality, cf. (1.14):

(1.20) Tmin < & — ——o

i

n —

Indeed, we obtain equality in (1.19b) when (n — 1)/2 of the z; are equal to
b and all other z; are equal to —1/b, where

n—+
n—1

—_

(1.21) b=

On the other hand equality holds in (1.20) if and only if the largest n — 1 of
the z; are equal.

1.5. Purpose and Overview. Qur main purpose in this paper is to survey
the literature associated with the Laguerre-Samuelson, Brunk, and Boyd-
Hawkins Inequalities, and to give several proofs. As observed by Arnold
and Balakrishnan [4] (in their introduction to Chapter 3) the publication
by Samuelson [103] “... spawned a torrent of generalizations, several of
which referred to bounds on order statistics. It also spawned a flurry of
rediscoveries of earlier notes on these topics. Ultimate priority seems hard
to pin down ...”

In Section 2 we present eight different proofs of the “Laguerre-Samuelson
Inequality” (1.3):
e 2.1. Laguerre (1880), Madhava Rao & Sastry (1940), Mitrinovié (1970)
e 2.2. Thompson (1935)

e 2.3. Nair (1947, 1948), Kempthorne (1973), Arnold & Balakrishnan
(1989)

2.4. Arnold (1974), Dwass (1975), Arnold & Balakrishnan (1989)

2.5. Arnold (1974), O’Reilly (1975, 1976), Arnold & Balakrishnan
(1989), Murty (1990)

2.6. Wolkowicz and Styan (1979, 1980)
2.7. Smith(1980), Arnold & Balakrishnan (1989)

2.8. Olkin (1992).

Arnold and Balakrishnan [4], pp. 45-46, present six proofs, of which five (all
but their first) are included in four (§2.3-2.5, 2.7) of our eight. As Arnold and



Balakrishnan [4] point out (p. 45): “It is instructive to ... consider several
alternative proofs. The alternative proofs often suggest different possible
extensions ... The Schwarz inequality!® may be perceived to be lurking in
the background of many of the proofs.”

We also present several related inequalities and some applications in statis-
tics and matrix theory. We include some historical and biographical infor-
mation and present an extensive bibliography of over 100 entries from both
the mathematical and the statistical literature. References to Jahrbuch fiir
die Fortschritte der Mathematik are denoted by JFM (for reviews published
in 1868-1930), Mathematical Reviews by MR (for reviews published since
1940), and to Zentralblatt fiir Mathematik [126] by Zbl (for reviews pub-
lished since 1931).

2. The Laguerre-Samuelson Inequality: Eight Proofs

2.1. Laguerre (1880), Madhava Rao & Sastry (1940), Mitrinovié
(1970). Our first proof is that given in 1880 by Edmond Nicolas Laguerre
[49], cf. also Madhava Rao and Sastry [54] and Mitrinovié [71], pp. 210-211.

For any real scalar u, we have the sum of squares expansion:

n
(2.1) Z(u — ;)% =nu® — 2tiu+ty > (u—z;)® = u? — 2zu + x?
i=1

for any particular z;, since a sum of squared terms is always greater than or
equal to any one of its summands. Here ¢, and ty are as in (1.7).

Rearranging (2.1), we see that for any real u,

(2.2) (n — D)u® +2(z; — t1)u+ (tg — ]7]2) > 0.

Since this quadratic function in u is nonnegative, its discriminant must be
non-positive:

(2.3) Azj —t1)” —4(n — 1)(t2 — z5) < 0.

Rearranging and simplifying (2.3) as a quadratic in z; yields:

(2.4) n:v? — 2z + 12— (n— 1)t <0

13Named after [Karl] Hermann Amandus Schwarz (1843-1921) for the inequality he
established in 1888 in [107], pp. 343-345; the inequality was established, however, already
in 1821 by [Baron] Augustin-Louis Cauchy (1789-1857) in [23], pp. 373-374, and in 1859
by Viktor Yakovlevich Bouniakowsky [Buniakovski, Bunyakovsky] (1804-1899) in [17], pp.
3-4. In this paper we will call it the Cauchy-Schwarz Inequality, cf. (2.14) below.



and so z; must lie in the closed interval [a1, ag], where o, oy are the roots
of

(2.5) nz — 2tz + 17 — (n— 1)ty = 0.

These roots a1, ao are:

21 % 4] — 4n(] — (n - )t) g, /T

(2.6) o -

using (1.10) and so (1.9) is established. O

We may arrive at the inequality (2.4) more easily, however, cf. Madhava
Rao and Sastry [54], since

—{na;? — 23+ — (n— 1)t} = (n—1)(ta — x?) — (1 — z;)?
= (n=1)) 2f - Q w)
i#] i#]
= (n—1)> (2 —4)* >0,
i#]

cf. (1.2), where

1
2.7 L= ;
(27) * n—1 sz
i#j
is the “reduced” mean of the n — 1 roots z1, ..., T, excluding z;. O

2.2. Thompson (1935). Almost certainly the first proof in a statistical
context is the following proof which is implicit in the 1935 paper of William
R. Thompson[116].

Let Z denote the “reduced” mean of the n — 1 real numbers z1, ..., z,, exclud-
ing z;, cf. (2.7), and let z and s denote the mean and standard deviation,
respectively, of all n observations, cf. (1.1) and (1.2). Then

(2.8) i—ﬁc:%(a:j—ﬁ:):nil(xj—a_:)




and so

ns? = Z(:I:i—zﬁ—l-i—ic)Q

i=1
= > (zi—2)%+ (z; — 2)° —n(d - z)
1#£]
= Y (zi— )2 +n(n - 1)(& - 7)°
2]
(2.9) = Y- @)+ - . (z; — 2)”
12
(2.10) > nﬁ L@ =),

using (2.8). The inequality (1.4) follows at once.

This proof also shows that equality holds in (1.4) if and only if equality holds
in (2.10) and this is so if and only if z; = Z for all i # j. Hence equality
holds in (1.4) if and only if all the z; other than z; are equal. O

Thompson [116] obtains (2.9) explicitly—cf. his (6) on p. 215—but appar-
ently does not obtain the inequality (2.10). Thompson’s interest focused on
the distribution of the “Studentized deviations” (z; —Z)/s when the “obser-
vations” z1, ..., x, are independently and identically distributed as a normal
random variable with unknown mean and variance.

2.3. Nair (1947, 1948), Kempthorne (1973), Arnold & Balakrish-
nan (1989). We consider the n x n orthogonal matrix E =

1 1 1 1 1
vn vn vn vn vn
1 -1
7 7 0 0 0
1 1 1 I ) 0
\/(n—l)(n—Z) \/(n—l)(n—Z) \/(n—l)(n—2) (n—1)(n—2)
1 1 1 . 1 ~(n—1)
\/n(n—l) \/n(n—l) \/n(n—l) \/n(n—l) \/n(n—l)

10



the so-called Helmert matrix'* and let x = {z;} and y = Ex = {;}. Then

n n
(2.11) Yool =xx=xEEx=yy=) y? >+l
=1 =1
Since
1 & no,_
(2.12) n= = Zzzlm, and  yn =4[ (% — 2n)

it follows at once from (2.11) that

n—1

2
n 1 n
i=1 i=1

If we rearrange the components of the vector x so that z; is in the n-th
position then, with z,, replaced by z;, (2.13) becomes (1.4).

Equality holds in (2.13) if and only if equality holds in (2.11) and this is so

if and only if yo = --- = yp,—1 = 0, i.e., all the z; are equal except for z,
(which we now choose to be z;). O

This is the third proof given by Arnold and Balakrishnan [4], p. 45, and
follows that given by K. R. Nair in “a small section of the third part” of his
1947 Ph.D. thesis [77] and published in 1948 [78], and by Oscar Kempthorne
in a 1973 “Personal communication” [46] to Barry C. Arnold!®.

2.4. Arnold (1974), Dwass (1975), Arnold & Balakrishnan (1989).
Barry C. Arnold [3] and Meyer Dwass [30] proved (1.4) using the Cauchy-
Schwarz inequality:

(2.14) (a'b)? < a'a-b'b

for any n x 1 real vectors a and b. This is the second proof given by Arnold
and Balakrishnan [4], p.45.

“Named after Friedrich Robert Helmert (1843-1919) for the matrix he introduced in
1876 [41], cf. also Harville [39], pp. 8586, Lancaster [50], Read [102], and Stuart and Ord
[111], Example 11.3.

15Cf. Arnold and Balakrishnan [4], pp. 45 & 158, and Arnold [3] where, in an ac-
knowledgement, it is observed that: “Upon seeing an earlier draft of this note, Oscar
Kempthorne supplied me with three of several alternative proofs that he derived for
Samuelson’s inequality”.

11



Since > 7 {(z; — z) = 0, it follows that

(2.15) Tj—x=— Z(.’L‘Z - 5:)
1#]

and so
(@;-2? = (Sigylai—2)

< (n-1) 3 (@~ 2)°
1£]

= (n—-1) XLz —2)? = (n - 1)(z; — 2)?

from (2.14) with the vectors a = {z; — z},,; and b = (1,1,...,1)" both
(n —1) x 1. Hence

(¢ —2)> < =

LS @ - 9)? = (0 - 1)s?
=1

n

from (2.14), and so (1.4) follows immediately. Equality holds if and only if
the vectors a and b are proportional, i.e., all the x; except for z; are equal.
O

2.5. Arnold (1974), O’Reilly (1975, 1976), Arnold & Balakrishnan
(1989), Murty (1990). Barry C. Arnold (1974) gave a second proof in [3]
which used the “hat” matrix from linear regression analysis; see also O’Reilly
[90], [91], and Murty [76].

In the usual full-rank Gauss-Markov linear statistical model
(2.16) Ey = X8,
where E denotes (mathematical) expectation and the “model” or “design”

matrix X is n X p with rank p < n. Then it is well known that the n x n
“hat matrix”

(2.17) H=X(X'X)"'X

is symmetric and idempotent, and hence nonnegative definite, as is the resid-
ual matrix M =1 — H.

12



We now let p = 2 and X = (e : Cx) as in (centered) simple linear regression;
here the n X 1 sum vector

(2.18) e=(1,1,...,1),
while the n X n centering matrix
(2.19) C=1,— —ee

is symmetric and idempotent. Hence

1

x'Cx

1 1
(2.20) H=—ee + Cxx'C = —ee' + %Cxx'C
n n 8

and so the j-th diagonal element of M =1 — H:

1 (z;—z)?
2.91 =17
(2.21) mjj n ns

2 207

since M is nonnegative definite; the Laguerre-Samuelson Inequality (1.4)
follow at once.

Equality holds in (1.4) if and only if equality holds throughout (2.21) and
this is so if and only if all the elements in the j-th row (and column) of M
are zero, i.e., all the z; except for z; are equal. O

The proof given by O’Reilly [90], [91], is similar but uses the model matrix
X = (e : x) as in uncentered simple linear regession. This O’Reilly proof
is the fifth proof of the Laguerre-Samuelson Inequality given by Arnold and
Balakrishnan [4], p. 46, while the Arnold-Murty proof is their fourth.

2.6. Wolkowicz & Styan (1979, 1980). The proof given by Henry
Wolkowicz and George P. H. Styan (1979, 1980) [121], [123], cf. also Bancroft
[10], Chaganty [24], Chaganty and Vaish [25], [26], Neudecker and Liu [84],
Puntanen [99] (Example 6.16, pp. 275-276), and Trenkler [117], essentially
uses the following result (Lemma 2.1 in [123], p. 475):

Lemma 2.6.1. Let w and x be real nonnull n x 1 vectors and let z and s
be defined as in (1.1) and (1.2) above, so that T = x'e/n and s> = x'Cx/n,
where the centering matriz C = I —ee'/n as in (2.19), with e the n X 1
vector of ones. Then

(2.22) —sVnw'Cw < w'Cx < sVnw/Cw.

13



Equality holds on the left (right) of (2.22) if and only if
(2.23) X = cw + de

for some scalars ¢ and d with ¢ <0 (¢ > 0).

Proof. The inequality string (2.22) follows at once from the Cauchy-Schwarz
Inequality (2.14) with a = Cw and b = Cx. O

If in (2.22) we now substitute

(2.24.) w:ej—e/n:hj,
say, where
(2.25) e; =(0,...,0,1,0,...,0)

with 1 in the j-th position, then (2.22) becomes (1.3). The equality condition
X = cw + de = ce; + de shows that equality holds in (1.4) if and only if all
the z; are equal except for z;. O

2.7. Smith (1980), Arnold & Balakrishnan (1989). Arnold and Bal-
akrishnan [4], p. 46, give the following proof credited to William P. Smith
[109], as their sixth (and last) proof of the Laguerre-Samuelson Inequality.
This proof is based on the Cantelli Inequality'®, cf. e.g., Patel, Kapadia and
Owen [92], p. 51.

Let X denote a random variable with mean 0 and variance 1. Then

1 .
(2.26) Prob(X <u) < T ifu<0
1 .

We now suppose that X is a discrete uniform random variable with

-7\ 1
(2.28) Prob (X = o m) =— foralli=1,...,n.
s n

Then X has expectation EX = 0 and variance varX = 1.

Named after Francesco Paolo Cantelli (1875-1966); for a biographical account see
Benzi [15].
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If we substitute u = (Zmin — Z)/s < 0 in (2.26) then it becomes

A2
131/{1+<xmm -T)}
n S
and so

L 2\ 2
(2.29) (M) <n-—1.

Substituting u = (Zmax — Z)/s > 0 in (2.27) gives
N2
131/{1+<L“”‘ x) }
n s

(2.30) <M>2 <n-1

S

and so

Combining (2.29) and (2.30) yields the Laguerre-Samuelson Inequality (1.4).
Od

2.8. Olkin (1992). Ingram Olkin, in his 1992 survey paper [89], used the
following result:

(2.31)

n

n
C(wj_j)QS;(wi_j)z forallj=1,....,n <= Ogcgn_l.

To prove (2.31) we express both sides of its right-hand side as quadratic
forms. Let x = (z1,...,2,)", e = (1,...,1)" and where, cf. (2.25), ¢; =
(0,...,0,1,0,...,0) with 1 in the j-th position—all n x 1. We may write

1
(2.32) T — %= thj with h; =e; — —e,
n

cf. (2.24) above, and so the right-hand side of (2.31) becomes

n
(2.33) c(zj — 7)? = x'hjh'x < x'Cx = Z(acZ - 7)?,
=1

15



where the centering matrix C is defined as in (2.19). Then (2.33) holds if
and only if

1
(2.34.) C- Chjhjl = In - Eee' — Chjhj’ = In — AA’

is nonnegative definite; here A = (e/y/n : y/ch;). Since the nonzero eigen-
values of the matrices AA’ and A’A coincide, it follows at once that C —
ch;h;’ is nonnegative definite whenever

L -A'A=T, - (f/é}f) (e/vn : Vehy) = (8 1 —c(nO— 1)/n)

is nonnegative definite. The result (2.31) follows at once.

Substituting ¢ = n/(n—1) in the right-hand side of (2.31) gives the Laguerre-
Samuelson Inequality (1.4). O

Some discussion of this proof is given in [10], [24], [25], [84], and [117]—see
§4.2 below for additional commentary.

3. Proofs of Some Inequalities Closely Related
to the Laguerre-Samuelson Inequality

3.1. The Brunk Inequalities. Let us arrange the n real numbers z4, ..., z,
in nondecreasing order as in (1.12):

(3.1) Tmin = T(n) < Tn—1) < 0 < T(2) < T(1) = Tmax

so that z(;y is the j-th largest. Then:

(3.2) .i:—l—\/%gmmaxzx(l)gi—}—svn—l
and
(3.3) T—sVn—1< Tmin=74) <7 - \/7%

The right-hand inequality in (3.2) and the left-hand inequality in (3.3) are
the Laguerre-Samuelson inequality (1.3). As announced in §1.3 above, we

16



will refer to the left-hand inequality in (3.2) and the right-hand inequality in
(3.3) as the “Brunk inequalities” since we believe that they were established
for the first time in 1959 by H. D. Brunk [22].

Equality holds on the left of (3.2) if and only if equality holds on the left of
(3.3) if and only if:

(3.4) Ty = =T =T+ and z(m) =7 —svn—1;

s
vn—1
equality holds on the right of (3.2) if and only if equality holds on the right
of (3.3) if and only if:

(3.5) Ty=Z+svVn—-1 and =z = =x4p) =T —

i

n —

3.1.1. Brunk (1959). To prove the “Brunk inequalities” Brunk used the
following result ([22], Corollary 1), which we find to be interesting in its own
right:

Lemma 3.1.1. Let the random variable Z be distributed over the closed

interval [0,1] and let p be a nonnegative constant so that p < Prob(Z = 1).
Then

(3.6) pEZ% < (EZ)?,

with equality if and only if
(3.7) Prob(Z=0)=1—-p and Prob(Z =1)=np.

Proof. Since 0 < Z < 1 we have Z? < Z with probability one and so
EZ? < EZ and Prob(Z = 1) < EZ. Combining these two inequalities yields

(3.8) pEZ? < Prob(Z =1)-EZ < (EZ)?,

and (3.6) is established. Equality holds in (3.6) if and only if equality holds
throughout (3.8) if and only if p = Prob(Z = 1) and Z = Z? with probability
one, and so the equality condition (3.7) follows at once. O

To prove the “Brunk inequalities” we now let the random variable X assume
each of the n values in (3.1) with probability 1/n. Then the random variable
Z = (tmax — X)/r, where the range 1 = Zyax — Tmin, 18 distributed over
[0,1]. The expectation EX = Z and the variance varX = s2. Hence

2 _ 5% + (Tmax — 3—0)2

(3.9) EZ? =varZ + (EZ) .

r
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and so from Lemma 3.1.1:

2 =2 =2
(3.10) lpze o &4 @ 22 (@max —2)°
n nr? 72
which simplifies to
(3.11) s? < (n — 1)(Tmax — )%,

from which the left-hand inequality in (3.2) follows at once. Equality holds
in (3.10) if and only if (3.7) holds and here this becomes (3.4).

To establish the right-hand inequality in (3.3) we repeat the above argument
with Z = (X — zmin)/7- O

3.1.2. Wolkowicz and Styan (1979). Wolkowicz and Styan [121] pro-
vided a completely algebraic (non-statistical) proof of the Brunk inequalities.
Since n(Tmax — T) = Dje1(Tmax — z;) it follows that

n 2
nQ(xmaX — :i)2 = {Z(xmax - iUz)}

=1

n
= (xmax - $i)2 + Z(~Tmax - xi)(xmax - xi’)
=1 il

v
8
8
=
&
&
<

= Z(a:max —Z+4+ 7 —25)? = n{(Tmax — )% + 5%},
=1

from which the left-hand inequality in (3.2) follows at once, with equality if

and only if Tmax = (1) = ... = T(,_1) or (3.4) holds.

If n2(Z — Tmin)? is expanded similarily, then the right-hand inequality in (3.3)
follows at once, with equality if and only if z(3) = -+ = Z(;) = Tmin or (3.5)
holds. i

3.2. The Boyd-Hawkins Inequalities. As observed above in §1.3 the k-
th largest observation or “order statistic” z, satisfies the following ““Boyd-
Hawkins inequalities”:

(3.12) i—s\/nf—;lﬂgm(k)ga_c—l—s ”k;k fork=2,...,n—1;
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equality holds on the left of (3.12) if and only if

w(l):"'::ﬂ(k—l):j-'_s n;f_l"l and Ty ="' =T(n)=T—35

and on the right of (3.12) if and only if
By = =3 = E s\ BgE and wgn) = =3 = 3 - s/5

3.2.1. Wolkowicz & Styan (1979). Possibly the simplest proof of (3.12)
is that presented in 1979 by Wolkowicz and Styan [121]. We use our Lemma
2.6.1 above, a version of the Cauchy-Schwarz inequality given by Wolkowicz
and Styan (Lemma 2.1 in [123], p. 475):

(3.13) —sVnw'Cw < w'Cx < svVnw/'Cw,

where w and x are real nonnull n X 1 vectors and the centering matrix
C =1-e€'/n as in (2.19), with e the n x 1 vector of ones. Equality holds
on the left (right) of (2.22) if and only if

(3.14) X =cw + de
for some scalars ¢ and d with ¢ < 0 (¢ > 0).

Now let w = 3t _, e;/(l —k 4+ 1) and x = {z@)}, where e; is defined as in
(2.25) above and

(315) Tmin = L(n) < T(n-1) <--- < Z(2) < T(1) = Tmax -

Then w'Cx = Z(; ;) — 7, where the “subsample mean”

l
(3.16) Ty = x@/l—k+1) for 1<I<k<n.

Moreover, w'Cw = (I — k +1)~! — n~!. Hence (3.13) implies
(3.17) f_sﬂ/nkk.lf_1<$(kn)§j( HNS<ZTay<T+s Tl
which, when [ = k, reduces to

(3.18) T— s\ LR <ag <+ s/

as in (3.12). From (3.14) we note that equality holds in (3.12) if and only
if x = cw + de for some scalars ¢ and d. The equality conditions for (3.12)
follow at once. O
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4. Some Matrix-theoretic Extensions Related to the
Cauchy-Schwarz and Laguerre-Samuelson Inequalities

4.1. Bounds for Eigenvalues. When the real n x n matrix A has all its
eigenvalues real, e.g., when A is symmetric, then the Laguerre-Samuelson,
Brunk and Boyd-Hawkins inequalities provide bounds for the eigenvalues of
A as observed by Wolkowicz and Styan [123], [124]; see also, e.g., Merikoski
[63], Merikoski, Styan and Wolkowicz [64], Merikoski and Virtanen [65],
Merikoski and Wolkowicz [66], and Tarazaga [115].

As Mirsky [69] and Brauer and Mewborn [19] pointed out, the mean and
variance of the eigenvalues \; may be expressed in terms of the trace of A
and the trace of A?:

(4.1) m =
and
2
1 1 1 1 2
4.2 22N N2 [ 2 :—tA2—<—tA>.
I o .

Then from (1.13) and (1.14) we obtain:

S

(43) m—l—\/ﬁgz\mw:/\lgm—i—svn—l
and
(4.4) m—sx/n—lg)\min:)\ngm—\/%,

while from (1.15):

(4.5) m—s\/nk%kilgx\kgm+s "k;k fork=2,...,n—1,
where A\ is the k-th largest eigenvalue of Ak =2,...,n — 1.

4.2. Some Matrix Inequalities Related to the Cauchy-Schwarz
and Laguerre-Samuelson Inequalities. Two of our eight proofs of the
Laguerre-Samuelson inequality were based explicitly on the Cauchy-Schwarz
inequality which, as we noted at the end of Section 1, “may be perceived
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to be lurking in the background of many of the proofs”!? of the Laguerre-

Samuelson inequality, cf. §2.4, §2.6, and Lemma, 2.6.1. Moreover, the discus-
sion in [10], [24], [25], [84], and [117] of the proof given in §2.8 is all centered
around the Cauchy-Schwarz inequality.

In their 1996 paper Pecari¢, Puntanen and Styan [96] presented the fol-
lowing matrix-theoretic extension of the Cauchy-Schwarz inequality; here a
g-inverse (generalized inverse) X~ is any matrix X~ such that XX~X = X.

Theorem 4.1. Let A be an nxXn symmetric and nonnegative definite matriz
with AP} defined as

Al = AP, p=12 ...,
— PA—A(A'A) A p=o0,
= (A+)|p|; p=—-1,-2,...,

where AT is the (unique) Moore-Penrose inverse of A, and P denotes the
orthogonal projector onto the column space C(A) of A. Lett and u ben x 1
vectors, and let h and k be integers. Then

(4.6) (' AlrFR/2h )2 < ¢ AThdg . o/ ARy
for hyk=...,—-1,0,1,2,..., with equality if and only if
(4.7) At oc ATHE=R)/2hy

Several extensions of the Theorem 5.1.1 and some statistical applications are
also given in Petari¢, Puntanen and Styan [96].

When h =1 and k = —1, then the inequality (4.6) becomes
(4.8) (t'Pau)? < t'At-u'ATu,

cf. Bancroft [10].

Equality holds in (4.8) if and only if

(4.9) At x Pau.

When t = w, u = x and A = C, the centering matrix I, — n"'ee’ as in

2.19), then A™ = PA = C and (4.8) becomes

( )’

4.10 w/Cx)? < w'Cw - x'Cx
( ) ( — b

" Arnold and Balakrishnan [4], p. 45.
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which is equivalent to (2.22) in Lemma 2.6.1, and the equality condition
(4.9) becomes

(4.11) Cw x Cx,

which is equivalent to (2.23) in Lemma 2.6.1'%.

We may also express (4.8) as

(4.12) (t'u)? <t'At-u’A"u  forall ueccC(A)

and for any, and hence for every g-inverse A, cf. Neudecker and Liu [84].
The quadratic form u’A~u in (4.12) is invariant with respect to the choice
of g-inverse A~ when u € C(A), since then u = Av for some v and so
uUA u=v'AA"Av = v'Av = vVAA"Av for any g-inverse A”. Equality
holds in (4.12) if and only if

(4.13) At x u.

Chaganty [24] presents (4.12) with the Moore-Penrose inverse A instead
of a g-inverse A~ and observes that equality holds in (4.12) when t = A*u
which, since u € C(A), implies At = u, cf. (4.13).

Trenkler [117] observes that Baksalary and Kala [9] showed that

(4.14) (t'u)? < at’At  forall ucC(A)

provided that then u’A~u < « for any, and hence for every g-inverse A~.
If we now let u =t € C(A), then (4.12) becomes

(4.15) (t't)2 <t'At-t'A"t forall teC(A)

for any, and hence for every g-inverse A™; when t # 0 then equality holds
in (4.15) if and only if t is an eigenvector of A, cf. Lemma 2.1 of Dey and
Gupta [29].
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