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Teacher's Corner 
An Inequality for a Measure of Deviation in Linear Models 

Thomas MATHEW and Kenneth NORDSTROM 

A matrix inequality is established that provides an upper 
bound for a quadratic form that involves the difference be- 
tween two linear unbiased estimators of the same linear 
parametric function in a general linear model. Various spe- 
cial cases of the inequality are discussed. Certain inequali- 
ties that arise in the problem of outlier detection and pre- 
diction of observations come out as special cases. In ad- 
dition, some extensions of Samuelson's inequality are also 
obtained. 

KEY WORDS: Outliers; Samuelson's inequality; Stu- 
dentized residuals. 

1. INTRODUCTION 

Several articles have recently appeared, all dealing with 
the maximum of, and bounds for, some version of stan- 
dardized residuals in a linear regression model. The related 
question of how much an observation in a random sample 
can differ from the sample mean has similarly continued 
to receive constant attention in the literature. An example 
of an article dealing with the former problem is Gray and 
Woodall (1994), where several further recent contributions 
are cited, while the latter problem has been extensively (and 
excellently) reviewed both from the historical as well as the 
technical point of view by Olkin (1992). 

This paper provides yet another perspective on the above- 
mentioned problems. It will be argued that several inequal- 
ities of the above type, including their vector-valued ex- 
tensions, can be obtained directly from a single elementary 
matrix inequality (inequality between two orthogonal pro- 
jections). This matrix inequality will further be shown to 
yield a number of inequalities and distributional results use- 
ful for regression diagnostics and outlier detection. For the 
most part the derived results can already be found in the 

literature, but some vector-valued extensions and inequal- 
ities appear to be new. However, the main purpose of the 
paper is to show that a single inequality underpins a multi- 
tude of apparently unrelated inequalities, thus allowing for 
a unified derivation of these inequalities. 

Throughout the paper we shall be concerned with various 
versions of the standard linear regression model for an n x 1 
vector y of responses, given by 

y = X + ?, E(?) = 0, cov(E) =-2 (1.1) 

where X is a known n x m matrix, /3 is the unknown Tn x 1 
vector of regression parameters, and ur2 > 0 is the un- 
known error variance. The model matrix X will be allowed 
to be rank-deficient at no real extra cost, so as to include, 
for example, various models for designed experiments. The 
vector of predicted (fitted) values y is therefore given by 
y = Py = X/, where P = X(X'X)-X' is the projection 
matrix onto the regression space (the "hat matrix") and 3 
denotes any solution to the set of normal equations of the 
model (1.1). If the reader prefers to think in terms of a full- 
rank model, then the generalized inverse, appearing above 
in the expression for P, should be replaced by the true in- 
verse of X'X, and 3 is then the least squares estimator of 
/; see, for example, Seber (1977, sec. 3.8). In the illustra- 
tive examples given below we assume X to be of full rank 
for simplicity. 

The general inequality, alluded to above, involves the de- 
viation between two linear functions of the observation vec- 
tor y having the same expected value under the model (1.1). 
More specifically, given two linear functions Aly and A2y 
of y satisfying 

A1X - A2X = 0, (1.2) 

we shall be concerned with the problem of constructing a 
suitable quadratic form in the vector of deviations Aly- 
A2y in order to obtain a useful upper bound on this form. 
For this purpose a matrix inequality is first established. The 
required inequality for the quadratic form in Aly - A2y, 
which is the "omnibus inequality" of the paper, will follow 
from this matrix inequality. 

One may well ask why it is worthwhile to study the case 
of linear functions Aly and A2y satisfying (1.2). It turns 
out that quite a few problems, for example in regression 
diagnostics and outlier detection, can indeed be cast in such 
a form. Below we shall outline several examples of this; 
further details and examples (including multidimensional 
extensions) will be given in Section 3. 

Thomas Mathew is Professor, Department of Mathematics and Statistics, 
University of Maryland Baltimore County, Baltimore, MD 21250 (E-mail: 
mathew@umbc2.umbc.edu). Kenneth Nordstrom is Research Associate, 
Department of Statistics, University of Helsinki, FIN-00100 Helsinki, Fin- 
land. The first author's research was supported by Grant AFOSR F49620- 
93-1-0001, and the second author's research was supported by a grant 
from the Ella and Georg Ehrnrooth Foundation. This work was initiated 
while T. Mathew was visiting the Department of Statistics, University of 
Helsinki, Finland, and was completed while K. Nordstrom was a Fulbright 
Research Scholar at the Department of Mathematics and Statistics, Uni- 
versity of Maryland Baltimore County. The authors thank two referees for 
several valuable suggestions that substantially improved the exposition. 

344 The Amiierican Statisticiani, November 1997, Vol. 51, No. 4 ?) 1997 Amnericani Statistical Associationi 



Example 1. Suppose that we wish to compare the ith 
observation yi with its predicted value Yi, predicted from 
the model (1.1) using the whole data. Such a comparison 
would naturally be of interest if it is suspected that the ith 
observation is an outlying observation. 

Let ui denote the ith standard unit (column) vector with 
1 in the ith position and zeros elsewhere, and partition the 
model matrix X and the projection matrix P row-wise as 

X = (xl, . . . ,x,)' and P = (p, .., p)'. (1.3) 

If we now take A1 = u' and A2= u'P = p', then Aly = yi 
and A2y =ffi, and both Aly and A2y clearly have the same 
expected value x'$. Therefore, the deviation Aly - A2y 
y- Y is of the form considered above; it is, of course, 
equal to the ordinary residual corresponding to the ith ob- 
servation in the model (1.1). 

Example 2. Consider the case when the model matrix 
X in (1.1) is the n x 1 vector 1, of ones, implying that (1.1) 
is simply the general mean model. Then choosing A1 and 
A2 as in Example 1 above will give us Aly - A2y = Yi - , 
that is, the deviation between the ith observation and the 
sample mean. This is the quantity of interest in numerous 
papers, as reviewed by Olkin (1992). 

Example 3. Suppose that we would like to compare an 
observed response with its predicted value, obtained from 
fitting the rest of the data. Assume, without loss of gen- 
erality, that Yi is the observed response to be compared. 
Its predicted value, predicted from the data with the first 
observation excluded, is then given by x'/(,), where x' 
is the first row of the matrix X in the partition (1.3) and 
/(1= (XAl)X(l)) -X(l)y(l) is obtained from the partitions 

y= (i)) and X (Xf ). (1.4) 

If we now choose A1 u' and A2 (0: Xl 
(XI)X(1))-1X'1)), we obtain Aly = Yi and A2y =xlQ(l); 
moreover, both Aly and A2y have the same expected value 
43. Therefore, the deviation A1y - A2y =Yi - X1/(l) is 
of the form considered above. 

The above comparison could be of interest for several 
reasons. The resulting predicted residual e(1) = Yi - XI/(l) 
is useful for diagnostic purposes [see, for example, Cook 
and Weisberg (1982, sec. 2.2.3)], and occurs also as part of 
the PRESS criterion for selection of models. On the other 
hand, one might be interested in the predictive capability of 
the model. Employing a data-splitting technique, Yi and xl 
would then correspond to (univariate) validation data, with 
Yi - x>(l) as a validation residual vector estimating the 
prediction error; see, for example, Picard and Berk (1990, 
sec. 2). 

Examnple 4. Assume that we would like to assess the 
influence of an observation, say the first observation, on the 
least squares estimator of the vector of regression parame- 
ters ec in the model (1.1). Choosing A1 =(X'X1X' and 
A2 = l(0: (X4l)X(l)uXel)) corresponding to the split (1.4) 
above, will give us A1y =/3 and A2y =3(i). Clearly, A1y 
and A2y have the same expected value (= on), and the devi- 

ation Aly - A2y - () is again of the form considered 
above. 

From the above examples it should be plain that differ- 
ences of the type Aly - A2y, with A1 and A2 satisfying 
the condition (1.2), are commonplace in problems in linear 
regression theory. In particular, the quantities that measure 
the effect of adding or deleting observations (or regressors) 
in the model (1.1), and that are central in regression diag- 
nostics and outlier detection, can almost all be expressed 
as differences of the above type. Therefore, it is imperative 
to assess the magnitude of such differences and to obtain 
bounds on them. The main result in this article provides not 
only upper bounds for differences of the type Aly - A2y, 
but also yields the various F tests that arise for instance in 
regression diagnostics. 

The paper is organized as follows. The basic matrix in- 
equality is given by the lemma in the next section. Some 
general consequences of this inequality for linear mod- 
els are given in Section 3.1. The rest of the paper deals 
with a series of applications to specific problems in linear 
models, presented in Sections 3.2-3.5. The applications in- 
clude extensions of Samuelson's inequality, inequalities and 
tests relating to outlier detection-both single and multi- 
ple outliers-and prediction of observations and residuals. 
Some brief concluding remarks are made in Section 4. 

2. A MATRIX INEQUALITY 

In this section we establish the desired matrix inequality, 
that will then be applied in the next sections in order to 
derive deviation inequalities for linear models. For two real 
nonnegative definite matrices A and B of the same order, 
the notation A < B denotes that B - A is nonnegative 
definite, that is, the usual nonnegative partial ordering of 
matrices. 

Lemma. Let X be an n x m matrix, and let P denote the 
orthogonal projection matrix onto the range space R(X) of 
X, that is, P = X(X'X)-X', with superscript "-" denoting 
generalized inverse. 

1. Let A be a k x n matrix satisfying AX 0. Then 

A' (AA') -A < (In - P). (2.1) 

2. Let A1 and A2 be k x n matrices satisfying A1X 
A2X. Then 

(A1 - A2)'[(A1 - A2)(A1 - A2)'l-(Al - A2) < (I, - P). 

(2.2) 

Proof. By assumption, R(A') is orthogonal to R(X), 
and because (In - P) is the orthogonal projection matrix 
onto the orthogonal complement of R}(X) [see, for example, 
Seber (1977, app. B1)], we obtain R(A') c R(In - P). On 
the other hand, the matrix on the left-hand side of (2.1) is 
the orthogonal projection matrix onto 'R(A'), and therefore 
(In - P) - A'(AA')-A is a projection matrix and hence is 
nonnegative definite [see Result 2 of Seber (1977, app. B3)]. 
Taking A =A1 - A2, (2.2) follows directly from (2.1). This 
completes the proof of the lemma. 

Remark 1. If S is any subspace of Rit and if we use 
the usual inner product (x, y) =x'y (for x, y C Rn), then 
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it is well known that projection onto any subspace of S < 
projection onto S. The inequality (2.1) is simply a refor- 
mulation of this fact, as should be clear from the proof of 
the lemma. The applications in the next section use the in- 
equality in the form stated in (2.2). We also note that the 
inequality (2.1) is sharp in the sense that equality in (2.1) 
can be achieved, and this is indeed the case if and only if 
A satisfies 'R(A') = ZR(1, - P). 

3. APPLICATIONS TO LINEAR MODELS 

3.1 General Results 

Consider the standard linear regression model (1.1), and 
assume that A is a k x n matrix satisfying 'R(A') c 'R(X'). 
Then the parameter function AO is estimable, with least 
squares estimator (LSE) given by 

A = A(X'X)-X'y. 

The residual vector, resulting from the least squares fit 
y = Py to the data, is given by e = (I? - P)y. Using the 
standard notation RSS for e'e, the residual sum of squares, 
the corresponding estimator of ur 2is 

s2 = RSS/(n -r) 

where r = rank(X)(<m). 
Now suppose that A1 and A2 are two k x n matrices such 

that E(Aly) = E(A2y), that is, the matrices A1 and A2 
satisfy condition (1.2). Then (2.2) gives us the inequality 

(Aly - A2y)'[(Al - A2)(Al - A2)']1(Aly - A2y) 

< RSS. (3.1) 

The left-hand side of (3.1) can be considered a mneasure 
of the deviation between the two estimators A1y and A2y. 
We note that, apart from the scalar multiple o-2, the matrix 
(A1 - A2)(A1 - A2)', whose generalized inverse appears in 
(3.1), is the covariance matrix of (Aly - A2y). This shows 
that the quadratic form 

Q = (Aly - A2y)'[(Al - A2)(A1 - A2)']1(Aly - A2y) 

(3.2) 

is indeed proportional to the squared Mahalanobis 
(pseudo-)distance between the random variables A1y and 
A2y; see, for example, Rao (1973, p. 595) or Rousseeuw 
and Leroy (1987, pp. 223-224). 

If rank (A1 - A2) = p, then, assuming a normal distri- 
bution for y, the quadratic forms (1/lu2)Q and (1/o72)RSS 
have x2 distributions with p and n - r degrees of freedom, 
respectively. Furthermore, because Q < RSS, in view of 
(3.1), the difference (1/lu2)(RSS - Q) also has a x2 distri- 
bution with n - r - p degrees of freedom and is distributed 
independently of Q [see, for example, Rao (1973, p. 187) 
or Seber (1977, Theorem 2.9)]. Hence 

F _ 
/ (RSS-Q) (3.3) 

p (mz-r-p) 

follows a central F distribution with degrees of freedom 
(p, n-r-p). This general fact can be used to test hypotheses 
in a number of different situations. 

We now proceed to describe a series of applications of 
(3.1) and (3.3). 

3.2 Samuelson's Inequality-Some Extensions 

Samuelson's (1968) inequality states that for n numbers 
Z1, z2, ... . zn, the inequality 

(z - Z)2 <- 1 E (zi - Z)2 (3.4) 
-12 

holds for j n1,... , where z denotes the ordinary arith- 
metic mean of the z 's. This inequality thus gives an upper 
bound on how deviant an observation can be with respect to 
the mean. The inequality (3.4) was actually known long be- 
fore the appearance of the article by Samuelson (1968). This 
is pointed out, for example, in the review article by Olkin 
(1992), which contains an excellent survey of this literature, 
along with a matrix proof of (3.4). Below we shall present 
both a scalar and a vector generalization of (3.4), both fol- 
lowing as special cases of (3.1), for appropriate choices of 
A1 and A2. 

Consider the problem of comparing the ith observation y. 
with its predicted value, predicted from the linear regression 
model (1.1). This is the problem outlined in Example 1 of 
Section 1. Let A1 = u' and A2= u'P as in Example 1, and 
observe that 

(A1 - A2 )(A1 - A2)' (u' - u' P) (u' - u' P)I 

u'ui - U 1Pui = 1-Pii 

where pi is the ith diagonal element of P. Note also that 
A2y = u'X)3 = x', the LSE of x'43. The inequality (3.1) 
thus takes the form 

(Vi - xI)2 < (1 - p22)RSS. (3.5) 

Inequality (3.5) is clearly a generalization of Samuelson's 
(1968) inequality (3.4). Indeed, the latter can be obtained 
from (3.5) by considering the special case of the regression 
model (1.1) corresponding to the general mean model, that 
is, by considering X = 1? (see also Example 2). 

Next suppose that y and X are partitioned as 

y (Y1) and X (Xi) (3.6) 

where Yi and Y2 are, respectively, nm x I and n2 x 1 vectors, 
and X1 and X2 are, respectively, '121 x m and n2 x '72 matrices. 
Let 

A1 =(I:O) and A2 X1(X'X)-X'. 

Then A1X X1 = A2X,A1y yi, and A2y = X1). 
Also, (A1 - A2)(A1 - A2)' = 1 - P11, where P11 = 
X1 (X'X)-X' is the n1 x i21 top left-hand corner submatrix 
of P. From (3.1) we thus obtain the inequality 

(Yi -Xl3)'(I21 - Pii)jyi- X1,3) ? RSS. (3.7) 

The inequality (3.7) provides a vector generalization of (3.5) 
[and (3.4)]. 
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3.3 Residuals and Outlier Detection-Single-Case 
Results 

In this subsection we show that the inequality (3.5) yields 
as immediate special cases several bounds on standardized 
residuals in the linear regression model (1.1). Moreover, 
from the independence of the quadratic forms Q and (RSS 
- Q) as well as from the corresponding general F statistic 
(3.3), several distributional results will also be shown to 
follow at once. 

Let us first look at the problem of obtaining a bound 
on the standardized residuals; this problem is considered, 
for example, in the recent article by Gray and Woodall 
(1994). Upon noting that ej = yi - x',3, the ordinary resid- 
ual corresponding to the ith observation, and using the fact 
that RSS = s2(n - r), we can rewrite (3.5) in the form 

e2 < (1 P..) - r) (3.8) 
which yields 

< (l-pji)(m-r) (3.9) 

[where r = rank(X)]. From (3.9) we also obtain directly 

max < K (1- rninpjj)(n-r) (3.10) 

which gives a common upper bound for all the standardized 
residuals. 

The bound in (3.9) may be contrasted with 

ei < 
n 

(n-l) (n- r) (3.11) 

which is the bound given as (1) in Gray and Woodall (1994) 
(in our notation). It transpires that, although the bound in 
(3.9) depends on the model matrix X (through the ith di- 
agonal element pii of the "hat matrix"), it is generally sub- 
stantially tighter than the bound given by Gray and Woodall 
(1994) for it is easy to show that 1/n is only a lower bound 
for pii [see, for example, Cook and Weisberg (1982, p. 
12)]. Actually, if the model (1.1) does not include a con- 
stant term, then this lower bound will have to be replaced 
by 0, as pointed out by Cook and Weisberg (1982, p. 13) 
[see also Rousseeuw and Leroy (1987, p. 220)]. Hence the 
bound (3.11) is valid only for models with a constant term 
included. 

From (3.8) we also obtain directly the corresponding 
bound for internally Studentized residuals. Defining the ith 
internally Studentized residual in the usual way by 

-i = ei/(s1 -p) 

the inequality (3.8) reads 

1s .<n-r (3.12) 

which is the bound givenl, for example, in Cook and Weis- 
berg (1982, sec. 2.2.1). Furthermore, choosing Q as in (3.2), 
we have Q = qis2, that is, r2/Qi -rl) =Q/RtSS. Because 
RSS =Q + (RtSS - Q) with independent x2-distributed 

summands (see Section 3.1), we also obtain at once that 
r2/(,n - r) follows a Beta distribution, with parameters 
((1/2), (1/2)(n - - 1)) [see Cook and Weisberg (1982, 
sec. 2.2.1)]. 

The F ratio (3.3) can now be written as 

t. - ei2c(1-pu) (3.13) ?- j-)s2 - e2/(l -P.)]u/(2 - - 1) 

which follows an F distribution with (1, n - - 1) degrees 
of freedom. The expression in the denominator of (3.13) is 
easily seen to be 5(i,the estimator of o2 obtained by delet- 
ing the ith observation from the estimation data. Therefore, 
(3.13) can be rewritten as 

ti si)(-pi)1/2 (3.14) 

which is recognized as the ith externally Studentized (or 
jackknifed) residual. In view of (3.13), ti follows a t distri- 
bution with ni - r- 1 degrees of freedom. 

The t statistic (3.14) is usually employed in the context 
of a labeled mean-shift outlier model for the purpose of 
testing whether the ith observation is an outlier. In prac- 
tice, one is, of course, generally compelled to work with 
the corresponding unlabeled model, wherein the potentially 
outlying observation is not specified. This forces consid- 
eration of the maximum of tr, or rather tf, over all i, and 
leads naturally to standard simultaneous testing procedures; 
see, for example, Cook and Weisberg (1982, sec. 2.2.2) and 
Beckman and Cook (1983, sec. 4.2). 

3.4 Residuals and Outlier Detection-Multiple-Case 
Extensions 

Below we shall show how the inequality (3.7) can in turn 
be used to extend the results of Section 3.3 to the vector- 
valued case. Such an extension is of interest in multiple-case 
diagnostics for the linear regression model (1.1). 

Thus suppose that y and X are partitioned as in (3.6), and 
let e1 denote the corresponding nm x 1 residual vector, that 
is, ex Y a-Xpl. In the labeled case there is clearly no loss 
of generality in considering the subvector e1 corresponding 
to the ni first observations because the more general case 
of an arbitrary index set I is simply obtained by rearranging 
the observations in the partitions (3.6). (This, of course, is 
no longer true in the unlabeled case.) 

Generalizing the scalar residual r1, we define the vector 
of internally Studentized residuals by 

-1 (I -P )/e / (3.15) 

where (I - P11r)1/2 denotes the Moore-Penrose general- 
ized inverse of (Id- P11)1/2. [For basic properties of the 
Moore-Penrose inverse, see, for example, Seber (1977, sec. 
3.8.1c).] For the case of nonsingular (I - B1T), the residual 
vector (3.15) has been defin aed asein the literature; see, 
for example, (2.2.4) in Cook and Weisberg (1982). How- 
ever, in the multiple-case setting it is not uncommon to 
have eigenvalues of P1r equal to 1, as noted by Cook and 
Weisberg (1982, p. 13). Therefore, the generalization (3.15) 
is not simply a theoretical one, but should be of some prac- 
tical interest. 
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Now the left-hand side of (3.7) equals Q = l r182 2, and 
therefore (3.7) takes the form 

llri 112 < (n - r) (3.16) 

where Jlr1 l12 = riri, the squared Euclidean norm of r1. The 
inequality (3.16) is a considerably stronger result than the 
corresponding scalar inequality (3.12). The fact that such 
a vector-valued version is possible, and yields generally 
stronger results, is related to Remark 1 of Section 2. There 
it was pointed out that the sharpness of the bound is in- 
deed related to the dimension of R(A') = R(A1 - A2)' as 
a subspace of R(I - P). 

Assuming a normal distribution for y, and using the inde- 
pendence of the quadratic forms Q and (RSS -Q), as done 
in the previous section, it is seen that lrl 2/12/(n - r) follows 
a Beta distribution with parameters ((1/2)n*, (1/2) (n - r - 
r1*)), where nt = rank(hn1 - PI1)(?< n1). Further, it is seen 
that the F statistic (3.3) now takes the form 

Irj I 2(,12 _ r- nt) 
F [(ri -r[pl-r1 (3.17) 

[(n -l>) [3pt] -| ~rl ||12]n *' 

In the case that (In, - P1I) is nonsingular, the above F 
statistic can be found in Cook and Weisberg (1982, p. 30) 
[see also (4.9) in Beckman and Cook (1983)], although for- 
mulated in terms of the residual vector e1. Whether a gen- 
uine vector formulation such as (3.17), utilizing the vector 
r1 of internally Studentized residuals, is available in these 
sources is not clear to us [see, for example, (4.9) and (4.10) 
in Beckman and Cook (1983)]. 

The F statistic (3.17) is used in the labeled mean-shift 
model to test for multiple outlying observations. As in 
single-case testing, the unlabeled case leads to problems 
of simultaneous testing, but the computational effort now 
required increases dramatically. 

3.5 Prediction of Observations and Residuals 

Partitioning the data into two (or more) groups of ob- 
servations, and predicting one (each) group using the other 
is a common procedure for evaluating the performance of 
a prediction procedure. The resulting vector of prediction 
errors is useful for assessing the accuracy of the predic- 
tion. Below we shall apply the inequality (3.1) in order to 
obtain an upper bound for a quadratic form involving the 
prediction errors in such a setting. 

Suppose that the observations from the linear regression 
model (1.1) are partitioned into two groups, corresponding 
to the partition (3.6). Suppose further that 

R)(X1) c (i2tX) (3.18) 

so that X1/ is estimable using Y2 alone. Then the LSE of 
X1/ based on Y2, say Xl/(,), is given by Xi/(l) 
XI (X2X2) -XIy2. Taking 

A1 =(1Inl 0) and A2 =[0: X1(X2X2)X2] 

we have A1y =Yi and A2y = X1 \(l); moreover, both 
A1y and A2y have the same expected value X1j3. A direct 
computation shows that 

(A1 - A2)(A1 - A2)' =I,lz + X1(X2X2<X 

and hence (3.1) takes the form 

(Yi -Xl/(l))'{I( 1 + XI (XI X2)X1}1 -Xi/(i)) 
< RSS. (3.19) 

Under the assumption (3.18) it can actually be shown that 
In, - P11 is invertible, and that 

Ilx l + X1 (X2X2)X1 (In - (3.20) 

(see Appendix). Therefore, (3.19) can be recast into the 
form 

(Yi - Xl(l))(I -Pii)(yi - XI/(,)) < RSS. (3.21) 

The identity (3.20) has an interesting consequence in 
multiple-outlier detection. Let e and e(i) denote the scalar 
residuals 

-i = Yi xi and e(i) = yi-xi 

that is, ei is the ith ordinary residual and e(i) is the corre- 
sponding predicted residual, predicted from the data with 
the ith observation excluded. Then we have 

var(ej) = 2( -2Pii) and var(e(j)) = u2/(1 -Pii), 

(3.22) 

the latter variance following directly from the relationship 
between ei and e(j); see Cook and Weisberg (1982, sec. 
2.2.3). The inverse relation between the variances, exhibited 
in (3.22), is useful for revealing the different roles of ei 
and e(i) in identifying cases with large or small diagonal 
elements pii, as pointed out in Cook and Weisberg (1982, 
p. 34). 

Now assuming (3.18), the ordinary vector of residuals 
el = Yi - X1) will have a nonsingular covariance matrix 
given by 

cov(ei) = - 2 (_nI_p1); (3.23) 

see the derivation preceding (3.7). Defining the vector of 
predicted residuals by e(l) = Yi - XI/3(I), the identity 
(3.20) shows indeed that 

cov(e(l)) = -2(In _p1l)-l (3.24) 

A comparison of (3.24) with (3.23) therefore reveals that 
the covariance matrices of e1 and e(l) are inverses of each 
other, thus extending the relationship between the variances 
of ei and e(i) in (3.22). Hence this shows that also the vec- 
tors e1 and e(l) emphasize different cases, depending on 
whether the submatrix P1, is large or small, relative to I[1 
in the matrix ordering. This can be compared favorably with 
the scalar interpretation pointed out above. 

The vector Yi - XI/(I), which is a generalization of the 
predicted residuals given in Cook and Weisberg (1982, sec. 
2.2.3), also occurs naturally in other contexts. In the liter- 
ature on cross validation it is often referred to as the val- 
idation residual vector; see, for example, Picard and Berk 
(1990, sec. 2.2). 
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Remnark 2. There are a number of other problems which 
can be formulated using differences of the type A1y - A2y 
considered in this paper. As outlined in Example 4 of Sec- 
tion 1, the problem of assessing the influence of one ob- 
servation (or a subset of observations) on the least squares 
estimator of / in the model (1.1) is an example of such 
a problem. Also, suppose that several independent linear 
models are available, containing a common parameter vec- 
tor of interest and perhaps some model-dependent nuisance 
parameters. Then it may be of interest to assess how much 
the individual estimators of a differ from the combined 
(pooled) estimator, or to obtain bounds on the pairwise dif- 
ference between individual estimators. These problems can 
indeed also be shown to fall under the general setup con- 
sidered in this paper. Finally, the matrix results of Section 
2 can be similarly used to derive results, parallel to those 
in Section 3.1, for a multivariate linear model. This exten- 
sion is entirely straightforward due to the generality of the 
approach, and should yield directly the corresponding re- 
sults for regression diagnostics and outlier detection in the 
multivariate regression model. 

Remcark 3. Throughout we have assumed that the co- 
variance matrix of y is 2I, as specified in (1.1). General- 
ization to the case when the covariance matrix is u2V, with 
V positive definite, is straightforward. For a positive defi- 
nite V we can establish the following generalization of (2.1): 

A'(AVA')-A < V-1(I), - Pxvv- ) (3.25) 

where PX,V-i = X(X'V-1X)-X'V-1 and A is as in 
(2.1). The inequality (3.25) can be reduced to (2. 1) by 
writing A, = AV1/2, X* = V-1/2X, and noting that 
(3.25) is equivalent to Al (A*A) -A* < (I - P*) [with 
P* = X*(X'X*)-X'], which is of the form (2.1). The in- 
equality (2.2) can be generalized similarly. 

4. CONCLUDING REMARKS 

The main result established in this paper is the inequality 
(3.1). The derivation of this result is based on the matrix re- 
sult (2.2). The inequality (3.1) also yields a general F statis- 
tic (3.3). As consequences of the single inequality (3.1) and 

3), we have in Sections 3.2-3.5 rederived sev- 
eral known results, and established some new ones, mostly 
in the area of regression diagnostics and outlier detection. 

The matrix-algebraic techniques used to arrive at the gen- 
eral results (3.1) and (3.3) are rather elementary, and should 
be familiar to anyone who has had a course in standard lin- 
ear model theory. The inequality (3.1) and the F ratio (3.3) 
provide a considerable unification of a number of results in 

regression diagnostics, and should therefore be of interest 
in teaching courses on regression diagnostics as well as to 
researchers in this area. 

APPENDIX 

In order to establish (3.20), we need to show that un- 
der (3.18), that is, when Ri(X{) c Ri(X') [with respect to 
the partition (3.6)], the following is true: 

[In, + XI (X2X2) X1(I ( -1 - Bi) = Ip1x. (A. 1) 

Noting that P11 = X1(X'X)-X{, (A.1) follows if we can 
show that 

X1(X~2<X~- XI (X'X<-XI XI (XI X2)-XIIY1, I)X 

-X1(X2X2)-X1XI(X'X) -X= 0. (A.2) 

Observe that 

2 X1(XX2 (X'X - X2X2)(X'X)X1 
- X1(XYX2X -(XX(XIX2)(XIX2(X'XX 

=XY1 (X2X2)X - X1 (X'X)-X1 [using (3.18)]. 
(A.3) 

Thus (A.2) follows by substituting the left-hand side of 
(A.2) by the expression in (A.3). This concludes the proof 
of (3.20). 

[Received Autglust 1993. Revised March 1995.] 
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