
Behavior Research Methods, Instruments, & Computers
1992, 24 (1), 72-77

Shuffling arrays: Appearances may be deceiving

N. JOHN CASTELLAN, JR.
Indiana University, Bloomington, Indiana

Random permutations of arrays are widely used in experimentation and simulation, and most
arrays are shuffled by means of a computer-based algorithm. In this paper, I show that despite
the appearance of a random process, a shuffling procedure must be carefully scrutinized to deter­
mine whether it actually does produce random shuffles. A general sequence-transformation proce­
dure is developed for evaluating permutation and shuffling schemes. Applying the transforma­
tion procedure and using the criteria that all possible sequences must be equally likely and that
each object in a shuffied array must be equally likely to occupy each possible position in the shuffled
array, we see that one algorithm meets the criteria, while another seemingly adequate algorithm
fails to meet the criteria and, in addition, exhibits systematic deviations from randomness.

In many research applications, it is necessary to con­
struct sequences of stimuli by using random permutations.
An example would be a set of stimuli that is to be pre­
sented in a different random order in each block of trials.
Assume that one wishes to permute (or shuffle) N objects,
and that there is a function random(J) that returns a uni­
formly distributed random integer between I and J.1 As­
sume the objects are in an array XO. Many algorithms
for permuting elements have been proposed, and because
the problem seems conceptually straightforward, many
researchers-perhaps most-code their own algorithms.
Indeed, upon examination of booksdealing with experi­
ments and simulations, one frequently finds discussions
of random-number generators, but relatively little attention
is given to permutations. Instead,one fmdscomments like
"Produce a random permutation of the integers ... using
a pseudo-random number routine" (Harrison, 1973, p. 93).
Algorithms differ widely in their efficiency and elegance.
However, as will be shown, some algorithms that appear
to produce random permutations fail to do so. The prob­
lem will be illustrated if we examine two algorithms.

One procedure (see, e.g., Hergert, 1987; Nilsson,
1978) is the following:

Algorithm I

FOR i = I TO N
k = random(N)
SWAP X(i), X(k)

NEXT i

This research was supported in part by Grant 90-0215 from the Air
Force Office of Scientific Research, and it is Research Report 38 of
the Indiana University Cognitive Science Program. The author would
like to thank Stephen Edgell and Bernard Flury for their helpful and
insightfulcomments on an earlier draftof thispaper. Requests for reprints
should be addressed to the author at the Department of Psychology,
Indiana University, Bloomington, IN 47405.

Note-A Consulting Editor was given the responsibility of assigning
reviewers and evaluating this manuscript.

Copyright 1992 Psychonomic Society, Inc. 72

This algorithm appears straightforward. It generates a ran­
dom integer between I and N, swaps that element with
the first element, generates a second random integer be­
tween I and N, swaps it with the second element, and
so forth.

Another algorithm has been proposed (see, e.g., Green,
1963, 1977; Knuth, 1981; Lehman, 1977);2 one coding
for it is the following:

Algorithm 2

FOR i = I TO N - I
k = random(N - i + I) + i ­
I
SWAP XU), X(k)

NEXT i

It initially generates a random integer between I and N,
swaps the first element with the generated element, then
generates a second random integer between 2 and N,
swaps the second element with the second generated ele­
ment, and so forth. This coding is efficient in that it re­
quires only N-I random integers to permute the array
of N elements, and the elements are sampled without
replacement. Comparison ofAlgorithm 2 with Algorithm I
suggests that Algorithm I may actually permute an array
faster, but accurate comparisons may require an analysis
of how the coding is compiled.? Of course, it is easy to
modify the algorithm to select a random subset of size
t from the entire array by stopping the selection process
at the appropriate point and using the t selected objects
as the desired permutation.

(Other algorithms have been proposed: e.g., Culp &
Nickles [1983] and Deni [1986] recommend sampling
repeatedly with replacement from the entire list, select­
ing items until N different items have been selected. Such
an algorithm is extremely inefficient, in that as the sam­
pling continues, increasing numbers of random numbers
must be generated. For example, for N = 10, the expected
number of random numbers required to permute the ar­
ray is 29, for N = 20, the expected number of random

SHUFFLING ARRAYS 73

numbers required is 72. In fact, there is some [small]
probability that the shuffling would never be complete.
In this paper, we will be concerned primarily with Al­
gorithms 1 and 2 and will not pursue alternatives in detail.)

At first glance, both algorithms appear to produce ran­
dom permutations of the array XO. However, we shall see
that the first algorithm does not produce random permuta­
tions. The author informally discussed Algorithms I and
2 with colleagues who regularly use permuted stimuli in
their research-experimenters, computer programmers,
statisticians, and probabilists. While the "inefficiency" of
Algorithm I was sometimes recognized, in most cases the
defect in the algorithm was not recognized. In fact, when
informed that one algorithm was defective, they sometimes
chose Algorithm 2 as the defective algorithm.

Brysbaert (1991) tested Algorithms 1 and 2 by gener­
ating a large number of sequences. Using a goodness-of­
fit criterion, he found Algorithm I to be deficient. In a
similar analysis, Algorithm 2 yielded good fit. Brysbaert's
analysis was based on simulating the algorithms. The anal­
ysis in this paper examines the algorithms directly. In any
application, the user generates the number of permuta­
tion sequences necessary for the particular task. However,
the effectiveness of a shuffling algorithm is best under­
stood by letting the algorithm generate the maximum pos­
sible number of sequences that it is capable of generat­
ing. Our analysis will be based on those sequences. First
we indicate two basic requirements for random permuta­
tions: all possible permutations should be equally likely,
and, after the array has been shuffled, element XU) should
be equally likely to be in final position I, 2, ... , N.

produce an appropriate distribution of elements, and
(2) Algorithm 2 does produce an appropriate distribution.
In addition, we will see that the transformation approach
could be used to test other generation procedures.

To begin, we need a base or initial matrix to show the
way that elements occupy positions in the original array.
Of course, that array is set to the identity matrix. The rows
indicate an element number from the array at the origi­
nal step, and the columns denote the current position:

100 0
010 0

8.=
o ... 0 I 0

000 I

The base matrix is the same for any permutation scheme.6

Algorithm 1. N iterations are necessary to permute the
entire array. At Step 1, the (original) X(1) could stay in
its original position or could move to any of the other N-l
positions; hence the first row contains unities. All of these
moves are equally likely. Note also, that at Step I, ele­
ments 2, 3, ... , N can move only to position I; hence
the first column contains unities. Now consider the sec­
ond element (row 2). It can move from its current posi­
tion (2) to the first position, or it can remain in the same
position N-I ways. A similar argument holds for each
of the remaining elements (rows). We could write the
transformation matrix for transforming the original array
to the array at Step I as follows:

Again, each row indicates how the element currently in
position i can move to position j. And in general,

o 0 N-l 0
o 0 0 N-I

N-l 0 0 0
1 1 1 1

0 N-l 0 0

Si-« = 0 0 N-l 0 0

0 0 N-l 0
0 0 0 N-l

Thus, 50- 1 shows the number of ways that each initial
element (row) can be in various positions after the initial
element is randomly selected and swapped with the ele­
ment in the first position. For the transitions from Step I
to Step 2, we have

1
o
o

I 1
N-l 0

o N-l 0

All Permutations Must Be Equally Likely4
For N objects, there are Nl permutations, each of which

should be equally likely. Algorithm 2 will generate Nl
equally likely permutations. However, Algorithm I pro­
duces NN sequences. For each permutation to be equally
likely when Algorithm 1 is applied, NN would have to
be an integral multiple of N! Except for N = 2, this does
not hold. For example, for N = 3,33 = 27 is not an in­
tegral multiple of 3! = 6. (Note: The criterion given here
is a necessary condition; it is not sufficient.)

While it is strictly true that Algorithm 1 does not pro­
duce equally likely permutations (for N > 2), one might
argue that the generated permutations might "almost" be
equally likely with each of the N! permutations having
frequencies of occurrence that differ from INT(NN/N!)
only by 1 or so. We shall see that in reality the deviations
from equally likelyfrequenciesare extreme and systematic.5

The Probability of Array Elements
by Serial Position Must Be Constant

It is possible to write a series of transformation matrices
that show what happens to the elements of the array after
each successive random swap. We can use these trans­
formation matrices to show that (I) Algorithm 1 does not

And in general, the transition matrix from step t-l to
step t is the following:

Table 1
Algorithm 1 Transfonnation Matrices So-N for N = 3,4, and 5

N=3

N-t+1 0 0 0 0 0 0 0
0 N-t+l 0 0 0 0 0 0
0 0 N-t+1 0 0 0 0 0

0 0 0 N-t+l 0 0 0
0 0 0 0 I I I
0 0 0 0 I s-, ... 0

0
0 0 0 0 ... s-,

9 9 9
to 8 9
8 to 9

64 64 64 64
75 57 60 64
63 72 57 64
54 63 75 64

625 625 625 625 625
756 564 580 600 625
656 720 544 580 625
576 640 720 564 625
512 576 656 756 625

N=4

N=5

That is, Q('_I)_' is an NxN matrix with N-t+ 1 on the
diagonal before the tth row, N - t on the diagonal after
the tth row, unities in the tth row and tth column begin­
ning with the tth element, and zeros elsewhere.

To obtain the number of times an element is generated
in each position, we take the product of the transforma­
tion matrices:

Qo-, = B.QO-IQI-2 '" Q('-I)-'.

The matrix QO-N is the matrix with the number of times
each element from the original array appears in each po-

74 CASTELLAN

N-I 0 0 0 ... 0 0 0
0 N-I 0 0 ... 0 0 0
0 0 N-I 0 ... 0 0 0

S(,-Il-' = 0 0 ... 0 N-I 0 0
I I ... I I I I
0 0 ... 0 0 N-I 0

0
0 0 0 0 N-I

That is, S('-I)_' is an NxN matrix with N-l on the di­
agonal (except element t, t), unities in the tth row and tth
column, and zeros elsewhere.

To obtain the number of times an element is generated
in each position at step t, we take the product of these
transformation matrices:

So-, = BOSO-ISI-2 '" S('_I)_'.

The matrix SO-N is the matrix with the number of times
each element from the original array appears in each po­
sition in the NN permutations. If each position is equally
likely, the matrix would have equal frequencies ofNN - 1

in each cell.
Table 1 contains the matrices SO-N for N = 3, 4, and

5. The interpretation of the matrices is as follows. For
N = 3,33 = 27 sequences can be generated. The second
element of the original array will appear in the first posi­
tion of the permuted array for 10 sequences, in the sec­
ond position for 8 sequences, and the third position for
9 sequences. Clearly, the second element is not equally
likely to appear in each position. Indeed, except for the
first element of the (original) array, none of the elements
is equally likely to appear in each position.

Algorithm 2. N -1 iterations are necessary to permute
the array. At Step 1, the (original) X(l) could stay in its
original position, or could move to any of the other N-l
positions. All of these moves are equally likely. Note also
that at Step 1, elements 2, 3, ... , N can move only to
position 1. We could write the transformation matrix for
transforming the original array to the array at Step 1 as
follows:

The transitionmatrix from Step 1 to Step 2 is the following:

I I I
N-I 0 0

0 N-I 0 0
QO-I =

0 0 N-I 0
0 0 0 N-I

N-2 0
o N-2

Table 2
Algorithm 2 Transformation Matrices Qo-N for N = 3,4, and 5

N=3
2 2 2
2 2 2
2 2 2

6 6 6 6
6 6 6 6
6 6 6 6
6 6 6 6

24 24 24 24 24
24 24 24 24 24
24 24 24 24 24
24 24 24 24 24
24 24 24 24 24

N=4

N=5

o
I
o
o

o
o

o 0 0
I I I
I N-2 0
I 0 N-2 0

o
o

N-I

o
o

Qt-1 = 0

SHUFFLING ARRAYS 75

Table 3
Probability of Element Being in Final Position k Given Initial Position}

in N = 10 Element Array for Algorithm 1

Initial Final Position k

Position 1 2 3 4 5 6 7 8 9 10

1 .1000 .1000 .1()()() .1()()() .1()()() .1()()() .1()()() .1()()() .1()()() .1()()()
2 .1287 .0943 .0948 .0953 .0959 .0966 .0973 .0981 .0990 .1()()()
3 .1197 .1240 .0901 .0911 .0922 .0935 .0949 .0964 .0981 .1()()()
4 .1116 .1159 .1207 .0873 .0889 .0907 .0927 .0949 .0973 .1()()()
5 .1044 .1087 .1134 .1188 .0859 .0882 .0907 .0935 .0966 .1()()()
6 .0978 .1021 .1069 .1122 .1181 .0859 .0889 .0922 .0959 .1()()()
7 .0919 .0962 .1010 .1063 .1122 .1188 .0873 .0911 .0953 .1()()()
8 .0866 .0909 .0957 .1010 .1069 .1134 .1207 .0901 .0948 .1()()()
9 .0818 .0861 .0909 .0962 .1021 .1087 .1159 .1240 .0943 .1()()()

10 .0775 .0818 .0866 .0919 .0978 .1044 .1116 .1197 .1287 .1()()()

10
o.05f--';-"""T---r-""T'"-""T'"--r---r---r---l

FINALPOSITION (k)

O.

0.15y----------------_-.

0.1

50.11

~0.1~~~~~......,g: o.~
o.

ble 3, the maximum deviation is .003, and the average
absolute deviation for the 100 cells is less than .001.

Pennuting subsets. In some situations, a person wishes
only to select t elements from the entire array of N ele­
ments. The transformation matrices above can give the ex­
pected frequencies ofelements in each position when a sub­
set is needed. However, a slight change in interpretation
is necessary. The matrices SO~t and Q'~t describe the ar­
rangement of all elements in all positions. Ifwe are select­
ing only a subset of t elements, we need only the first t
columns of the final matrix. Table 4 gives the probability
that each element will appear when a subset of size t is
selected. It is seen that for Algorithm 1, the elements are
not equally likely (except for a sample of Size 1), whereas
for Algorithm 2, the frequenciesofoccurrence are thesame.

The Appendix contains a proof that Algorithm 2 does
indeed produce sequences with the desired property for
all values of N and for subsets of size t as well as the en­
tire sequence itself.

Figure 1. Probability that an element will be in finaI position k,
given starting position}, for a 1O-element array using Algorithm 1.
Each line represents a different starting position, which is indicated
above each line. The line for Starting Position 1 is flat at p = .10.

sition across the N! permutations, (However, note that
QO~(N-ll = QO~N' since the transformation Q(N-ll~N = 1,
the identity matrix.) If each position is equally likely, the
matrix would consist of equal frequencies of (N -I)! in
each cell.

Table 2 contains the matrices for N = 3, 4, and 5.
Clearly, each element of the original array is equally likely
to be in each position. The Appendix contains a proof that
the random permutations are indeed equally likely, and
that each initial element is equally likely to appear in each
final position of the permuted array.

Examining patterns in the bias in Algorithm 1 is difficult
for the small values ofN used in Table 1. In order to see
the nature of the bias more fully, the transition matrix for
N = 10, So~10, was generated. Since this matrix has very
large integer values, the entries were converted into con­
ditional probabilities. The entries are the probabilities,
PN[k!j), that an element is in position i given that it was
initially in position j in the original array (assuming an
N-element array). Inspection of Table 3 shows that, as
we saw earlier, the first element is equally likely to be
in each position, and that elements 2, 3, ... , N are not
equally likely to be in each position. Indeed, after the shuf­
fle, element j is most likely to be in the (j - 1)st position.
The distribution is "saw-toothed"-for (original) posi­
tion j, the probability of occupying a final location in­
creases from (final) position 1 to (final) positionj-l, sud­
denly decreases at (final) positionj, and then slowly
increases to liN for the Nth position. This pattern can
be seen more clearly in Figure 1. This systematic pattern
could have profound effects on simulations or experiments
in which equal probabilities are assumed for the elements.
Of course, for Algorithm 2, the plots would be flat at liN
for all positions.

In testing Algorithm 1, Brysbaert (1991) generated
100,000 permutations for N = 10 and constructed a ta­
ble of observed frequencies similar to that in Table 3. He
found that the observed distribution deviated significantly
from a uniform distribution. When one compares the data
from his simulation with the expected probabilities in Ta-

76 CASTELLAN

Table 4 R('_I)_' =
Probability That an Element in Various Positions Will Be Included

in Samples of Size J From Set of Size N = 5 for Algorithm 1 s-, 0 0 0 0 0 0 0
Original Sample Size J 0 N-t 0 0 0 0 0 0
Position I 2 3 4 0 0 N-t 0 0 0 0 0

I .200 .200 .200 .200
2 .200 .260 .227 .210

0 0 0 s-, 0 0 03 .200 .180 .248 .218
4 .200 .180 .163 .224 0 0 0 0 0 I I
5 .200 .180 .163 .148 0 0 0 0 I N-t-I 0

Note-For Algorithm 2, the probability is .2 for all initial positions and 0
all sample sizes. 0 0 0 0 ... N-t-I

The effect of applying Algorithm 3 is that after permutation
of the entire array, an element cannot be found in its origi­
nal position, although it is equally likely to be in all other
positions. Moreover, it should be noted that even with
the constraint that an element cannot remain in its original
position, not all of the remaining permutations are possible.
For Algorithm 3, only (N-I)! permutations can be gener­
ated because, as noted above, the last transformation is
deterministic. The transition frequencies RO~(N-l) are

That is, R(I_I)~I is an NxN matrix with Nr--t on the di­
agonal before the tth row, N-t-l on the diagonal after
the tth row, unities in the tth row and tth column begin­
ning with the (t+ l)st element, and zeros elsewhere, in­
cluding 0 for the t, tth cell. It is important to note that
the generation process ends with R(N-2)~(N-l)' where the
(N -1)st and Nth elements are swapped.

To obtain the number of times an element is generated
in each position, we take the product of these transfor­
mation matrices:

Algorithm misspecification. One early reviewer of this
paper asked what would happen if, when implementing
Algorithm 2, a programmer misspecified the range in using
the random-number generator. It turns out that the con­
sequences can be quite serious. Consider the following
algorithm:

Algorithm 3

FOR i = 1 TO N - 1
k = random(N - i) + i
SWAP X(i), X(k)

NEXT i,

In this case; the algorithm generates random integers, but
instead of generating random integers between i and N
as Algorithm 2 does, the integers vary from i+1 to N. 7

In this case, we can write the transformation matrices to
examine the effect of the coding. The first thing to notice
is that in generating elements for swapping, the ith ele­
ment must be switched with one of the succeeding ele­
ments; that is, an element cannot be swapped with itself.
For the first transition, we have

o
(N-2)!

(N-2)!

o
(N-2)!

(N-2)!

t = 1,2, ... , N-l.

(N-2)!

(N-2)!

And, in general, the transition matrix from step t-l to
step t is the following:

0 I I I
I N-2 0 0
I 0 N-2 0 0R

O
_

1
=

0 0 N-2 0

0 0 0 N-2

The transition matrix from Step 1to Step 2 is the following:

N-2 0 0 0 0

0 0 I I I

0 I N-3 0 0

R,-z = 0 I 0 N-3 0 0

Summary
The analyses in this paper show that despite appearances,

algorithms for random permutations or shuffling may not
produce sequences with desired properties. The conse­
quence of inappropriate shuffling cannot be overstated.
Researchers should always take extreme care in choos­
ing algorithms in their research. Only well-documented
algorithms should be used. Documentation does not mean
that the algorithm has been described in print-even in
a reputable journal or book. Appropriate documentation
includes an analysis of the properties and behavior of the
algorithm. The transformation procedures described in
this paper have demonstrated the accuracy of one al­
gorithm and the deficiencies oftwo others. The transfor­
mation technique could be generalized to test other al­
gorithms and situations as well.

o
o

o
o

N-3

o
o

N-3

RO- (N - I) =

(N-Z)!
(N-2)!

(N-2)!

(N-2)!
o

(N-2)!

(N-2)!

o

SHUFFLING ARRAYS 77

REFERENCES

BRYSBAERT, M. (1991). Algorithms for randomness in the behavioral
sciences: A tutorial. Behavior Research Methods, Instruments, & Com­
puters, 23, 45-60.

CULP,G., lit NICKLES, H. (1983). An Applefor the teacher: Fundamentals
of instructional computing. Monterey, CA: Brooks/Cole.

DENI, R. (1986). Programming microcomputers for psychology experi­
ments. Belmont, CA: Wadsworth.

GREEN, B. F., JR. (1963). Digital computers in research. New York:
McGraw-Hill.

GREEN, B. F., JR. (1977). FORTRAN subroutines for random sampling
without replacement. Behavior Research Methods & Instrumentation,
9,559.

HARRISON, G. (1973). The computer in psychology experiments. In
M. J. Apter & G. Westby (Eds.), The computer in psychology (pp. 85­
124). New York: Wiley.

HERGERT, D. (1987). Microsoft QuickBASIC. Redmond, WA: Microsoft
Press.

KNUTH, D. E. (1981). The art ofcomputer programming: Vol. 2. Semi­
numerical algorithms (2nd ed.). Reading, MA: Addison-Wesley.

L'EcUYER, R. (1990). Random numbers for simulation. Communica­
tions of the ACM, 33, 85-97.

LEHMAN, R. S. (1977). Computer simulotion and modelling. Hillsdale,
NJ: Erlbaum.

NILSSON, T. H. (1978). Randomization without replacement using
replacement without losing your place. Behavior Research Methods
& Instrumentation, 10, 419.

RUBENKlNG, N. J. (1991, August), Creating a random set. PC Maga­
zine, 10(14), 463-464.

NOTES

6. Strictly speaking, the initial matrix Be is not necessary. It is in­
cluded only to permitconsideration of more general initialconfigurations.

7. This error could occur fairly easily and might not be detected. If
the random-number generator generates a floating-point number, say
in the interval (0, I), the programmer/coder must be very careful to de­
tennine that the transformation or rescaling to integer values spans the
intended range.

APPENDIX
Proof That All Initial Positions Are Equally Likely

in All Final Positions for Algorithm 2

Recall that Qo-, is the transition matrix of the frequencies
with which initial (row) object j appears in position k when t
objects have been selected from N. If all initial positions are
equally likely to appear in each of the k, k ::5; N final positions,
the frequencies in the first t rows and columns of Qo-, must be
equal [and should be equal to (N-I)(N-2) ... (N-t+I»).

We can write the transition matrix Q(,-Il-, as a partitioned
matrix, separating the initial t-I rows and columns from the
remaining N-t+ 1 rows and columns. Thus

(N-t+I)1 0
1 I 1

N-t 0 0
Q(I-Il-' = 0 0 N-t 0

0 0 u-,

(Manuscript received October 23, 1990;
revision accepted for publication February 8, 1991.)

(N-t+I)1 0
1 1 1

N-t 0 0
X

0 0 N-t 0

0 0 N-t

where I is the identity matrix. After writing a few of the transi­
tion products Qo-z, QO-3, and so forth, it appears that the
matrix is of the form

_ ~E(,-n'I'-I) EI,-n,(N-I+IJ]
QO-('-I) - k'-2 ,

E(N-I+I).(I-n (N-t+ 1)1

After multiplying and simplifying, we have

[

E (,), (,) EI'),(N-')]
Qo-, = (N-k+l)kl-2 ,

E1N - ,),(,) (N-t)1

and since (N-k+l)k t - 2 = kr:«, the proof is complete.

E('-I),(N-'+IJ]

(N-t+I)1[

E(,- n,('- I)
= k'-2

E(N-,+n,(,-n

where k,-2 = (N-I)(N-2) ... (N-t+2), and E = (I)-that
is, a matrix whose elements are all equal to I. This pattern can
be checked by induction (by showing it is true for t = I, as­
sume it is true for t-I and prove it is true for t). By definition,
it is true for QO-I (t = I). Taking the products, we have

Qo-, = Qo-(,-nQI,-n-,

1. We acknowledge that the function random(J) thatproduces the ran­
dom numbers is of considerable interest. Indeed, most of the literature
on random-number generation focuses on the properties of random­
number generators ratber thanon theuseof therandom-number generator.
See Brysbaert (1991) and L'Ecuyer (1990) for discussion of random­
number generators. The latter paper is an extremely thorough and up­
to-date survey.

It also should be notedthatrandom(J) may not be implemented directly
in sorne programming languages; rather, it must be obtained by trans­
forming a random number in the interval (0,1) to an integer. For ex­
ample, in QuickBASIC or GWBASIC, the function RND returns a num­
ber x, in the interval 0 <x < I, and to emulate random(J), the code
would be 1NT(J*RND+ I). while in TurboPascal the function Random
returns a variable x, where 0 ::5 x < I. As will be noted later, such
transformations to integers must be done with care.

2. It should be noted that in each of thereferences cited, the algorithm
is described as one algorithm. There is no caution about other algorithms.
Of course, programmers cannot be provided with an encyclopedic list­
ing of "poor" procedures. Nonetheless, when problems with algorithms
go beyond inefficiency and lack of elegance, warnings about concep­
tual errors would be helpful.

3. Other forms of Algorithm 2 may be more efficient. For example,

Algorithm 2A

FOR i = N TO 2 STEP -I
k = random(i)
SWAP X(i), X(k)

NEXTi

permutes the array by moving from element N to I. Algorithm 2 is pre­
sented in the paper because it is the form that is often cited.

4. Thiscriterion for random permutations was pointed out to the author
by Stephen Edgell.

5. In a recent article on shuffling arrays, Rubenking (1991) discussed
a coding of Algorithm I and used the argument given here that NN is
not a multiple of N!, but concluded, "and they (the orderings) appear
with almost the same frequency." Although he did go on to suggest
an implementation of Algorithm 2, the systematic and extreme devia­
tions from equal frequency of occurrence resulting from the use of Al­
gorithm I was not recognized.

