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Abstract When sample sizes are unequal, problems of heteroscedasticity of the
variables given by the absolute deviation from the median arise. This paper studies
how the best known heteroscedastic alternatives to the ANOVA F test perform when
they are applied to these variables. This procedure leads to testing homoscedastic-
ity in a similar manner to Levene’s (1960) test. The difference is that the ANOVA
method used by Levene’s test is non-robust against unequal variances of the parent
populations and Levene’s variables may be heteroscedastic. The adjustment proposed
by O’Neil and Mathews (Aust Nz J Stat 42:81-100, 2000) is approximated by the
Keyes and Levy (J Educ Behav Stat 22:227-236, 1997) adjustment and used to ensure
the correct null hypothesis of homoscedasticity. Structural zeros, as defined by Hines
and O’Hara Hines (Biometrics 56:451-454, 2000), are eliminated. To reduce the error
introduced by the approximate distribution of test statistics, estimated critical values
are used. Simulation results show that after applying the Keyes—Levy adjustment,
including estimated critical values and removing structural zeros the heteroscedastic
tests perform better than Levene’s test. In particular, Brown—Forsythe’s test controls
the Type I error rate in all situations considered, although it is slightly less powerful
than Welch’s, James’s, and Alexander and Govern’s tests, which perform well, except
in highly asymmetric distributions where they are moderately liberal.
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1270 I. Parra-Frutos

1 Introduction

There is considerable statistical literature on testing homogeneity of variances that
examines the various tests that have been proposed. A comprehensive study on tests
of homogeneity of variances is given by Conover et al. (1981). A large number of tests
have been examined and simulated in order to determine their robustness at nominal
significance levels. The tests that have received the most attention are the F test (two
samples), Bartlett’s (1937) test, and Levene’s (1960) test. It is widely known that
the F test (two samples) is extremely sensitive to the normality assumption (Siegel
and Tukey 1960; Markowski and Markowski 1990). Bartlett’s test is extremely non-
robust against non-normality (Conover et al. 1981; Lim and Loh 1996). Layard (1973)
proposed a kurtosis adjustment for Bartlett’s test that has been used by Conover et
al. (1981) and Lim and Loh (1996). They find some improvement when using the
modified Bartlett’s test, although it is still not robust. Our simulation study includes
Bartlett’s, the modified Bartlett’s and Levene’s tests.

According to Boos and Brownie (2004), the procedures to test equal variances that
aim to achieve robustness against non-normality follow three types of strategies: (1)
using some type of adjustment based on an estimate of kurtosis (e.g. Layard 1973); (2)
performing an ANOVA on absolute deviations from the mean, median or the trimmed
mean (e.g. Levene 1960; Brown and Forsythe 1947a); (3) using resampling methods to
obtain p values for a given statistic (e.g. Boos and Brownie 1989; Lim and Loh 1996).
This paper focuses on the second strategy. In particular, we explore the performance
of heteroscedastic alternatives to ANOVA, which is a test for comparing means of
several populations. However, when the variables are the absolute deviations from the
sample mean, the result is a test of homoscedasticity of the parent populations, and
the procedure is known as Levene’s test.

Levene’s test continues to attract the attention of researchers. Recent studies use
different approaches to improve it. Keselman et al. (2008) investigate other robust
measures of location instead of the mean to calculate the absolute deviations. They
recommend a Levene-type transformation based upon empirically determined 20 %
asymmetric trimmed means. Neuhéduser (2007) studies the use of nonparametric alter-
natives to ANOVA on Levene’s variables and finds that in some cases they are more
powerful. Lim and Loh (1996), Wludyka and Sa (2004), Charway and Bailer (2007),
Parra-Frutos (2009) and Cahoy (2010) focus on resampling methods and show that
they may improve the Type I and Type II error rates. Iachine et al. (2010) propose
an extension of Levene’s method to dependent observations, consisting of replacing
the ANOVA step with a regression analysis followed by a Wald-type test based on
a clustered version of the robust Huber-White sandwich estimator of the covariance
matrix. The problem of testing equality of variances against ordered alternatives, that
is, detecting trends in variances, has been addressed by various authors, including
Neuhiuser and Hothorn (2000), Hui et al. (2008) and Noguchi and Gel (2010).

LetY;;,i =1,...,kand j = 1,...,n;, denote the jth observation from the ith
group. Levene’s test is defined as the one-way analysis of variance (ANOVA) on the
absolute deviation from the sample mean, M;; = |Yi = Y|, where Y; is the sample
mean of the ith group. Modifications given by Brown and Forsythe (1947a) show that
calculating absolute deviations from the trimmed mean and from the median instead
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Testing homogeneity of variances with unequal sample sizes 1271

of from the sample mean may improve the performance of the test in certain situations.
The use of a robust estimator of location, like the median, instead of the sample mean
to compute the absolute deviation, Z;; = ’Yi = 1?,-) where I?i is the ith group median,
has been shown to be an effective modification (Conover et al. 1981; Carroll and
Schneider 1985), and it is widely used in applied research.

Under the classical assumptions (normality, homoscedasticity and independence),
the ANOVA F test is known to be an optimal test. However, when one or more of these
basic assumptions is violated, it becomes overly conservative or liberal. The properties
of the ANOVA F test under assumption violations and under various degrees of each
violation have been extensively discussed in the literature (e.g., Scheffé 1959; Glass
et al. 1972; Rogan and Keselman 1977; Keselman et al. 1977; Kenny and Judd 1986;
Harwell et al. 1992; De Beuckelaer 1996; Akritas and Papadatos 2004; Bathke 2004).

De Beuckelaer (1996) argues that in a situation in which more than one basic
assumption is violated, the ANOVA F' test becomes very unreliable, especially for
violations of the independence and the homoscedasticity assumptions. According to
Lix et al. (1996), the only instance in which ANOVA may be a valid test under het-
eroscedasticity is when the degree of variance heterogeneity is small and group sizes
are equal. So, it seems that a more appropriate procedure to test homoscedasticity may
be to apply a heteroscedastic alternative to ANOVA on Z;; and M;;. These variables
do not satisfy any of the standard assumptions of the ANOVA F test. They are neither
independently nor normally distributed (note that the probability distribution is skewed
even when Y;; is symmetric) and homoscedasticity is not guaranteed. M;; and Z;; do
not have constant variance unless the sample sizes are equal and Y;; are homoscedastic
(Loh 1987; Keyes and Levy 1997; O’Neill and Mathews 2000). To see this, if Y;; is
normally distributed with mean y; and variance al.z then

E(M;j) = [2/m)(1 — 1/np)af]?,
var(Mi;) = (1 = 2/)(1 — 1/n;)a?,
E(Zij) = kn;0i,

ni—2 ~
var(Z;;) = ( ’n gi2 + var (Y,')) _K'%iaiz’

l

~ g 2
var (Y,) N —o;.
Zni

where k,, is a constant depending only on the sample size n; (O’Neill and Mathews
2000). Thus, the variances of M;; and Z;; depend on O'l-z and n;. So, under the null
hypothesis of equal al.z, Vi = 1, ..., k, the assumption of homoscedasticity of the
M;; and Z;; is not guaranteed unless the sample sizes are equal.

On the other hand, applying ANOVA, or a heteroscedastic alternative, on M;; to
test the homogeneity of variances of Y;; implies testing the hypothesis

Hy: E (M) = E (M) == E (M) .
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1272 I. Parra-Frutos

Assuming that Y;; are normally distributed with mean p; and variance aiz, the Hy
above corresponds to the hypothesis

Ho:(1—=1/np)ot =0 —1/np)of =---=(1—1/m) 0}
when M;; is used. Similarly,

Hy: k2 o} = 2022='~=K20'kz

when Z;; is used.

To obtain the correct hypothesis Hy : 012 =...= ak2 an adjustment must be intro-
duced. When using M;;, Keyes and Levy (1997) suggest multiplying by 1//1 — 1/n;.
Let us denote U;; = M;;j/+/1 —1/n;. Using U;j, we can test the homogeneity of
variances with the desired hypothesis Hy : 012 = ... = akz. On the other hand,
var (Uij) =1-2/m) aiz, and the effect of unequal sample size vanishes. That is, in
normal populations under the null hypothesis the variables U;; are homoscedastic.

For Z;;, however, O’Neill and Mathews (2000) suggest multiplying by 1/«;,. The
variance of Z;; /i, is

1 i —2 ~
— (nl Uiz + var (Y,-)) — crl.z
K n;

n;

which is a function of n;. Therefore, for unequal sample sizes we have hetero-
geneous variances of the variables Z;;/«,, and the correct null hypothesis. Since
mean and median coincide for normal distribution, «;, should be sufficiently close to
~/(2/m)(1 — 1/n;) (the Keyes—Levy adjustment for M;;) even for moderate sample
sizes. So, k,,, may be approximated by &,, = +/(2/7)(1 — 1/n;). For example, when
(n1,na, n3, ng) = (4, 10, 18, 22) the hypothesis is approximately

Hy: 2/m)(1 —1/4)a? = 2/7)(1 — 1/10)05
= 2/m)(1 — 1/18)0F = 2/7)(1 — 1/22)0}

that is,
Ho : 0} = 1.2005 = 1.2607 = 1.2707
and variances of Z;;, i =1, ..., 4, would be approximately,

var (Z1;) ~ 1.11var (Zs;)
var (sz) ~ 1.03 var (Z4j)
var (Z3j) ~ 1.01 var (Z4j)

Using the Keyes—Levy adjustment, consisting of dividing by &,,, the hypothesis

becomes Hj : 012 = 022 = 032 = 042 and the variances of Zij//%n,., i=1,...,4,

would be approximately
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var (Z1j/kn,) ~ 1.42var (Z4j [kn,)
var (sz//?nz) ~ 1.09 var (Z4j//€n4)
var (Z3j//2n3) ~ 1.02var (Z4j//€n4)

A maximum of 1.45var (Z4 j /12,14) would be reached for n; = 4 when the largest
sample size is 30 observations (n4 = 30). Thus, larger variances are associated with
smaller sample sizes. These problems of heteroscedasticity motivate us to explore the
performance of heteroscedastic alternatives to the ANOVA step in Levene’s test. We
focus on Z;;, and hence on Z;; /kn,;, since several studies, including Conover et al.
(1981), Carroll and Schneider (1985) and Lim and Loh (1996), confirm that absolute
deviations from medians, rather than means, are preferable.

According to O’Neill and Mathews (2000), the various forms of Levene’s test cur-
rently applied ignore the distributional properties of M;; and Z;; so the approximate
distribution of the test statistic used is inadequate, which leads to a poor performance.
An improvement may be found when using estimated critical values (Loh 1987) or
using weighted least squares analysis of variance (O’Neill and Mathews 2000). Loh
(1987) affirms that Levene’s test can be made exact by computer simulation of the
critical point of the statistic assuming normality and constant variance, but not other-
wise. O’Neill and Mathews (2000) show that, in normal populations, empirical levels
of significance are close to nominal values for several of the statistics they propose
based on weighted least squares instead of on ordinary least squares. We include the
former approach along with the heteroscedastic alternatives to ANOVA to deal with
heteroscedasticity and its adverse consequences.

Lix et al. (1996) found that the parametric alternatives to the ANOVA F test were
superior when the variance homogeneity assumption was violated. The heteroscedastic
alternatives to the ANOVA F test that receive most attention are Welch’s (1951)
test, James’s (1951) second-order method, Brown and Forsythe’s (1947a) test, and
Alexander and Govern’s (1994) test. We study how these tests behave when they are
applied to absolute deviations from the median.

All these procedures have been investigated in empirical studies. The evidence
suggests that these methods can generally control the rate of Type I error when group
variances are heterogeneous and the data are normally distributed (Dijkstra and Werter
1981; Wilcox 1990; Oshima and Algina 1992; Alexander and Govern 1994). However,
the literature also indicates that these tests can become liberal when the data are both
heterogeneous and non-normal, particularly when the design is unbalanced.

One of the best known parametric alternatives to the ANOVA is that given by Welch
(1951). It has been widely used and is included in statistical packages. However,
various simulation studies (Dijkstra and Werter 1981; Wilcox 1988, 1989; Alexander
and Govern 1994; Hsiung et al. 1994; Oshima and Algina 1992) show that James’s
(1951) second-order test generally appears to be the most accurate method over a wide
range of realistic conditions. One major drawback is its computational complexity.
James (1951) proposed two methods for adjusting the critical value—first and second
order-methods. However, James’s first-order procedure does not control the rate of
the Type I errors under variance heterogeneity for small sample sizes (Brown and
Forsythe 1974b). Welch’s (1951) and James’s (1951) tests can be used whenever the
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variance homogeneity assumption is not satisfied, but should be avoided if the data are
moderately to highly skewed, even in balanced designs (Clinch and Keselman 1982;
Wilcox et al. 1986; Lix et al. 1996).

One competitor of James’s (1951) second-order and Welch’s (1951) tests would
seem to be Alexander—Govern’s (1994) procedure (Lix et al. 1996), since it is reported
to possess many characteristics which are similar to those of the James method.
A second is the modification to the Brown—Forsythe (1974b) test suggested by Rubin
(1983), and later by Mehrotra (1997).

A comparison of Alexander—Govern’s, ANOVA, Kruskal-Wallis’s, Welch’s,
Brown-Forsythe’s, and James’s second-order tests concluded that, under variance het-
erogeneity, Alexander—Govern’s approximation was comparable to Welch’s test and
James’s second-order test and, in certain instances, was superior (Schneider and Pen-
field 1997). The same study also finds that the Alexander—Govern test is liberal when
distribution is extremely skew and conservative when it is platykurtic. Wilcox (1997)
also reported similar findings. Schneider and Penfield recommend the Alexander—
Govern procedure as the best alternative to the ANOVA F' test when variances are
heterogeneous, for three reasons: (1) it is computationally simpler; (2) its overall
superiority under most experimental conditions; (3) the questionable results of Welch’s
test when more than four treatment groups are investigated (Dijkstra and Werter 1981;
Wilcox 1988).

We use Bradley’s (1978) liberal criterion of robustness to nominal significant level,
which establishes that a test is considered robust if its empirical Type I error rate falls
within the interval [0.025,0.075] for a nominal level ¢ = 0.05. Not all authors agree
with this criterion. Cochran (1954) established the interval [0.04,0.06]. Conover et al.
(1981) classify a test as robust if the maximum empirical Type I error rate is less than
0.10 for a 5 % test.

To test homoscedasticity we study how heteroscedastic alternatives of ANOVA F
test perform when they are applied on the median-based Levene variables, that is,
the absolute deviations from the median. We focus on tests given by Welch (1951),
James (1951), Brown and Forsythe (1974b), Rubin (1983)—a correction to the Brown—
Forsythe test also addressed by Mehrotra (1997), and Alexander and Govern (1994).
In particular, we are interested in power levels (the ability to reject Hy when it is false)
and robustness of validity (whether the procedures have approximately the nominal
significance level) under a variety of different settings: small, large, equal and unequal
sample sizes; and for symmetric, asymmetric and heavy-tailed distributions. We com-
pare these results with those obtained for the median-based Levene test and Bartlett’s
test (with and without kurtosis adjustment). The null hypothesis of Levene’s test is
non homoscedasticity of Y; since the expected mean of Z;; is not the variance of Y;
(Keyes and Levy 1997; O’Neill and Mathews 2000); thus an adjustment is needed, as
suggested by O’Neil and Mathews. This adjustment can be well approximated by the
Keyes-Levy adjustment for M;;.

We include two refinements of tests, which are known to improve them. Tests
applied on the median-based absolute deviations are too conservative for small, equal,
and odd sample sizes. This is a consequence of using the median as the location
measure. A remedy based on removing structural zeros was suggested by Hines and
O’Hara Hines (2000). This method improves results in terms of the Type I error rate
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Testing homogeneity of variances with unequal sample sizes 1275

and power. However, when the structural zero removal method is applied jointly with
the Keyes—Levy adjustment a new procedure must be used consisting of a modification
of the structural zero removal method, as shown in Noguchi and Gel (2010), in order to
preserve the null hypothesis. The second refinement consists of using estimated critical
values instead of the approximate distribution of the test statistics, as suggested by
Loh (1987). When test statistics have an approximate distribution an additional error
is introduced when taking a decision about the null hypothesis. The size of the error
depends on the goodness of the approximation. In order to eliminate or, at least, reduce
this error, empirical percentiles of the test statistic based on the standard normal are
used as critical values in the rejection rule of the tests.

From a simulation study we obtain that, in the normal case, none of the tests studied
improve Bartlett’s test. However, it is well-known (and our results confirm this) thatitis
not a robust test, which implies that it must be used with caution. A much better control
is observed with the kurtosis adjustment. Our simulation results also show a general
good behaviour of heteroscedastic tests when applying the Noguchi—Gel procedure and
using estimated critical values. In particular, the heteroscedastic Brown—Forsythe and
the Levene tests control the Type I error rate for all the parent populations considered
even when the samples are small and unequal. The first may be considered even more
robust at the significant level than the second. The Levene test is a homoscedastic test
that has been applied under mild heteroscedasticity so a little less control is observed.
All the tests considered in this study perform similarly in large samples. When outliers
are present some tests control the Type I error rate but the power achieved is very low.

2 Description of tests

Bartlett’s (1937) test (B test). Its statistic is given by
B=——, (M)

where

k
M=(N-kinS;—> (n—1)Ins}
i=1

; = \2
IR0

§? =
ni—l
2 Zﬁ-‘zl (ni —1) 8}
Sg==——"
N —k

k
1 1 1
C = -
3(k—1)(i§n,-—1 N—k)

The Bartlett statistic is approximately distributed as a Chi-square variable with k — 1
degrees of freedom.
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Bartlett’s test with kurtosis adjustment (B2 test).
B2 = kB, ()

where
2
Br—1
A NZ[ 1 Z ( Y )
P =
(Zh =, (- 7))

k =

The B2 is approximately distributed as a Chi-square variable with k£ — 1 degrees of
freedom.
Levene’s (1960) test (L50 test). Recall that Z;; =

group median.

Yij — 171- , Where 1?,- is the ith

(N-03, (Zi-2)n
k=135, 3 (2 - Zi)"

L=

3

where

The L is approximately distributed as an F variable with k — 1 and N — k degrees of
freedom.

2.1 Heteroscedastic tests

Welch’s (1951) test (W test).

. _n\2
Z’-;l wi (Zi=7") k=1
0==— — )
(k 2) zl | A—wi/ W)~

-1
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where

w; = ——
2 9
S7.i

k
W:Zwi,

i=1
. —\2
s XL (2 - 7Zh)

SZ,Z - n: — 1 ’
1
w

The Welch statistic is approximately distributed as an F variable with k — 1 and v
degrees of freedom where

B k2 —1

o ko (A—wi/W)?’
321'21 %

James’s (1951) test (J1 and J2 tests).

U =Zk:wi (Z- —7*)2. (5)

i=1

v

A simple Chi-square approximation with k — 1 degrees of freedom for U is known to be
unsatisfactory when the sample sizes are small or even moderately large. Accordingly,
James (1951) proposed two methods for adjusting the critical value. His second order-
method is widely recommended and is as follows (J2 test). The null hypothesis is
rejected if U > h2(«), where

1 L= wi WH?
hﬂa)zc(a)ﬁ@xﬁm)Zw

i=1

2
1 ) k =3\ (<&~ (1= wi/W)?
+1g Grat+x2) (1—6(0{))(2"[__1 )

i=1

ni — 1

1
+5 Goa+x2) [(8R23 — 10Ry + 4Ry1 — 6R, + 8RRy — 4R121)
+ (2R23 — 4Ry + 2Ry — 2R}, + 4R2Ry1 — 2R121) 2—1

1
+7 (~Rh +4RuR1 —2R1R10 = 4RY + 4R Ry — RYy) Goa — 20— 1)

+ (Ry3 — 3R +3R21 — Ry0) (Sx6 + 2x4 + x2)

3
+—= (R122 —4R23+6R» — 4Ry + Rzo) (35x8 — 15x6 +9x4 + 5x2)

16
1

+E (—2R22 +4R21 — Roo +2R12R10 — 4R11 R0 + Rlzo) (Oxs —3x6 — Sxa — x2)
1

1 (—Rzz + R121) (27x8 4 3x6 + x4 + x2)

1
+Z (R23 — Ri2R11) (4518 +9%6 + Txa + 3x2),
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with c(«) denoting the 1 — o quantile of a x ,{2_1 distribution and with

c(@)®
k—-—D*k+1D*k+3)---(k—25 —3)°
k

_ N /WY
for = ; (ni =)

X2s = 6)

The first order-approximation to the critical value for U, h1 (), is given by (J1 test)

(1 —w;/W)?

I’ll'—l

k
1
h1<a>=c<a>+§(3><4+xz>§

Using (6), it can be rewritten as

k 2
_ c (o) 3c (a) 1 —w;/W)
hl(a)_c(a)+2(k—l)(l+k—i—l)iél P .

This approximation is used in Alexander and Govern (1994) and is also derived by
Johansen (1980).
Brown and Forsythe (1974b) (BF test).

> (L= ni/N) S%,i

The F* is approximately distributed as an F variable with v; and v, degrees of freedom
where

V] = k — 1,
2\
_ i
w= (i)
i=1
and
(1—ni/N) S,

/= Zf';l (I =ni/N) S%,i

Brown, Forsythe and Rubin test (BFR test). Rubin (1983), and later Mehrotra (1997),
show that the approximation given for F* by Brown and Forsythe was inadequate and
often leads to inflated Type I error rates. They found an improved approximation using
Box’s (1954) method, which involves modifying numerator degrees of freedom of F*,
as given here
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(Zf:l (I =ni/N) S%,i)2

i |
(Zh1 S3mi/N) 4 X0, (1= 2ni/NY S5,

1=

Alexander and Govern’s (1994) procedure (AG test).

k
A=>g ®)
i=1

where

¢ +3ci  4c] +33¢) +240c; + 855¢;

gi = + - 2 4
bi 1067 + 8b;c} + 1000b;

with

a; =n; — 1.5,

b; = 48a?,

(z:-7) v
tp = )
' Sz.i

5 12
1
ci = |:a,- In (1 + L )j| .
ni —1

The A is approximately distributed as a Chi-square variable with k — 1 degrees of
freedom.

2.2 Estimated critical values

All the test statistics described have an approximate distribution which introduces an
additional error when taking a decision on the null hypothesis. In order to eliminate or,
at least, reduce this error, empirical percentiles of the test statistic are used as critical
values in the rejection rule of a test. If the approximate distribution of the test statistic is
not good enough, then an improvement is achieved by using estimated critical values.
Otherwise, similar results would be obtained.

According to Loh (1987), empirical percentiles are obtained as follows. Given
ni, i =1, ..., k, samples are generated from a standard normal population, absolute
deviations from the group medians are computed and the test statistic calculated. This
process is repeated 100M times (where M is an integer) and the 100M test statistic
values are ordered from smallest to largest as B(1), B(2), ..., B(100M), using the
notation of Bartlett’s statistic. The 5 % empirical critical value, then, is obtained as
C = %[B(95M) + B(OSM + 1)]. If the observed test statistic is higher than C the
null hypothesis is rejected. We use M = 100, that is, 10,000 iterations.
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Tests based on estimated critical values are denoted by adding an e at the end
of the name. For example, Be test for Bartlett’s test using estimated critical values.
Empirical percentiles have been used by Loh (1987). We use the standard normal
for generating the empirical percentiles in all cases, which obviously may introduce
an error, depending on the sensitivity of the test statistic to non-normal distributions.
However, when the underlying distribution of the data is known and a test is not robust
for it, the test can be carried out accurately by using estimated critical values generated
using the known parent distribution.

2.3 Structural zeros

Levene’s test is extremely conservative for odd and small samples sizes. Hines and
O’Hara Hines (2000) found that this is due to the presence of structural zeros, which
should be removed before applying Levene’s test in order to improve the performance.

When the sample size is odd, there will always be one r;; = Y;; — Y, ; that is zero
since the median is one of the actual data values. According to Hines and O’Hara
Hines, this particular r;; is uninformative and labeled a structural zero.

When the sample size is even, Y i~ Yimy) = Yign;+1) — 17, Here, Y; ) represents the
kth order statistic for the ith set of data, and m; = [jn,' ] Hines and O’Hara Hines con-
sider then the following orthogonal rotation of the ordered vector (r; (1), . .., 7i,(n;)):
Replace the pair of values 7; ;) and r;, ;11 by the pair (7, n; +1) — 77.(m;))/~/2 and
i, omi+1) + i)/ /2 (= 0). Then delete the rotated deviation from the median in
ordered location (m; + 1) since, after the indicated replacement it is a structural zero.
We use these modifications in all tests applied on Z;;, and rename them by adding
—0. For example, L50 — Oe denotes the median-based Levene test removing structural
zeros and estimating critical values.

The Keyes—Levy adjustment leads to the right null hypothesis of homogeneity
of variances. However, if the structural zero removal method is used after that, we
are no longer testing that hypothesis. In this case the procedure to follow should be
that described by Noguchi and Gel (2010). This procedure eliminates the structural
zeros without altering the null hypothesis of homoscedasticity. Basically it consists of
multiplying data by »/T — 1/n; and then applying a modified structural zero removal
for even sample sizes and the original Hines-Hines method for odd sample sizes.
For an even sample size Z;(1) and Z; () are transformed into Z;(1y — Z;2)(= 0) and
Ziy + Zi)(= 2Z;1)), respectively, where Z;(,,) denotes the mth order statistic of
Zij, and the newly created structural zero (Z;(1) — Z;2)(= 0)) is removed.

When the Noguchi—Gel method is used, tests are renamed by adding (NG). For
example, BF(NG)e denotes the Brown—Forsythe test using the Noguchi—Gel procedure
and estimating critical values.

3 Design of the simulation

The Type I error rate and the power of the tests are compared in a simulation based on six
distributions and nine configurations of group sizes (ny, n2, n3, n4). The distributions
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are: normal (symmetric); Student’s t with 4 degrees of freedom (symmetric, long-
tailed and low peakedness); mixed normal or contaminated normal (symmetric and
heavy-tailed); uniform (symmetric and very low kurtosis); Chi-square with 4 degrees
of freedom (skewed, long-tailed and high kurtosis); and exponential with mean 1/3
(skewed, heavy-tailed and high kurtosis). The nominal 5 % significance level is used
throughout. The simulation results are based on 10,000 replications. The S language
is used.

The mixed (or contaminated) normal may be described as (1 — p)N (0, 1) +
pN (0, oc), where 0 < p < 1. This distribution is symmetric and quite similar to
the normal distribution when p is close to 0. The distribution differs from the normal
in that we see outliers more often than would be expected for a normal distribution.
In our simulation study p = 0.05 and 0 = 3.

For a general view of the behaviour of tests, five configurations of small samples
and four of large samples are considered. Three of the configurations of small samples
are of equal size: (5,5,5,5), (6,6,6,6), and (16,16,16,16). Two of them are of unbal-
anced design: (6,7,8,9) and (4,10,18,22). Four configurations of large samples are also
studied: (30,30,30,30), (60,60,60,60), (35,40,45,52), and (30,65,90,150). When we
focus on the behaviour of tests in small and unequal samples, fourteen configurations
are considered:

4,5,6,7) (4,28,28,28) (10, 14, 18, 20)
6,7,8,9) 4,4,28,28) (10, 14,18, 30)
(6,9, 20, 30) (4,4, 4,28) (20, 22, 24, 26)
(10, 11,12,13) (8, 12,18,20) (15,20, 25, 28)
4,10,18,22)  (8,12,18,30)

A null hypothesis of equal variances is studied along with three alternatives:
(0f,03,03,07) = (1,6,11,16), (16, 11,6, 1), and (1,1,1,16).

In order to obtain samples from populations with the desired variances oiz, i =
1,2, 3,4, maintaining equal population means, the samples from Student’s ¢ (t4)
distributions are transformed multiplying by o;/+/2. For data from the Chi-square
distribution the transformation is (o; / «/§)(X i —4), where X; is a Chi-square variable
with 4 degrees of freedom. Data from an exponential distribution are transformed by
30;(G; — 1/3), where G; is an exponential variable with mean 1/3. For the uniform
distribution, appropriate parameters are used with the same objective. Data were gen-
erated from uniform with minimum and maximum values given by —+/30; and +/30;,
respectively. Finally, in the case of the contaminated normal, the value of Ué,i to have

a population variance O’iz is given by aé = (Ul.2 —0.95)/0.05.
4 Simulation results
A collection of figures is given to illustrate simulation results of the Type I error

rate and estimated power. Some simulation results are also given in the tables in the
“Appendix”.
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Fig. 1 Type I error rate of Bartlett’s test (B) and Bartlett’s test with kurtosis adjustment (B2)
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Fig. 2 Type I error rates of tests of group A using the Keyes—Levy adjustment

Power levels are very high for all tests if samples sizes are large, except when
there are outliers (mixed normal distribution). In this case none of the tests have an
acceptable power level under any condition. In contrast, Type I error rates may be
controlled by some of the tests.

With respect to the Type I error rate, the simulation results show that B and B2 tests
have their own behavior (see Fig. 1) and the remaining tests may be classified into two
groups with similar performance. Group A would be included by the W(KL), J1(KL),
J2(KL) and AG(KL) tests (see Figs. 2, 3, 4, 5), and group B by the L5S0(KL), BF(KL)
and BFR(KL) tests (see Figs. 6, 7, 8, 9).

B test is extremely sensitive to non-normality, as reported in the literature. Having
large samples does not lead to control of the Type I error rate under any distribution.
However, B2 test is always robust at the significance level and powerful in large sample
sizes, except when there are outliers. In small samples, the empirical Type I error rate
of B2 test verifies Bradley’s liberal criterion if distributions are symmetric and bell-
shaped. Liberality problems are found for the uniform distribution and asymmetric
distributions.
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Fig. 3 Type I error rates of tests of group A using the Noguchi—Gel procedure
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Fig.4 Type I error rates of tests of group A using the Keyes—Levy adjustment and estimated critical values
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Fig.5 Type L error rates of tests of group A using the Noguchi—Gel procedure and estimated critical values

Tests in group A: W(KL), JI(KL), J2(KL) and AG(KL). In large sample sizes all
of them seem to control the Type I error rate. Serious problems are found in small
sample sizes. In this case if they are equal and odd then tests are too conservative
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Fig. 6 Type I error rates of tests of group B using the Keyes—Levy adjustment
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Fig. 7 Type I error rates of tests of group B using the Noguchi—Gel procedure
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Fig.8 Type I error rates of tests of group B using the Keyes—Levy adjustment and estimated critical values

(Fig. 2). This problem disappears (Fig. 3) when structural zeros are removed, but
tests still present problems in controlling the Type I error rate. The Type I error rate
is under control if decisions are based on estimated critical values and distributions
are symmetric (Fig. 4). Problems of liberality seem to get worse as the degree of
asymmetry increases. Removing structural zeros (Noguchi—Gel procedure) and using
estimated critical values simultaneously lead to a slight improvement (Fig. 5).
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Fig.9 Type L error rates of tests of group B using the Noguchi—Gel procedure and estimated critical values
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Fig. 10 Estimated power using the Noguchi-Gel procedure and estimated critical values, Note: a =
(0f.03.03.03)=(1,6,11,16);b = (1,1,1,16): ¢ = (16, 11,6, 1)

Tests in group B: L50(KL), BF(KL) and BFR(KL). They also perform well in
large sample sizes. However, in small samples they are too conservative in two
cases (Fig. 6): (1) when sample sizes are small, equal and odd [for example,
(n1,n2,n3,n4) = (5,5,5,51; (2) when they are unequal and very small [e.g.
(n1,ny,n3,n4) = (6,7,8,9)]. The latter seems to be only applicable in symmet-
ric distributions.

Removing structural zeros (Noguchi—Gel procedure) does not lead to controlling
the Type I error rate (Fig. 7). The use of estimated critical values seems to improve
performance but problems of control are observed in highly asymmetric distributions
and in the sample size combination (5,5,5,5) for the uniform distribution (Fig. 8).
These results are only improved when both refinements are used (Fig. 9). In this case,
both the L50(NG)e and BF(NG)e tests show a very good performance. They control
the Type I error rate in any of the settings considered in this simulation study (Fig. 10).
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Fig. 11 Type I error rates of tests of group B in small sample sizes using the Noguchi—Gel procedure and
estimated critical values
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Fig. 12 Type I error rates of tests of group A in small sample sizes using the Noguchi—Gel procedure and
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Fig. 13 Estimated power of heteroscedastic tests, Note: a = (012, 022, 032, a}) = (1,6,11,16); b =
(16, 11,6, 1)

To gain further insights into the behaviour of tests in small samples, a new simulation
has been made with a greater variety of small and unequal sample sizes (see Figs. 11,
12, 13, and Tables 1, 2 in the “Appendix”). The simulation results indicate that the
BF(NG)e and L50(NG)e tests control the Type I error rate in small sample sizes
(Fig. 11). However, the BF(NG)e test seems to show a better control than the LSO(NG)e
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Fig. 14 Estimated power, Note: a = (02, 07,07, 03) = (1,6,11,16);: b = (16, 11,6, 1)

test. In small and unequal sample sizes problems of heteroscedasticity of Z;; and
Z;j/kn, may appear, so a heteroscedastic test is expected to perform better. However,
the degree of heteroscedasticity may not be too high when al.2, i=1,...,4, areequal
(the largest variance is 1.45 times the smaller one and is associated to the small sample
size) as to give rise to serious problems of liberality when applying the homoscedastic
Levene test LSO(NG)e. Simulation results seem to confirm this extent (see Fig. 11).
On the other hand, asymmetry and negative (or positive) correlation between sample
sizes and population variances are problems for tests comparing means, the BF(NG)e
test seems to be the most robust in these situations.

Power is slightly lower for the BE(NG)e test than for the remaining heteroscedastic
tests (Fig. 13). This would suggest using W(NG)e, J(NG)e or AG(NG)e except when
distributions are highly asymmetric (like the exponential distribution). For highly
asymmetric distributions the BF(NG)e test shows a better control of the Type I error
rate than the LSO(NG)e test. However, the LSO(NG)e test is more powerful than the
BF(NG)e test when the unknown population variances al.z are negatively correlated
with the sample sizes (Fig. 14).

Simulation results also show that tests have a very low power when there are outliers,
although they may control the Type I error rate (Figs. 11, 13).

5 Conclusions

Problems of heteroscedasticity of the variables given by the absolute deviation from
the median arise when sample sizes are unequal. To deal with the heterogeneity of
these variables in Levene’s test we propose substituting the ANOVA step for a het-
eroscedastic alternative. We focus on tests given by Welch (1951), James (1951),
Brown and Forsythe (1974b), Rubin (1983) and Mehrotra (1997)—a correction to the
Brown-Forsythe test, and Alexander and Govern (1994). The Keyes—Levy adjustment
consisting of dividing the observations by &y, is applied to get the correct null hypoth-
esis of equal variances. We also consider removing structural zeros, according to the
Noguchi—Gel procedure, and using estimated critical values.

None of the tests considered in this study show a good performance when there
are outliers. In this case, the Type I error rate may be controlled by tests when using
estimated critical values, but power levels are always too low.
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Removing structural zeros implies a substantial improvement in the tests, but
a better performance is achieved when estimated critical values are also applied.
Moreover, simulation results show that for the variables Z;; /kn,; the heteroscedas-
tic tests perform better than the ANOVA step used by Levene’s test in small and
unequal sample sizes. In particular, the Brown—Forsythe test (BF(NG)e test) con-
trols the Type I error rate in all settings studied here. The L50(NG)e test also
seems to be robust to nominal significant level according to Bradley’s criterion.
However, only the empirical Type I error rate of the BF(NG)e test falls within
the narrower interval [0.035, 0.065]. The James (J(NG)e), Alexander and Govern
(AG(NG)e), and Welch (W(NG)e) tests show a good performance even in asym-
metric distributions like the chi square, but they do not control the Type I error
rate in highly asymmetric distributions, like the exponential. Nevertheless, they are
slightly more powerful than the BF(NG)e test. In large samples, heteroscedastic tests
(BF(NG)e, W(NG)e, J(ING)e and AG(NG)e) and Levene’s test (L5S0(NG)e) perform
similarly.

In conclusion, according to the results obtained in the simulation study, in small and
unequal sample sizes it is recommendable to use W(NG)e, J(NG)e or AG(NG)e tests
when testing homoscedasticity whenever the distributions are not highly asymmetric,
otherwise the BF(NG)e test is preferable. The LSO(NG)e test may be liberal.
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6 Appendix

See Tables 1 and 2.

Table 1 Type I error rates in small and unequal sample sizes

Distribution ny,np,n3,ng Test procedures

Be B2e L5O(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

Normal 4,5,6,7 0.053 0.048 0.053 0.044 0.043 0.051 0.055
6,7,8,9 0.046 0.052 0.049 0.052 0.055 0.051 0.055
6,9,20,30 0.046 0.048 0.054 0.049 0.047 0.053 0.051
10,11,12,13 0.050 0.051 0.050 0.046 0.049  0.046 0.047
4,10,18,22 0.047 0.048 0.051 0.050 0.046  0.049 0.052
4,28,28,28 0.048 0.052 0.045 0.046 0.048 0.043 0.049
4,4,28,28 0.050 0.045 0.052 0.042 0.048 0.048 0.051
4,4,4,28 0.055 0.051 0.052 0.051 0.051 0.049 0.047
8,12,18,20 0.053 0.048 0.052 0.044 0.046  0.050 0.054
8,12,18,30 0.047 0.052 0.049 0.051 0.052  0.050 0.052
10,14,18,20 0.045 0.046 0.048 0.053 0.051 0.053 0.052
10,14,18,30 0.046 0.048 0.046 0.046 0.049  0.046 0.048
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Table 1 continued

Distribution ny, np, n3, ng

Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e
20,22,24,26 0.047 0.051 0.053 0.051 0.051 0.052 0.050
15,20,25,28 0.047 0.057 0.058 0.052  0.056 0.051 0.057
Mean of absolute deviations from 0.05 0.003 0.002 0.003 0.003 0.003 0.002 0.003
Student’st  4,5,6,7 0.189 0.047 0.054 0.045 0.047  0.050 0.047
6,7,8,9 0.219 0.042 0.046 0.041 0.035 0.043 0.042
6,9,20,30 0.296 0.034 0.061 0.049  0.049 0.052 0.050
10,11,12,13 0.284 0.037 0.047 0.047  0.046 0.045 0.051
4,10,18,22 0.262 0.035 0.058 0.040  0.042 0.043 0.044
4,28,28,28 0.310 0.028 0.057 0.046  0.042 0.044 0.051
4,4,28,28 0.249 0.029 0.063 0.043  0.037 0.039 0.043
4,4,4,28 0.174 0.031 0.073 0.044  0.043 0.048 0.041
8,12,18,20 0.301 0.033 0.044 0.043  0.047 0.040 0.049
8,12,18,30 0.323 0.038 0.052 0.053  0.053 0.045 0.058
10,14,18,20 0.310 0.039 0.049 0.049  0.050 0.045 0.052
10,14,18,30 0.316 0.035 0.050 0.048  0.054 0.047 0.053
20,22,24,26 0.373 0.035 0.055 0.056  0.053 0.052 0.055
15,20,25,28 0.353 0.036 0.050 0.058  0.057 0.051 0.059
Mean of absolute deviations from 0.05 0.233 0.014 0.006 0.005 0.006 0.005 0.004
M. Norm. 4,5,6,7 0.139 0.044 0.052 0.042  0.046 0.048 0.044
6,7,8,9 0.173 0.037 0.047 0.041 0.045 0.042 0.040
6,9,20,30 0.241 0.035 0.058 0.046  0.047 0.044 0.047
10,11,12,13 0.245 0.037 0.047 0.044  0.046 0.047 0.044
4,10,18,22 0.222 0.032 0.051 0.044  0.039 0.040 0.043
4,28,28,28 0.284 0.033 0.057 0.042  0.045 0.045 0.049
4,4,28,28 0.201 0.034 0.062 0.043  0.041 0.044 0.041
4,4,4,28 0.137 0.038 0.070 0.042  0.043 0.046 0.040
8,12,18,20 0.256 0.031 0.048 0.043  0.041 0.044 0.046
8,12,18,30 0.260 0.034 0.054 0.045  0.049 0.045 0.050
10,14,18,20 0.268 0.030 0.048 0.045  0.048 0.044 0.047
10,14,18,30 0.273 0.034 0.050 0.043  0.050 0.048 0.046
20,22,24,26 0.326 0.031 0.048 0.054  0.053 0.048 0.054
15,20,25,28 0.296 0.029 0.043 0.040  0.041 0.047 0.047
Mean of absolute deviations from 0.05 0.187 0.016 0.005 0.007  0.005 0.005 0.005
Uniform 4,5,6,7 0.014 0.066 0.039 0.047  0.048 0.039 0.049
6,7,8,9 0.009 0.061 0.036 0.054  0.056 0.035 0.050
6,9,20,30 0.007 0.068 0.053 0.048  0.053 0.048 0.039
10,11,12,13 0.003 0.056 0.033 0.045  0.044 0.040 0.045
4,10,18,22 0.006 0.081 0.042 0.057  0.055 0.043 0.052
4,28,28,28 0.006 0.085 0.044 0.050  0.051 0.047 0.047
4,4,28,28 0.013 0.114 0.051 0.058  0.058 0.053 0.055
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Table 1 continued

Distribution ny,ns, n3, ng Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

444,28 0.022 0.112 0.044 0.056  0.055 0.039 0.063
8,12,18,20 0.005 0.058 0.043 0.056  0.057 0.041 0.051
8,12,18,30 0.005 0.059 0.044 0.047  0.051 0.043 0.049
10,14,18,20 0.003 0.059 0.044 0.047  0.048 0.042 0.048
10,14,18,30 0.002 0.053 0.042 0.044  0.046 0.043 0.045
20,22,24,26 0.001 0.046 0.040 0.038  0.039 0.037 0.042
15,20,25,28 0.002 0.054 0.043 0.041  0.040 0.047 0.042
Mean of absolute deviations from 0.05 0.043 0.020 0.008 0.005  0.005 0.008 0.005
Chi square  4,5,6,7 0.172 0.083 0.061 0.062  0.063 0.064 0.057
6,7,8,9 0.203 0.070 0.057 0.067  0.072 0.054 0.068
6,9,20,30 0.244 0.056 0.058 0.067  0.072 0.055 0.077
10,11,12,13 0.239 0.065 0.059 0.063  0.066 0.057 0.070
4,10,18,22 0.223 0.061 0.055 0.050  0.056 0.057 0.062
4,28,28,28 0.258 0.056 0.058 0.050  0.055 0.052 0.057
4,4,28,28 0.208 0.049 0.061 0.048  0.051 0.052 0.049
44,428 0.160 0.054 0.066 0.057  0.056 0.060 0.048
8,12,18,20 0.253 0.061 0.053 0.071  0.072 0.052 0.070
8,12,18,30 0.276 0.062 0.059 0.072  0.070 0.063 0.078
10,14,18,20 0.268 0.061 0.056 0.064  0.065 0.055 0.068
10,14,18,30 0.269 0.058 0.054 0.082  0.079 0.062 0.072
20,22,24,26 0.299 0.061 0.055 0.068  0.063 0.054 0.066
15,20,25,28 0.298 0.057 0.054 0.076  0.073 0.056 0.071
Mean of absolute deviations from 0.05 0.191 0.011 0.008 0.014  0.015 0.007 0.016
Exponential 4,5,6,7 0.308 0.107 0.073 0.076  0.076 0.067 0.072
6,7,8,9 0.372 0.109 0.066 0.071  0.077 0.061 0.080
6,9,20,30 0.406 0.060 0.054 0.076  0.085 0.053 0.089
10,11,12,13 0.419 0.077 0.062 0.079  0.078 0.055 0.083
4,10,18,22 0.395 0.070 0.065 0.063  0.058 0.056 0.074
4,28,28,28 0.432 0.048 0.058 0.066  0.065 0.049 0.081
4,4,28,28 0.361 0.052 0.065 0.044  0.046 0.048 0.058
4,4,4,28 0.293 0.055 0.075 0.052  0.057 0.057 0.042
8,12,18,20 0.438 0.074 0.055 0.084  0.081 0.051 0.087
8,12,18,30 0.435 0.058 0.064 0.084  0.085 0.060 0.090
10,14,18,20 0.446 0.074 0.057 0.076  0.081 0.056 0.087
10,14,18,30 0.454 0.071 0.056 0.091  0.094 0.060 0.092
20,22,24,26 0.479 0.061 0.050 0.073  0.072 0.055 0.073
15,20,25,28 0.466 0.065 0.055 0.085  0.085 0.058 0.092

Mean of absolute deviations from 0.05 0.357 0.020 0.011 0.024 0.025 0.007 0.030

Nominal significance level 0.05; 10,000 iterations
Significance levels larger than 0.075 are in bold and those smaller than 0.025 are underlined
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Table 2 Estimated power

Distribution ny, np, n3, ng Variances

Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

Normal 4,5,6,7 1,6,11,16 0.430 0.309 0.132 0.243 0.243  0.201 0.308
16,11,6,1 0.664 0.464 0.426 0.270 0.281  0.298 0.264

6,7,8,9 1,6,11,16 0.741 0.567 0.317 0.573 0.568 0.444 0.616
16,11,6,1 0.864 0.703 0.597 0.545 0.560 0.477 0.555

6,9,20,30 1,6,11,16 0.871 0.788 0.501 0.913 0.924 0.770 0.930
16,11,6,1 0.999 0.992 0.995 0.831 0.835 0.847 0.894

10,11,12,13  1,6,11,16 0.967 0.894 0.762 0.940 0.944 0.797 0.954
16,11,6,1 0.985 0.930 0.874 0.930 0.926 0.826 0.942

4,10,18,22 1,6,11,16 0.654 0.554 0.258 0.571 0.589 0473 0.615
16,11,6,1 0.995 0.960 0.963 0.452 0.509 0.735 0.597

4,28,28,28 1,6,11,16 0.815 0.744 0.570 0.593 0.583  0.685 0.646
16,11,6,1 1.000 0.999 0.999 0.739 0.811 0.935 0.956

4,4,28,28 1,6,11,16 0.564 0.471 0.171 0.432 0.426 0.381 0.494
16,11,6,1 0.996 0.975 0.981 0.249 0.281 0.612 0.228

4,4,4,28 1,6,11,16 0.532 0.412 0.072 0.259 0.254  0.390 0.441
16,11,6,1 0.948 0.787 0.945 0.201 0.209 0.293 0.131

8,12,18,20 1,6,11,16 0.957 0.866 0.686 0.964 0.964 0.839 0.964
16,11,6,1 0.998 0.981 0.976 0.954 0.954 0.880 0.960

8,12,18,30 1,6,11,16 0.970 0.909 0.709 0.981 0.980 0.905 0.979
16,11,6,1 1.000 0.995 0.997 0.967 0.967 0.938 0.968

10,14,18,20  1,6,11,16 0.986 0.938 0.824 0.987 0.985 0.911 0.988
16,11,6,1 0.999 0.989 0.983 0.987 0.986 0.938 0.987

10,14,18,30  1,6,11,16 0.993 0.968 0.872 0.995 0.996  0.962 0.996
16,11,6,1 1.000 0.998 0.999 0.989 0.990 0.981 0.993

20,22,2426  1,6,11,16 1.000 0.999 0.998 1.000 1.000 0.999 1.000
16,11,6,1 1.000 1.000 1.000 1.000 1.000 1.000 1.000

15,20,25,28  1,6,11,16 1.000 0.997 0.989 1.000 1.000 0.996 1.000
16,11,6,1 1.000 0.999 1.000 1.000 1.000 0.999 1.000

Mean (small samples) 0.890 0.828 0.736 0.734 0.742 0.732 0.765
Mean (large samples) 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Student’st 4,5,6,7 1,6,11,16 0.553 0.238 0.092 0.186 0.177  0.159 0.232
16,11,6,1 0.681 0.365 0.329 0.206 0.224  0.229 0.192

6,7,8,9 1,6,11,16 0.769 0.391 0.218 0.435 0.436  0.307 0.483
16,11,6,1 0.848 0.504 0.433 0.365 0.400 0.324 0.405

6,9,20,30 1,6,11,16 0.889 0.395 0.237 0.787 0.763  0.535 0.804
16,11,6,1 0.981 0.824 0.951 0.589 0.606 0.661 0.663

10,11,12,13  1,6,11,16 0.940 0.589 0.487 0.820 0.816 0.573 0.819
16,11,6,1 0.945 0.667 0.655 0.785 0.775  0.602 0.793
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Table 2 continued

Distribution ny, ny, n3, ng Variances Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

4,10,18,22 1,6,11,16 0.756 0.270 0.134 0460  0.467 0.322 0.540

16,11,6,1 0.959 0.726 0.851 0.265 0.322  0.550 0.319
4,28,28,28 1,6,11,16 0.849 0.327 0.322 0.488  0.493 0.435 0.541

16,11,6,1 0.988 0.820 0.950 0.392 0.409 0.837 0.705
4,4,28,28 1,6,11,16 0.693 0.199 0.079 0.284  0.271 0.206 0.391
16,11,6,1 0.961 0.723 0.891 0.164  0.169 0.510 0.107
4,4.4,28 1,6,11,16 0.661 0.210 0.040 0.174  0.170  0.291 0.274
16,11,6,1 0.886 0.591 0.888 0.148 0.163  0.237 0.103
8,12,18,20 1,6,11,16 0.937 0.535 0.390 0.838 0.844 0.585 0.852
16,11,6,1 0.973 0.776 0.863 0.811 0.809 0.694 0.823
8,12,18,30 1,6,11,16 0.954 0.534 0.401 0.895 0.883 0.659 0.899
16,11,6,1 0.987 0.858 0.960 0.834 0.836 0.769 0.859
10,14,18,20  1,6,11,16 0.960 0.642 0.545 0.902 0.899 0.706 0.903
16,11,6,1 0.981 0.781 0.887 0.887 0.885 0.744 0.899
10,14,18,30  1,6,11,16 0.971 0.648 0.569 0.931 0.927 0.778 0.936
16,11,6,1 0.990 0.869 0.967 0.920 0928 0.860 0.929
20,22,2426  1,6,11,16 0.993 0.834 0.928 0.987 0.986 0.948 0.988
16,11,6,1 0.996 0.884 0.972 0.989 0989 0.962 0.989
15,20,25,28  1,6,11,16 0.991 0.776 0.836 0.977 0.976  0.906 0.976
16,11,6,1 0.994 0.879 0.965 0.980 0.981 0.939 0.980
Mean (small samples) 0.896 0.602 0.601 0.625 0.629 0.583 0.657
Mean (large samples) 1.000 0.958 0.998 0.997 0.997 0.998 0.997

M. Norm.  4,5,6,7 1,6,11,16 0.508 0.055 0.028 0.040  0.041 0.029 0.039
16,11,6,1 0.439 0.093 0.044 0.038  0.037 0.036 0.035
6,7,8,9 1,6,11,16 0.605 0.051 0.024 0.032  0.034 0.026 0.037

16,11,6,1 0.563 0.069 0.041 0.034  0.035 0.032 0.037
6,9,20,30 1,6,11,16 0.877 0.032 0.027 0.029  0.028 0.032 0.032
16,11,6,1 0.706 0.084 0.187 0.036  0.040 0.031 0.041
10,11,12,13  1,6,11,16 0.746 0.055 0.027 0.033 0.032  0.024 0.036
16,11,6,1 0.711 0.068 0.037 0.032  0.031 0.027 0.033
4,10,18,22 1,6,11,16 0.827 0.032 0.016 0.027  0.026 0.014 0.030
16,11,6,1 0.694 0.086 0.135 0.033 0.037  0.023 0.042
4,28,28,28 1,6,11,16 0.922 0.030 0.009 0.022  0.020 0.022 0.033
16,11,6,1 0.865 0.075 0.102 0.032  0.033 0.035 0.041
4,4,28,28 1,6,11,16 0.850 0.021 0.041 0.021 0.022 0.013 0.016
16,11,6,1 0.685 0.075 0.209 0.030  0.030 0.026 0.030
4,4,4,28 1,6,11,16 0.693 0.026 0.099 0.034  0.032 0.017 0.015
16,11,6,1 0.401 0.112 0.330 0.036  0.039 0.041 0.040
8,12,18,20 1,6,11,16 0.834 0.043 0.018 0.028  0.027 0.022 0.030
16,11,6,1 0.747 0.076 0.069 0.032  0.031 0.028 0.033
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Table 2 continued

Distribution ny, ny, n3, ng Variances

Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

8,12,18,30 1,6,11,16 0.889 0.039 0.022 0.030  0.028 0.033 0.034
16,11,6,1 0.758 0.089 0.139 0.032  0.034 0.029 0.034

10,14,18,20  1,6,11,16 0.849 0.040 0.016 0.032  0.032 0.026 0.033
16,11,6,1 0.788 0.070 0.056 0.031 0.034  0.028 0.034

10,14,18,30  1,6,11,16 0.891 0.040 0.020 0.032  0.031 0.040 0.033
16,11,6,1 0.786 0.082 0.107 0.031 0.033  0.029 0.038

20,22,24,26  1,6,11,16 0.923 0.070 0.026 0.035  0.038 0.037 0.043
16,11,6,1 0.906 0.078 0.050 0.032  0.033 0.041 0.034

15,20,25,28  1,6,11,16 0.926 0.060 0.025 0.040  0.037 0.047 0.046
16,11,6,1 0.881 0.084 0.071 0.031 0.033  0.033 0.038

Mean (small samples) 0.760 0.062 0.070 0.032 0.032  0.029 0.035
Mean (large samples) 0.943 0.943 0.943 0.943 0.943 0.943 0.943
Uniform 4,5,6,7 1,6,11,16 0.316 0.461 0.174 0346 0314 0.247 0.406
16,11,6,1 0.622 0.596 0.464 0365  0.389 0.327 0.376

6,7,8,9 1,6,11,16 0.692 0.781 0.414 0.739  0.734  0.550 0.770
16,11,6,1 0.909 0.859 0.680 0.692  0.701 0.552 0.725

6,9,20,30 1,6,11,16 0.902 0.992 0.815 0992  0.993 0.951 0.988
16,11,6,1 1.000 1.000 0.999 0.955  0.960 0.900 0.977

10,11,12,13  1,6,11,16 0.994 0.990 0.892 0991  0.991 0.931 0.991
16,11,6,1 0.998 0.994 0.948 0.986  0.987 0.921 0.989

4,10,18,22 1,6,11,16 0.553 0.893 0.519 0.747  0.745 0.704 0.732
16,11,6,1 1.000 0.999 0.993 0.685  0.731 0.787 0.827

4,28,28,28 1,6,11,16 0.842 0.987 0.840 0.718  0.754  0.889 0.735
16,11,6,1 1.000 1.000 1.000 0976  0.987 0.967 0.999

4,4,28,28 1,6,11,16 0.440 0.879 0.433 0.590  0.599 0.577 0.585
16,11,6,1 1.000 1.000 0.998 0369 0472 0.673 0.504

4,4,4,28 1,6,11,16 0.420 0.790 0.332 0.410 0411 0474 0.583
16,11,6,1 0.979 0.890 0.969 0.250  0.268 0.356 0.145

8,12,18,20 1,6,11,16 0.985 0.996 0.893 0998  0.998 0.964 0.998
16,11,6,1 1.000 1.000 0.995 0995  0.995 0.952 0.996

8,12,18,30 1,6,11,16 0.991 0.999 0.929 1.000  0.999 0.985 0.999
16,11,6,1 1.000 1.000 1.000 0996  0.996 0.979 0.998

10,14,18,20  1,6,11,16 0.998 1.000 0.966 1.000 1.000  0.989 1.000
16,11,6,1 1.000 1.000 0.997 1.000  1.000 0.986 0.999

10,14,18,30  1,6,11,16 0.999 1.000 0.986 1.000 1.000  0.998 1.000
16,11,6,1 1.000 1.000 1.000 0.999  0.999 0.996 1.000

20,22,2426  1,6,11,16 1.000 1.000 1.000 1.000 1.000  1.000 1.000
16,11,6,1 1.000 1.000 1.000 1.000 1.000  1.000 1.000

15,20,25,28  1,6,11,16 1.000 1.000 0.999 1.000 1.000  1.000 1.000
16,11,6,1 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 2 continued

Distribution n1, np, n3, ng Variances Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

Mean (small samples) 0.880 0.932 0.830 0.814 0.822  0.809 0.833
Mean (large samples) 1.000 1.000 1.000 1.000 1.000  1.000 1.000

Chi square  4,5,6,7 1,6,11,16 0.561 0.299 0.109 0206  0.190 0.166 0.277
16,11,6,1 0.704 0.405 0.345 0.241 0.235 0.241 0.211
6,7,8,9 1,6,11,16 0.785 0.459 0.239 0470  0.484 0.307 0.486

16,11,6,1 0.851 0.548 0.454 0430 0415 0.336 0.449
6,9,20,30 1,6,11,16 0.889 0.474 0.267 0819  0.789 0.539 0.817
16,11,6,1 0.990 0.872 0.953 0.637 0.650  0.690 0.686
10,11,12,13  1,6,11,16 0.945 0.673 0.524 0.806 0.795 0.591 0.819
16,11,6,1 0.964 0.708 0.675 0.804 0.787 0.598 0.808
4,10,18,22 1,6,11,16 0.755 0.335 0.148 0.501 0475 0.327 0.559
16,11,6,1 0.974 0.785 0.863 0.298 0.318 0.544 0.388
4,28,28,28 1,6,11,16 0.831 0.415 0.345 0.532  0.530 0.428 0.575
16,11,6,1 0.997 0.902 0.973 0.402  0.486 0.846 0.784
4,4,28,28 1,6,11,16 0.711 0.258 0.096 0316  0.334 0.257 0.455
16,11,6,1 0.979 0.793 0.898 0.170  0.195 0.519 0.147
4,4,4,28 1,6,11,16 0.656 0.282 0.055 0.205 0.181 0.313 0.296
16,11,6,1 0.905 0.613 0.887 0.164  0.182 0.239 0.117
8,12,18,20 1,6,11,16 0.942 0.611 0.405 0.860  0.851 0.600 0.859
16,11,6,1 0.983 0.818 0.865 0.822  0.833 0.700 0.845
8,12,18,30 1,6,11,16 0.951 0.615 0.414 0.897 0.894 0.657 0.899
16,11,6,1 0.996 0.897 0.971 0.849  0.861 0.761 0.881
10,14,18,20  1,6,11,16 0.967 0.679 0.536 0907  0.898 0.713 0.906
16,11,6,1 0.991 0.845 0.888 0.897 0904 0.754 0.919
10,14,18,30  1,6,11,16 0.976 0.723 0.584 0936 0940 0.771 0.941
16,11,6,1 0.998 0.911 0.975 0.939 0933 0.874 0.941
20,22,2426  1,6,11,16 0.998 0.912 0.948 0.995 0995 0.965 0.995
16,11,6,1 1.000 0.941 0.985 0.995 0995 0.972 0.996
15,20,25,28  1,6,11,16 0.996 0.857 0.859 0.987 0987 0.935 0.986
16,11,6,1 0.999 0.940 0.986 0.991 0.991  0.960 0.992
Mean (small samples) — 0.903 0.663 0.616 0.646 0.648 0.593 0.680
Mean (large samples) 1.000 0.991 1.000 0.999  0.999 1.000 0.998

Exponential 4,5,6,7 1,6,11,16 0.646 0.281 0.101 0.178 0.181 0.134 0.214
16,11,6,1 0.729 0.361 0.282 0.207 0.210  0.203 0.176
6,7,8,9 1,6,11,16 0.800 0.389 0.171 0.376 0.376  0.220 0.383

16,11,6,1 0.844 0.463 0.332 0.324  0.347 0.254 0.332
6,9,20,30 1,6,11,16 0.904 0.373 0.158 0.685 0.688 0.388 0.713
16,11,6,1 0.978 0.730 0.859 0.450  0.433 0.501 0.484
10,11,12,13  1,6,11,16 0.934 0.524 0.354 0.669  0.666 0.426 0.678
16,11,6,1 0.940 0.606 0.502 0.639  0.649 0.448 0.654
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Table 2 continued

Distribution n1, ny, n3, ns Variances Test procedures

Be B2e L50(NG)e W(NG)e J(NG)e BF(NG)e AG(NG)e

4,10,18,22 1,6,11,16 0.792 0.252 0.093 0373 0378 0.227 0.470
16,11,6,1 0.953 0.628 0.747 0215  0.242 0.430 0.226
4,28,28,28 1,6,11,16 0.850 0.275 0.219 0455 0416 0.308 0.500
16,11,6,1 0.991 0.753 0.869 0277 0276 0.727 0.505
4,4,28,28 1,6,11,16 0.767 0.195 0.064 0.220 0.214  0.163 0.350
16,11,6,1 0.950 0.634 0.788 0.130  0.145 0415 0.091
44,428 1,6,11,16 0.729 0.217 0.040 0.153  0.155 0.250 0.193
16,11,6,1 0.873 0.521 0.824 0.116  0.147 0.205 0.078
8,12,18,20 1,6,11,16 0.934 0.460 0.261 0.728  0.737 0.438 0.745
16,11,6,1 0.973 0.689 0.725 0.640  0.632 0.492 0.655
8,12,18,30 1,6,11,16 0.945 0.468 0.264 0.802 0.795 0.519 0.802
16,11,6,1 0.987 0.791 0.899 0.656  0.696 0.600 0.692
10,14,18,20  1,6,11,16 0.959 0.538 0.361 0.794  0.800 0.518 0.808
16,11,6,1 0.980 0.712 0.734 0.770  0.770  0.578 0.785
10,14,18,30  1,6,11,16 0.969 0.540 0.345 0.855  0.852 0.583 0.866
16,11,6,1 0.992 0.790 0.907 0.793  0.780 0.678 0.803
20,22,24,26  1,6,11,16 0.995 0.778 0.806 0.961  0.962 0.845 0.961
16,11,6,1 0.997 0.822 0.896 0.961  0.963 0.868 0.964
15,20,25,28  1,6,11,16 0.989 0.685 0.674 0941  0.934 0.768 0.941
16,11,6,1 0.994 0.825 0.916 0945  0.941 0.824 0.948
Mean (small samples) 0.907 0.546 0.507 0.547 0.550 0.465 0.572
Mean (large samples) 1.000 0.961 0.994 0992  0.992 0995 0.990

Structural zeros are removed and critical values are estimated
Estimated power levels larger than 0.8 are in bold
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