Example 1: Hungarian method

A building firm possesses four cranes each of which has a distance (km) from four different construction sites as shown in the table:

Construction site				
	1	2	3	
	190	75		580
Crane \#	235	85		565
	3125			0105
	445	11	95	5115

Place the cranes (one for each construction sites) in such a way that the overall distance required for the transfer is as small as possible.

Solution:

The cost matrix is
$\left(\begin{array}{llll}90 & 75 & 75 & 80 \\ 35 & 85 & 55 & 65 \\ 125 & 95 & 90 & 105 \\ 45 & 110 & 95 & 115\end{array}\right)$

1. step:

From each row, we find the row minimum and subtract it from all entries on that row.

$$
\Rightarrow\left(\begin{array}{llll}
15 & \mathbf{0} & \mathbf{5} \\
\mathbf{0} & 50 & 20 & 30 \\
35 & 5 & 0 & 15 \\
0 & 65 & 50 & 70
\end{array}\right)
$$

2. step:

From each column, we find the column minimum and subtract it from all entries on that column.
$\Rightarrow\left(\begin{array}{llll}15 & 0 & 0 & 0 \\ 0 & 50 & 20 & 25 \\ 35 & 5 & 0 & 10 \\ 0 & 65 & 50 & 65\end{array}\right) \quad \begin{aligned} & \text { 3. step: } \\ & \begin{array}{l}\text { We draw lines across rows and columns in such a way that all zeros are } \\ \text { covered and that the minimun } \\ \text { number of lines have been used (in this case lines across the 1st and the } \\ \text { 3rd row and across the 1st column). }\end{array}\end{aligned}$
4. step: A test for optimality;

If the number of lines just drawn is n (number of rows of the cost matrix), we are done. If the number of lines $<n$, we go to step 5 .
Now the number of lines is $3<n=4$.
5. step:

We find the smallest entry which is not covered by the lines, which in this case is the (2,3)-entry 20, and subtract it from each entry not covered by the lines. We also add it to each entry which is covered by a vertical and a horizontal line. Now we can go back to step 3.
\(\Rightarrow\left(\begin{array}{cccc}35 \& 0 \& 0 \& 0

0 \& 30 \& 0 \& 5

55 \& 5 \& 0 \& 10

0 \& 45 \& 30 \& 45\end{array}\right) \quad |\)\begin{tabular}{l}
3. step:

Draw lines across zeros

(1st and 3rd column, 1st
row)

4. step:
Number of lines $=3<n$
= Step 5 and then Step 3 (smallest
entry $=5$)

\end{tabular}

\(\Rightarrow\left(\begin{array}{cccc}40 \& 0 \& 5 \& 0

0 \& 25 \& 0 \& 0

55 \& 0 \& 0 \& 5

0 \& 40 \& 30 \& 40\end{array}\right) \quad\)\begin{tabular}{l}
3. step:

Draw lines across zeros

(1st and 3rd column, 1st row)

\quad

Number of lines $=4=n$

\Rightarrow We are done.
\end{tabular}

0's positions determine the possible combinations. We have two choices.

Solution:

Crane 1 - Constuction site4, Crane2-Constuction site3, Crane3-Constuction site2, Crane4-Constuction site 1 ($=>$ overall distance 275 km)

OR
Crane 1 - Constuction site2, Crane2-Constuction site4, Crane3-Constuction site4, Crane4-Constuction site 1 ($=>$ overall distance 275 km)

Go back to theory

