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prepared by Annette D. Shine, August 2006 

 
Fitting Experimental Data to Straight Lines 

(Including Error Analysis) 
 
 

 
 The purpose of this document is to assist students with 
statistical analysis of experimental data by listing some equations 
for straight line data fitting and error analysis.  Personally, I find 
statistics texts very hard to plow through, so I am writing this 
document in understandable English for an engineer who wants to 
use statistics without being dazzled by the brilliance of the subject.  
If you find any mistakes, or want to suggest something else that 
needs to be included, or know of a book that is comprehensible and 
thus supercedes this treatment, please contact me. 
 
 
Linear Least Squares Fitting of a Straight Line with Slope and 
Intercept 
 
 Any least squares curve- or line-fitting algorithm optimizes the 
constants of a fitting equation by minimizing the sum of the squares 
of the deviations of the actual (data) values from the values 
predicted by the equation.  You probably know how to do linear 
least squares fitting of a straight line already, since most scientific 
calculators and graphing software packages do this automatically for 
you.  Nevertheless, I will present it here so that:  (1) you will be 
aware of assumptions inherent in use of the canned programs, (2) 
you can verify with your own calculations that you get the same 
answers as the canned programs, and (3) I can build on this base for 
cases where some of the "canned" assumptions are not valid. 
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Given:  A set of n experimental data points, 
 
   x1, y1 
   x2, y2 
    :     : 
    :     : 
   xn, yn 
 
where x is the independent variable (i.e., the thing you fix or 
consider fixed, such as time when you are measuring reaction 
kinetics, or voltage when you are using a pressure transducer), and 
y is the dependent variable (i.e., the thing that you want to 
determine, such as extent of reaction or pressure).  The xi values are 
assumed to be listed from lowest to highest.  (It is not really 
necessary here to list the points in order of increasing xi, but it will 
be in a later part of this document.) 
 
 Furthermore, let's assume that the relationship between x and 
y is a linear one (if it's not, fitting a line to the points is worthless). 
 
Let   y = ax + b 
  
be the equation of the best fit line to the data.  We wish to 
determine the values of both the slope a and the intercept b.  If we 
assume that each data point carries equal weight, i.e., each yi point 
has exactly the same actual (not relative) error associated with it, 
then we find a and b by minimizing the sum of the squares of the 
deviations of the actual values of yi from the line's calculated value 
of y.  The formulas for a and b are: 
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In all equations, the summation sign is assumed to be from i=1 to 
i=n. 
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 For example, consider this actual calibration data for the 
vortex flowmeter from the frictional losses experiment in junior lab: 
 
Voltage (xi)  Flow rate, liter/s (yi) 
 
1.01    0.00 
1.27    0.19 
1.85    0.58 
2.38    0.96 
2.83    1.26 
3.13    1.47 
3.96    2.07 
4.91    2.75 
 
The linear least squares fit to this data gives the line: 
 
yi =  0.70303729738 xi -0.7153519908 (liters/sec) 
 
(It is always a good idea to carry along as many significant figures as 
possible during statistical calculations because truncation errors 
may be significant when subtracting two nearly equal values.  I've 
included all these figures above so you may check the calculation 
yourself, if you wish.) 
 
If you use the linear curve-fitting routine in Excel, you get: 
 
yi = 0.703 xi -0.7154 (liters/sec) 
 
with a correlation coefficient R2 = 0.9999. 
 
Uncertainties (Errors) In Calculated Slope and Intercept 
 
 Suppose that the calculated slope and/or intercept from the 
"canned" equations above was really the experimental quantity of 
interest, say a reaction rate constant or an initial reaction rate.  In 
this case, you will want to determine the error associated with the 
slope or intercept so you can present the experimental uncertainty, 
i.e., to give a plus-or-minus value.  The formulas (for points with 
equal error, as above) are: 
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 Note that s is the square root of the quantity found by dividing the 
sum of the squares of the deviations from the best fit line, by the 
number of data points you have beyond the minimum required (two 
points determine a straight line) to fit the specified curve.  The 
quantities a and b are those calculated for the best fit line. 
 
 For the above data, s = 0.011769957 liter/sec (Note that s 
has the units of y).  The associated errors in the slope and intercept 
are  
 
slope error = 0.003343664 liter/sec-Volt and 
 
intercept error = 0.009842206 liter/sec.   
 
This means that the relative errors are 
 
relative slope error = 0.003343664/0.70303729738  = 0.48% and 
 
relative intercept error = 0.009842206/0.7153519908 = 1.38%. 
 
Note that the slope has a smaller relative error than the intercept, so 
that you can get more reliable estimates if you plot the data in such 
a fashion that the quantity you want to extract is the slope.  
Alternately, be sure you always do error analysis when using a 
calculated intercept value, since the error can be large, especially if 
the fit is not too good. (The above example has excellent data fit, as 
seen by the R2 value.) 
 
Linear Least Squares Fitting and Error of a Straight Line Which 
MUST Go Through the Origin. 
 
 This is the same case treated above, except that now we FORCE 
the line to go through the point (0, 0).  Because we specify that the 
intercept is 0, the only parameter we can determine is the slope a, 
i.e., we find the best “a” value for the equation 
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y = ax. 
 
 For example, in a chemical reaction, we know that the rate of 
disappearance of species A must be zero if the concentration of A is 
zero.  In the past, you may have just used the canned fitting 
routines, hoping that the intercept value came out small anyhow; 
the following are the correct equations to use: 
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Here, s0,0 has the same meaning as s in eq (5) above, except that 
only one additional point is needed to draw a straight line through 
the origin, so 
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Uncertainties Resulting from Interpolation and Extrapolation of 
Straight Line Data 
 
 Since many measurements are now made with electronic 
instruments, engineers are frequently required to assess the 
reliability of an indirectly measured variable that was arrived at 
through comparison with an instrument calibration curve.  
Alternately, it is sometimes necessary to extrapolate experimental 
data to arrive at a prediction of a variable at some condition beyond 
the experimentally measured range.  When the experimental or 
calibration data can be fit to straight lines, the formula for 
estimating error at a point is the same whether the point is 
interpolated or extrapolated .  Specifically, 
 
Given:  A set of n experimental data points, rank ordered so that x1 
is the lowest xi value, and xn is the highest xi value. 
 
Let   y = ax + b 
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be the best fit straight line to the data, with a and b calculated as 
above.  If you wanted to predict a value for y, say y*, given a 
specific value of x, say x*, you would obviously predict that the most 
probable value of y* when x=x* is 
 
y* = ax* + b. 
 
This would be true regardless of whether x* fell within the 
experimental range of xi.  Now, suppose you want to know how 
"correct" this y* value is, i.e., you want to know how much 
uncertainty is associated with the predicted y* value.   
 
For a confidence interval of 100(1-α)%  (e.g., at the 95% confidence 
level, α=0.05), the ± uncertainty associated with y* is: 
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Where S is given by eq (5) if the line was NOT forced through the 
origin, x is the average x-value of the experimental data points, i.e.,  
 

n
x

x i∑=  

 
and  
 

tα/2, n-2  is the critical value for the t distribution, which can be 
looked up in statistical tables (e.g., see 
http://socr.stat.ucla.edu/Applets.dir/T-table.html).   The value of n-
2 is called the number of degrees of freedom (since these are the 
“extra” points beyond what was needed to determine the original 
straight line), and is often given the symbol ν or df in statistical 
tables.  Be careful in using t-distribution tables that you use the 
correct numerical value for α/2 (i.e., HALF the difference from 100% 
of the confidence interval). 
 
If the line fit to the original data was forced through the origin, then 
the number of degrees of freedom is only n-1, and S is calculated 
from eq (8). 
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 Consider again the voltage/flow rate vortex flowmeter 
calibration data given above.  Suppose now that in the laboratory, 
you measured three different flow rates with the vortex flowmeter, 
such that the voltage readings were: 
 
1.50 V, 3.45 V and 4.61 V.  What would be the expected flow rate, 
together with its +/- error term for each voltage? 
 
Suppose we want a 95% confidence interval; then α = 0.05.  From 
the calibration data above, n = 8, Σxi = 21.34, Σxi2 = 69.3154, 
 Σ(yi-axi-b)2 = 0.000831191, S = 0.011769957 liter/sec (Note that S 
has the units of y), and t0.025, 6 = 2.447, so the three predicted 
values of flow rates, together with their estimated uncertainties due 
to the calibration curve fitting are: 
 
x* (V)  y* (liter/s)  +/- y* (liter/s)   Relative 
error in y (%) 
 
1.50  0.3391   0.013962  3.7 % 
3.45  1.710138   0.012436  0.73 % 
4.61  2.5256644   0.018876  0.75 % 
 
 You can also use the t-equation above to find uncertainties in 
extrapolated values of y, provided you know that the linear 
relationship holds in the extrapolated regime (e.g., you couldn't 
extrapolate friction factor vs. Reynolds number data taken for 
1<Re<2000 out to Re=10,000, since data were taken in the laminar 
range and the extrapolation goes to the turbulent range).  In fact, we 
cannot reliably extrapolate the flowmeter data above, because if we 
go to x* lower than the experimental range, the flow would be 
predicted to be negative, which is not physically realistic, while if we 
go to higher voltages, we exceed the 5-Volt limit of the instrument.   
 
 If you care to do so, you can use the t-equation to reconstruct 
the equation above for error in the intercept of an extrapolated line.  
The error prediction is one standard deviation, which corresponds 
to a 68% confidence interval, and effectively assumes an infinite 
number of data points; in this case t0.16, � = 1. 
 
Reference for this section: 
Probability and Statistics for Engineering and the Sciences, Second 
Edition, by Jay L. Devore, Brooks/Cole Publishing Company, p. 478 
Monterey, CA  1987  (ISBN 0-534-06828-6) 
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Weighted Least Squares Straight Line Fitting 
 
 All the above equations assumed that each data point had the 
same amount of absolute (not relative) error associated with it.  This 
is rarely the case in practice.  It is much more common for relative 
errors to be similar, or for errors to be larger at the extreme ends of 
the measurement range.  In any case, it makes sense in curve fitting 
to give the least amount of weight to points that are the least 
reliable.  This is properly accomplished statistically by weighting 
each point by the inverse square of its standard error when 
calculating the best-fit slope or intercept. 
 
 To use this method, you must first establish the standard error 
of each point; this quantity will be called ei.  If you made repeat 
measurements, you should use the standard deviation.  If the points 
you are plotting are actually derived quantities (e.g., the slopes of 
previously plotted best-fit lines), then you should use error 
propagation to get ei (e.g., use the slope error above).  All previous 
equations assumed ei was a fixed constant, so it didn't really matter 
whether the (fixed) error resided with xi or with yi; here, the error is 
presumed to reside with yi.  Hence, for curve-fitting purposes, enter 
your data points so that yi is the coordinate with the most error. 
(This is usually, but not always, the case "naturally," since we tend 
to use simple things such as time or reciprocal temperature as the 
independent x coordinate.)  Note that ei is an absolute, not relative, 
error, so it has the same units as yi.   
 
 For weighted linear regression, the best fit values of the slope 
a and the intercept b are then given by: 
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and  
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or alternately 
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The uncertainties in the slope a and intercept b of a least squares 
line that was weighted by the individual errors of the points are 
given by: 
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 If the line MUST pass through the origin, then the slope is 
determined from: 
. 
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The error in the slope of a weighted least squares line passing 
through the origin is given by: 
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The parameter S0,0 is defined in Eq. (8). 
 
 
 Note that, since all of the above relationships, including the 
error terms, involve only a few different sums, they should be 
relatively easy to program on a spreadsheet. 
 


