
1

Chapter 7
Dynamic Systems:

Ordinary Differential Equations

7.1 Introduction
The mathematical modeling of physiological systems will often result in ordinary or
partial differential equations. The fundamental reason underlying this is that
biosystems are dynamic in nature. Their behavior constantly evolves with time or
varies with respect to position in space. In this chapter we will consider the numerical
solution of ordinary differential equations. These are the models that arise from the
study of the dynamics of physiological systems that have one independent variable.
The latter may be either the space variable x, or the time variable t, depending on the
geometry of the system and its boundary conditions. Ordinary differential equations
may arise from modeling the metabolic pathways of living cells, the complex
interactions of pharmacokinetics, the kinetics of the oxygen/ hemoglobin system, the
transfer of nutrients across cells, the dynamics of membrane and nerve cell potentials,
the transformation and replication of stem cells, the mechanism of migration and
binding of tissue cells, or the dynamics of interacting populations of bacteria and the
human species.

2 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

The material in this chapter will enable the student to accomplish the
following:

• Model the dynamics of physiological systems using ordinary differential
equations.

• Obtain numerical solutions of the differential equations, plot the numerical
results, and interpret the dynamic behavior of the biosystems under a variety
of conditions.

• Appreciate the accuracy and stability of the models and the numerical
solutions obtained from these models.

7.1.1 Pharmacokinetics: The dynamics of drug absorption
Pharmacokinetics is the study of the processes that affect drug distribution and the
rate of drug concentrations within the body (Fournier, 1999). Drugs can enter the
body through the gastrointestinal tract, referred to as the enteral route, or through a
variety of other pathways that include intravenous injection, inhalation, subcutaneous
penetration, etc. These are referred to as parenteral routes. The drug distribution
throughout the body is affected by several factors, such as blood perfusion rate,
capillary permeability, drug biological affinity, the metabolism of the drug, and renal
excretion. The drug is eliminated from the body by enzymatic reactions in the liver
and by excretion into the urine stream via the kidneys. A simplified model for drug
absorption and elimination is shown in Fig. 7.1. This model treats all body fluids as a
single-compartment unit. A mathematical simulation of this model results in a set of
linear ordinary differential equations. Methods for the solution of such a set are
developed in Sec. 7.4 of this chapter, and are demonstrated in Example 7.2.

Figure 7.1 Simplified drug absorption model.

Body fluids

Drug absorption site

Elimination processes

7.1 INTRODUCTION 3

7.1.2 Tissue engineering: Stem cell differentiation, cell migration,
adhesion

Cell differentiation is a critical dynamic process that underlies the progressive
specialization of the various embryonic and progenitor cells to multifunctional tissues
in the body. For example, embryonic stem cells in a growing fetus replicate and
differentiate to develop into specialized types of cells, such as bone cells, skin cells,
liver cells, muscle cells, etc. The differentiation process involves a series of changes
in cell phenotype and morphology that typically become more pronounced and easier
to observe directly at the later stages of the process (Palsson and Bhatia, 2004). This
process begins with the stem cells commitment to differentiation, followed by a
coordinated series of gene-expression events, causing the cell to differentiate to a
new state. A series of such progressive states leads to fully mature specialized cells.
These mature cells perform their intended function in the body and eventually die, or
undergo change to another type of cell through a process called transdifferentiation.
The progressive series of events that converts a stem cell to a fully mature specialized
cell may be modeled as a multi-compartment model. The unsteady state balances on
these compartments result in a set of simultaneous ordinary differential equations.
The solution of such a set of equations is demonstrated in Example 7.6 that presents
and discusses stem cell differentiation.

An important aspect of tissue engineering is the proper design and manufacture
of porous matrices that imitate the properties of the epidermis and may be used as
prosthetic scaffolding to promote dermal regeneration, thus enhancing the healing
process of wounded or burned skin. A cellular dynamic process, relevant to wound
repair and tissue regeneration, is cell migration (Lauffenburger and Horowitz, 1996).
Cell migration is necessary for cells to repopulate a healing wound and an implanted
scaffold for tissue regeneration, and during embryogenesis for cell sorting and organ
development. Cell migration is also relevant to cancer and tumor metastasis.

Cellular migration is a coordinated process that results from the interaction of
specific cell surface receptors with ligands, which are typically biomolecules of an
extracellular matrix (Fig. 7.2). Quantitative descriptions of the cell migration process
involve establishing relationships between the cell motility response (e.g, cell speed,
cell directional persistence, population cell motility) and the various attributes of the
ligands. A number of ligand properties, such as ligand surface concentration, degree
of receptor occupancy, and ligand affinity, affect the activation of cell motility. An
interesting mode of complex cell migration has been quantitatively analyzed by
Moghe and coworkers (Tjia and Moghe, 2002a, 2002b). This migration involves
cellular internalization (endocytosis or phagocytosis, depending on the nature of
ligand carriers) of the ligands after receptor-ligand binding. The dynamics of cell-
ligand interactions have been modeled from a kinetic-mechanistic point of view (Tjia
and Moghe, 2002c) using diffusion-reaction descriptions and equations similar to

4 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

those in the traditional Michaelis-Menten kinetics. A model of cell migration is
presented and solved in Example 7.7.

Figure 7.2 The migration of keratinocytes is enhanced by the presence of ligand-bound
microcarriers (from Tjia and Moghe, 2002c) .

7.1.3 Glycolysis pathways of living cells
Living cells break down glucose to produce carbon dioxide and water in a complex
process called glycolysis that involves several enzyme catalyzed reactions. This
process generates chemical energy, which is in turn used in the biological synthesis
of other compounds, such as proteins. The energy produced in glycolysis is stored by
the cell in the form of adenosine triphosphate (ATP). The net effect of this pathway
is:

6 12 6 2 2 2C H O + 6O 6CO + 6H O + energy→

Many of the chemical reactions in the glycolysis pathway are catalyzed by enzymes,
such as the reaction shown here:

[]
-1

1 2
k k
k

S E ES P E→+ → +←

An enzyme, E, catalyzes the conversion of a substrate, S, to form a product, P, via the
formation of an intermediate complex, [ES]. The steady state analysis of such
reactions results in algebraic equations whose solution may be obtained by the
methods discussed in Chapter 5 of this book. On the other hand, the dynamic
behavior of enzymatic reactions is modeled by ordinary differential equations.
Methods of solution for sets of ordinary differential equations are developed in Sec.
7.5 of this chapter, and are applied to obtain the solution of an enzyme catalysis
problem in Example 7.3.

7.1 INTRODUCTION 5

7.1.4 Transport of molecules in biological membranes
The transport of molecules across biological membranes is vital to the operation and
survival of living cells. The supply of nutrients to the cell, for growth and repro-
duction, and the transfer of waste products from cell to the extracellular medium, is a
complex process that is facilitated by many mechanisms (Fig. 7.3). There is passive
transport of molecules due to the combined effects of concentration gradients and
electrical potential differences that exist across the cell membrane. Neutral molecules
diffuse from regions of high concentration to regions of low concentration. In
addition, charged molecules move along a voltage gradient that normally exists
across a cell membrane, such as in neural cells and axons. Carrier-mediated transport
and active transport are additional mechanisms that facilitate the movement of
molecules across cell boundaries. The transport mechanism of molecules may be
model using ordinary and partial differential equations. In this chapter we will
discuss dynamic transport systems of one independent variable that may be modeled
by ordinary differential equations. In Example 7.5, we solve the Hodgkin-Huxley
model that simulates the dynamics of membrane and nerve cell potentials. In Chapter
8 we will examine transport systems of two or more independent variables that result
in partial differential equations.

Figure 7.3 Diffusion across biological membranes

Diffusion

Facilitated
diffusion

Active
transport

ATP

ADP

6 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.2 Classification of Ordinary Differential Equations
Ordinary differential equations are classified according to their order, linearity,
homogeneity, and boundary conditions. The order of a differential equation is the
order of the highest derivative present in that equation. Ordinary differential
equations may be categorized as linear and nonlinear. A differential equation is
nonlinear if it contains products of the dependent variable, or its derivatives, or of
both. In this chapter, as much as possible, we will use the symbol y to represent the
dependent variable, and the symbol t to designate the independent variable. The
student should remember that either t, or x, is customarily used to represent the
independent variable in ordinary differential equations.

The general form of a linear ordinary differential equation of order n may be
written as

 () () () () ()
1

1 1 01

n n

n nn n

d y d y dyb t b t b t b t y R t
dt dt dt

−

− −+ + + + =… (7.1)

If () 0R t = , the equation is called homogeneous. If () 0R t ≠ , the equation is

nonhomogeneous. The coefficients {bi | i = n, . . . , 1} are called variable coefficients
when they are functions of x, and constant coefficients when they are scalars. A
differential equation is autonomous if the independent variable does not appear
explicitly in that equation. For example, if Eq. (7.1) is homogeneous with constant
coefficients, it is also autonomous. Examples of first, second, and third order
differential equations are given below:

 First order, linear, homogeneous: 0dy y
dt

+ = (7.2)

 First order, linear, nonhomogeneous: dy y kt
dt

+ = (7.3)

 First order, nonlinear, nonhomogeneous: 2dy y kt
dt

+ = (7.4)

7.2 CLASSIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS 7

 Second order, linear, nonhomogeneous:
2

2
td y dy y e

dt dt
+ + = (7.5)

 Second order, nonlinear, nonhomogeneous: ()
2

2 cosd y dyy y t
dt dt

+ + = (7.6)

 Third order, linear, homogeneous:
3 2

3 2 0d y d y dya b y
dt dt dt

+ + + = (7.7)

 Third order, nonlinear, nonhomogeneous: ()
23 2

3 2 sind y d y dya y t
dt dt dt

 
+ + + = 

 
 (7.8)

Eqs. (7.4), (7.6), and (7.8) are nonlinear because they contain the terms y2, y(d2y/dt2)
and (d2y/dt2)2, respectively, whereas Eqs. (7.2), (7.3), (7.5), and (7.7) are linear.

To obtain a unique solution of an nth-order differential equation, or of a set of
n simultaneous first-order differential equations, it is necessary to specify n values of
the dependent variables (or their derivatives) at specific values of the independent
variable.

Ordinary differential equations may be classified as initial-value problems or
boundary-value problems. In initial-value problems, the values of the dependent
variables and/or their derivatives are all known at the initial value of the independent
variable. A problem whose dependent variables, and/or their derivatives, are all
known at the final value of the independent variable (rather than the initial value) is
identical to the initial-value problem, because only the direction of integration must
be reversed. Therefore, the term initial-value problem refers to either case. In
boundary-value problems, the dependent variables and/or their derivatives are known
at more than one point of the independent variable. If some of the dependent
variables (or their derivatives) are specified at the initial value of the independent
variable, and the remaining variables (or their derivatives) are specified at the final
value of the independent variable, then this is a two-point boundary-value problem.

The methods of solution of initial-value problems are developed in Sec. 7.5.
The methods for solution of boundary-value problems will not be covered in this
book. The interested student is referred to Constantinides and Mostoufi (1999).

8 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.3 Transformation to Canonical Form
Numerical integration of ordinary differential equations is most conveniently
performed when the system consists of a set of n simultaneous first-order ordinary
differential equations of the form:

() ()

() ()

() ()

1
1. 1 2 1 0 1,0

2
2 1 2 2 0 2,0

1 2 0 ,0

, , , ,

, , , ,

, , , ,

n

n

n
n n n n

dy f t y y y y t y
dt
dy f t y y y y t y
dt

dy f t y y y y t y
dt

= =

= =

= =

…

…

#

…

 (7.9)

This is called the canonical form of the equations. When the initial conditions are
given at a common point, t0, then the set of equations (7.40) has solutions of the form

()
()

()

1 1

2 2

n n

y F t

y F t

y F t

=

=

=

#
 (7.10)

The above problem can be condensed into matrix notation, where the system
equations are represented by

 (),d t
dt

=
y f y (7.11)

the vector of initial conditions is

 ()0t = 0y y (7.12)

and the vector of solutions is

 ()t=y F (7.13)

Differential equations of higher order, or systems containing equations of
mixed order, can be transformed to the canonical form by a series of substitutions.
For example, consider the nth-order differential equation

2

2, , , ,
n n

n n

d z dz d z d zG z t
dt dt dt dt

 
=  

 
… (7.14)

7.3 TRANSFORMATION TO CANONICAL FORM 9

The following transformations

1

1
2

2
2

32

1
1

1

n
n

nn

n
n

n

z y
dydz y

dt dt
dyd z y

dt dt

dyd z y
dt dt

dyd z
dt dt

−
−

−

=

= =

= =

= =

=

#
 (7.15)

when substituted into the nth-order equation (7.45), give the equivalent set of n first-
order equations of canonical form:

()

1
2

2
3

1 2 3, , , , ,n
n

dy y
dt
dy y
dt

dy G y y y y t
dt

=

=

=

#

…

 (7.16)

If the right-hand side of the differential equations is not a function of the independent
variable, that is,

 ()d
dt

=
y f y (7.17)

then the set is autonomous. A nonautonomous set may be transformed to an
autonomous set by an appropriate substitution (see Example 7.1 (b)).

If the functions f(y) are linear in terms of y, then the equations can be written in
matrix form:

 ′y = Ay (7.18)

as in Example 7.1 (a) and (b). Solutions for linear sets of ordinary differential
equations are developed in Sec. 7.4. The methods for solution of nonlinear sets are
discussed in Sec. 7.5.

10 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

A more restricted form of differential equation is

 ()d t
dt

=
y f (7.19)

where f(t) are functions of the independent variable only. Solution methods for these
equations were developed in Chapter 6.

The next example demonstrates the technique for converting higher-order
linear and nonlinear differential equations to canonical form.

Example 7.1 Transformation of ordinary differential equations into their
canonical form.

Statement of the problem

Apply the transformations defined by Eqs. (7.15) and (7.16) to the following ordinary
differential equations:

(a)
4 3 2

4 3 25 2 6 3 0 (Linear, autonomous)d z d z d z dz z
dt dt dt dt

+ − − + =

 3 2

3 2 0
00 0

With initial conditions

at 0, 2, 1.5, 1, 0.5d z d z dzt z
dt dt dt

= = = = =

(b)
4 3 2

4 3 25 2 6 3 (Linear, nonhomogeneous)td z d z d z dz z e
dt dt dt dt

−+ − − + =

 3 2

3 2 0
00 0

With initial conditions

at 0, 2, 1.5, 1, 0.5d z d z dzt z
dt dt dt

= = = = =

(c)
33 2

2
3 2 2 0 (Nonlinear, autonomous)d z d z dzz z

dt dt dt
 + − − = 
 

 2

2 0
00

With boundary conditions

at t 0, 1, 2, 3d z dz z
dt dt

= = = =

EXAMPLE 7.1 TRANSFORMATION TO CANONICAL FORM 11

Solution

(a) Apply the transformation according to Eqs. (7.15) to obtain the following four
equations:

()

()

()

()

1
2 1

2
3 2

3
4 3

4
1 2 3 4 4

0 0.5

0 1

0 1.5

3 6 2 5 0 2

dy y y
dt
dy y y
dt

dy y y
dt
dy y y y y y
dt

= =

= =

= =

= − + + − =

This is a set of linear ordinary differential equations that can be represented in matrix
form by Eq. (7.18), where matrix A is given by

0 1 0 0
0 0 1 0
0 0 0 1
3 6 2 5

 
 
 =
 
 − −  

A

The method for obtaining the solution of sets of linear ordinary differential equations
is discussed in Sec. 7.4.

(b) The presence of the term e-t on the right-hand side of this equation makes it
nonhomogeneous. The left-hand side is identical to that of Eq. (a), so that the
transformations of Eq. (a) are applicable. An additional transformation is needed to
replace the e-t term. This transformation is

5

5

t

t

y e
dy e y
dt

−

−

=

= − = −

Make the substitutions into Eq. (b) to obtain the following set of five linear ordinary
differential equations:

()

()

1
2 1

2
3 2

0 0.5

0 1

dy y y
dt
dy y y
dt

= =

= =

12 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

()

()

()

3
4 3

4
1 2 3 4 5 4

5
5 5

0 1.5

3 6 2 5 0 2

0 1

dy y y
dt
dy y y y y y y
dt

dy y y
dt

= =

= − + + − + =

= − =

The above set condenses into the matrix form of Eq. (7.18), with the matrix A given
by

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
3 6 2 5 1

0 0 0 0 1

 
 
 
 
 − − 
 − 

A =

(c) This problem is nonlinear, however, similar transformations may be applied:

1

1
2

2
2

32

3
3

3

z y
dydz y

dt dt
dyd z y

dt dt
dyd z

dt dt

=

= =

= =

=

Make the substitutions into Eq. (c) to obtain the set

()

()

()

1
2 1

2
3 2

3 23
1 2 1 3 3

0 3

0 2

2 0 1

dy y y
dt
dy y y
dt

dy y y y y y
dt

= =

= =

= + − =

As expected, this is a set of nonlinear differential equations, which cannot be
expressed in matrix form. The methods of solution of nonlinear differential equations
are developed in Sec. 7.5.

7.4 LINEAR ORDINARY DIFFERENTIAL EQUATIONS 13

7.4 Linear Ordinary Differential Equations
The analysis of many bioengineering systems yields mathematical models that are
sets of linear ordinary differential equations with constant coefficients and can be
reduced to the form

 ′y = Ay (7.18)

with given initial conditions

 ()0 = 0y y (7.20)

Sets of linear ordinary differential equations with constant coefficients have closed-
form solutions that can be readily obtained from the eigenvalues and eigenvectors of
matrix A. In order to develop this solution, let us first consider a single linear
differential equation of the type

 dy ay
dt

= (7.21)

with the given initial condition

 () 00y y= (7.22)

Eq. (7.21) is essentially the scalar form of the matrix set of Eq. (7.18). The solution
of the scalar equation can be obtained by separating the variables and integrating both
sides of the equation

0

0

0

0

ln

at

y t

y

dy adt
y

y at
y

y e y

=

=

=

∫ ∫

 (7.23)

In an analogous fashion, the matrix set can be integrated to obtain the solution

 At
0y = e y (7.24)

In this case, y and y0 are vectors of the dependent variables and the initial conditions,
respectively. The term eAt is the matrix exponential function, which can be obtained
from Eq. (7.25):

14 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

3 3 4 4

2! 3! 4!
t t tt + + +

2 2
At A A Ae = I + A + … (7.25)

It can be demonstrated that Eq. (7.25) is a solution of Eq. (7.18) by differentiating it:

()

()

3 3 4 4

3 2 4 3

3 3

2! 3! 4!

2! 3!

2! 3!

t

t

d d
dt dt

d t t tt
dt

t tt

t tt

y

=

 
= + + + 

 
 

= + + + 
 
 

= + + 
 

=

=

A
0

2 2

0

2
0

2 2

0

A
0

y e y

A A AI + A + y

A AA + A y

A AA I + A + y

A e y

A

…

…

…

 (7.26)

The solution of the set of linear ordinary differential equations is very

cumbersome to evaluate in the form of Eq. (7.25) because it requires the evaluation
of the infinite series of the exponential term eAt. However, this solution can be
modified by further algebraic manipulation to express it in terms of the eigenvalues
and eigenvectors of the matrix A. In Chapter 4, we showed that a nonsingular matrix
A of order n has n eigenvectors and n nonzero eigenvalues, whose definitions are
given by

1 1 1

2 2 2

n n n

λ
λ

λ

Ax = x
Ax = x

Ax = x
#

 (7.27)

All the above eigenvectors and eigenvalues can be represented in a more compact
form as follows:

 AX = XΛ (7.28)

where the columns of matrix X are the individual eigenvectors:

 []1 2 3 nX = x , x , x , …, x (7.29)

7.4 LINEAR ORDINARY DIFFERENTIAL EQUATIONS 15

and Λ is a diagonal matrix with the eigenvalues of A on its diagonal:

1

2

3

n

λ
λ

λ

λ

 
 
 
 Λ
 
 
  

0 0 … 0
0 0 … 0

= 0 0 … 0
… … … … …
0 0 0 …

 (7.30)

Through a series of matrix operations, Eqs. (7.25) and (7.28) can be combined

to express the matrix exponential as follows:

 At Λt -1e = Xe X (7.31)

For a complete derivation of this equation see Constantinides and Mostoufi (1999).

The solution of the linear differential equations can now be expressed in terms
of eigenvalues and eigenvectors by combining Eqs. (7.24) and (7.31):

 0  
Λt -1y = Xe X y (7.32)

This method will always work provided that we can find n linearly independent
eigenvectors of the (n × n) matrix A. This is equivalent to saying that matrix X must
be nonsingular so that its inverse may be calculated. The eigenvalues and
eigenvectors of matrix A can be calculated using the techniques developed in Chapter
4, or simply by applying the built-in MATLAB functions described below.

MATLAB functions: MATLAB has several functions that may be used to calculate
matrix exponentials and eigenvalues/eigenvectors:

expm(A): Calculates the matrix exponential of A using a scaling and squaring
algorithm with a Pade approximation (Burden et al., 1981).

expm2(A): Calculates the matrix exponential of A via Taylor series. As a practical
numerical method, this is often slow and inaccurate.

expm3(A): Calculates the matrix exponential of A via eigenvalues and eigenvectors.
The accuracy of this method is determined by the condition of the eigenvector
matrix.

eig(A): Calculates the eigenvalues of matrix A.

16 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

[X, LAMBDA] = eig(A): Produces a diagonal matrix LAMBDA of eigenvalues,
as in Eq. (7.30), and a full matrix X whose columns are the corresponding
eigenvectors, as in Eq. (7.29), so that Eq. (7.28) is satisfied, i.e., A*X =
X*LAMDA

Eq. (7.32) may be evaluated using some of the above MATLAB functions as follows:

syms t
A = [define the elements of matrix A]
y0 = [define the elements of vector y0]
[X, LAMBDA] = eig(A)
y = X*expm(LAMBDA*t)*X^-1*y0

The use of these functions is demonstrated in Example 7.2.

Example 7.2 The dynamics of drug absorption.

Statement of the problem

The drug absorption mechanism in the body may be modeled, in its simplest form, as
a three-step process, shown diagrammatically below:

All body fluids are treated as a single unit. Unsteady state mass balances around each
of the three steps yield three linear ordinary differential equations. The equation that
describes the rate of change of the amount of drug at the absorption site is

 ()0 0, 0dA k A A A
dt

= − = (7.33)

Drug absorption site
A = amount of drug k0 = Absorption rate

 coefficient

Body fluids
B = amount of drug in the body

Elimination processes
E = amount of drug eliminated

 or metabolized

k1 = Elimination rate
coefficient

EXAMPLE 7.2 THE DRUG ABSORPTION PROBLEM 17

The rate of change of the amount of drug in the body is described by

 ()0 1 , 0 0dB k A k B B
dt

= − = (7.34)

and the rate of change of the amount of drug eliminated is measured by

 ()1 , 0 0dE k B E
dt

= = (7.35)

Equations (7.33), (7.34), and (7.35) constitute a set of simultaneous first order linear
ordinary differential equations, whose solution, A(t), B(t), E(t), correspond to the
drug concentrations being fed, in the body, and being eliminated, respectively. It has
been determined that values of k0 = 0.01 min-1 and k1 = 0.035 min-1 are reasonable
values for this system. Use the analytical and numerical solution of these equations to
calculate the time, maxt , at which the concentration of drug in the body reaches its
maximum value, ()max maxB B t= , and plot the profiles for all three concentrations as
functions of time.

Solution

(a) The analytical solutions to the differential equations may be obtained with the
MATLAB command dsolve:

>> [A,B,E]=dsolve('DA=-k0*A','DB=k0*A-k1*B','DE=k1*B', 'A(0)=A0',
'B(0)=0', 'E(0)=0');
>> A=simplify(A)
A =
A0*exp(-k0*t)
>> B=simplify(B)
B =
k0*A0*(-exp(-k1*t)+exp(-k0*t))/(-k0+k1)
>> E=simplify(E)
E =
-A0*(exp(-k0*t)*k1-k1+k0-exp(-k1*t)*k0)/(-k0+k1)

From this output we conclude that the analytical solutions for A, B, and E are

()

0

0 1

0 1

0

0 0

1 0

0 1 0 0 1 0

1 0

()

() ()

()
()

()

k t

k t k t

k t k t

A t A e
k AB t e e

k k

A k e k e A k k
E t

k k

−

− −

− −

=

= −
−

− − + −
=

−

18 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

The law of conservation of mass predicts that

0 0 0() () ()A t B t E t A B E+ + = + +

This is easily verified by the MATLAB command (remember that B0 and E0 are equal
to zero in this problem):

>> simplify(A+B+E)
ans =
A0

The value of tmax is obtained by taking the derivative of B(t), equating it to zero, and
solving for t, using the values k0=0.01 and k1=0.035:

>> dB = diff(B)
dB =
k0*A0*(k1*exp(-k1*t)-k0*exp(-k0*t))/(-k0+k1)
>> tmax = solve(dB,'t')
tmax =
log(k1/k0)/(-k0+k1)
>> k0=.01;k1=0.035;
>> eval(tmax)
ans =
 50.1105

This predicts that the maximum concentration of the drug in the body is reached at
approximately 50 minutes after injection.

(b) This problem will now be solved using the eigenvalue-eigenvector method of Eq.
(7.32), and the matrix exponential method of Eq. (7.24). The following MATLAB
script was written for this purpose. This program is called example7_2b.m and is
included in the biosystems software that accompanies this book:

% example7_2b.m - Solution of the drug absorption problem,
% both symbolically and numerically, using the eigenvalue-
% eigenvector method and the matrix exponential method.%

clc; clear all;
syms c t
% Constants
k0=0.01; k1=0.035;
disp('Initial concentrations:')
c0=[1; 0; 0]
disp(' '); disp('Matrix of coefficients:')
K=[-k0 0 0; k0 -k1 0; 0 k1 0]
% Eigenvalue-eigenvector method
[X,lambda]=eig(K);
disp(' '), disp('Eigenvectors:'), X

EXAMPLE 7.2 THE DRUG ABSORPTION PROBLEM 19

disp(' '), disp('Eigenvalues:'), lambda
disp(' '), disp('Inverse of X:'), X^-1
disp(' ');
disp('Concentrations using eigenvalue-eigenvector method:')
c=X*expm(lambda*t)*X^-1*c0

% Evaluate concentration profiles
t=[0:100]; c=eval(c);

% Find the maximum concentration and time of drug in the body
[Cmax,tm]=max(c(2,:));
fprintf('\nMaximum concentration in the body = %6.4f at tmax =
%4.2f min.\n',Cmax, tm-1)

% Plot the results
clf; figure(1); h=plot(t,c(1,:), t,c(2,:),':',t,c(3,:),'--');
title('Figure E7.2a: Eigenvalue-Eigenvector Solution')
ylabel('Concentration'); xlabel('Time, min');
legend('C_A','C_B','C_C')

% Matrix exponential method
disp(' '); disp('Concentrations using matrix exponential method:')
syms t
c=expm(K*t)*c0
t=[0:100]; c=eval(c);

% Plot the results
figure(2); h=plot(t,c(1,:), t,c(2,:),':',t,c(3,:),'--');
title('Figure E7.2b: Matrix Exponential Solution')
xlabel('Time, min'); ylabel('Concentration');
legend('C_A','C_B','C_C')

Output of results

Initial concentrations:
c0 =
 1
 0
 0

Matrix of coefficients:
K =
 -0.0100 0 0
 0.0100 -0.0350 0
 0 0.0350 0

Eigenvectors:
X =
 0 0 0.5661
 0 0.7071 0.2265

20 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

 1.0000 -0.7071 -0.7926

Eigenvalues:
lambda =
 0 0 0
 0 -0.0350 0
 0 0 -0.0100

Inverse of X:
ans =
 1.0000 1.0000 1.0000
 -0.5657 1.4142 0
 1.7664 0 0

Concentrations using eigenvalue-eigenvector method:
c =
[exp(-1/100*t)]
[-2/5*exp(-7/200*t)+2/5*exp(-1/100*t)]
[1+2/5*exp(-7/200*t)-7/5*exp(-1/100*t)]
Maximum concentration in the body = 0.1731 at tmax = 50.00 min.

Concentrations using matrix exponential method:
c =
[exp(-1/100*t)]
[-2/5*exp(-7/200*t)+2/5*exp(-1/100*t)]
[1+2/5*exp(-7/200*t)-7/5*exp(-1/100*t)]

EXAMPLE 7.2 THE DRUG ABSORPTION PROBLEM 21

Discussion of results
As expected, the results from the two methods are identical, and they also confirm
the results of the analytical method. The values of tmax and Bmax are 50 min and
0.1731, respectively.

7.5 Nonlinear Ordinary Differential Equations
In this section, we develop numerical solutions for a set of ordinary differential
equations in their canonical form:

 (),d t
dt

=
y f y (7.11)

with the vector of initial conditions given by

 ()0t = 0y y (7.12)

In order to be able to illustrate these methods graphically, we treat y as a single
variable rather than as a vector of variables. The formulas developed for the solution
of a single differential equation are readily expandable to those for a set of
differential equations, which must be solved simultaneously. This concept is
demonstrated in Sec. 7.5.4.

We begin the development of these methods by first rearranging Eq. (7.11) and
integrating both sides between the limits of ti ≤ t ≤ ti + 1 and yi ≤ y ≤ yi +1:

 ()1 1 ,i i

i i

y t

y t
dy f t y dt+ +=∫ ∫ (7.36)

The left side integrates readily to obtain

22 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

 ()1
1 ,i

i
i i

t

t
y y f t y dt+

+ − = ∫ (7.37)

One method for integrating Eq. (7.37) is to take the left-hand side of this equation
and use finite differences for its approximation. This technique works directly with
the tangential trajectories of the dependent variable y rather than with the areas under
the function f(t, y). This is the technique applied in Secs. 7.5.1 and 7.5.2.

In Chapter 6, we developed the integration formulas by first replacing the
function f(t) with an interpolating polynomial and then evaluating the integral of
f(t)dt between the appropriate limits. A similar technique could be applied here to
integrate the right-hand side of Eq. (7.37). This approach is followed in Sec. 7.5.3.

MATLAB functions: There are several functions in MATLAB that may be used for
the integration of sets of ordinary differential equations of the form of (7.42). These
solvers, along with their method of solution, are listed in Table 7.1. Any one of the
following statements may be used to call an ODE solver

[T, Y] = solver(@name_func, tspan, y0)
[T, Y] = solver(@name_func, tspan, y0, options)
[T, Y] = solver(@name_func, tspan, y0, options, p1, p2,...)

where "solver" is one of ode23, ode45, ode113, ode15s, ode23s, ode23t, or
ode23tb.

The arguments that are passed to the solver are:

name_func: The name of the m-file containing the function that evaluates the right-
hand side of the differential equations. Function name_func(t, y) must return a
column vector corresponding to f(t, y).

tspan: A vector specifying the interval of integration, [t0,tf]. To obtain solutions
at specific points of t (all increasing or all decreasing), use tspan=[t0,t1,...,tf],
or to obtain solutions at equally spaced intervals, specify tspan = [t0:delt:tf],
where delt is the user’s choice of spacing between points where output will be
given.

y0: The vector containing the initial conditions of the differential equations.

options: Optional integration argument created using the odeset function. See
odeset for details.

p1, p2, ...: Optional parameters that the solver passes to name_func and all the
functions specified in options.

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 23

[T, Y]: The solver returns the values of independent and dependent variables in the
vectors T, Y, respectively. The vector of independent variable is not equally spaced,
because the integrating solver controls the step size, unless the user has specified the
tspan, as described above.

For example:

[T,Y] = ode45(@test1_func,[0:10],[1,0],[],0.1, 0.02, 0.1)

function dydt = test1_func(x, y, p1, p2, p3)
dydt = [p1*y(1)-p2*y(2)^2; p3*exp(y(1))];

This function should return the value(s) of the derivative(s) as a column vector. The
first input to this function has to be the independent variable, x, even if it is not
explicitly used in the definition of the derivative (autonomous equations). The second
input argument to the function is the vector of dependent variables, y. The additional
parameters, p1, p2, p3, are the last three values in the ode45 call, (…, 0.1, 0.02,
0.1), which get passed on to the test1_func function.

An alternate way of using these functions is:

[T,Y] = ode45('test2_func',[0:10],[1,0],[],0.1, 0.02, 0.1)
function dydt = test2_func(x, y, flag, p1, p2, p3)
dydt = [p1*y(1)-p2*y(2)^2; p3*exp(y(1))];

It should be noted that in this case the third input to test2_func has to be an empty
variable, flag, and the additional parameters are introduced starting with the fourth
argument.

Table 7.1 Ordinary differential equation solvers in MATLAB

Solver Method of solution

ode23 Runge-Kutta lower-order (2nd order, 3stages)

ode45 Runge-Kutta higher-order (4th order, 5stages)

ode113 Adams-Bashforth-Moulton of varying order (1-13)
ode15s Implicit, multistep of varying order (1-5), for stiff differential

equations

ode23s Modified Rosenbrock of order 2, for stiff differential equations
ode23t Implementation of the trapezoidal rule using a "free" interpolant,

for moderately stiff differential equations

24 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

ode23tb Implementation of an implicit Runge-Kutta formula with a first
stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two, for stiff
differential equations

7.5.1 The Euler and modified Euler methods
One of the earliest techniques developed for the solution of ordinary differential
equations is the Euler method. This is simply obtained by recognizing that the left
side of Eq. (7.37) is the first forward finite difference of y at position i:

 1i i iy y y+ − = ∆ (7.38)

which, when rearranged, gives a “forward marching” formula for evaluating y:

 1i i iy y y+ = + ∆ (7.39)

The forward difference term iy∆ is obtained from Eq. (???) applied to y at position i:

2 2 3 3

2 6
i i

i i
h D y h D yy hDy∆ = + + +… (7.40)

In the Euler method, the above series is truncated after the first term to obtain

 ()2
i iy hDy O h∆ = + (7.41)

The combination of Eqs. (7.39) and (7.41) gives the explicit Euler formula for
integrating differential equations

 ()2
1i i iy y hDy O h+ = + + (7.42)

The derivative Dyi is replaced by its equivalent y'i or f(ti, yi) to give the more
commonly used form of the explicit Euler method1

 () ()2
1 ,i i i iy y hf t y O h+ = + + (7.43)

The Euler method, Eq. (7.43), simply states that the next value of y is obtained from
the previous value by moving a step of width h in the tangential direction of y. This is
demonstrated graphically in Fig. 7.4a. This Euler formula is rather inaccurate

1 From here on the term iy′ and (,) i if t y will be used interchangeably. The student should remember that these are
equal to each other through the differential equation (7.42).

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 25

because it has a truncation error of only O(h2). If h is large the trajectory of y can
quickly deviate from its true value, as demonstrated in Fig. 7.4b.

Figure 7.4 The explicit Euler method of integration. (a) Single step. (b) Several steps.

The accuracy of the Euler method can be improved by utilizing a combination
of forward and backward differences. Note that the first forward difference of y at i is
equal to the first backward difference of y at (i + 1):

 1 1i i i iy y y y+ +∆ = − = ∇ (7.44)

Therefore, the forward marching formula in terms of backward differences is

 1 1i i iy y y+ += +∇ (7.45)

The backward difference term 1iy +∇ is obtained from Eq. (???) applied to y at
position (i + 1):

2 2 3 3

1 1
1 2 6

i i
i i

h D y h D yy hDy + +
+∇ = − + −… (7.46)

Combining Eqs. (7.45) and (7.46), we obtain:

 () ()2
1 1 1,i i i iy y hf t y O h+ + += + + (7.47)

This is called the implicit Euler formula (or backward Euler), because it involves the
calculation of function f at an unknown value of yi + 1. Eq. (7.47) can be viewed as
taking a step forward from position i to (i + 1) in a gradient direction that must be
evaluated at (i + 1).

26 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Implicit equations cannot be solved individually but must be set up as sets of
simultaneous algebraic equations. When these sets are linear, the problem can be
solved by the application of the Gauss elimination methods developed in Chapter 4.
If the set consists of nonlinear equations, the problem is much more difficult and
must be solved using Newton’s method for simultaneous nonlinear algebraic
equations developed in Chapter 5.

In the case of the Euler methods, the problem can be simplified by first
applying the explicit method to predict a value yi + 1:

 () () ()2
1 Predicted

,i i i iy y hf t y O h+ = + + (7.48)

and then using this predicted value in the implicit method to get a corrected value:

 () ()() ()2
1 1 1Corrected Pr edicted

,i i i iy y hf t y O h+ + += + + (7.49)

This combination of steps is known as the Euler predictor-corrector (or modified
Euler) method. Correction by Eq. (7.49) may be applied more than once until the
corrected value converges, that is, the difference between the two consecutive
corrected values becomes less than the convergence criterion. However, not much
more accuracy is achieved after the second application of the corrector.

The explicit, as well as the implicit, forms of the Euler methods have error of
order (h2). However, when used in combination, as predictor-corrector, their accuracy
is enhanced, yielding an error of order (h3). This conclusion can be reached by adding
Eqs. (7.39) and (7.45):

 ()1 12i i i i
hy y y y+ += + ∆ +∇ (7.50)

and utilizing (7.40) and (7.46) to obtain

 () () ()3
1 1 1, ,

2i i i i i i
hy y f t y f t y O h+ + += +  +  +  (7.51)

The terms of order (h2) cancel out because they have opposite sign, thus giving a
formula of higher accuracy. Eq. (7.51) is essentially the same as the trapezoidal rule
(Eq. (???)), the only difference is in the way the function is evaluated at (ti + 1, yi + 1).

It has been shown (Finlayson, 1980) that the Euler implicit formula is more
stable than the explicit one. The stability of these methods is discussed in Sec. 7.7.

It can be seen by writing Eq. (7.51) in the form

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 27

 () () ()3
1 1 1, ,

2 2i i i i i i
h hy y f t y f t y O h+ + += + + + (7.52)

that this Euler method uses the weighted trajectories of the function y evaluated at
two positions that are located one full step of width h apart and weighted equally. In
this form, Eq. (7.52) is also known as the Crank-Nicolson method.

Eq. (7.52) can be written in a more general form as

 1 1 1 2 2i iy y w k w k+ = + + (7.53)

where, in this case:

 ()1 ,i ik hf t y= (7.54)

 ()2 2 21 1,i ik hf t c h y a k= + + (7.55)

The choice of the weighting factors, w1 and w2, and the positions i and (i + 1) at
which to evaluate the trajectories is dictated by the accuracy required of the
integration formula, that is, by the number of terms retained in the infinite series
expansion.

This concept forms the basis for a whole series of integration formulas, with
increasingly higher accuracies, for ordinary differential equations. These are
discussed in the following section.

7.5.2 The Runge-Kutta methods
The most widely used methods of integration for ordinary differential equations are
the series of methods called Runge-Kutta second, third, fourth, and fifth order, plus a
number of other techniques that are variations on the Runge-Kutta theme. These
methods are based on the concept of weighted trajectories formulated at the end of
Sec. 7.5.1. In a more general fashion, the forward marching integration formula for
the differential equation (7.11) is given by the recurrence equation

 1 1 1 2 2 3 3i i m my y w k w k w k w k+ = + + + + +… (7.56)

where each of the trajectories ki are evaluated by

28 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

()
()
()

()

1

2 2 21 1

3 3 31 1 32 2

3 1 1 2 2 , 1 1

,

,

,

,

i i

i i

i i

i m i m m m m m

k hf t y

k hf t c h y a k

k hf x c h y a k a k

k hf x c h y a k a k a k− −

=

= + +

= + + +

= + + + + +

#
…

 (7.57)

These equations can be written in a compact form as

 1
1

m

i i i i
i

y y w k+
=

= +∑ (7.58)

1

1
,

j

j i j i jl l
l

k hf x c h y a k
−

=

 
= + + 

 
∑ (7.59)

where c1 = 0 and a1j = 0. The value of m, which determines the complexity and
accuracy of the method, is set when (m + 1) terms are retained in the infinite series
expansion of yi + 1

2 3

1 2! 3!
i i

i i i
h y h yy y hy+

′′ ′′′
′= + + + +… (7.60)

or

2 2 3 3

1 2! 3!
i i

i i i
h D y h D yy y hDy+ = + + + +… (7.61)

The procedure for deriving the Runge-Kutta methods can be divided into five
steps that are demonstrated below in the derivation of the second-order Runge-Kutta
formulas.

Step 1: Choose the value of m, which fixes the accuracy of the formula to be
obtained. For second-order Runge-Kutta, m = 2. Truncate the series (7.61) after the
(m + 1) term:

 ()
2 2

3
1 2!

i
i i i

h D yy y hDy O h+ = + + + (7.62)

Step 2: Replace each derivative of y in Eq. (7.62) by its equivalent in f, remembering
that f is a function of both t and y(t):

 i iDy f= (7.63)

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 29

()

2
i

i

t y i

df f dt f dyD y
dt t dt y dt

f f f

 ∂ ∂
= = + ∂ ∂ 

= +

 (7.64)

Combine Eqs. (7.62) to (7.64) and regroup the terms:

 ()
2 2

3
1 2 2i ii i i t i y

h hy y hf f f f O h+ = + + + + (7.65)

Step 3: Write Eq. (7.58) with m terms in the summation:

 1 1 1 2 2i iy y w k w k+ = + + (7.66)
where

 ()1 ,i ik hf t y= (7.67)

 ()2 2 21 1,i ik hf t c h y a k= + + (7.68)

Step 4: Expand the f function in Taylor series:

 () ()2
2 21 1 2 21,

i ii i i t y if t c h y a k f c hf a hf f O h+ + = + + + (7.69)

Combine Eqs. (7.66) to (7.69) and regroup the terms:

 () () () ()2 2 3
1 1 2 2 2 2 21i ii i i t i yy y w w hf w c h f w a h f f O h+ = + + + + + (7.70)

Step 5: In order for Eqs. (7.65) and (7.70) to be identical, the coefficients of the
corresponding terms must be equal to one another. This results in a set of
simultaneous nonlinear algebraic equations in the unknown constants wj, cj, and ajl .
For the second-order Runge-Kutta method, there are three equations and four
unknowns:

1 2

2 2

2 21

1
1
2
1
2

w w

w c

w a

+ =

=

=

 (7.71)

It turns out that there are always more unknowns than equations. The degree of
freedom allows us to choose some of the parameters. For second-order Runge-Kutta,
there is one degree of freedom. For third- and fourth-order Runge-Kutta, there are
two degrees of freedom. For fifth-order Runge-Kutta, there are at least five degrees

30 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

of freedom. This freedom of choice of parameters gives rise to a very large number
of different forms of the Runge-Kutta formulas. It is usually desirable to first choose
the values of the cj constants, thus fixing the positions along the independent variable,
where the functions

1

1
,

j

i j i jl l
l

f t c h y a k
−

=

 
+ + 

 
∑ (7.72)

are to be evaluated. An important consideration in choosing the free parameters is to
minimize the truncation error of the calculation.

For the second-order Runge-Kutta method, which we are currently deriving, let
us choose c2 = 1. The rest of the parameters are evaluated from Eqs. (7.71):

 1 2 21
1 1
2

w w a= = = (7.73)

With this set of parameters, the second-order Runge-Kutta formula is

()

()
()

()
1 1 2

3
1

2 1

1
2
,

,

i i

i i

i i

y y k k

k hf t y O h

k hf t h y k

+
= + + 
= 
= + + 


 (7.74)

This method is essentially identical to the Crank-Nicolson method (see Eq.
(7.52)). Higher-order Runge-Kutta formulas are derived in an analogous manner.
Several of these are listed in Table 7.2. The fourth-order Runge-Kutta, which has an

Table 7.2 Summary of the Runge-Kutta integration formulas

Second order Runge-Kutta method (same as Crank-Nicolson method)

() ()

()

()

3
1 1 2

1

2 1

1
2

,

,

i i

i i

i i

y y k k O h

k hf t y

k hf t h y k

+ = + + +

=

= + +

 (7.74)

Third order Runge-Kutta method

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 31

() ()

()

()

4
1 1 2 3

1

1
2

3 2 1

1 4
6

,

,
2 2

, 2

i i

i i

i i

i i

y y k k k O h

k hf t y

khk hf t y

k hf t h y k k

+ = + + + +

=

 = + + 
 

= + + −

 (7.75)

Fourth order Runge-Kutta method

() ()

()

()

5
1 1 2 3 4

1

1
2

2
3

4 3

1 2 2
6

,

,
2 2

,
2 2

,

i i

i i

i i

i i

i i

y y k k k k O h

k hf t y

khk hf t y

khk hf t y

k hf t h y k

+ = + + + + +

=

 = + + 
 

 = + + 
 

= + +

 (7.76)

Table 7.2 Summary of the Runge-Kutta integration formulas (continued)

Fifth order Runge-Kutta method

32 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

() ()
()

6
1 1 3 4 5 6

1

1
2

1 2
3

3
4

32 4
5

3 51 2 4
6

1 7 32 12 32 7
90
,

,
2 2

3,
4 16 16

,
2 2

63 93 ,
4 16 16 16

6 84 12,
7 7 7 7 7

i i

i i

i i

i i

i i

i i

i i

y y k k k k k O h

k hf t y

khk hf t y

k khk hf t y

khk hf t y

kk khk hf t y

k kk k kk hf t h y

+ = + + + + + +

=

 = + + 
 
 = + + + 
 
 = + + 
 
 = + − + + 
 
= + + + + − +



 



 (7.77)

Runge-Kutta-Felfberg method

()
()

5
1 1 3 4 5

1

1
2

3 1 2

4 1 2 3

5 1 2

25 1048 2197 1
256 2565 4104 5

,

,
4 4
3 3 9,
8 32 32
12 1932 7200 7296,
13 2197 2197 2197

439 38, 8
216

i i

i i

i i

i i

i i

i i

y y k k k k O h

k hf t y

khk hf t y

k hf t h y k k

k hf t h y k k k

k hf t h y k k

+
 = + + + − + 
 

=

 = + + 
 
 = + + + 
 
 = + + − + 
 

= + + − + 3 4

6 1 2 3 4 5

1 2 4 5 6

60 845
513 4104

8 3544 1859 11, 2
2 27 2565 4104 40

1 128 2197 1 2
360 4275 75240 50 55

i i

E

k k

hk hf t y k k k k k

T k k k k k

 − 
 
 = + − + − + − 
 

= − − + +

 (7.78)

error of O(h5), is probably the most widely used numerical integration method for
ordinary differential equations. Implicit Runge-Kutta methods, that offer wider
regions of stability than the explicit methods, have been developed and are

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 33

thoroughly discussed by Hairer (Hairer et al., 1980), (Hairer and Wanner, 1991,
1991). These methods, such as Radau5 that uses an implicit Runge-Kutta method of
order 5 with step size control, are recommended for the solution of stiff differential
equations. Discussion of these methods is outside the scope of this book. The
interested user may read the aforementioned references for more details.

7.5.3 The Adams and Adams-Moulton methods
The Runge-Kutta family of integration techniques, developed above, are called
single-step methods. The value of yi + 1 is obtained from yi and the trajectories of y
within the single step from (ti, yi) to (ti + 1, yi + 1). This procedure marches forward,
taking single step of width h, over the entire interval of integration. These methods
are very suitable for solving initial-value problems because they are self-starting
from a given initial point of integration.

Other categories of integration techniques, called multiple-step methods, have
been developed. These compute the value of yi+1 utilizing several previously
unknown, or calculated, values of y (yi, yi - 1, yi - 2, etc.) as the base points. For this
reason, the multiple-step methods are non-self-starting. For the solution of initial-
value problems, where only y0 is known, the multiple-step methods must be “primed”
by first utilizing a self-starting procedure to obtain the requisite number of base
points. There are several multiple-step methods. Two of these, the Adams and
Adams-Moulton methods, are covered in this section.

Once again, let us start by evaluating yi+1 by integrating the derivative function
over the interval [ti, ti + 1]

 ()1
1 ,i

i
i i

t

t
y y f t y dt+

+ − = ∫ (7.37)

In order to evaluate the right-hand side of Eq. (7.37), f(t, y) may be approximated by
an nth-degree polynomial. In the Adams method, a quadratic polynomial is passed
through the three past points, that is, (ti - 2, yi - 2), (ti - 1, yi - 1), and (ti, yi), and is used to
extrapolate the value of ()1 1,i if t y+ + . If we choose a uniform step size, a second-
degree backward Gregory-Newton interpolating polynomial may be applied to this
problem, and Eq. (7.37) becomes

 () ()() ()1 11 2
1 22!

i i

i i

i i i
i i i i i n

t t

t t

t t t t t t
y y f f f dt R t dt

h h
+ ++

+

 − − − 
= + − ∇ + ∇ + 

 
∫ ∫ (7.79)

where (),i i if f t y= , and it may be considered a function of t only. Noting that

()1i it t h+ − = , Eq. (7.79) reduces to

34 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

 ()2 4
1

1 5
2 12i i i i iy y h f f f O h+

 = + + ∇ + ∇ + 
 

 (7.80)

This equation would be easier to use by expanding the backward differences in terms
of the function values given in Table ???. Replacing the backward differences,
followed by further rearrangements, results in the following formula known as the
Adams method for solution of the ordinary differential equations:

 () () () ()4
1 1 1 2 223 , 16 , 5 ,

12i i i i i i i i
hy y f t y f t y f t y O h+ − − − −= +  − +  +  (7.81)

Eq. (7.81) shows that prior to evaluating yi + 1, the values of the function at

three points before that have to be known. Because in an initial-value problem only
the value of the function at the start of the solution interval is known, two additional
succeeding values should be calculated by a single-step method, such as Runge-
Kutta. Solution of the ordinary differential equation from the fourth point may then
be continued with Eq. (7.81).

In order to derive the Adams-Moulton technique, we repeat the same procedure
by applying a third-degree Gregory-Newton interpolating polynomial (using four past
points) instead of a second-degree polynomial to approximate f(t, y) in Eq. (7.37).
This procedure results in the prediction of yi + 1

() () () () () ()5
1 1 1 2 2 3 3Pr

55 , 59 , 37 , 9 ,
24i i i i i i i i i i
hy y f t y f t y f t y f t y O h+ − − − − − −= +  − + −  + 

(7.82)

In the Adams-Moulton method we do not stop here, but we further correct yi + 1 before
moving to the next step. The value of yi + 1 calculated from Eq. (7.82) is a good
approximation of the dependent variable at position (i + 1); therefore, almost the
correct value of f(ti + 1, yi + 1) may be evaluated from f(ti + 1, (yi + 1)Pr) at this stage. We
now interpolate the function f(t, y), using a cubic Gregory-Newton backward
interpolating polynomial over the range from ti - 2 to ti + 1 and calculate the corrected
value of yi + 1 by the integral of Eq. (7.37):

() ()() () () () ()5
1 1 1 1 1 2 2Cor Pr

9 , 19 , 5 , ,
24i i i i i i i i i i
hy y f t y f t y f t y f t y O h+ + + − − − −
 = + + − + + 

 (7.83)

Eqs. (7.82) and (7.83) should be used as predictor and corrector, respectively.
Correction by Eq. (7.83) may be applied more than once until the corrected value
converges; that is, the difference between the two consecutive corrected values
becomes less than the convergence criterion. However, two applications of the

7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 35

corrector is probably optimum in terms of computer time and the accuracy gained.
Once again, solution of the ordinary differential equation by this technique may start
from the fifth point; therefore, some other technique should be applied at the
beginning of the solution to evaluate y1 to y3.

7.5.4 Simultaneous differential equations
It was mentioned at the beginning of Sec. 7.5 that the methods of solution of a single
differential equation are readily adaptable for solving sets of simultaneous
differential equations. To illustrate this, we use the set of n simultaneous ordinary
differential equations in their canonical form:

()

()

()

1
1 1 2

2
2 1 2

1 2

, , , ,

, , , ,

, , , ,

n

n

n
n n

dy f t y y y
dt
dy f t y y y
dt

dy f t y y y
dt

=

=

=

…

…

#

…

 (7.84)

and expand, for example, the fourth-order Runge-Kutta formulas to

() ()
()

5
1, 1 2 3 4

1 1 2

111 12
2 1 2

221 22
3 1 2

4

1 2 2 1,2, ,
6
, , , , 1,2, ,

, , , , 1,2, ,
2 2 2 2

, , , , 1,2, ,
2 2 2 2
,

i j i j j j j

j j i i i in

n
j j i i i in

n
j j i i i in

j j i i

y y k k k k O h j n

k hf t y y y j n

kk khk hf t y y y j n

kk khk hf t y y y j n

k hf t h y

+ = + + + + + =

= =

 = + + + + = 
 
 = + + + + = 
 

= +

…

… …

… …

… …

()1 31 2 32 3, , , 1,2, ,i in nk y k y k j n+ + + =… …

 (7.85)

This method is programmable using nested loops. In MATLAB, the values of k

and yi can be put in vectors, thus easily evaluating Eq. (7.85) in matrix form.

36 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.6 Steady State Solutions and Stability Analysis
Before we attempt to obtain the numerical solution of a set of differential equations,
it is strongly recommended that we examine the steady state solution of the problem.
The steady state is reached when variations with respect to time become zero. To
accomplish this mathematically, we force the time-derivatives to become zero and
solve the resulting algebraic equations. It is likely that the set of equations will have
multiple steady states, including the trivial case, where all variables are zero. We
demonstrate these concepts by analyzing a set of two simultaneous nonlinear
ordinary differential equations of the form

()

()

1
1 1 2

2
2 1 2

,

,

dN f N N
dt

dN f N N
dt

=

=
 (7.86)

At steady state the derivatives are set to zero to obtain

 () ()* * * *
1 1 2 2 1 2, 0 , 0f N N f N N= = (7.87)

where * *
1 2 and N N are the steady state values of the dependent variables. We also

define the small deviations (perturbations), 1 2and N N , away from the steady state, so
that
 * *

1 1 1 2 2 2N N N N N N= + = + (7.88)

By direct substitution of Eqs. (7.88) into Eqs. (7.86), we obtain

() ()
() ()

*
1 1 * *

1 1 1 2 2

*
2 2 * *

2 1 1 2 2

,

,

d N N
f N N N N

dt
d N N

f N N N N
dt

+
= + +

+
= + +

 (7.89)

The left-hand sides are expanded into the corresponding two derivatives, and the
right-hand sides into Taylor series:

()

()

* **
* *1 1 1 1

1 1 2 1 2
1 2

* **
* *2 2 2 2

2 1 2 1 2
1 2

, higher order terms

, higher order terms

dN dN f ff N N N N
dt dt N N

dN dN f ff N N N N
dt dt N N

   ∂ ∂
+ = + + +   ∂ ∂   

   ∂ ∂
+ = + + +   ∂ ∂   

 (7.90)

7.6 STEADY STATE SOLUTIONS AND STABILITY ANALYSIS 37

We apply the condition of steady state (time-derivatives and functions at steady state
are zero), and assume that the perturbations around the steady state are small. The
latter assumption enables us to drop the higher order terms that involve

2 2 3 3
1 2 1 2, , , , etc.N N N N , thus essentially linearizing the equations that describe the

perturbation around the steady state. Eqs. (7.90) simplify to:

* *

1 1 1
1 2

1 2

* *

2 2 2
1 2

1 2

dN f fN N
dt N N

dN f fN N
dt N N

   ∂ ∂
= +   ∂ ∂   

   ∂ ∂
= +   ∂ ∂   

 (7.91)

The matrix of partial derivatives is the Jacobian of the original set of differential
equations evaluated near the neighborhood of the steady state:

* *

1 1

1 2*
* *

2 2

1 2

f f
N N

f f
N N

    ∂ ∂
    ∂ ∂    =  
   ∂ ∂ 
    ∂ ∂     

J (7.92)

It should be obvious that Eq. (7.91) is a set of simultaneous linear ordinary

differential equations of the form

 ′ *Ν = J Ν (7.93)

It was demonstrated in Sec. 7.4 that the solution of a set of linear ordinary differential
equations of the form of Eq. (7.18) can be obtained from the eigenvalues of the
matrix A. Similarly, the solution of Eq. (7.93) will depend on the eigenvalues of the
Jacobian matrix. The eigenvalues could be real positive, real negative, and/or
complex with positive or negative real parts.

Let us show the eigenvalues in their most general form

 1,2, ,k k ka b i k nλ = ± = … (7.94)

where ka are the real parts, kb are the coefficients of the imaginary parts of the
eigenvalues, and 1i = − ; remembering that complex eigenvalues appear as
conjugate pairs. We now summarize all possible cases and their stability analysis in
Table 7.3, and show time profiles and phase plots of (N1 vs. N2) for the corresponding

38 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

cases in Fig. 7.5. Negative eigenvalues result in stable solutions (Cases 1 & 2), while
positive eigenvalues cause instability (Cases 3 & 4). The presence of complex
eigenvalues introduces oscillatory behavior in the solutions (Cases 2, 4, & 6). If both
positive and negative real values exist, the solution is a metastable saddle point (Case
5). Finally, if the eigenvalues are complex and the real parts are zero, the results are
neutrally stable oscillatory (Case 6).

Similar analysis applies to sets of equations that contain n dependent variables
(where n > 2). In that case, the Jacobian is of size (n × n), and phase plots of pairs of
variables are constructed. Three-dimensional phase plots may also be constructed, if
their use is deemed instructive.

Table 7.3 Stability Analysis Based on the Eigenvalues of the Jacobian Matrix.

Case ka kb Stability analysis

1 All negative Zero Stable, nonoscillatory

2 All negative Nonzero Stable, oscillatory

3 All positive Zero Unstable, nonoscillatory

4 All positive Nonzero Unstable, oscillatory

5 Positive and negative Zero Metastable, saddle point

6 Zero Nonzero Neutrally stable, oscillatory

7.6 STEADY STATE SOLUTIONS AND STABILITY ANALYSIS 39

Case 1 - Stable node: no oscillations
 Eigenvalues: negative real parts
 zero complex parts

N

NTime

Time profiles Phase plot

N
&
N

1

2
1

2

Case 2 - Stable focus: stable damped oscillations
 Eigenvalues: negative real parts
 nonzero complex parts

Time

Time profiles Phase plot

N1

N 2

N1

N 2

Case 3 - Unstable node: no oscillations
 Eigenvalues: positive real parts
 zero complex parts

Time

Time profiles Phase plot

N1

N2

N
&
N

1

2

Figure 7.5 Time profiles and phase plots for stability analysis.

40 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Case 4 - Unstable focus: unstable oscillations
 Eigenvalues: positive real parts
 nonzero complex parts

Time

Time profiles Phase plot

N1

N 2

N1

N 2

Case 5 - Metastable saddle point
 Eigenvalues: one positive real
 one negative real
 zero complex parts

Time

Time profiles Phase plot

N1

N 2

N
&
N

1

2

Case 6 - Neutrally stable oscillations
 Eigenvalues: zero real parts
 nonzero complex parts

Time

Time profiles Phase plot

N1

N2

N1

N2

Figure 7.5 (cont.) Time profiles and phase plots for stability analysis.

EXAMPLE 7.3 ENZYME CATALYSIS REACTIONS 41

Example 7.3 Solution of enzyme catalysis reactions.

Statement of the problem

An enzyme, E, catalyzes the conversion of a substrate, S, to form a product, P, via the
formation of an intermediate complex, ES, as shown below:

-1

1 2
k k
k

S E ES P E→+ → +←

Apply the law of mass action to this simple enzymatic reaction to obtain the
differential equations that describe the dynamics of the reaction. Use the following
values of initial conditions and rate constants to integrate the differential equations
and plot the time profiles for all variables in the model:

Initial Conditions: [S]0 = 1.0 µM [E]0 = 0.1 µM [ES]0 = 0 [P]0 = 0

Constants: k1 = 0.1 (µM)-1s-1 k-1 = 0.1 s-1 k2 = 0.3 s-1

Determine the time (in seconds) it takes for the reaction to reach 99.9% conversion of
the substrate.

Solution

The law of mass action states that the rate of molecular collision of two chemical
species in a dilute gas or solution is proportional to the product of the two
concentrations. Based on this, the model equations are:

[] [][] [] []

[] [][] [] [] []

[] [][] [] [] []

[] [] []

1 1 0

1 1 2 0

1 1 2 0

2 0

1.0

0.1

0

0

d S
k S E k ES S

dt
d E k S E k ES k ES E

dt
d ES

k S E k ES k ES ES
dt

d P
k ES P

dt

−

−

−

= − + =

= − + + =

= − − =

= =

We integrate the equations for the period 0 to 1000 seconds using the program listed
below as example7_3.m and the function enzyme_kinetics_equations.m:

% example7_3.m - Integration of simple enzyme kinetics model
% using MATLAB function ode45.m to integrate the differential

42 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

% equations that are contained in the file:
% enzyme_kinetics_equations.m

clc; clear all;
% Set the initial conditions, constants, & time span
yzero=[1, 0.1, 0, 0];
k1=0.1; k_1=0.1; k2=0.3;
tspan=[0 1000];

% Integrate the equations
[t,y]=ode45('enzyme_kinetics_equations',tspan,yzero,[],k1,k_1,k2);
n=length(t);

% Print out the results
n=length(y);
for i=1:n
 if y(i,1)<=0.001*yzero(1)
 fprintf('Reaction is 99.9 percent complete at time = %4.0f
seconds',t(i));
 break
 end
end
% Plot concentration profiles
clf; figure(1); plot(t,y(:,1),'-',t,y(:,4),'-.')
title('Figure E7.3a: Concentration Profiles of Substrate and
Product', 'FontSize',12)
xlabel('Time, s','FontSize',12);
ylabel('Concentration, \muM', 'FontSize',12);
legend('S','P');
figure(2); plot(t,y(:,2),'-',t,y(:,3),'-.')
title('Figure E7.3b: Concentration Profiles of Enzyme and
Complex', 'FontSize',12)
xlabel('Time, s','FontSize',12);
ylabel('Concentration, \muM', 'FontSize',12);
legend('E','ES')

Function that contains equations (enzyme_kinetics_equations.m)

function dy=enzyme_kinetics_equations(t,y,flag,k1,k_1,k2)
% enzyme_kinetics_equations.m
% Contains the equations for example7_3

% Variables
S=y(1); E=y(2); ES=y(3);
% Equations
dy=[-k1*S*E+k_1*ES
 -k1*S*E+k_1*ES+k2*ES
 k1*S*E-k_1*ES-k2*ES
 k2*ES];

EXAMPLE 7.3 ENZYME CATALYSIS REACTIONS 43

Results

The plots show that the enzyme complex, [ES], forms quickly within the first few
seconds of the reaction. The substrate gets converted steadily to product. The
program determines that the reaction reaches 99.9% conversion at 960 seconds. By
this time, the enzyme complex disappears and the enzyme returns back to its original
free state.

Reaction is 99.9 percent complete at time = 960 seconds

44 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.7 Numerical Stability and Error Propagation
Topics of paramount importance in the numerical integration of differential equations
are the error propagation, stability, and convergence of these solutions. Two types of
stability considerations enter in the solution of ordinary differential equations:
inherent stability (or instability) and numerical stability (or instability). Inherent
stability is determined by the mathematical formulation of the problem and is
dependent on the eigenvalues of the Jacobian matrix of the differential equations, as
was shown in Sec. 7.6. On the other hand, numerical stability is a function of the
error propagation in the numerical integration method. The behavior of error
propagation depends on the values of the characteristic roots of the difference
equations that yield the numerical solution. In this section, we concern ourselves with
numerical stability considerations as they apply to the numerical integration of
ordinary differential equations.

There are three types of errors present in the application of numerical
integration methods. These are the truncation error, the roundoff error, and the
propagation error. The truncation error is a function of the number of terms that are
retained in the approximation of the solution from the infinite series expansion. The
truncation error may be reduced by retaining a larger number of terms in the series or
by reducing the step size of integration h. The plethora of available numerical
methods of integration of ordinary differential equations provides a choice of
increasingly higher accuracy (lower truncation error), at an escalating cost in the
number of arithmetic operations to be performed, and with the concomitant
accumulation of roundoff errors.

Computers carry numbers using a finite number of significant figures. A
roundoff error is introduced in the calculation when the computer rounds up or down
(or just chops) the number to n significant figures. Roundoff errors may be reduced
significantly by the use of double precision. However, even a very small roundoff
error may affect the accuracy of the solution, especially in numerical integration
methods that march forward (or backward) for hundreds or thousands of steps, each
step being performed using rounded numbers.

The truncation and roundoff errors in numerical integration accumulate and
propagate, creating the propagation error, which, in some cases, may grow in
exponential or oscillatory pattern, thus causing the calculated solution to deviate
drastically from the correct solution.

Fig. 7.6 illustrates the propagation of error in a numerical integration method.
Starting with a known initial condition y0, the method calculates the value y1, which
contains the truncation error for this step and a small roundoff error introduced by the
computer. The error has been magnified in order to illustrate it more clearly. The next
step starts with y1 as the initial point and calculates y2. But because y1 already
contains truncation and roundoff errors, the value obtained for y2 contains these

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 45

errors propagated, in addition to the new truncation and roundoff errors from the
second step. The same process occurs in subsequent steps.

Error propagation in numerical integration methods is a complex operation that
depends on several factors. Roundoff error, which contributes to propagation error, is
entirely determined by the accuracy of the computer being used. The truncation error
is fixed by the choice of method being applied, by the step size of integration, and by
the values of the derivatives of the functions being integrated. For these reasons, it is
necessary to examine the error propagation and stability of each method individually
and in connection with the differential equations to be integrated. Some techniques
work well with one class of differential equations but fail with others.

In the sections that follow, we examine systematically the error propagation
and stability of several numerical integration methods and suggest ways of reducing
these errors by the appropriate choice of step size and integration algorithm.

Figure 7.6 Error propagation in numerical integration methods. The error has been
 magnified in order to illustrate it more clearly.

h← →

4

3

2

1

0

y

y

y

y

y

0 1 2 3 4t t t t t

Exact y

46 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.7.1 Stability of the Euler methods
Let us consider the initial-value differential equation in the linear form:

 dy y
dt

λ= (7.95)

where the initial condition is given as

 ()0 0y t y= (7.96)

We assume that λ is real and y0 is finite. The analytical solution of this differential
equation is

 () 0
ty t y eλ= (7.97)

This solution is inherently stable for λ < 0. Under these conditions:

 ()lim 0
t

y t
→∞

= (7.98)

Next, we examine the stability of the numerical solution of this problem
obtained from using the explicit Euler method. Momentarily we ignore the truncation
and roundoff errors. Applying Eq. (7.42), we obtain the recurrence equation

 1n n ny y h yλ+ = + (7.99)

which rearranges to the following first-order homogeneous difference equation

 ()1 1 0n ny h yλ+ − + = (7.100)

Using the methods described in Sec. 6.???, we obtain the characteristic equation

 ()1 0E hλ− + = (7.101)

whose root is

 ()1 1 hµ λ= + (7.102)

From this, we obtain the solution of the difference equation (7.100) as

 ()1 n
ny C hλ= + (7.103)

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 47

The constant C is calculated from the initial condition, at 0t t= :

 00 nn y y C= = = (7.104)

Therefore, the final form of the solution is

 ()0 1 n
ny y hλ= + (7.105)

The differential equation is an initial-value problem; therefore, n can increase without
bound. Because the solution yn is a function of ()1 nhλ+ , its behavior is determined

by the value of ()1 hλ+ . A numerical solution is said to be absolutely stable if

 lim 0nn
y

→∞
= (7.106)

The numerical solution of the differential equation (7.95) using the explicit Euler
method is absolutely stable if

 1 1hλ+ ≤ (7.107)

Because ()1 hλ+ is the root of the characteristic equation (7.101), an alternative
definition of absolute stability is

 1 1,2, ,i i kµ ≤ = … (7.108)

where more than one root exists in the multi-step numerical methods.

Returning to the problem at hand, the inequality (7.107) is rearranged to

 2 0hλ− ≤ ≤ (7.109)

This inequality sets the limits of the integration step size for a stable solution as
follows: Because h is positive, then 0λ < and

 2h
λ

≤ (7.110)

Inequality (7.110) is a finite general stability boundary, and for this reason, the

explicit Euler method is called conditionally stable. Any method with an infinite
general stability boundary can be called unconditionally stable.

48 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

At the outset of our discussion, we assumed that λ was real in order to simplify
the derivation. This assumption is not necessary: λ can be a complex number. In the
earlier discussion of the stability of difference equations (Sec. ???), we mentioned
that a solution is stable, converging with damped oscillations, when complex roots
are present, and the moduli of the roots are less than or equal to unity:

 1r ≤ (7.111)

The two inequalities (7.109) and (7.111) describe the circle with a radius of unity on
the complex plane shown in Fig. 7.7. Since the explicit Euler method can be
categorized as a first-order Runge-Kutta method, the corresponding curve in this
figure is marked by RK1. The set of values of hλ inside the circle yields stable
numerical solutions of Eq. (7.95) using the Euler integration method.

−6 −5 −4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

3.5

4

Re(hλ)

| I
m

(h
λ)

 |

RK1

RK2

RK3

RK4

RK5

stable

unstable

Figure 7.7 Stability regions in the complex plane for Runge-Kutta methods of
order 1 (explicit Euler), 2, 3, 4, and 5.

We now return to the consideration of the truncation and roundoff errors of the
Euler method and develop a difference equation, which describes the propagation of
the error in the numerical solution. We work with the nonlinear form of the initial-
value problem

 (),dy f t y
dt

= (7.112)

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 49

where the initial condition is given by

 ()0 0y t y= (7.113)

We define the accumulated error of the numerical solution at step ()1n + as

 ()1 1 1n n ny y tε + + += − (7.114)

where 1()ny t + is the exact value of y, and 1ny + is the calculated value of y at 1nt + . We
then write the exact solution, 1()ny t + , as a Taylor series expansion, showing as many
terms as needed for the Euler method:

 () () ()()1 , 1,n n n n E ny t y t hf t y t T+ += + + (7.115)

where TE, n + 1 is the local truncation error for step ()1n + . We also write the
calculated value yn + 1 obtained from the explicit Euler formula

 ()1 , 1,n n n n E ny y hf t y R+ += + + (7.116)

where RE,n+1 is the roundoff error introduced by the computer in step (1)n + .
Combining Eqs. (7.114)-(7.116) we have

 () () ()()1 , 1 , 1, ,n n n n n n n E n E ny y t h f t y f t y t T Rε + + + = − + − − +  (7.117)

which simplifies to

 () ()()1 , 1 , 1, ,n n n n n n E n E nh f t y f t y t T Rε ε+ + + = + − − +  (7.118)

The mean-value theorem

 () ()() () ()
,

, ,
n

n n n n n n n n
x

ff t y f t y t y y t y y t
y α

α∂
− =  −  < < ∂

 (7.119)

can be used to further modify the error equation (7.118) to

 1 , 1 , 1
,

1
n

n n E n E n
x

fh T R
y α

ε ε+ + +

 ∂
− + = − + 

∂  
 (7.120)

50 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

This is a first-order nonhomogeneous difference equation with varying coefficients,
which can be solved only by iteration. However, by making the following
simplifying assumptions

 , 1 constantE n ET T+ = = (7.121)
 , 1 constantE n ER R+ = = (7.122)

,

constant
nx

f
y α

λ∂
= =

∂
 (7.123)

Eq. (7.120) simplifies to

 ()1 1n n E Eh T Rε λ ε+ − + = − + (7.124)

whose solution is given by the sum of the homogeneous and particular solutions:

 () ()1 1
1 1

n E E
n

T RC h
h

ε λ
λ

− +
= + +

− +
 (7.125)

Comparison of Eqs. (7.100) and (7.124) reveals that the characteristic equations for
the solution yn and the error nε are identical. The truncation and roundoff error terms
in Eq.(7.124) introduce the particular solution. The constant C1 is calculated by
assuming that the initial condition of the differential equation has no error; that is,

0 0ε = . The final form of the equation that describes the behavior of the propagation
error is

 ()1 1nE E
n

T R h
h

ε λ
λ

− +  = + −  (7.126)

A great deal of insight can be gained by thoroughly examining Eq. (7.126). As

expected, the value of (1)hλ+ is the determining factor in the behavior of the
propagation error. Consider first the case of a fixed finite step size h, with the number
of integration steps increasing to a very large n. The limit on the error as n →∞ is

 lim for 1 1E E
nn

T R h
h

ε λ
λ→∞

− +
= + < (7.127)

 lim for 1 1nn
hε λ

→∞
= ∞ + > (7.128)

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 51

In the first situation [Eq. (7.127)], 0λ < , 20 h
λ

< < , the error is bounded, and

the numerical solution is stable. The numerical solution differs from the exact

solution by only the finite quantity E ET R
hλ

− + , which is a function of the truncation

error, the roundoff error, the step size, and the eigenvalue of the differential equation.
In the second situation [Eq. (7.128)], 0λ > , 0h > , the error is unbounded and

the numerical solution is unstable. For 0λ > , however, the exact solution itself is
inherently unstable. For this reason we introduce the concept of relative error
defined as

 relative error n

ny
ε

= (7.129)

Utilizing Eqs. (7.105) and (7.126), we obtain the relative error as

()0

11
1

n E E
n

n

T R
y y h h
ε

λ λ

 − +
= − 

+  
 (7.130)

The relative error is bounded for 0λ > and unbounded for 0λ < . So we conclude
that for inherently stable differential equations, the absolute propagation error is the
pertinent criterion for numerical stability, whereas for inherently unstable differential
equations, the relative propagation error must be investigated.

Let us now consider a fixed interval of integration, 0 t α< < , so that

 h
n
α

= (7.131)

and we increase the number of integration steps to a very large n. This, of course,
causes 0h → . A numerical method is said to be convergent if

0

lim 0nh
ε

→
= (7.132)

In the absence of roundoff error, the Euler method, and most other integration
methods, would be convergent because

0

lim 0Eh
T

→
= (7.133)

52 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

therefore, Eq. (7.132) would be true. However, roundoff error is never absent in
numerical calculations. As 0h → the roundoff error is the crucial factor in the
propagation of error:

 ()
0 0

1 1
lim lim

n

n Eh h

h
R

h
λ

ε
λ→ →

+ −
= (7.134)

Application of L'Hôpital's rule shows that the roundoff error propagates unbounded
as the number of integration steps becomes very large:

 []
0

lim n Eh
Rε

→
= ∞ (7.135)

This is the “catch 22” of numerical methods: A smaller step size of integration
reduces the truncation error but requires a large number of steps, thereby increasing
the roundoff error.

A similar analysis of the implicit Euler method (backward Euler) results in the
following two equations, for the solution

()

0
1

1
n n

yy
hλ

+ =
−

 (7.136)

and the propagation error

 ()
()1

11 1
1

E E
n n

T R h
h h

ε λ
λ λ

+

 − +
= − − 

−  
 (7.137)

For 0λ < and 0 h< < ∞ , the solution is stable:

 lim 0nn
y

→∞
= (7.138)

and the error is bounded:

 ()lim 1E E
nn

T R h
h

ε λ
λ→∞

− +
= − − (7.139)

No limitation is placed on the step size; therefore, the implicit Euler method is
unconditionally stable for 0λ < . On the other hand, when 0λ > , the following
inequality must be true for a stable solution:

 1 1hλ− ≤ (7.140)

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 53

This imposes the limit on the step size:

 2 0hλ− ≤ < (7.141)

It can be concluded that the implicit Euler method has a wider range of stability
than the explicit Euler method (see Table 7.4).

7.7.2 Stability of the Runge-Kutta methods
Using methods parallel to those of the previous section, the recurrence equations and
the corresponding roots for the Runge-Kutta methods can be derived (Lapidus and
Sienfeld, 1971). For the differential equation (7.95), these are:

Second-order Runge-Kutta:

 2 2
1

11
2n ny h h yλ λ+

 = + + 
 

 (7.142)

 2 2
1

11
2

h hµ λ λ= + + (7.143)

Third-order Runge-Kutta:

 2 2 3 3
1

1 11
2 6n ny h h h yλ λ λ+

 = + + + 
 

 (7.144)

 2 2 3 3
1

1 11
2 6

h h hµ λ λ λ= + + + (7.145)

Fourth-order Runge-Kutta:

 2 2 3 3 4 4
1

1 1 11
2 6 24n ny h h h h yλ λ λ λ+

 = + + + + 
 

 (7.146)

 2 2 3 3 4 4
1

1 1 11
2 6 24

h h h hµ λ λ λ λ= + + + + (7.147)

Fifth-order Runge-Kutta:

 2 2 3 3 4 4 5 5 6 6
1

1 1 1 1 0.56251
2 6 24 120 720n ny h h h h h h yλ λ λ λ λ λ+

 = + + + + + + 
 

(7.148)

 2 2 3 3 4 4 5 5 6 6
1

1 1 1 1 0.56251
2 6 24 120 720

h h h h h hµ λ λ λ λ λ λ= + + + + + + (7.149)

54 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

The last term in the right-hand side of Eqs. (7.148) and (7.149) is specific to the fifth-
order Runge-Kutta, which appears in Table 7.2 and varies for different fifth-order
formulas. The condition for absolute stability

 1 1,2, ,i i kµ ≤ = … (7.150)

applies to all the above methods. The absolute real stability boundaries for these
methods are listed in Table 7.4, and the regions of stability in the complex plane are
shown on Fig. 7.6. In general, as the order increases, so do the stability limits.

Table 7.4 Real stability boundaries

Method Boundary

Explicit Euler 2 0hλ− ≤ <

Implicit Euler 0 for 0
2 0 for 0

h
h

λ
λ λ

< < ∞ <
− ≤ < >

Modified Euler
 (predictor-corrector) 1.077 0hλ− ≤ <

Second-order Runge-Kutta 2 0hλ− ≤ <

Third-order Runge-Kutta 2.5 0hλ− ≤ <

Fourth-order Runge-Kutta 2.785 0hλ− ≤ <

Fifth-order Runge-Kutta 5.7 0hλ− ≤ <

Adams 0.546 0hλ− ≤ <

Adams-Moulton 1.285 0hλ− ≤ <

7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 55

7.7.3 Stability of multistep methods
Using methods parallel to those of the previous section, the recurrence equations and
the corresponding roots for the modified Euler, Adams, and Adams-Moulton
methods can be derived (Lapidus and Sienfeld, 1971). For the differential equation
(7.95), these are:

Modified Euler (combination of predictor and corrector):

 ()2 2
1 1n ny h h yλ λ+ = + + (7.151)

 2 2
1 1 h hµ λ λ= + + (7.152)

Adams:

 1 1 2
23 4 51
12 3 12n n n ny h y h y h yλ λ λ+ − −

     = + − +     
     

 (7.153)

 3 223 4 51 0
12 3 12

h h hµ λ µ λ µ λ     − + + − =     
     

 (7.154)

Adams-Moulton (combination of predictor and corrector):

2 2 2 2
1 1

2 2 2 2
2 3

7 55 5 591
6 64 24 64

1 37 9
24 64 64

n n n

n n

y h h y h h y

h h y h y

λ λ λ λ

λ λ λ

+ −

− −

   = + + − +   
   
   + + −   
   

 (7.155)

4 2 2 3 2 2 2

2 2 2 2

7 55 5 591
6 64 24 64
1 37 9 0
24 64 64

h h h h

h h h

µ λ λ µ λ λ µ

λ λ µ λ

   − + + + +   
   
   − + + =   
   

 (7.156)

The condition for absolute stability

 1 1,2, ,i i kµ ≤ = … (7.150)

applies to all the above methods. The absolute real stability boundaries for these
methods are also listed in Table 7.4, and the regions of stability in the complex plane
are shown on Fig. 7.8.

56 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

−1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

Re(hλ)

| I
m

(h
λ)

 |

stable

unstable

Modified Euler

Adams−Moulton

Adams

Figure 7.8 Stability regions in the complex plane for the modified Euler (Euler predictor-
corrector), Adams, and Adams-Moulton methods.

7.8 Step Size Control
The discussion of stability analysis in the previous sections made the simplifying
assumption that the value of λ remains constant throughout the integration. This is
true for linear equations such as Eq. (7.95); however, for the nonlinear equation
(7.11), the value of λ may vary considerably over the interval of integration. The step
size of integration must be chosen using the maximum possible value of λ, thus
resulting in the minimum step size. This, of course, will guarantee stability at the
expense of computation time. For problems in which computation time becomes
excessive, it is possible to develop strategies for automatically adjusting the step size
at each step of the integration.

A simple test for checking the step size is to do the calculations at each interval
twice: Once with the full step size, and then repeat the calculations over the same
interval with a smaller step size, usually half that of the first one. If at the end of the
interval, the difference between the predicted values of y by both approaches is less
than the specified convergence criterion, the step size may be increased. Otherwise, a
larger than acceptable difference between the two calculated y values suggests that
the step size is large, and it should be shortened in order to achieve an acceptable
truncation error.

7.9 STIFF DIFFERENTIAL EQUATIONS 57

Another method of controlling the step size is to obtain an estimation of the
truncation error at each interval. A good example of such an approach is the Runge-
Kutta-Fehlberg method (see Table 7.2), which provides the estimation of the local
truncation error. This error estimate can be easily introduced into the computer
program, and let the program automatically change the step size at each point until
the desired accuracy is achieved.

As mentioned before, the optimum number of application of corrector is two.
Therefore, in the case of using a predictor-corrector method, if the convergence is
achieved before the second corrected value, the step size may be increased. On the
other hand, if the convergence is not achieved after the second application of the
corrector, the step size should be reduced.

7.9 Stiff Differential Equations
In Sec. 7.7, we showed that the stability of the numerical solution of differential
equations depends on the value of hλ, and that λ together with the stability boundary
of the method determine the step size of integration. In the case of the linear
differential equation

 dy y
dt

λ= (7.95)

λ is the eigenvalue of that equation, and it remains constant throughout the
integration. The nonlinear differential equation

 (),dy f t y
dt

= (7.11)

can be linearized at each step using the mean-value theorem (7.119), so that λ can be
obtained from the partial derivative of the function with respect to y:

, nt

f
y α

λ ∂
=
∂

 (7.157)

The value of λ is no longer a constant but varies in magnitude at each step of the
integration.

58 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

This analysis can be extended to a set of simultaneous nonlinear differential
equations:

()

()

()

1
1. 1 2

2
2 1 2

1 2

, , , ,

, , , ,

, , , ,

n

n

n
n n

dy f t y y y
dt
dy f t y y y
dt

dy f t y y y
dt

=

=

=

…

…

#

…

 (7.84)

Linearization of the set produces the Jacobian matrix

1 1

1

1

n

n n

n

f f
y y

f f
y y

∂ ∂ 
 ∂ ∂ 
 =
 ∂ ∂ 
 ∂ ∂ 

J

…

%

"

 (7.158)

The eigenvalues {λ | i = 1, 2, …, n} of the Jacobian matrix are the determining
factors in the stability analysis of the numerical solution. The step size of integration
is determined by the stability boundary of the method and the maximum eigenvalue.

When the eigenvalues of the Jacobian matrix of the differential equations are
all of the same order of magnitude, no unusual problems arise in the integration of
the set. However, when the maximum eigenvalue is several orders of magnitude
larger than the minimum eigenvalue, the equations are said to be stiff. The stiffness
ratio (SR) of such a set is defined as

()
()

1

1

max Real
SR

min Real

ii n

ii n

λ

λ
≤ ≤

≤ ≤

= (7.159)

The step size of integration is determined by the largest eigenvalue, and the
final time of integration is usually fixed by the smallest eigenvalue; therefore,
integration of stiff differential equations using explicit methods may be time
intensive.

The MATLAB functions ode23s and ode15s are solvers suitable for the
solution of stiff ordinary differential equations (see Table 7.1).

EXAMPLE 7.4 GLYCOLYSIS PATHWAYS OF LIVING CELLS 59

7.10 Advanced examples
Example 7.4 Modeling the glycolysis pathways of living cells.

Statement of the problem

An important step in the glycolytic pathway is the phosphorylation of fructose 6-
phosphate to fructose 1,6-biphosphate. This reaction is catalyzed by the enzyme
phosphofructokinase. This enzyme is an example of an allosteric enzyme that is
inhibited by ATP and stimulated by adenosine diphosphate (ADP) or by adenosine-
monophosphate (AMP). The enzyme becomes active when it combines with γ
molecules of ADP:

 3

-3

k γ
k

Enzyme + γADP Enzyme-ADP→←

The active complex catalyzes the reaction of fructose 6-phosphate to fructose 1,6-bi-
phosphate, and in this process it converts one molecule of ATP to one molecule of
ADP, as follows:

 1 2

-1

k kγ γ γ
k

 Fructose 6-phosphate

ATP + Enzyme-ADP ATP-Enzyme-ADP Enzyme-ADP + ADP

→ →←

8

 Fructose 1,6-biphosphate

8

This is the Sel'kov model as discussed by Keener and Sneyd (1998). Since the net
result of this reaction is the formation of an additional ADP molecule that may
further activate the enzyme, this reaction has a positive feedback effect on itself.
Assuming that there is a steady supply of the ATP available to this reaction at the rate
of ν1, and an irreversible flow of ADP away from the reaction at the rate of ν2, the
steps of the reaction that involve the consumption of ATP and the formation of ADP,
via the formation of enzyme complexes, may be shown schematically as:

1

3

-3

1 2

-1

2

1

γ
2 2

γ γ γ
1 2 1 2 2 2

2

 S

 γS + E ES

 S + ES S ES ES + S

 S

k

k

k k
k

ν

ν

→

→←

→ →←

→

60 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

where S1 represents the ATP molecule, S2 stands for the ADP molecule, and E
represents the enzyme phosphofructokinase.

Keener and Sneyd applied the law of mass action to this reaction scheme to
obtain the following set of ordinary differential equations that describe the dynamics
of the reactions:

1
1 1 1 1 1 2

2
2 2 3 2 3 1 2 2

1
1 1 1 1 2 2 3 2 3 1

2
1 1 1 1 2 2

1 2

()

()

ds k s x k x
dt
ds k x k s e k x s
dt
dx k s x k k x k s e k x
dt
dx k s x k k x
dt

dx dxde
dt dt dt

γ

γ

ν

ν

−

−

− −

−

= − +

= − + −

= − + + + −

= − +

= − −

 (7.160)

where 1 2 1 2 12 2
γ γ = [ATP], = [ADP], = [E], = ES , = S ESs s e x x   

    . The square

brackets are used to denote concentration of the particular compound in the cell. The
last equation that describes the rate of change ()/de dt of the free enzyme is obtained
from the balance equation for the total enzyme in the cell (e0), assuming that the total
amount of enzyme remains constant:

 1 2 0e x x e+ + = (7.161)

The above equations are a set of simultaneous first order nonlinear ordinary
differential equations. Methods of solution for such a set were developed in Sec. 7.5,
and are applied here to obtain the solution of the glycolysis problem in this example.

Solution

(a) It is well known in the literature that the rate of glycolysis is oscillatory in nature.

To show this, integrate the above set of differential equations with the following
initial conditions and constants:

Initial Conditions: s1(0) = 1.0 s2(0) = 0.2 x1(0) = 0 x2(0) = 0 e0(0) = 1.4

Constants: γ = 2.0 ν1 = 0.003 ν2 = 2.5*ν1 k1 = 0.1

 k-1 = 0.2 k2 = 0.1 k3 = 0.2 k-3 = 0.2

Note: The constants contain units of time (seconds) and concentrations (nM) as
needed for unit consistency of the equations.

EXAMPLE 7.4 GLYCOLYSIS PATHWAYS OF LIVING CELLS 61

Plot the concentration profiles of all five dependent variables and discuss the
results. Plot the phase plot of s1 and s2, and discuss what this phase plot
demonstrates.

(b) Perform a stability analysis of these equations by examining the eigenvalues of
the Jacobian matrix evaluated around the steady state. How do the eigenvalues
predict the oscillatory behavior of the concentration vs. time profiles?

(a) Integration of equations

The program example7_4a.m, listed below, integrates the differential equations using
ode45 and plots the results.

% example7_4a.m - Integration of the glycolysis model
% using the MATLAB function ode45.m to integrate the
% differential equations that are contained in the file:
% glycolysis_equations.m

clc; clear all;

% Set the initial conditions & time span
yzero=[1, .2, 0, 0, 1.4];
tspan=[0 3000];

% Integrate the equations
[t,y]=ode45(@glycolysis_equations,tspan,yzero);
n=length(t);

% Plot concentration profiles
clf; figure(1); plot(t,y)
title('Figure E7.4a: Concentration Profiles of Glycolysis')
xlabel('Time, s'); ylabel('Concentration')
text(530,1.35,'ATP (s_1)'); text(900,0.65,'ADP (s_2)')
text(1600,0.25,'Enzyme-ADP complex (x_1)')
text(1600,0.09,'ATP-Enzyme-ADP complex (x_2)')
text(1600,1.28,'free enzyme (e)')

% Plot phase diagrams
figure(2); plot(y(:,1),y(:,2))
title('Figure E7.4b: Phase Plot of Glycolysis')
xlabel('ATP (s_1)'); ylabel('ADP (s_2)')

Function that contains equations (glycolysis_equations.m):

function dy=glycolysis_equations(t,y)
% glycolysis_equations.m
% Contains the glycolysis model for example7_4a

% Constants

62 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

gamma=2; neu1=0.003; neu2=2.5*neu1;
k1=0.1; k_1=2*k1; k2=0.1; k3=0.2; k_3=k3;
s1=y(1); s2=y(2); x1=y(3); x2=y(4); e =y(5);
% Equations
dy=[neu1-k1*s1*x1+k_1*x2
 k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2
 -k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1
 k1*s1*x1-(k_1+k2)*x2
 -(-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1)-(k1*s1*x1-
(k_1+k2)*x2)];

Results of integration

EXAMPLE 7.4 GLYCOLYSIS PATHWAYS OF LIVING CELLS 63

The concentration profiles (Fig. E7.4a) of the glycolysis system of equations indicate
that the above set of constants and initial conditions represent a case that is
oscillatory at first, but approaches steady state within 3000 seconds (50 minutes). The
phase plot of ADP vs. ATP (Fig. E7.4b) exhibits a stable focus of the type shown on
Fig. 7.5 Case (2).

(b) Steady state analysis of glycolysis equations

The program example7_4b.m, listed below, performs the stability analysis of Eqs.
(7.160) by first evaluating the Jacobian matrix of the differential equations using the
MATLAB command jacobian(dy,v), where dy is the vector of derivatives and v is
the vector of variables. Next, it calculates the steady state solution of the differential
equations by setting the derivatives equal to zero and solving for the unknown
variables using the MATLAB command solve. Finally, the stability of the steady
state is examined by obtaining the eigenvalues of the Jacobian matrix around the
steady state, using the command eig.

% example7_4b.m - Steady state analysis of the glycolysis model
% using MATLAB functions jacobian.m and eig.m

clc; clear all;

% Set the constants
e0=1.4; gamma=2; neu1=0.003; neu2=2.5*neu1;
k1=0.1; k_1=2*k1; k2=0.1; k3=0.2; k_3=k3;

% Evaluate the Jacobian matrix
syms s1 s2 x1 x2 e
disp('Steady State Analysis of the Glycolysis Equations:')
v=[s1, s2, x1, x2, e];
dy=[neu1-k1*s1*x1+k_1*x2;
 k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2;
 -k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1;
 k1*s1*x1-(k_1+k2)*x2;
 -(-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1)-(k1*s1*x1-
(k_1+k2)*x2)];
J=jacobian(dy,v);
disp('The Jacobian matrix is:'), J
% Evaluate the steady state solution
[SteadyState]=solve('neu1-k1*s1*x1+k_1*x2=0',...
 'k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2=0',...
 '-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1=0',...
 'k1*s1*x1-(k_1+k2)*x2=0',...
 'e+x1+x2=e0', 's1,s2,x1,x2,e');
disp(' '), disp('The steady state values of each variable are:')
disp('s1'),disp(SteadyState.s1),disp(' ')
disp('s2'),disp(SteadyState.s2),disp(' ')

64 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

disp('x1'),disp(SteadyState.x1),disp(' ')
disp('x2'),disp(SteadyState.x2),disp(' ')
disp('e '),disp(SteadyState.e), disp(' ')
n=length(SteadyState.s1);
disp('Value of each variable at the steady state(s):')
disp(' s1 s2 x1 x2 e')
for i=1:n;
 s1=eval(SteadyState.s1); s2=eval(SteadyState.s2);
 x1=eval(SteadyState.x1); x2=eval(SteadyState.x2);
 e =eval(SteadyState.e);
 fprintf(' %2i %9.4f %9.4f %9.4f %9.4f %9 .4f \n',...
 i, s1(i), s2(i), x1(i), x2(i), e);
end
for i=1:n
 s1=eval(SteadyState.s1); s2=eval(SteadyState.s2);
 x1=eval(SteadyState.x1); x2=eval(SteadyState.x2);
 e =eval(SteadyState.e);
 fprintf('\nSteady state %2i \n',i)
 disp(' '); disp('Jacobian matrix at steady state:'), eval(J)
 disp(' '); disp('Eigenvalues of Jacobian at steady state:');
eig(eval(J))
end

Results of steady state analysis

Steady State Analysis of the Glycolysis Equations:
The Jacobian matrix is:
J =
[-1/10*x1, 0, -1/10*s1,
1/5, 0]
[0, -2/5*s2*e-3/400, 1/5,
1/10, -1/5*s2^2]
[-1/10*x1, 2/5*s2*e, -1/10*s1-1/5,
3/10, 1/5*s2^2]
[1/10*x1, 0, 1/10*s1,
-3/10, 0]
[0, -2/5*s2*e, 1/5,
0, -1/5*s2^2]

The steady state values of each variable are:
s1
neu1*(k_1+k2)*(k3*exp(log(neu1/neu2)*gamma)+k_3)/k1/exp(log(neu1/n
eu2)*gamma)/k3/(-neu1+e0*k2)

s2
neu1/neu2

x1
exp(log(neu1/neu2)*gamma)*k3*(-
neu1+e0*k2)/k2/(k3*exp(log(neu1/neu2)*gamma)+k_3)

EXAMPLE 7.4 GLYCOLYSIS PATHWAYS OF LIVING CELLS 65

x2
neu1/k2

e
k_3*(-neu1+e0*k2)/k2/(k3*exp(log(neu1/neu2)*gamma)+k_3)

Value of each variable at the steady state(s):
 s1 s2 x1 x2 e
 1 0.4763 0.4000 0.1890 0.0300
Steady state 1

Jacobian matrix at steady state:
ans =
 -0.0189 0 -0.0476 0.2000 0
 0 -0.1965 0.2000 0.1000 -0.0320
 -0.0189 0.1890 -0.2476 0.3000 0.0320
 0.0189 0 0.0476 -0.3000 0
 0 -0.1890 0.2000 0 -0.0320

Eigenvalues of Jacobian at steady state:
ans =
 -0.4859
 -0.3060
 -0.0015 + 0.0044i
 -0.0015 - 0.0044i
 -0.0000

For this system of equations and constants, the steady state analysis shows that one
steady state exists at which the concentrations of the main components are:

[ATP] = 0.4763 [ADP] = 0.4000 [Enzyme-ADP complex] = 0.1890
[ATP-Enzyme-ADP complex] = 0.0300 [free Enzyme] = 1.1810

The eigenvalues of the Jacobian matrix of this system are: two real negative, two
complex with negative real parts, and one zero eigenvalue. Such a combination of
eigenvalues predicts an oscillatory behavior with dumped oscillations approaching a
steady state (see Sec. 0). The zero eigenvalue is a direct consequence of the
conservation of mass principle applied to the enzyme (see Eq. (7.9)). These results
confirm the evolution of the system shown by the concentration profiles.

66 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Example 7.5 The dynamics of membrane and nerve cell potentials.

Formulation of the problem

The activation and inactivation of the potassium/sodium channels and the role they
play in the generation of nerve action potential formed the basis of the Nobel Prize
winning work of Hodgkin and Huxley in the 1940s and 50s (Hodgkin and Huxley,
1952). They studied the effect of the application of voltage potentials on the Na+ and
K+ channels on the squid giant axon and developed mathematical models that
describe the dynamics of the processes.

Numerous papers and books have been written on the Hodgkin-Huxley model.
A very concise description of this model is that of Keener and Sneyd (1998). They
begin by showing that the cell membrane can be modeled as a capacitor in parallel
with an ionic current, and since there can be no buildup of charge on either side of
the membrane, the sum of the ionic and capacitive currents must be zero, resulting in
the equation

 0m ion
dVC I
dt

+ = (7.162)

where V denotes the internal minus the external potential. In the squid giant axon,
and in many nerve cells, the principal ionic currents are the sodium current, INa, and
the potassium current, IK. Other currents that are present, such as the chloride current,
are lumped together into one current called the leakage current, IL. The ionic currents
for sodium and potassium ions can be modeled by the current-voltage relationships

 Na Na Na()I g V V= − (7.163)

 K K K()I g V V= − (7.164)

and the leakage current may be shown as

 L L L()I g V V= − (7.165)

where gNa and gK are the membrane conductances for sodium and potassium ions,
respectively, and gL is a combined conductance for leakage current. VNa and VK are
the equilibrium membrane potentials due to concentration differences of the two ions,
sodium and potassium, and VL is the potential at which the leakage current due to
chloride and other ions is zero. The sodium and potassium potentials are calculated
from the Nernst equation:

EXAMPLE 7.5 THE DYNAMICS OF MEMBRANE AND NERVE CELL POTENTIALS 67

+

Na +

Na
ln

Na
e

i

RTV
zF

    =
    

 (7.166)

+

K +

K
ln

K
e

i

RTV
zF

    =
    

 (7.167)

Ionic channels open and close in response to a voltage. This behavior of ionic
channels in response to changes in membrane potential is the basis for electrical
excitability, and is of fundamental significance to neurophysiology. According to
Keener and Sneyd (1998), the current flow through a population of channels is the
product of two terms

 (,) ()I V t Vη φ= (7.168)

where (,)V tη is the proportion of open channels in a population, and ()Vφ is the I-V
curve of a single channel. The simplest model for the K+ channel assumes that the
channel can exist either in the closed state in the proportion of ()1 η− , or in the open
state in the proportion of η :

 () ()
P

()

()
1

OpenClosed
V

V

α

β
η η→− ←

��
 (7.169)

Then the rate of change of the open channels may be modeled by the differential
equation

 ()() ()1d V V
dt
η α η β η= − − (7.170)

It is sometimes instructive to write Eq. (7.170) in the form

 () ()dV V
dtη
ητ η η∞= − (7.171)

where ()Vη∞ is the steady state value of η , that may be obtained from Eq. (7.170) as

 ()V αη
α β∞ =
+

 (7.172)

68 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

and ητ is the time constant of approach to steady state:

 1
ητ α β
=

+
 (7.173)

Hodgkin and Huxley used a voltage clamp in their studies of the giant squid

axon. The user of a voltage clamp fixes the membrane potential by applying a rapid
step from one voltage to another and then measures the current that must be applied,
Iapp, to hold the voltage constant. Based on their experimental data, Hodgkin and
Huxley modified the potassium conductance, gK, in order to obtain sigmoidal
increase and exponential decrease:

 4
K Kg g n= (7.174)

They also modified the sodium conductance, gNa, to account for two processes at
work, one that turns on the sodium current and one that turns it off:

 3
Na Nag g m h= (7.175)

Keener and Sneyd (1998) interpret the potassium mechanism to be equivalent to
having four “n” gates per potassium channel, all of which must be open for potassium
to flow. They also elucidate the mechanism of the Na+ channel as consisting of three
“m” gates and one “h” gate, each of which can be either closed or open. Combining
equations (7.162)-(7.165), (7.170), (7.174), and (7.175) results in the complete
Hodgkin-Huxley model:

4 3
K Na L app() () ()

(1)

(1)

(1)

m K Na L

n n

m m

h h

dvC g n v v g m h v v g v v I
dt

dn n n
dt
dm m m
dt
dh h h
dt

α β

α β

α β

= − − − − − − +

= − −

= − −

= − −

 (7.176)

The potential, v, is the deviation from rest potential (v = V- Veq) measured in units of
mV, current density I is in units of µA/cm2, conductances are in units of mS/cm2, and
capacitance Cm is in µF/cm2. The rate constants of α and β are, in units of (ms)-1,

EXAMPLE 7.5 THE DYNAMICS OF MEMBRANE AND NERVE CELL POTENTIALS 69

80
10

10

18
25

10

20
30

10

100.01 0.125
1

250.1 4
1

10.07
1

v

n nv

v

m mv

v

h h v

v e
e

v e
e

e
e

α β

α β

α β

− 
 
 

− 
 
 

− 
 
 

− 
 
 

− 
 
 

− 
 
 

−
= =

−

−
= =

−

= =

+

 (7.177)

The steady state values of the gating variables and the time constants are:

 1 1 1

n m h

n n m m h h

n m h
n n m m h h

n m hα α α
α β α β α β

τ τ τ
α β α β α β

∞ ∞ ∞= = =
+ + +

= = =
+ + +

 (7.178)

The constants and initial conditions for this simulation are:

() () () ()

2 2 2
K Na

K Na L

36 mS/cm 120 mS/cm 0.3 mS/cm
-12 mV 115 mV 10.6 mV

0 8 mV 0 0.3177 0 0.0529 0 0.5961

Lg g g
v v v
v n m h

= = =
= = =

= = = =

The initial conditions for the four variables (v, n, m, and h) in Eq. (7.176) are chosen
based on the following statement made by Hodgkin and Huxley:

“By a membrane action potential is meant one in which the membrane potential
is uniform, at each instant, over the whole of the length of the fibre considered.
There is no current along the axis of the cylinder and the net membrane current
must therefore always be zero, except during the stimulus. If the stimulus is a
short shock at t = 0, the form of the action potential should be given by solving
Eq. (7.176) with I = 0 and the initial conditions that V=V0 and m, n, and h have
their resting steady state values, when t = 0.”

(a) First verify the values of the initial conditions, n(0), m(0), and h(0); they must be
the resting steady state values of these variables (when v = 0). Integrate the
differential equations for the time span of 0 to 20 ms, using an initial voltage of 8
mV. There is no current along the axis of the cylinder and the net membrane
current must always be zero, therefore, use a current density of 0 µA/cm2 and a
membrane capacitance of 1 µF/cm2. Plot the time profiles of the potential, v, the

70 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

gating variables, n, m, and h, and the conductances, gK and gNa (Eqs. (7.174) and
(7.175)).

(b) Calculate and plot the steady state values of the time constants and the gating
variables (Eqs. (7.178)) as functions of the potential in the range of voltages from
–100 mV to +100 mV.

Solution

(a) Integration of equations

The program example7_5.m, listed below, first calculates the initial conditions of the
gating variables using Eqs. (7.178), and then integrates the differential equations that
are contained in the function hodgkin_huxley_equations.m using the MATLAB
function ode45.m. The program also uses the function rate_constants.m to
calculate the values of α and β. The same program also calculates the steady state
values of the time constants and the gating variables and plots the results.

% example7_5.m - Simulation of the Hodgkin-Huxley model
% using MATLAB function ode45.m to integrate the differential
% equations that are contained in the file:
% hodgkin_huxley_equations.m

clc; clear all;
warning off MATLAB:divideByZero

% Evaluate the initial conditions for gating variables
v=0;
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v);
tau_n=1./(alpha_n+beta_n);
n_ss=alpha_n.*tau_n;
tau_m=1./(alpha_m+beta_m);
m_ss=alpha_m.*tau_m;
tau_h=1./(alpha_h+beta_h);
h_ss=alpha_h.*tau_h;
fprintf('\n The following initial conditions of the gating
variables are used:')
fprintf('\n n_ss= %5.4g \n m_ss= %5.4g \n h_ss= %5.4g ',
n_ss,m_ss,h_ss)
fprintf('\n They are the resting steady state values of these
variables (when v=0).')

% Integrate the equations
yzero=[8,n_ss,m_ss,h_ss];
tspan=[0,20];
[t,y]=ode45(@hodgkin_huxley_equations,tspan,yzero);
% Evaluate the conductances
ggK=36; ggNa=120;
gK=ggK*y(:,2).^4; gNa=ggNa*y(:,3).^3.*y(:,4);

% Plot the results

EXAMPLE 7.5 THE DYNAMICS OF MEMBRANE AND NERVE CELL POTENTIALS 71

clf; figure(1); plot(t,y(:,1),'k');
title('Figure E7.5a: Time Profile of Membrane Potential in Nerve
Cells')
xlabel('Time (ms)'); ylabel('Potential (mV)')
figure(2); plot(t,y(:,2:4));
title('Figure E7.5b: Time Profiles of Gating Variables')
xlabel('Time (ms)'); ylabel('Gating variables')
text(7,0.6,'\leftarrow n(t)'); text(4.5,0.9,'\leftarrow m(t)');
text(7,0.25,'\leftarrow h(t)')
figure(3); plot(t,gK,t,gNa);
title('Figure E7.5c: Time Profiles of Conductances')
xlabel('Time (ms)'); ylabel('Conductances')
text(7,6,'g _K'); text(3.6,25,'g _{Na}');

% Evaluate the rate constants
v=[-100:1:100];
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v);

% Evaluating time constants and gating variables at steady state
tau_n=1./(alpha_n+beta_n);
n_ss=alpha_n.*tau_n;
tau_m=1./(alpha_m+beta_m);
m_ss=alpha_m.*tau_m;
tau_h=1./(alpha_h+beta_h);
h_ss=alpha_h.*tau_h;

% Plot the time constants
figure(4); plot(v,tau_n,v,tau_m,v,tau_h)
axis([-100 100 0 10])
title('Figure E7.5d: Time Constants as Functions of Potential')
xlabel('Potential (mV)'); ylabel('Time constants (ms)')

text(-75,4,'\tau _n'); text(0,0.8,'\tau _m'); text(15,8,'\tau
_h');

% Plot the gating variables at steady state
figure(5); plot(v,n_ss,v,m_ss,v,h_ss)
axis([-100 100 0 1])
title('Figure E7.5e: Gating Variables at Steady State as Functions
of Potential')
xlabel('Potential (mV)'); ylabel('Gating variables at steady
state')
text(-35,0.1,'n_\infty'); text(25,0.4,'m_\infty');
text(-20,0.8,'h_\infty');

Function that contains equations (hodgkin_huxley_equations.m)

function dy=hodgkin_huxley_equations(t,y)
% hodgkin_huxley_equations.m
% Contains the Hodgkin-Huxley model for example7_5

% Constants
ggK=36; ggNa=120; ggL=0.3;

72 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

vK=-12; vNa=115; vL=10.6;
Iapp=0; Cm=1;
% Equations
v=y(1); n=y(2); m=y(3); h=y(4);
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v);

dy=[(-ggK*n^4*(v-vK)-ggNa*m^3*h*(v-vNa)-ggL*(v-vL)+Iapp)/Cm
 alpha_n*(1-n)-beta_n*n
 alpha_m*(1-m)-beta_m*m
 alpha_h*(1-h)-beta_h*h];

Function that calculates the rate constants (rate_constants.m)

function [alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h] =
 rate_constants(v)
% rate_constants.m
% Calculates the rate constants for the Hodgkin-Huxley model

alpha_n=0.01*(10-v)./(exp((10-v)/10)-1);
beta_n=0.125*exp(-v/80);
alpha_m=0.1*(25-v)./(exp((25-v)/10)-1);
beta_m=4*exp(-v/18);
alpha_h=0.07*exp(-v/20);
beta_h=1./(exp((30-v)/10)+1);

Results

The following initial conditions of the gating variables are used:
n_ss= 0.3177
m_ss= 0.05293
h_ss= 0.5961
They are the resting steady state values of these variables (when
v=0).

EXAMPLE 7.5 THE DYNAMICS OF MEMBRANE AND NERVE CELL POTENTIALS 73

74 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Discussion of results

The application of a stimulus to the cell, in the form of a voltage of 8 mV at t = 0,
raises the membrane potential above the threshold value and causes the generation of
a self-propagating action potential, as shown in Fig. E7.5a. The membrane potential
rises rapidly to over 100 mV and then drops back to its resting potential, all in a
matter of less than 20 milliseconds. This action is explained as follows: the sodium
gates have a much smaller time constant, mτ , (Fig. E7.5d), therefore m(t) responds
faster, i.e. the sodium channels open faster allowing the flow of Na+ into the cell, thus
making the potential more positive. As the potential rises, the value of h∞ goes to
zero (Fig. E7.5e), thus causing the sodium current to inactivate because its
conductance, gNa, goes to zero (Fig. E7.5c). This mechanism, however, has a higher
time constant, thus it is slower to show its effect. The voltage-gated potassium
channels also open when the membrane potential becomes more positive than during
the resting state; however, unlike the sodium channels, they open more slowly and
become fully opened only after the sodium channels have closed. The potassium
channels then remain open until the membrane potential has returned to near its
resting value.

The student is encouraged to work out Problem 7.1 (at end of this chapter), which
applies a constant current of 10 µA/cm2, and to observe and interpret the results.

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 75

Example 7.6 The dynamics of stem cell differentiation.

Formulation of the problem

Stem cells in a growing fetus replicate and differentiate to develop into specialized types
of cells, such as bone cells, skin cells, liver cells, muscle cells, etc. In an adult human
body, the bone marrow contains stem cells, such as hematopoietic cells that generate red
blood cells, and mesenchymal cells that produce connective tissue cells. The
differentiation process involves a series of changes in cell phenotype and morphology
that typically become more pronounced and easier to observe directly at the latter stages
of the process (Palsson and Bhatia, 2004). This process begins with the stem cell’s
commitment to differentiation, followed by a coordinated series of gene-expression
events, causing the cell to differentiate to a new state. A series of such progressive states
leads to fully mature specialized cells. These mature cells perform their intended
function in the body and eventually die, or undergo change to another type of cell
through a process called transdifferentiation. The progressive series of events that
converts a stem cell to a fully mature specialized cell may be depicted schematically as
follows:

where Xi = number of cells in stage i of differentiation (cells)

I = number of cells entering the differentiation process (cells/day)
ki = the transition rate of cells from stage i to stage i+1 (1/day)
N = the total number of stages of differentiation (may be as high as 16 to 18).

The final stage of the process, N, may be considered as the intended goal of the

differentiation, i.e., the state of specialized mature cells. This last stage may have a zero
transition rate constant. That is, if kN is equal to zero, then cells do not die or
transdifferentiate.

 I

Commitment

k2 k1

 X1

 X2 …

kN-1 kN

Death or

Transdifferentiation

…

 XN

ki+1 ki ki-1 ki-2

 Xi+1

 Xi-1

 Xi … …

76 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

The dynamics of the differentiation process may be easily simulated using a multi-
compartment model. Assuming that each stage is homogeneous in its cellular content, an
unsteady state balance on each compartment yields the following set of ordinary
differential equations:

1
1 1

2
1 1 2 2

1 1

1 1

i
i i i i

N
N N N N

dX I k X
dt

dX k X k X
dt

dX k X k X
dt

dX k X k X
dt

− −

− −

= −

= −

= −

= −

#

#

The above model reflects the transition of cells from one stage of differentiation to the
next, with no cell division and no self-renewal. These two concepts are explored in
Problems 7.9 and 7.10, at the end of this chapter.

Using the above differential equations, simulate numerically the following stem cell
differentiation cases:
(a) Stem cells commit to the differentiation process at a continuous rate of I = 5000

cells/day. Assume that these cells undergo 10 stages of differentiation (N = 10). No
death occurs at the last step in the process (kN = 0). Integrate the differential
equations and trace the path of these cells through the 10 stages of differentiation,
using the following initial conditions and constants:

()
()1

5000 cells/day
0 0 cells, for 1, ,
2.2 day , for 1, , 1
0 no death or transdifferentiation

i

i

N

I
X i N
k i N
k

−

=
= =

= = −

=

…
…

Examine and discuss the time profiles. Does this case reach a steady state?

(b) There are no new cells entering the process, i.e., I = 0, but the initial number of cells

in the first stage of differentiation, 1(0),X is 5000. Assume that these cells undergo
the same number of stages of differentiation as in case (a). No death occurs at the
last stage of the process. Integrate the differential equations and trace the path of
these cells through the 10 stages of differentiation, using the following initial

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 77

conditions and constants:

() ()
()

1

1

0 cells/day
0 5000 cells, 0 0 cells, for 2, ,
2.2 day , for 1, , 1
0 no death or transdifferentiation

i

i

N

I
X X i N
k i N
k

−

=
= = =

= = −

=

…
…

Examine and discuss the time profiles. How many days does it take for the
completion of this process?

(c) This is the same as case (a), except for the occurrence of death at the completion of

stage 10. Examine the time profiles and predict the steady state behavior of this
system using the following initial conditions and constants:

()
1

5000 cells/day
0 0 cells, for 1, ,
2.2 day , for 1, , , with death

i

i

I
X i N
k i N−

=
= =

= =

…
…

Solution

(c) The MATLAB program and function that solve all three cases are listed below:

% example7_6.m - Solution of the stem cell differentiation model
% using MATLAB function ode45.m to integrate the differential
% equations that are contained in the file:
% cell_differentiation_equations.m
clc; clear all;
% Set the number of stages & time span
N=10; tzero=0; tmax=10; tspan=[tzero:0.1:tmax];
% Case (a): With continuous input; no death
I=5000; % Input
Xzero=zeros(N,1); % Initial conditions
k=2.2*ones(N-1,1); k(N)=0; % Transiton rate constants, no death
% Integrate the equations
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k);
% Pseudo steady state values for stages 1 to N-1
SS=I/k(1); X_last=X(length(X),N);
disp('Case (a)')
fprintf('The pseudo steady state number of cells in stages %1d to%2d
= %4.0f',1,N-1,SS)
fprintf('\nThe number of cells in stage %2d, at %2d days = %4.0f
\n',N,tmax,X_last)
% Plot concentration profiles
clf; figure(1); subplot(2,1,1), plot(t,X(:,1:1:N-1))
title(['Figure E7.6 (a): Continuous input (I = ',num2str(I),...

78 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

 '); no death (k(1:', num2str(N-1),') = ',num2str(k(1)),...
 ', k(', num2str(N),') = ',num2str(k(N)),') '])
text(0.4,SS,'i = 1'); text(0.45*tmax,SS/2,['i = ', num2str(N-1)]);
xlabel('Time, days'); ylabel('Number of cells');
subplot(2,1,2), plot(t,X(:,N)/1000)
axis([tzero, tmax, 0, 1.1*X_last/1000])
text(tmax/2,X_last/2000,['i = ', num2str(N)]);
xlabel('Time, days'); ylabel('Number of cells (thousands)');
% Case (b): With no new input; no death
I=0; % Input
Xzero=zeros(N,1); Xzero(1)=5000; % Initial conditions
% Integrate the equations
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k);
% Steady state values for stages 1 to N-1
SS=I/k(1);
X_last=X(length(X),N);
disp('Case (b)')
fprintf('The steady state number of cells in stages %1d to%2d =
%4.0f',1,N-1,SS)
fprintf('\nThe final number of cells in stage %2d at %2d days = %4.0f
\n',N,tmax,X_last)
% Plot concentration profiles
figure(2); plot(t,X(:,1:1:N))
title(['Figure E7.6 (b): No new input (I = ', num2str(I),...
 '); no death (k(1:', num2str(N-1),') = ', num2str(k(1)),...
 ', k(', num2str(N),') = ', num2str(k(N)),')'])
text(0.4,0.8*X(1),'i = 1');
text(0.45*tmax,X(1)/2,['i = ',num2str(N)]);
xlabel('Time, days'); ylabel('Number of cells');
% Case (c): With continuous input; with death (or transdiff.)
I=5000; % Input
Xzero=zeros(N,1); % Initial conditions
k(N)=k(1); % reset the death rate constant
% Transiton rate constants, with death
% Integrate the equations
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k);
% Pseudo steady state values for stages 1 to N-1
SS=I/k(1);
X_last=X(length(X),N);
disp('Case (c)')
fprintf('The steady state number of cells in all stages = %4.0f',SS)
% Plot concentration profiles
figure(3); plot(t,X(:,1:1:N))
axis([tzero, tmax, 0, 1.1*I/k(1)])
title(['Figure E7.6 (c): Continuous input (I = ',...
 num2str(I), '); with death (k(1:', num2str(N),...
 ') = ',num2str(k(1)),')'])
text(0.4,SS,'i = 1'); text(0.5*tmax,SS/2,['i = ', num2str(N)]);
xlabel('Time, days'); ylabel('Number of cells');

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 79

Function that contains the equations (cell_differentiation_equations.m)

function dX=cell_differentiation_equations(t,X,flag,N,I,k)
% cell_differentiation_equations.m
% Contains the equations for example7_6

% Equations
dX(1)=I-k(1)*X(1);
for i=2:N
 dX(i)=k(i-1)*X(i-1)-k(i)*X(i);
end
% Convert to column vector
dX=dX';

Case (a) Results and discussion

The results of this case are plotted on Fig. E7.6 (a). The top half of the plot shows the
time profiles for stages 1 to 9. The constant input of cells into stage one (I = 5000
cells/day) causes the first 9 stages of differentiation to reach a steady state in less than 10
days, with the number of cells in each stage given by

 * 5000 cells/day 2273 cells
2.2 /i

i

IX
k day

= = =

This result is obtained mathematically by setting the derivatives of the first nine
differential equations to zero (steady state) and solving for *

iX (the steady state level of
the cells). However, the differential equation for the final stage does not have a steady

state because of the no death assumption (k10 = 0). Setting 10 0dX
dt

= yields 0,I = ,

which we know is incorrect. For this reason, we call this case a pseudo steady state. The
number of cells in the final stage is 29,547 in 10 days and continues to increase, as
shown in the bottom half of Fig. E7.6 (a). This final stage of the process is the intended
goal of the differentiation; therefore it is reasonable to expect that cells will continue to
accumulate in this stage.

Case (a)
The pseudo steady state number of cells in stages 1 to 9 = 2273
The number of cells in stage 10, at 10 days = 29547

Case (b) Results and discussion

The results of this case are plotted on Fig. E7.6 (b). There is no input of new cells
and no death occurs in the last stage of differentiation. Therefore, the cells differentiate

80 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

completely from one stage to the next, without any renewal from new cells entering, and
finally accumulate in the last compartment of the process, as is clearly shown by Fig.
E7.6 (b). Since I = 0, the steady states for stages 1 to 9 are all zero, i.e.,

* 0 cells/day 0 cells
2.2 /i

i

IX
k day

= = =

The final number of cells in stage 10 is ~5000, as expected, remembering that the initial
number of cells was 5000, and there is no death of cells anywhere in this pathway.

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 81

Case (b)
The steady state number of cells in stages 1 to 9 = 0
The final number of cells in stage 10 at 10 days = 4997

Case (c) Results and discussion

In this case, there is a continuous rate of new stem cells, I = 5000 cells/day, that commit
to the differentiation process. There is also the occurrence of death at the completion of
stage 10. The results of this case are plotted on Fig. E7.6 (c). Under these circumstances,
all 10 stages reach their steady states at

* 5000 cells/day 2273 cells
2.2 /i

i

IX
k day

= = =

The cells continue to differentiate from one stage to the next, with death occurring after
the last stage. It is theoretically possible that this cell differentiation process may
continue for the duration of the lifetime of the individual.

Case (c)
The steady state number of cells in all stages = 2273

82 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Example 7.7 Tissue engineering: models of epidermal cell migration.

Introduction

One aspect of tissue engineering is the proper design and manufacture of porous
matrices (membranes) that imitate the properties of the epidermis and may be used as
prosthetic scaffolding to promote dermal regeneration, thus enhancing the healing
process of wounded or burned skin. During the healing process, cell migration is
necessary for cells to repopulate a healing wound, and to imbed themselves in an
implanted scaffold for successful tissue regeneration. Cellular migration is known to
depend on the interaction of specific cell surface receptors with cell-internalizable
ligands that are present on the extracellular matrix. The formation of ligand-receptor
bonds between skin epidermal cells (keratinocytes) and ligand presenting
microcarriers may initiate and promote the process of endocytosis – the ingestion of
molecules by the cells – thus, significantly enhancing the levels of cell motility.

The dynamics of cell-ligand interactions and endocytically-coupled cell
motility have been modeled from a kinetic-mechanistic point of view (Tjia and
Moghe, 2002c) using diffusion-reaction descriptions and equations similar to those in
the traditional Michaelis-Menten kinetics.

Figure E7.7 Cell-ligand interactions.

Microcarrier (L)

Free
receptor

sites (2B)

Intracellular
vesicle (V)

Free receptor site
(B)

Inactive
complex

()B Li

Active
complex

2()B Li

B Lk i

B Lk− i

Cell
membrane

2B Lk i

2B Lk− i Vk

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 83

Formulation of the mechanism

Fig. 7.7 shows the mechanism of cell-ligand interactions schematically. The
individual steps of this process are described below:

1. A ligand-adsorbed microcarrier, (L), interacts with a free receptor site, (B), on the

surface of a cell to form an inactive complex, () :B Li

 B L

B L

k

k
L B B L

−

→+ ←
i

i
i (7.179)

2. The inactive complex, in turn, binds reversibly with a second receptor to form the

active complex 2() :B Li

 2

2
2

B L

B L

k

k
B L B B L

−

→+ ←
i

i
i i (7.180)

3. The active complex is ingested by the cell to produce an intracellular vesicle,

(V). Once ingested, the microcarrier dissociates itself from the membrane
receptors thus freeing the receptors to recycle back to the cell surface. For the
purposes of this model, the rates of ingestion and binding site recycling are
lumped into one parameter, kV:

 2 2VkB L V B→ +i (7.181)

Formulation of the mathematical model

Cell migration will affect the degree of exposure of microcarriers to the cell, as
migration would make new microcarriers available for internalization. The rate of
cell migration has been derived, based on an analogy to molecular diffusion in a
semi-infinite plane, to be

 [] 0

cellMigration

d L L
dt A

µ
= (7.182)

where L = effective ligand density encountered by the cell

µ = the random motility coefficient,
Acell = the spread area of the cell,
L0 = the overall density of microcarriers.

The composite model that includes both cell migration and ligand-receptor adhesion
is given below:

1. The density of local extracellular microcarriers encountered by the cell, [L],

84 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

changes according to the following rate equation:

 [] [][] [] 0

cell
B L B L

d L Lk L B k B L
dt A

µ
−= − + +i i i (7.183)

The first term in this equation corresponds to the forward rate in reaction (7.179),
the second term corresponds to the reverse rate, and the third term reflects the
rate of the cell migration given by Eq. (7.182).

2. The balance of the density of inactive microcarrier-receptor complex, [B•L],

gives the rate equation (7.184):

[] [][] [] [][] []
2 2 2B L B L B L B L

d B L
k L B k B L k B L B k B L

dt − −= − − +i i i i
i i i i (7.184)

3. The rate of change of the density of activated microcarrier-receptor complex,

[]2B Li , is

 [] [][] [] []
2 2

2
• 2 2B L B L V

d B L
k B L B k B L k B L

dt −= − −i
i i i i (7.185)

4. The density of ingested microcarrier, [V], changes at the following rate:

 [] []2V
d V

k B L
dt

= i (7.186)

5. The total number of binding sites on the cell, [BT], is assumed to be constant

 [] [] [] []2TB B B L B L= + +i i (7.187)

The net effects of cell migration may be measured in terms of the rate at which cells
effectively clear an area covered with ingestible microcarriers. For a given initial
surface particle density, the rate of area clearance by a cell is equal to the sum of the
rates of bounding and ingesting, divided by the initial particle density:

 [] [] [] []2• •1
o

d clearance d B L d B L d V
dt L dt dt dt

 = + + 
 

 (7.188)

It should be noted that that the density terms in this model are in units of particle per
surface area of cell. The []clearance term is in (min)-1.

In order to simplify the model, we make the following assumptions:

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 85

(a) The rate constant of decomposition of the inactivated microcarrier-receptor

complex , B Lk− i , is very small in comparison to the rate of initial binding, B Lk i ,
and can be neglected. This effectively makes reaction (7.179) irreversible.

(b) The fully activated complex, [B2•L], once formed, is highly reactive and is

quickly ingested. Thus, this complex would be present only in low densities and
may be assumed to be at pseudosteady-state. This assumption causes the rate in
Eq. (7.185) to be equal to zero, enabling us to solve for []B Li , as follows:

 [] [][]
2

m

B L B
B L

K
=

i
 (7.189)

where Km is a dissociation constant of the Michaelis-Menten type, defined as:

 2

2

B L V
m

B L

k k
K

k
− +

= i

i
 (7.190)

The above two assumptions are utilized in Eqs. (7.183)-(7.188) to eliminate []B Li
and []B , which simplifies the model to the following set of equations:

[] [] [] []()

[] [] [] []() [] []()[]
[]

[] [] []()[]
[]

[] [] []

0

cell

• 2

2

•1

B L T

T
B L T V

m

T
V

m

o

d L Lk L B B L
dt A

B B L B Ld B L
k L B B L k

dt K B L

B B L B Ld V
k

dt K B L

d clearance d B L d V
dt L dt dt

µ
= − − +

− = − −  + 

− =  + 

 = + 
 

i i

i ii i
i

i i
i

 (7.191)

Equations (7.191) define the mathematical model of the dynamics of cellular
migration enhanced by the presence of ligand-associated microcarriers. This is a set
of ordinary differential equations that may be integrated to yield the temporal
behavior of this process. For this problem, perform the following tasks:

(a) Evaluate and plot the time profiles, and discuss the results of the integration

for the period of 300 minutes, using the following initial conditions and

86 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

constants, based on the experiment work of Tjia and Moghe (2002c):

Initial conditions:

[]

[] []

2
0 0

0 0

1.0 particle/ m 0

0 0

L B L

clearance V

µ= =

= =

i

Constants:

()

2 2 2
cell

2 3 -1

3 2

3.74 particles/ m 10 m / min 3400 m
0.73 particles/ m 1.3 10 min
2.0 10 m / particle.min

T

m V

B L

B A
K k
k

µ µ µ µ
µ

µ

−

−

= = =

= = ×

= ×i

(b) Define the term “Sampling rate” as

 [] [](Sampling rate)
d B L d V

dt dt
= −

i

and show its effect on the internalization rate, d[V]/dt, and the clearance rate,
d[clearance]/dt.

Solution

The program, example7_7.m, and the function, cell_migration_equations.m, that
solve this problem are listed below:

% example7_7.m - Solution of the epidermal cell migration
% model using MATLAB function ode45.m to integrate the
% differential equations that are contained in the file:
% cell_migration_equations.m

clc; clear all;
% Set the time span
tspan=[0:1:300];
% Set the constants
BT=3.74; mu=10; A_cell=3400;
Km=0.73; kV=1.3e-3; kBL=2.0e-3;
% Set the initial conditions
yzero=[1, 0, 0, 0];
L0=yzero(1);
% Integrate the equations
[t,y]=ode45('cell_migration_equations',tspan,yzero,[],...
 BT,mu,A_cell,Km,kV,kBL,L0);

% Plot concentration profiles

EXAMPLE 7.6 STEM CELL DIFFERENTIATION 87

figure(1); plot(t,y(:,1),'-',t,y(:,2),':',t,y(:,3),'-.',...
 t,y(:,4),'--')
title('Figure E7.7(a): Time profiles of epidermal cell migration')
xlabel('Time, min'); ylabel('Densities, number/\mum^2');
legend('L','B{\bf\cdot}L','V','clearance',2)
n=length(y);

% Evaluate the derivatives
for i=1:n
dy(:,i)=feval('cell_migration_equations',t(i),y(i,:),flag,...
 BT,mu,A_cell,Km,kV,kBL,L0);
end
dy=dy';
rate_BL=dy(:,2);
rate_V=dy(:,3);
clearance_rate=dy(:,4);
sampling_rate=rate_BL-rate_V;

% Show the effect of microcarrier sampling rate on internalization
% and clearance rates
figure(2);
plot(sampling_rate*1e3,clearance_rate*1e3)
title('Figure E7.7(b): The effect of microcarrier sampling rate on
clearance rate')
ylabel('Clearance rate, d[clearance]/dt x 10^3')
xlabel('Sampling rate, (d[B{\bf\cdot}L]/dt - d[V]/dt) x 10^3')

function dy=cell_migration_equations(t,y,flag,BT,mu,A_cell,...
 Km,kV,kBL,L0)
% cell_migration_equations.m
% Contains the equations for example7_7

% Equations
dy=[-kBL*y(1)*(BT-y(2))+mu*L0/A_cell
 kBL*y(1)*(BT-y(2))-kV*((BT-y(2))*y(2))/(Km+2*y(2))
 kV*((BT-y(2))*y(2))/(Km+2*y(2))
 (kBL*y(1)*(BT-y(2))-kV*((BT-y(2))*y(2))/(Km+2*y(2))...

 +kV*((BT-y(2))*y(2))/(Km+2*y(2)))/L0];

Discussion

In Fig. E7.7(a), the dynamics of ligand interactions with skin epidermal cells
are plotted as a function of time. The free ligand concentration decreased slowly
over time indicating the steady depletion of instantaneous ligand concentration due to
cell internalization of the ligand. Concurrently, the concentrations of membrane-
bound ligand complex (B.L) as well as internalized ligand (V) increase over time.
The instantaneous clearance of ligands increases over time as well, indicating the
cells are not yet saturated with ligand-microcarriers.

88 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

In Fig. E7.7(b), the cell clearance rate is graphed versus the net rate of ligand
sampling by the cells (defined as the on-rate of ligand binding minus the off-rate of
ligand internalization). It is assumed that internalized ligands can no longer activate
the intracellular signaling necessary for increased cell migration. A monotonic
increase in cell clearance rate of the ligands was observed with increased ligand
sampling rate. This suggests that the migration may be a strong function of the
dynamics of ligand sampling processes.

Results

0

LESSONS LEARNED IN THIS CHAPTER 89

7.11 Lessons Learned in this Chapter

After studying this chapter, the student should have learned the following:

• The dynamics of physiological systems may be modeled using ordinary
differential equations.

• Ordinary differential equations may be classified as:
o First, second, third order, etc.
o Linear or nonlinear
o Homogeneous or nonhomogeneous
o Autonomous or non-autonomous
o Initial value or boundary value

• Second order and higher ordinary differential equations may be converted to
sets of first order differential equations for numerical integration by the
methods discussed in this chapter.

• The solution of linear ordinary differential equations depends on the
eigenvalues and eigenvectors of the equations.

• Nonlinear differential equations (as well as linear ones) may be integrated
numerically using methods that are based on finite differences.

• Integrating differential equations is like climbing a mountain: You move in
the direction of the slope (or the weighted average of the slope at different
points), taking many small steps (carefully), until you reach the destination.

• The stability of nonlinear differential equations depends on the eigenvalues
of the Jacobian matrix of the equations.

• The stability of the numerical solution depends on the form of the equations,
the method of solution, and the step size of integration.

90 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

7.12 Problems
7.1 Integrate the Hodgkin-Huxley model (see Example 7.5) for the period 0 to 50 ms
using a constant current of 10 µA/cm2. Examine and explain the results thoroughly.

7.2 The pool of fluid in the body of a patient undergoing dialysis has been modeled
by Enderle et al. (2000) as a two-compartment system, as shown diagrammatically on
Figure P7.2, where R is the rate of production of urea by the patient’s body, V1 is the
volume of the intracellular fluid, V2 is the volume of the extracellular fluid (blood and
interstitial fluids), C1 and C2 are the concentrations of urea in the fluids of the two
compartments, respectively, k12 and k21 are the mass transport parameters between the
two compartments, and k2 is the clearance rate constant for the dialysis unit.

Figure P7.2 A two-compartment model of the fluid of a patient undergoing dialysis.

An unsteady state mass balance of urea on each of the compartments yields the
following two differential equations:

1

1 12 1 21 2

2
2 12 1 21 2 2 2

dCV R k C k C
dt
dCV k C k C k C
dt

= − +

= − −
 (P7.2)-(1)

For Patient X, the following parameters apply:

 12 21

1 2

100 mg/h 33 liters/h 33 liters/h
10 liters 25 liters

R k k
V V
= = =
= =

The dialysis unit clearance rate constant is 2 8 liters/h.k =

When Patient X arrives at the dialysis unit his blood urea nitrogen (BUN) is 150
mg/liter. Integrate the differential equations (P7.2)-(1) to obtain answers to the
following:

Urea production

 R

Intracellular
pool of fluid
 V1
 C1

k21

k12 Urea removed
by dialysis unit

 k2

Extracellular
pool of fluid
 V2
 C2

7.12 PROBLEMS 91

(a) How many hours of dialysis will the patient require in order to reduce the level
of BUN to 75 mg/liter?

(b) After the completion of the treatment, how long will it take for the BUN of the
patient to rise back to the 150 mg/liter level?

(c) Experiment with setting the values of k12 and k21 to be unequal to each other
(say k21 = 0.7 k12, i.e., slower transfer from the extracellular pool to the intra-
cellular one) and interpret the results.

Show clearly how you obtain your answers and illustrate this by showing the
concentrations vs. time profiles of C1 and C2 in all parts of the problem.

7.3 A computer simulation of the physiological human knee jerk reflex has been
developed by Huang (1994). A strong tap on the patellar ligament of the leg elicits a
knee jerk reflex, which follows closely the oscillations of the pendulum. The jerk of
the patellar tendon stretches the muscle that sends a barrage of neural impulses to the
spinal cord. The reflex signal passes back to the quadriceps muscle via the alpha
motor neuron to produce a sudden contraction and forces the leg to move forward
with a jerk. As the muscle relaxes, the leg system acts as a damped compound
pendulum, swinging back and forth for a few oscillations. Eventually the leg returns
to the normal position.

In his analysis, Huang assumed that the extensor and flexor muscles are
identical and opposite in action. The numbers of primary and secondary nerve
endings are considered equal, and the nervous signals are instantaneous when
compared to the system response. Small deflection angles are considered with
constant damping coefficient within the range. Based on the equation of the
pendulum, and for small oscillations, Huang developed a second order differential
equation

2

2 () 0
2

d d mgLJ c T
dtdt

θ θ θ θ+ + − = (P7.3)-(1)

that describes the angular position, θ, of the leg during the knee jerk reflex, where m
is the mass of the leg, g is the gravitational acceleration constant, L is the length of
the leg, J is the moment of inertia of the leg, and T is the gain produced by the
isometric torque of the muscle. The natural frequency, ωn, of the system is calculated
by

2n

mgL T
J J

ω = − (P7.3)-(2)

92 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

and the damping factor, α, is given by

2 ()

2

c
mgLJ T

α =
−

 (P7.3)-(3)

The values of ωn and α are obtained experimentally. Solve the above equations with
the following values of m, g, L, J, ωn and α, and plot the time profile of the angular
position of the leg during the jerk reflex.

m = 4 kg g = 9.81 m/s2 L = 0.34 m
J = 0.154 kg.m2 ωn = 6.28 rad/s α = 0.228

Use the following initial conditions θ(0) = 0 rad and dθ(0)/dt = 2π rad/s for the
solution of the differential equation (P7.3)-(1). HINTS: Use the MATLAB solve
command for the algebraic equations and the dsolve command for the differential
equation.

7.4 The pool of fluid in the body of a patient undergoing dialysis was modeled in
Problem 7.2 (above) as a two-compartment system. Change this analysis to a one-
compartment model by treating the total fluid of the patient as one unit of volume VT
(see Fig. P7.4).

Figure P7.4 A one-compartment model of the fluid of a patient undergoing dialysis.

Derive the unsteady state mass balance of urea for this one-compartment model. For
Patient X, the following parameters apply for the one-compartment analysis:

 2100 mg/h 35 liters 8 liters/hTR V k= = =

When Patient X arrives at the dialysis unit his blood urea nitrogen (BUN) is 150
mg/liter. Integrate the differential equation to obtain answers to the following:

(a) How many hours of dialysis will the patient require in order to reduce the level
of BUN to 75 mg/liter?

(b) After the completion of the treatment, how long will it take for the BUN of the
patient to rise back to the 150 mg/liter level?

Urea removed by
dialysis unit

 k2

Urea production

 R

Total pool
of fluid
 VT
 CT

7.12 PROBLEMS 93

Compare these results with those of the two-compartment model (Problem 7.2).

7.5 A simple model of an epidemic is shown on Fig. P7.5, where S is the number of
persons susceptible to the disease, I is the number infected with it, R is the number
that have already been affected but have recovered (or died), α is the rate constant for
infection, and β is the rate constant of recovery. Those who have recovered develop
immunity to the infection.

Figure P7.5 A simple model of an epidemic.

A dynamic model of the interactions between these three groups is given by
Edelstein-Keshet (1988), as follows:

dS SI
dt
dI SI I
dt
dR I
dt

α

α β

β

= −

= −

=

 (P7.5)-(1)

One person, highly contagious with a new influenza virus, enters a small community
that has a population of 5000 individuals that are susceptible to the infection. The
virus epidemic spreads quickly and eventually infects all susceptible individuals. The
rate constants for this epidemic are

-1 -1

-1

0.005 (person) (week)
=1 (week)

α
β
=

Integrate the differential equations (P7.5)-(1) and determine the following:

(a) How many weeks does it take for this epidemic to reach its peak?
(b) What is the maximum number of persons sick at the peak of the epidemic?
(c) In how many weeks will the epidemic subside, (when less the 0.5 % of the

susceptible population is still infected)?

7.6 Modify the epidemic model in Problem 7.5 to allow loss of immunity that causes
recovered individuals to become susceptible to the virus again (see Fig. P7.6). The

Susceptible
S

Infected
I

Recovered
R

α β

94 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

loss of immunity rate constant has the following value (α and β remain the same as in
Problem 7.5):

-10.1 (week)γ =

Figure P7.6 A modified model of an epidemic to account for loss of immunity.

Integrate the modified set of differential equations for this epidemic and determine
the following:

(a) How many weeks does it take for the epidemic to approach steady state?
(b) How many people will remain infected during steady state?
(c) Show phase plots and discuss the stability of the solutions with respect to the

eigenvalues of the Jacobian matrix.

7.7 The well-known van der Pol oscillator is the second order nonlinear differential
equation shown below:

 ()
2

2
2 1 0d u duk u au

dtdt
− − + = (P7.7)-(1)

The solution of this equation exhibits stable oscillatory behavior. Van der Pol
realized the parallel between the oscillations generated by this equation and certain
biological rhythms, such as the heart beat, and proposed this as a model of an
oscillatory cardiac pacemaker. Integrate the van der Pol equation with the following
value of k and initial conditions

()-1 -1

0
1.0 s 0 2 dimensionless 0 sduk u

dt
= = =

and determine the value of a that would give a heart rate of 1.25 beats/second (75
beats/minute, which is a typical heart rate in a resting adult).

7.8 It is well known that most living cells – bacteria cells, stem cells, yeasts, etc. –
replicate themselves by cell division. The growth of an organism is accompanied by
an orderly increase in its mass and all of its chemical constituents, followed by

Susceptible
S

Infected
I

Recovered
R

α β

γ

7.12 PROBLEMS 95

…

…

…

…

…

…

…

…

Blood
stream

200 billion
cells/day

division of the cell into two identical daughter cells or a mother and daughter cell, as
in the case of yeasts. In Example 7.6, we simulated the process of stem cell
differentiation without cell division. That was a rather simplistic model of cell
differentiation, because most stages of differentiation have cell replication activity.
The act of replication marks the completion of one stage of differentiation and the
beginning of the next.

The human body produces and consumes approximately 200 billion red blood cells
daily. The process of turning a bone marrow stem cell to a red blood cell is called
erythropoiesis. The differentiation from the early precursor stage (pronormoblast) to
a fully mature enucleated erythrocyte takes approximately one week (Palsson and
Bhatia, 2004). This concept is depicted diagrammatically in Fig. P7.9.

1 2

1 1 2 2

1 2
Comittment

X XI
X k X k

X X
/ /
2 2

1

1 1 1

1

i i

i i i i i

i i

X X
k X k X k

X X

+

− + +

+

/ /
2 2

 1

N

N N N

N

X
k X k

X
−

/
2

Figure P7.8 Stem cell differentiation with replication.

With the assumptions that a single cell that leaves compartment (i-1) splits into two
cells that enter compartment i, we derive the mass balances for the N compartments
representing differentiation, as follows:

96 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

1
1 1

2
1 1 2 2

1 1

1 1

2

2

2

i
i i i i

N
N N N N

dX I k X
dt

dX k X k X
dt

dX k X k X
dt

dX k X k X
dt

− −

− −

= −

= −

= −

= −

#

#

 (P7.8)-(1)

In addition, we make the assumption that all the red blood cells that are formed by
this process enter the blood stream, where they serve their purpose and die, at the rate
of 200 billion cells per day. The number of red blood cells in a healthy individual
remains relatively constant, i.e., there is steady state. Then the balance on the blood
stream results in the following equation:

 Blood 92 200 10 0N N
dX k X

dt
= − × = (P7.8)-(2)

Using the above differential equations, simulate numerically the erythropoiesis
process and answer the following questions:

(a) What is the total number of stem cells per day, I, that need to commit to the
erythropoiesis process in order to produce the required 200 billion red blood
cells per day? Assume that the stem cells undergo a total of 10 stages of
differentiation (N = 10), and that the initial conditions and transition rate
constants are:

()

1

0 0 cells, for 1, ,
2.2 day , for 1, ,

i

i

X i N
k i N−

= =

= =

…
…

Explain carefully how you calculate the value of I.

(b) Show and discuss thoroughly the time profiles in the N stages of the differen-

tiation/replication process and compare these results with those of Example 7.6
Case (c).

7.13 REFERENCES 97

7.13 References
Burden, R. L., J. D. Faires, and A. C. Reynolds (1981). Numerical Analysis. Prindle,

Weber & Schmidt, Boston, MA.
Constantinides, A., and N. Mostoufi (1999). Numerical Methods for Chemical

Engineers with MATLAB Applications. Prentice Hall PTR, Upper Saddle
River, NJ.

Edelstein-Keshet, L. (1988). Mathematical Models in Biology. McGraw-Hill Book
Company, New York, NY.

Enderle, J., S. Blanchard, and J. Bronzino (2000). Introduction to Biomedical
Engineering. Academic Press, San Diego, CA.

Finlayson, B. A. (1980). Nonlinear Analysis in Chemical Engineering. McGraw-Hill,
New York, NY.

Fournier, R. L. (1999). Basic Transport Phenomena in Biomedical Engineering.
Taylor & Francis, Philadelphia, PA.

Hairer, E., C. Lubich, and M. Roche (1980). The Numerical Solution of Differential-
Algebraic Systems by Runge-Kutta Methods. Springer-Verlag, Berlin.

Hairer, E., and G. Wanner (1991). Solving Ordfinary Differential Equations I.
Springer, Berlin.

Hairer, E., and G. Wanner (1991). Solving Ordfinary Differential Equations II.
Springer, Berlin.

Hodgkin, A. L., and A. F. Huxley (1952). A Quantitative Description of Membrane
Current and its Application to Conduction and Excitation in Nerve. J.
Physiol,. 117:500-544.

Huang, B. K. (1994). Computer Simulation Analysis of Biological and Agricultural
Systems. CRC Press, Boca Raton, FL.

Keener, J., and J. Sneyd (1998). Mathematical Physiology. Springer-Verlag, New
York, NY.

Lapidus, L., and J. H. Sienfeld (1971). Numerical Solution of Ordinary Differential
Equations. Academic Press, New York, NY.

Lauffenburger, D. A., and A. F. Horwitz (1996). Cell Migration: A Physically
Integrated Process. Cell. 84:359–369.

Palsson, B. Ø., and S. N. Bhatia (2004). Tissue Engineering. Pearson Prentice Hall,
Upper Saddle River, NJ.

Tjia, J.S., and P.V. Moghe (2002a). Regulation of Cell Motility on Polymer
Substrates via Dynamic, Cell-Internalizable, Ligand Microinterfaces. Tissue
Eng., 8:247-259.

Tjia, J.S. and P.V. Moghe (2002b). Cell-Internalizable Ligand Microinterfaces on
Biomaterials: Design of Regulatory Determinants Of Cell Migration in
Biomimetic Materials and Design: Interactive Biointerfacial Strategies for
Drug Delivery and Tissue Engineering, A. Dillow, T. Lowman (Eds.),
Marcel-Dekker, 335-373.

98 CHAPTER 7 DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS

Tjia, J. S., and P.V. Moghe (2002c). Cell Migration on Cell-Internalizable Ligand
Microdepots: A Phenomenological Model. Annals of Biomedical Engi-
neering, 30:851-866.

Tortora, G. J., and S. Reynolds Grabowski (2001). Introduction to the Human Body.
5th Edition, John Wiley & Sons, Inc., Hoboken, NJ.

