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Chapter 7 
Dynamic Systems: 

Ordinary Differential Equations 
 
 
 
 
 
 
 
 
 
 
 
7.1 Introduction 
The mathematical modeling of physiological systems will often result in ordinary or 
partial differential equations. The fundamental reason underlying this is that 
biosystems are dynamic in nature. Their behavior constantly evolves with time or 
varies with respect to position in space. In this chapter we will consider the numerical 
solution of ordinary differential equations. These are the models that arise from the 
study of the dynamics of physiological systems that have one independent variable. 
The latter may be either the space variable x, or the time variable t, depending on the 
geometry of the system and its boundary conditions. Ordinary differential equations 
may arise from modeling the metabolic pathways of living cells, the complex 
interactions of pharmacokinetics, the kinetics of the oxygen/ hemoglobin system, the 
transfer of nutrients across cells, the dynamics of membrane and nerve cell potentials, 
the transformation and replication of stem cells, the mechanism of migration and 
binding of tissue cells, or the dynamics of interacting populations of bacteria and the 
human species. 
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The material in this chapter will enable the student to accomplish the 
following: 
 

• Model the dynamics of physiological systems using ordinary differential 
equations. 

• Obtain numerical solutions of the differential equations, plot the numerical 
results, and interpret the dynamic behavior of the biosystems under a variety 
of conditions. 

• Appreciate the accuracy and stability of the models and the numerical 
solutions obtained from these models. 

 

7.1.1 Pharmacokinetics: The dynamics of drug absorption 
Pharmacokinetics is the study of the processes that affect drug distribution and the 
rate of drug concentrations within the body (Fournier, 1999). Drugs can enter the 
body through the gastrointestinal tract, referred to as the enteral route, or through a 
variety of other pathways that include intravenous injection, inhalation, subcutaneous 
penetration, etc. These are referred to as parenteral routes. The drug distribution 
throughout the body is affected by several factors, such as blood perfusion rate, 
capillary permeability, drug biological affinity, the metabolism of the drug, and renal 
excretion. The drug is eliminated from the body by enzymatic reactions in the liver 
and by excretion into the urine stream via the kidneys. A simplified model for drug 
absorption and elimination is shown in Fig. 7.1. This model treats all body fluids as a 
single-compartment unit. A mathematical simulation of this model results in a set of 
linear ordinary differential equations. Methods for the solution of such a set are 
developed in Sec. 7.4 of this chapter, and are demonstrated in Example 7.2. 
 

 

Figure 7.1  Simplified drug absorption model. 
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7.1.2 Tissue engineering: Stem cell differentiation, cell migration, 
adhesion 

Cell differentiation is a critical dynamic process that underlies the progressive 
specialization of the various embryonic and progenitor cells to multifunctional tissues 
in the body. For example, embryonic stem cells in a growing fetus replicate and 
differentiate to develop into specialized types of cells, such as bone cells, skin cells, 
liver cells, muscle cells, etc. The differentiation process involves a series of changes 
in cell phenotype and morphology that typically become more pronounced and easier 
to observe directly at the later stages of the process (Palsson and Bhatia, 2004). This 
process begins with the stem cells commitment to differentiation, followed by a 
coordinated series of gene-expression events, causing the cell to differentiate to a 
new state. A series of such progressive states leads to fully mature specialized cells. 
These mature cells perform their intended function in the body and eventually die, or 
undergo change to another type of cell through a process called transdifferentiation. 
The progressive series of events that converts a stem cell to a fully mature specialized 
cell may be modeled as a multi-compartment model. The unsteady state balances on 
these compartments result in a set of simultaneous ordinary differential equations. 
The solution of such a set of equations is demonstrated in Example 7.6 that presents 
and discusses stem cell differentiation. 

An important aspect of tissue engineering is the proper design and manufacture 
of porous matrices that imitate the properties of the epidermis and may be used as 
prosthetic scaffolding to promote dermal regeneration, thus enhancing the healing 
process of wounded or burned skin. A cellular dynamic process, relevant to wound 
repair and tissue regeneration, is cell migration (Lauffenburger and Horowitz, 1996). 
Cell migration is necessary for cells to repopulate a healing wound and an implanted 
scaffold for tissue regeneration, and during embryogenesis for cell sorting and organ 
development. Cell migration is also relevant to cancer and tumor metastasis.  

Cellular migration is a coordinated process that results from the interaction of 
specific cell surface receptors with ligands, which are typically biomolecules of an 
extracellular matrix (Fig. 7.2). Quantitative descriptions of the cell migration process 
involve establishing relationships between the cell motility response (e.g, cell speed, 
cell directional persistence, population cell motility) and the various attributes of the 
ligands. A number of ligand properties, such as ligand surface concentration, degree 
of receptor occupancy, and ligand affinity, affect the activation of cell motility. An 
interesting mode of complex cell migration has been quantitatively analyzed by 
Moghe and coworkers (Tjia and Moghe, 2002a, 2002b). This migration involves 
cellular internalization (endocytosis or phagocytosis, depending on the nature of 
ligand carriers) of the ligands after receptor-ligand binding. The dynamics of cell-
ligand interactions have been modeled from a kinetic-mechanistic point of view (Tjia 
and Moghe, 2002c) using diffusion-reaction descriptions and equations similar to 
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those in the traditional Michaelis-Menten kinetics. A model of cell migration is 
presented and solved in Example 7.7. 
 

 

Figure 7.2  The migration of keratinocytes is enhanced by the presence of ligand-bound 
microcarriers (from Tjia and Moghe, 2002c) . 

7.1.3 Glycolysis pathways of living cells 
Living cells break down glucose to produce carbon dioxide and water in a complex 
process called glycolysis that involves several enzyme catalyzed reactions. This 
process generates chemical energy, which is in turn used in the biological synthesis 
of other compounds, such as proteins. The energy produced in glycolysis is stored by 
the cell in the form of adenosine triphosphate (ATP). The net effect of this pathway 
is: 
 

6 12 6 2 2 2C H O  + 6O 6CO  + 6H O + energy→  
 
Many of the chemical reactions in the glycolysis pathway are catalyzed by enzymes, 
such as the reaction shown here: 
 

[ ]
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1 2             
k k
k

S E ES P E→+ → +←  
 
An enzyme, E, catalyzes the conversion of a substrate, S, to form a product, P, via the 
formation of an intermediate complex, [ES]. The steady state analysis of such 
reactions results in algebraic equations whose solution may be obtained by the 
methods discussed in Chapter 5 of this book. On the other hand, the dynamic 
behavior of enzymatic reactions is modeled by ordinary differential equations. 
Methods of solution for sets of ordinary differential equations are developed in Sec. 
7.5 of this chapter, and are applied to obtain the solution of an enzyme catalysis 
problem in Example 7.3. 
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7.1.4 Transport of molecules in biological membranes  
The transport of molecules across biological membranes is vital to the operation and 
survival of living cells. The supply of nutrients to the cell, for growth and repro-
duction, and the transfer of waste products from cell to the extracellular medium, is a 
complex process that is facilitated by many mechanisms (Fig. 7.3). There is passive 
transport of molecules due to the combined effects of concentration gradients and 
electrical potential differences that exist across the cell membrane. Neutral molecules 
diffuse from regions of high concentration to regions of low concentration. In 
addition, charged molecules move along a voltage gradient that normally exists 
across a cell membrane, such as in neural cells and axons. Carrier-mediated transport 
and active transport are additional mechanisms that facilitate the movement of 
molecules across cell boundaries. The transport mechanism of molecules may be 
model using ordinary and partial differential equations. In this chapter we will 
discuss dynamic transport systems of one independent variable that may be modeled 
by ordinary differential equations. In Example 7.5, we solve the Hodgkin-Huxley 
model that simulates the dynamics of membrane and nerve cell potentials. In Chapter 
8 we will examine transport systems of two or more independent variables that result 
in partial differential equations. 
 

 

Figure 7.3  Diffusion across biological membranes 
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7.2 Classification of Ordinary Differential Equations 
Ordinary differential equations are classified according to their order, linearity, 
homogeneity, and boundary conditions. The order of a differential equation is the 
order of the highest derivative present in that equation. Ordinary differential 
equations may be categorized as linear and nonlinear. A differential equation is 
nonlinear if it contains products of the dependent variable, or its derivatives, or of 
both. In this chapter, as much as possible, we will use the symbol y to represent the 
dependent variable, and the symbol t to designate the independent variable. The 
student should remember that either t, or x, is customarily used to represent the 
independent variable in ordinary differential equations.  

The general form of a linear ordinary differential equation of order n may be 
written as 
 

 ( ) ( ) ( ) ( ) ( )
1

1 1 01

n n

n nn n

d y d y dyb t b t b t b t y R t
dt dt dt

−

− −+ + + + =…  (7.1) 

 
If ( ) 0R t = , the equation is called homogeneous. If ( ) 0R t ≠ , the equation is 

nonhomogeneous. The coefficients {bi | i = n, . . . , 1} are called variable coefficients 
when they are functions of x, and constant coefficients when they are scalars. A 
differential equation is autonomous if the independent variable does not appear 
explicitly in that equation. For example, if Eq. (7.1) is homogeneous with constant 
coefficients, it is also autonomous. Examples of first, second, and third order 
differential equations are given below: 
 

 First order, linear, homogeneous: 0dy y
dt

+ =  (7.2) 

 

 First order, linear, nonhomogeneous: dy y kt
dt

+ =  (7.3) 

 

 First order, nonlinear, nonhomogeneous:  2dy y kt
dt

+ =  (7.4) 
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 Second order, linear, nonhomogeneous:  
2

2
td y dy y e

dt dt
+ + =  (7.5) 

 

 Second order, nonlinear, nonhomogeneous: ( )
2

2 cosd y dyy y t
dt dt

+ + =  (7.6) 
 

 Third order, linear, homogeneous:  
3 2

3 2 0d y d y dya b y
dt dt dt

+ + + =  (7.7) 
 

 Third order, nonlinear, nonhomogeneous: ( )
23 2

3 2 sind y d y dya y t
dt dt dt

 
+ + + = 

 
 (7.8) 

 

Eqs. (7.4), (7.6), and (7.8) are nonlinear because they contain the terms y2, y(d2y/dt2) 
and (d2y/dt2)2, respectively, whereas Eqs. (7.2), (7.3), (7.5), and (7.7) are linear. 

To obtain a unique solution of an nth-order differential equation, or of a set of 
n simultaneous first-order differential equations, it is necessary to specify n values of 
the dependent variables (or their derivatives) at specific values of the independent 
variable. 

Ordinary differential equations may be classified as initial-value problems or 
boundary-value problems. In initial-value problems, the values of the dependent 
variables and/or their derivatives are all known at the initial value of the independent 
variable. A problem whose dependent variables, and/or their derivatives, are all 
known at the final value of the independent variable (rather than the initial value) is 
identical to the initial-value problem, because only the direction of integration must 
be reversed. Therefore, the term initial-value problem refers to either case. In 
boundary-value problems, the dependent variables and/or their derivatives are known 
at more than one point of the independent variable. If some of the dependent 
variables (or their derivatives) are specified at the initial value of the independent 
variable, and the remaining variables (or their derivatives) are specified at the final 
value of the independent variable, then this is a two-point boundary-value problem. 

The methods of solution of initial-value problems are developed in Sec. 7.5. 
The methods for solution of boundary-value problems will not be covered in this 
book. The interested student is referred to Constantinides and Mostoufi (1999). 
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7.3 Transformation to Canonical Form 
Numerical integration of ordinary differential equations is most conveniently 
performed when the system consists of a set of n simultaneous first-order ordinary 
differential equations of the form: 
 

 

( ) ( )

( ) ( )

( ) ( )

1
1. 1 2 1 0 1,0

2
2 1 2 2 0 2,0

1 2 0 ,0

, , , ,

, , , ,

, , , ,

n

n

n
n n n n

dy f t y y y y t y
dt
dy f t y y y y t y
dt

dy f t y y y y t y
dt

= =

= =

= =

…

…

#

…

 (7.9) 

 

This is called the canonical form of the equations. When the initial conditions are 
given at a common point, t0, then the set of equations (7.40) has solutions of the form 
 

 

( )
( )

( )

1 1

2 2

n n

y F t

y F t

y F t

=

=

=

#
 (7.10) 

 

The above problem can be condensed into matrix notation, where the system 
equations are represented by 

 ( ),d t
dt

=
y f y  (7.11) 

 

the vector of initial conditions is 
 

 ( )0t = 0y y  (7.12) 
 

and the vector of solutions is 
 

 ( )t=y F  (7.13) 
 

Differential equations of higher order, or systems containing equations of 
mixed order, can be transformed to the canonical form by a series of substitutions. 
For example, consider the nth-order differential equation 
 

 
2

2, , , ,
n n

n n

d z dz d z d zG z t
dt dt dt dt

 
=  

 
…  (7.14) 
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The following transformations 
 

 

1

1
2

2
2

32

1
1

1

n
n

nn

n
n

n

z y
dydz y

dt dt
dyd z y

dt dt

dyd z y
dt dt

dyd z
dt dt

−
−

−

=

= =

= =

= =

=

#
 (7.15) 

 
when substituted into the nth-order equation (7.45), give the equivalent set of n first-
order equations of canonical form: 
 

 

( )

1
2

2
3

1 2 3, , , , ,n
n

dy y
dt
dy y
dt

dy G y y y y t
dt

=

=

=

#

…

 (7.16) 

 
If the right-hand side of the differential equations is not a function of the independent 
variable, that is, 
 

 ( )d
dt

=
y f y  (7.17) 

 
then the set is autonomous. A nonautonomous set may be transformed to an 
autonomous set by an appropriate substitution (see Example 7.1 (b)).  

If the functions f(y) are linear in terms of y, then the equations can be written in 
matrix form: 
 

 ′y = Ay  (7.18) 
 
as in Example 7.1 (a) and (b). Solutions for linear sets of ordinary differential 
equations are developed in Sec. 7.4. The methods for solution of nonlinear sets are 
discussed in Sec. 7.5. 
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A more restricted form of differential equation is 
 

 ( )d t
dt

=
y f  (7.19) 

 

where f(t) are functions of the independent variable only. Solution methods for these 
equations were developed in Chapter 6. 

The next example demonstrates the technique for converting higher-order 
linear and nonlinear differential equations to canonical form. 
 

Example 7.1  Transformation of ordinary differential equations into their 
canonical form. 
 
Statement of the problem 
 
Apply the transformations defined by Eqs. (7.15) and (7.16) to the following ordinary 
differential equations: 
 

(a) 
4 3 2

4 3 25 2 6 3 0 (Linear, autonomous)d z d z d z dz z
dt dt dt dt

+ − − + =  

 

 3 2

3 2 0
00 0

With initial conditions

at 0, 2, 1.5, 1, 0.5d z d z dzt z
dt dt dt

= = = = =
 

 

(b) 
4 3 2

4 3 25 2 6 3 (Linear, nonhomogeneous)td z d z d z dz z e
dt dt dt dt

−+ − − + =  

 

 3 2

3 2 0
00 0

With initial conditions

at 0, 2, 1.5, 1, 0.5d z d z dzt z
dt dt dt

= = = = =
 

 

(c) 
33 2

2
3 2 2 0 (Nonlinear, autonomous)d z d z dzz z

dt dt dt
 + − − = 
 

 

 

 2

2 0
00

With boundary conditions

at t 0, 1, 2, 3d z dz z
dt dt

= = = =
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Solution  
 
(a) Apply the transformation according to Eqs. (7.15) to obtain the following four 
equations: 

( )

( )

( )

( )

1
2 1

2
3 2

3
4 3

4
1 2 3 4 4

0 0.5

0 1

0 1.5

3 6 2 5 0 2

dy y y
dt
dy y y
dt

dy y y
dt
dy y y y y y
dt

= =

= =

= =

= − + + − =

 

 

This is a set of linear ordinary differential equations that can be represented in matrix 
form by Eq. (7.18), where matrix A is given by  
 

0 1 0 0
0 0 1 0
0 0 0 1
3 6 2 5

 
 
 =
 
 − −  

A  

 

The method for obtaining the solution of sets of linear ordinary differential equations 
is discussed in Sec. 7.4. 
 

(b) The presence of the term e-t on the right-hand side of this equation makes it 
nonhomogeneous. The left-hand side is identical to that of Eq. (a), so that the 
transformations of Eq. (a) are applicable. An additional transformation is needed to 
replace the e-t term. This transformation is 
 

5

5

t

t

y e
dy e y
dt

−

−

=

= − = −
 

 

Make the substitutions into Eq. (b) to obtain the following set of five linear ordinary 
differential equations: 
 

( )

( )

1
2 1

2
3 2

0 0.5

0 1

dy y y
dt
dy y y
dt

= =

= =
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( )

( )

( )

3
4 3

4
1 2 3 4 5 4

5
5 5

0 1.5

3 6 2 5 0 2

0 1

dy y y
dt
dy y y y y y y
dt

dy y y
dt

= =

= − + + − + =

= − =

 

 
The above set condenses into the matrix form of Eq. (7.18), with the matrix A given 
by 
 

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
3 6 2 5 1

0 0 0 0 1

 
 
 
 
 − − 
 − 

A =  

 
(c) This problem is nonlinear, however, similar transformations may be applied: 
 

1

1
2

2
2

32

3
3

3

z y
dydz y

dt dt
dyd z y

dt dt
dyd z

dt dt

=

= =

= =

=

 

 
Make the substitutions into Eq. (c) to obtain the set 
 

( )

( )

( )

1
2 1

2
3 2

3 23
1 2 1 3 3

0 3

0 2

2 0 1

dy y y
dt
dy y y
dt

dy y y y y y
dt

= =

= =

= + − =

 

 
As expected, this is a set of nonlinear differential equations, which cannot be 
expressed in matrix form. The methods of solution of nonlinear differential equations 
are developed in Sec. 7.5.  
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7.4 Linear Ordinary Differential Equations 
The analysis of many bioengineering systems yields mathematical models that are 
sets of linear ordinary differential equations with constant coefficients and can be 
reduced to the form 
 

 ′y = Ay  (7.18) 
 
with given initial conditions 
 

 ( )0 = 0y y  (7.20) 
 
Sets of linear ordinary differential equations with constant coefficients have closed-
form solutions that can be readily obtained from the eigenvalues and eigenvectors of 
matrix A. In order to develop this solution, let us first consider a single linear 
differential equation of the type 
 

 dy ay
dt

=  (7.21) 

 
with the given initial condition 
 

 ( ) 00y y=  (7.22) 
 
Eq. (7.21) is essentially the scalar form of the matrix set of Eq. (7.18). The solution 
of the scalar equation can be obtained by separating the variables and integrating both 
sides of the equation 
 

 

0

0

0

0

ln

at

y t

y

dy adt
y

y at
y

y e y

=

=

=

∫ ∫

 (7.23) 

 
In an analogous fashion, the matrix set can be integrated to obtain the solution 
 

 At
0y = e y  (7.24) 

 
In this case, y and y0 are vectors of the dependent variables and the initial conditions, 
respectively. The term eAt is the matrix exponential function, which can be obtained 
from Eq. (7.25): 
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3 3 4 4

2! 3! 4!
t t tt + + +

2 2
At A A Ae = I + A + …  (7.25) 

 
It can be demonstrated that Eq. (7.25) is a solution of Eq. (7.18) by differentiating it: 
 

 

( )

( )

3 3 4 4

3 2 4 3

3 3

2! 3! 4!

2! 3!

2! 3!

t

t

d d
dt dt

d t t tt
dt

t tt

t tt

y

=

 
= + + + 

 
 

= + + + 
 
 

= + + 
 

=

=

A
0

2 2

0

2
0

2 2

0

A
0

y e y

A A AI + A + y

A AA + A y

A AA I + A + y

A e y

A

…

…

…

 (7.26) 

 
The solution of the set of linear ordinary differential equations is very 

cumbersome to evaluate in the form of Eq. (7.25) because it requires the evaluation 
of the infinite series of the exponential term eAt. However, this solution can be 
modified by further algebraic manipulation to express it in terms of the eigenvalues 
and eigenvectors of the matrix A. In Chapter 4, we showed that a nonsingular matrix 
A of order n has n eigenvectors and n nonzero eigenvalues, whose definitions are 
given by 
 

 

1 1 1

2 2 2

n n n

λ
λ

λ

Ax = x
Ax = x

Ax = x
#

 (7.27) 

 
All the above eigenvectors and eigenvalues can be represented in a more compact 
form as follows: 
 

 AX = XΛ  (7.28) 
 
where the columns of matrix X are the individual eigenvectors: 
 

 [ ]1 2 3 nX = x , x , x , …, x  (7.29) 
 



7.4 LINEAR ORDINARY DIFFERENTIAL EQUATIONS 15 

 

and Λ  is a diagonal matrix with the eigenvalues of A on its diagonal: 
 

 

1

2

3

n

λ
λ

λ

λ

 
 
 
 Λ
 
 
  

0 0 … 0
0 0 … 0

= 0 0 … 0
… … … … …
0 0 0 …

 (7.30) 

 
Through a series of matrix operations, Eqs. (7.25) and (7.28) can be combined 

to express the matrix exponential as follows: 
 

 At Λt -1e = Xe X  (7.31) 
 
For a complete derivation of this equation see Constantinides and Mostoufi (1999).  

The solution of the linear differential equations can now be expressed in terms 
of eigenvalues and eigenvectors by combining Eqs. (7.24) and (7.31): 
 

 0  
Λt -1y = Xe X y  (7.32) 

 
This method will always work provided that we can find n linearly independent 
eigenvectors of the (n × n) matrix A. This is equivalent to saying that matrix X must 
be nonsingular so that its inverse may be calculated. The eigenvalues and 
eigenvectors of matrix A can be calculated using the techniques developed in Chapter 
4, or simply by applying the built-in MATLAB functions described below. 
 
MATLAB functions: MATLAB has several functions that may be used to calculate 
matrix exponentials and eigenvalues/eigenvectors: 
 
expm(A): Calculates the matrix exponential of A using a scaling and squaring 
algorithm with a Pade approximation (Burden et al., 1981). 
 
expm2(A): Calculates the matrix exponential of A via Taylor series. As a practical 
numerical method, this is often slow and inaccurate. 
 
expm3(A): Calculates the matrix exponential of A via eigenvalues and eigenvectors. 
The accuracy of this method is determined by the condition of the eigenvector 
matrix.  
 
eig(A): Calculates the eigenvalues of matrix A. 
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[X, LAMBDA] = eig(A): Produces a diagonal matrix LAMBDA of eigenvalues, 
as in Eq. (7.30), and a full matrix X whose columns are the corresponding 
eigenvectors, as in Eq. (7.29), so that Eq. (7.28) is satisfied, i.e., A*X = 
X*LAMDA  

 
Eq. (7.32) may be evaluated using some of the above MATLAB functions as follows: 

 
syms t 
A = [define the elements of matrix A] 
y0 = [define the elements of vector y0] 
[X, LAMBDA] = eig(A) 
y = X*expm(LAMBDA*t)*X^-1*y0 
 

The use of these functions is demonstrated in Example 7.2. 
 

Example 7.2  The dynamics of drug absorption. 
 

Statement of the problem 
 

The drug absorption mechanism in the body may be modeled, in its simplest form, as 
a three-step process, shown diagrammatically below: 
 
 

 
All body fluids are treated as a single unit. Unsteady state mass balances around each 
of the three steps yield three linear ordinary differential equations. The equation that 
describes the rate of change of the amount of drug at the absorption site is 
 

 ( )0 0, 0dA k A A A
dt

= − =  (7.33) 

Drug absorption site 
A = amount of drug k0 = Absorption rate  

        coefficient 

Body fluids 
B = amount of drug in the body 

Elimination processes 
E = amount of drug eliminated 

         or metabolized

k1 = Elimination rate 
coefficient
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The rate of change of the amount of drug in the body is described by 
 

 ( )0 1 , 0 0dB k A k B B
dt

= − =  (7.34) 

 
and the rate of change of the amount of drug eliminated is measured by 
 

 ( )1 , 0 0dE k B E
dt

= =  (7.35) 

 
Equations (7.33), (7.34), and (7.35) constitute a set of simultaneous first order linear 
ordinary differential equations, whose solution, A(t), B(t), E(t), correspond to the 
drug concentrations being fed, in the body, and being eliminated, respectively. It has 
been determined that values of k0 = 0.01 min-1 and k1 = 0.035 min-1 are reasonable 
values for this system. Use the analytical and numerical solution of these equations to 
calculate the time, maxt , at which the concentration of drug in the body reaches its 
maximum value, ( )max maxB B t= , and plot the profiles for all three concentrations as 
functions of time.  
 
Solution 
 
(a) The analytical solutions to the differential equations may be obtained with the 
MATLAB command dsolve: 

 
>> [A,B,E]=dsolve('DA=-k0*A','DB=k0*A-k1*B','DE=k1*B', 'A(0)=A0', 
'B(0)=0', 'E(0)=0'); 
>> A=simplify(A) 
A = 
A0*exp(-k0*t) 
>> B=simplify(B) 
B = 
k0*A0*(-exp(-k1*t)+exp(-k0*t))/(-k0+k1) 
>> E=simplify(E) 
E = 
-A0*(exp(-k0*t)*k1-k1+k0-exp(-k1*t)*k0)/(-k0+k1) 
 

From this output we conclude that the analytical solutions for A, B, and E are 
 

( )

0

0 1

0 1

0

0 0

1 0

0 1 0 0 1 0

1 0

( )

( ) ( )

( )
( )

( )

k t

k t k t

k t k t

A t A e
k AB t e e

k k

A k e k e A k k
E t

k k

−

− −

− −

=

= −
−

− − + −
=

−
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The law of conservation of mass predicts that 
 

0 0 0( ) ( ) ( )A t B t E t A B E+ + = + +  

 
This is easily verified by the MATLAB command (remember that B0 and E0 are equal 
to zero in this problem):  

 
>> simplify(A+B+E) 
ans = 
A0 

 
The value of tmax is obtained by taking the derivative of B(t), equating it to zero, and 
solving for t, using the values k0=0.01 and k1=0.035: 

 
>> dB = diff(B) 
dB = 
k0*A0*(k1*exp(-k1*t)-k0*exp(-k0*t))/(-k0+k1) 
>> tmax = solve(dB,'t') 
tmax = 
log(k1/k0)/(-k0+k1) 
>> k0=.01;k1=0.035; 
>> eval(tmax) 
ans = 
   50.1105 

 
This predicts that the maximum concentration of the drug in the body is reached at 
approximately 50 minutes after injection. 
 
(b) This problem will now be solved using the eigenvalue-eigenvector method of Eq. 
(7.32), and the matrix exponential method of Eq. (7.24). The following MATLAB 
script was written for this purpose. This program is called example7_2b.m and is 
included in the biosystems software that accompanies this book: 

 
% example7_2b.m - Solution of the drug absorption problem, 
% both symbolically and numerically, using the eigenvalue-  
% eigenvector method and the matrix exponential method.%  
 
clc; clear all; 
syms c t 
% Constants 
k0=0.01; k1=0.035;  
disp('Initial concentrations:') 
c0=[1; 0; 0] 
disp(' '); disp('Matrix of coefficients:') 
K=[-k0 0 0; k0 -k1 0; 0 k1 0] 
% Eigenvalue-eigenvector method 
[X,lambda]=eig(K); 
disp(' '), disp('Eigenvectors:'),   X 
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disp(' '), disp('Eigenvalues:'),   lambda 
disp(' '), disp('Inverse of X:'),   X^-1 
disp(' ');  
disp('Concentrations using eigenvalue-eigenvector method:') 
c=X*expm(lambda*t)*X^-1*c0 
 
% Evaluate concentration profiles  
t=[0:100]; c=eval(c); 
 
% Find the maximum concentration and time of drug in the body 
[Cmax,tm]=max(c(2,:)); 
fprintf('\nMaximum concentration in the body = %6.4f at tmax = 
%4.2f min.\n',Cmax, tm-1) 
 
% Plot the results 
clf; figure(1); h=plot(t,c(1,:), t,c(2,:),':',t,c(3,:),'--'); 
title('Figure E7.2a: Eigenvalue-Eigenvector Solution') 
ylabel('Concentration'); xlabel('Time, min'); 
legend('C_A','C_B','C_C') 
 
% Matrix exponential method 
disp(' '); disp('Concentrations using matrix exponential method:') 
syms t 
c=expm(K*t)*c0 
t=[0:100]; c=eval(c); 
 
% Plot the results 
figure(2); h=plot(t,c(1,:), t,c(2,:),':',t,c(3,:),'--'); 
title('Figure E7.2b: Matrix Exponential Solution') 
xlabel('Time, min'); ylabel('Concentration'); 
legend('C_A','C_B','C_C') 

 
Output of results 

 
Initial concentrations: 
c0 = 
     1 
     0 
     0 
  
Matrix of coefficients: 
K = 
   -0.0100         0         0 
    0.0100   -0.0350         0 
         0    0.0350         0 
  
Eigenvectors: 
X = 
         0         0    0.5661 
         0    0.7071    0.2265 
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    1.0000   -0.7071   -0.7926 
  
Eigenvalues: 
lambda = 
         0         0         0 
         0   -0.0350         0 
         0         0   -0.0100 
 
Inverse of X: 
ans = 
    1.0000    1.0000    1.0000 
   -0.5657    1.4142         0 
    1.7664         0         0 
 
Concentrations using eigenvalue-eigenvector method: 
c = 
[                         exp(-1/100*t)] 
[  -2/5*exp(-7/200*t)+2/5*exp(-1/100*t)] 
[ 1+2/5*exp(-7/200*t)-7/5*exp(-1/100*t)] 
Maximum concentration in the body = 0.1731 at tmax = 50.00 min. 
 
Concentrations using matrix exponential method: 
c = 
[                         exp(-1/100*t)] 
[  -2/5*exp(-7/200*t)+2/5*exp(-1/100*t)] 
[ 1+2/5*exp(-7/200*t)-7/5*exp(-1/100*t)] 
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Discussion of results 
As expected, the results from the two methods are identical, and they also confirm 
the results of the analytical method. The values of tmax and Bmax are 50 min and 
0.1731, respectively. 

 

7.5 Nonlinear Ordinary Differential Equations 
In this section, we develop numerical solutions for a set of ordinary differential 
equations in their canonical form: 
 

 ( ),d t
dt

=
y f y  (7.11) 

 

with the vector of initial conditions given by 
 

 ( )0t = 0y y  (7.12) 
 

In order to be able to illustrate these methods graphically, we treat y as a single 
variable rather than as a vector of variables. The formulas developed for the solution 
of a single differential equation are readily expandable to those for a set of 
differential equations, which must be solved simultaneously. This concept is 
demonstrated in Sec. 7.5.4. 

We begin the development of these methods by first rearranging Eq. (7.11) and 
integrating both sides between the limits of ti ≤ t ≤ ti + 1 and yi  ≤ y ≤ yi +1: 
 

 ( )1 1 ,i i

i i

y t

y t
dy f t y dt+ +=∫ ∫  (7.36) 

 

The left side integrates readily to obtain 
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 ( )1
1 ,i

i
i i

t

t
y y f t y dt+

+ − = ∫  (7.37) 
 

One method for integrating Eq. (7.37) is to take the left-hand side of this equation 
and use finite differences for its approximation. This technique works directly with 
the tangential trajectories of the dependent variable y rather than with the areas under 
the function f(t, y). This is the technique applied in Secs. 7.5.1 and 7.5.2. 

In Chapter 6, we developed the integration formulas by first replacing the 
function f(t) with an interpolating polynomial and then evaluating the integral of 
f(t)dt between the appropriate limits. A similar technique could be applied here to 
integrate the right-hand side of Eq. (7.37). This approach is followed in Sec. 7.5.3. 
 

MATLAB functions: There are several functions in MATLAB that may be used for 
the integration of sets of ordinary differential equations of the form of (7.42). These 
solvers, along with their method of solution, are listed in Table 7.1. Any one of the 
following statements may be used to call an ODE solver 
 

[T, Y] = solver(@name_func, tspan, y0) 
[T, Y] = solver(@name_func, tspan, y0, options) 
[T, Y] = solver(@name_func, tspan, y0, options, p1, p2,...) 

 

where "solver" is one of ode23, ode45, ode113, ode15s, ode23s, ode23t, or 
ode23tb.  
 
The arguments that are passed to the solver are:  
 
name_func: The name of the m-file containing the function that evaluates the right-
hand side of the differential equations. Function name_func(t, y) must return a 
column vector corresponding to f(t, y).  
 
tspan: A vector specifying the interval of integration, [t0,tf]. To obtain solutions 
at specific points of t (all increasing or all decreasing), use tspan=[t0,t1,...,tf], 
or to obtain solutions at equally spaced intervals, specify tspan = [t0:delt:tf], 
where delt is the user’s choice of spacing between points where output will be 
given. 
 
y0: The vector containing the initial conditions of the differential equations. 
 
options: Optional integration argument created using the odeset function. See 
odeset for details. 
 
p1, p2, ...: Optional parameters that the solver passes to name_func and all the 
functions specified in options. 
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[T, Y]: The solver returns the values of independent and dependent variables in the 
vectors T, Y, respectively. The vector of independent variable is not equally spaced, 
because the integrating solver controls the step size, unless the user has specified the 
tspan, as described above.  
 
For example: 

 
[T,Y] = ode45(@test1_func,[0:10],[1,0],[],0.1, 0.02, 0.1) 
 
function dydt = test1_func(x, y, p1, p2, p3) 
dydt = [p1*y(1)-p2*y(2)^2; p3*exp(y(1))]; 
 

This function should return the value(s) of the derivative(s) as a column vector. The 
first input to this function has to be the independent variable, x, even if it is not 
explicitly used in the definition of the derivative (autonomous equations). The second 
input argument to the function is the vector of dependent variables, y. The additional 
parameters, p1, p2, p3, are the last three values in the ode45 call, (…, 0.1, 0.02, 
0.1), which get passed on to the test1_func function. 
 
An alternate way of using these functions is: 
 

[T,Y] = ode45('test2_func',[0:10],[1,0],[],0.1, 0.02, 0.1) 
function dydt = test2_func(x, y, flag, p1, p2, p3) 
dydt = [p1*y(1)-p2*y(2)^2; p3*exp(y(1))];  

 
It should be noted that in this case the third input to test2_func has to be an empty 
variable, flag, and the additional parameters are introduced starting with the fourth 
argument. 

Table 7.1  Ordinary differential equation solvers in MATLAB 

Solver Method of solution 

ode23 Runge-Kutta lower-order (2nd order, 3stages) 

ode45 Runge-Kutta higher-order (4th order, 5stages) 

ode113 Adams-Bashforth-Moulton of varying order (1-13) 
ode15s Implicit, multistep of varying order (1-5), for stiff differential 

equations 

ode23s Modified Rosenbrock of order 2, for stiff differential equations 
ode23t Implementation of the trapezoidal rule using a "free" interpolant, 

for moderately stiff differential equations 
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ode23tb Implementation of an implicit Runge-Kutta formula with a first 
stage that is a trapezoidal rule step and a second stage that is a 
backward differentiation formula of order two, for stiff 
differential equations 

 

7.5.1 The Euler and modified Euler methods 
One of the earliest techniques developed for the solution of ordinary differential 
equations is the Euler method. This is simply obtained by recognizing that the left 
side of Eq. (7.37) is the first forward finite difference of y at position i: 
 

 1i i iy y y+ − = ∆  (7.38) 
 

which, when rearranged, gives a “forward marching” formula for evaluating y: 
 

 1i i iy y y+ = + ∆  (7.39) 
 

The forward difference term iy∆  is obtained from Eq. (???) applied to y at position i: 
 

 
2 2 3 3

2 6
i i

i i
h D y h D yy hDy∆ = + + +…  (7.40) 

In the Euler method, the above series is truncated after the first term to obtain 
 

 ( )2
i iy hDy O h∆ = +  (7.41) 

 

The combination of Eqs. (7.39) and (7.41) gives the explicit Euler formula for 
integrating differential equations 
 

 ( )2
1i i iy y hDy O h+ = + +  (7.42) 

 

The derivative Dyi is replaced by its equivalent y'i or f(ti, yi) to give the more 
commonly used form of the explicit Euler method1 
 

 ( ) ( )2
1 ,i i i iy y hf t y O h+ = + +  (7.43) 

 

The Euler method, Eq. (7.43), simply states that the next value of y is obtained from 
the previous value by moving a step of width h in the tangential direction of y. This is 
demonstrated graphically in Fig. 7.4a. This Euler formula is rather inaccurate 

                                                      
1 From here on the term iy′  and ( ,  ) i if t y will be used interchangeably. The student should remember that these are 
equal to each other through the differential equation (7.42). 
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because it has a truncation error of only O(h2). If h is large the trajectory of y can 
quickly deviate from its true value, as demonstrated in Fig. 7.4b. 
 

 

Figure 7.4  The explicit Euler method of integration. (a) Single step. (b) Several steps. 
 

The accuracy of the Euler method can be improved by utilizing a combination 
of forward and backward differences. Note that the first forward difference of y at i is 
equal to the first backward difference of y at (i + 1): 
 

 1 1i i i iy y y y+ +∆ = − = ∇  (7.44) 
 
Therefore, the forward marching formula in terms of backward differences is 
 

 1 1i i iy y y+ += +∇  (7.45) 
 

The backward difference term 1iy +∇  is obtained from Eq. (???) applied to y at 
position (i + 1): 
 

 
2 2 3 3

1 1
1 2 6

i i
i i

h D y h D yy hDy + +
+∇ = − + −…  (7.46) 

 
Combining Eqs. (7.45) and (7.46), we obtain: 
 

 ( ) ( )2
1 1 1,i i i iy y hf t y O h+ + += + +  (7.47) 

 
This is called the implicit Euler formula (or backward Euler), because it involves the 
calculation of function f at an unknown value of yi + 1. Eq. (7.47) can be viewed as 
taking a step forward from position i to (i + 1) in a gradient direction that must be 
evaluated at (i + 1). 
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Implicit equations cannot be solved individually but must be set up as sets of 
simultaneous algebraic equations. When these sets are linear, the problem can be 
solved by the application of the Gauss elimination methods developed in Chapter 4. 
If the set consists of nonlinear equations, the problem is much more difficult and 
must be solved using Newton’s method for simultaneous nonlinear algebraic 
equations developed in Chapter 5. 

In the case of the Euler methods, the problem can be simplified by first 
applying the explicit method to predict a value yi + 1: 
 

 ( ) ( ) ( )2
1 Predicted

,i i i iy y hf t y O h+ = + +  (7.48) 
 
and then using this predicted value in the implicit method to get a corrected value: 
 

 ( ) ( )( ) ( )2
1 1 1Corrected Pr edicted

,i i i iy y hf t y O h+ + += + +  (7.49) 
 
This combination of steps is known as the Euler predictor-corrector (or modified 
Euler) method. Correction by Eq. (7.49) may be applied more than once until the 
corrected value converges, that is, the difference between the two consecutive 
corrected values becomes less than the convergence criterion. However, not much 
more accuracy is achieved after the second application of the corrector. 

The explicit, as well as the implicit, forms of the Euler methods have error of 
order (h2). However, when used in combination, as predictor-corrector, their accuracy 
is enhanced, yielding an error of order (h3). This conclusion can be reached by adding 
Eqs. (7.39) and (7.45): 
 

 ( )1 12i i i i
hy y y y+ += + ∆ +∇  (7.50) 

 
and utilizing (7.40) and (7.46) to obtain 
 

 ( ) ( ) ( )3
1 1 1, ,

2i i i i i i
hy y f t y f t y O h+ + += +  +  +   (7.51) 

 
The terms of order (h2) cancel out because they have opposite sign, thus giving a 
formula of higher accuracy. Eq. (7.51) is essentially the same as the trapezoidal rule 
(Eq. (???)), the only difference is in the way the function is evaluated at (ti + 1, yi + 1).  
 

It has been shown (Finlayson, 1980) that the Euler implicit formula is more 
stable than the explicit one. The stability of these methods is discussed in Sec. 7.7. 

It can be seen by writing Eq. (7.51) in the form 
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 ( ) ( ) ( )3
1 1 1, ,

2 2i i i i i i
h hy y f t y f t y O h+ + += + + +  (7.52) 

 
that this Euler method uses the weighted trajectories of the function y evaluated at 
two positions that are located one full step of width h apart and weighted equally. In 
this form, Eq. (7.52) is also known as the Crank-Nicolson method. 

Eq. (7.52) can be written in a more general form as 
 

 1 1 1 2 2i iy y w k w k+ = + +  (7.53) 
 
where, in this case: 
 

 ( )1 ,i ik hf t y=  (7.54) 
 

 ( )2 2 21 1,i ik hf t c h y a k= + +  (7.55) 
 
The choice of the weighting factors, w1 and w2, and the positions i and (i + 1) at 
which to evaluate the trajectories is dictated by the accuracy required of the 
integration formula, that is, by the number of terms retained in the infinite series 
expansion. 

This concept forms the basis for a whole series of integration formulas, with 
increasingly higher accuracies, for ordinary differential equations. These are 
discussed in the following section. 
 

7.5.2 The Runge-Kutta methods 
The most widely used methods of integration for ordinary differential equations are 
the series of methods called Runge-Kutta second, third, fourth, and fifth order, plus a 
number of other techniques that are variations on the Runge-Kutta theme. These 
methods are based on the concept of weighted trajectories formulated at the end of 
Sec. 7.5.1. In a more general fashion, the forward marching integration formula for 
the differential equation (7.11) is given by the recurrence equation 
 

 1 1 1 2 2 3 3i i m my y w k w k w k w k+ = + + + + +…  (7.56) 
 
where each of the trajectories ki are evaluated by 
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( )
( )
( )

( )

1

2 2 21 1

3 3 31 1 32 2

3 1 1 2 2 , 1 1

,

,

,

,

i i

i i

i i

i m i m m m m m

k hf t y

k hf t c h y a k

k hf x c h y a k a k

k hf x c h y a k a k a k− −

=

= + +

= + + +

= + + + + +

#
…

 (7.57) 

 
These equations can be written in a compact form as 
 

 1
1

m

i i i i
i

y y w k+
=

= +∑  (7.58) 

 

 
1

1
,

j

j i j i jl l
l

k hf x c h y a k
−

=

 
= + + 

 
∑  (7.59) 

 
where c1 = 0 and a1j = 0. The value of m, which determines the complexity and 
accuracy of the method, is set when (m + 1) terms are retained in the infinite series 
expansion of yi + 1 
 

 
2 3

1 2! 3!
i i

i i i
h y h yy y hy+

′′ ′′′
′= + + + +…  (7.60) 

or 

 
2 2 3 3

1 2! 3!
i i

i i i
h D y h D yy y hDy+ = + + + +…  (7.61) 

The procedure for deriving the Runge-Kutta methods can be divided into five 
steps that are demonstrated below in the derivation of the second-order Runge-Kutta 
formulas. 
 
Step 1:  Choose the value of m, which fixes the accuracy of the formula to be 
obtained. For second-order Runge-Kutta, m = 2. Truncate the series (7.61) after the 
(m + 1) term: 
 

 ( )
2 2

3
1 2!

i
i i i

h D yy y hDy O h+ = + + +  (7.62) 

 
Step 2:  Replace each derivative of y in Eq. (7.62) by its equivalent in f, remembering 
that f is a function of both t and y(t): 
 

   i iDy f=  (7.63) 
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( )

2
i

i

t y i

df f dt f dyD y
dt t dt y dt

f f f

 ∂ ∂
= = + ∂ ∂ 

= +

 (7.64) 

 
Combine Eqs. (7.62) to (7.64) and regroup the terms: 
 

 ( )
2 2

3
1 2 2i ii i i t i y

h hy y hf f f f O h+ = + + + +  (7.65) 

 
Step 3:  Write Eq. (7.58) with m terms in the summation: 
 

 1 1 1 2 2i iy y w k w k+ = + +  (7.66) 
where 
 

 ( )1 ,i ik hf t y=  (7.67) 
 

 ( )2 2 21 1,i ik hf t c h y a k= + +  (7.68) 
 
Step 4:  Expand the f function in Taylor series: 
 

 ( ) ( )2
2 21 1 2 21,

i ii i i t y if t c h y a k f c hf a hf f O h+ + = + + +  (7.69) 
 
Combine Eqs. (7.66) to (7.69) and regroup the terms: 
 

 ( ) ( ) ( ) ( )2 2 3
1 1 2 2 2 2 21i ii i i t i yy y w w hf w c h f w a h f f O h+ = + + + + +  (7.70) 

Step 5:  In order for Eqs. (7.65) and (7.70) to be identical, the coefficients of the 
corresponding terms must be equal to one another. This results in a set of 
simultaneous nonlinear algebraic equations in the unknown constants wj, cj, and ajl . 
For the second-order Runge-Kutta method, there are three equations and four 
unknowns: 
 

 

1 2

2 2

2 21

1
1
2
1
2

w w

w c

w a

+ =

=

=

 (7.71) 

It turns out that there are always more unknowns than equations. The degree of 
freedom allows us to choose some of the parameters. For second-order Runge-Kutta, 
there is one degree of freedom. For third- and fourth-order Runge-Kutta, there are 
two degrees of freedom. For fifth-order Runge-Kutta, there are at least five degrees 
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of freedom. This freedom of choice of parameters gives rise to a very large number 
of different forms of the Runge-Kutta formulas. It is usually desirable to first choose 
the values of the cj constants, thus fixing the positions along the independent variable, 
where the functions 
 

 
1

1
,

j

i j i jl l
l

f t c h y a k
−

=

 
+ + 

 
∑  (7.72) 

 

are to be evaluated. An important consideration in choosing the free parameters is to 
minimize the truncation error of the calculation.  

For the second-order Runge-Kutta method, which we are currently deriving, let 
us choose c2 = 1. The rest of the parameters are evaluated from Eqs. (7.71): 
 

 1 2 21
1 1
2

w w a= = =  (7.73) 
 

With this set of parameters, the second-order Runge-Kutta formula is 
 

 

( )

( )
( )

( )
1 1 2

3
1

2 1

1
2
,

,

i i

i i

i i

y y k k

k hf t y O h

k hf t h y k

+
= + + 
= 
= + + 


 (7.74) 

 

This method is essentially identical to the Crank-Nicolson method (see Eq. 
(7.52)). Higher-order Runge-Kutta formulas are derived in an analogous manner. 
Several of these are listed in Table 7.2.  The fourth-order Runge-Kutta, which has an 

Table 7.2  Summary of the Runge-Kutta integration formulas 

Second order Runge-Kutta method (same as Crank-Nicolson method) 

                                         

( ) ( )

( )

( )

3
1 1 2

1

2 1

1
2

,

,

i i

i i

i i

y y k k O h

k hf t y

k hf t h y k

+ = + + +

=

= + +

                               (7.74) 

Third order Runge-Kutta method 
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( ) ( )

( )

( )

4
1 1 2 3

1

1
2

3 2 1

1 4
6

,

,
2 2

, 2

i i

i i

i i

i i

y y k k k O h

k hf t y

khk hf t y

k hf t h y k k

+ = + + + +

=

 = + + 
 

= + + −

 (7.75) 

Fourth order Runge-Kutta method 

 

( ) ( )

( )

( )

5
1 1 2 3 4

1

1
2

2
3

4 3

1 2 2
6

,

,
2 2

,
2 2

,

i i

i i

i i

i i

i i

y y k k k k O h

k hf t y

khk hf t y

khk hf t y

k hf t h y k

+ = + + + + +

=

 = + + 
 

 = + + 
 

= + +

 (7.76) 

 
Table 7.2  Summary of the Runge-Kutta integration formulas (continued) 

Fifth order Runge-Kutta method 
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( ) ( )
( )

6
1 1 3 4 5 6

1

1
2

1 2
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3
4

32 4
5

3 51 2 4
6

1 7 32 12 32 7
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,
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2 2
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4 16 16
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4 16 16 16
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Runge-Kutta-Felfberg method 
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error of O(h5), is probably the most widely used numerical integration method for 
ordinary differential equations. Implicit Runge-Kutta methods, that offer wider 
regions of stability than the explicit methods, have been developed and are 
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thoroughly discussed by Hairer (Hairer et al., 1980), (Hairer and Wanner, 1991, 
1991). These methods, such as Radau5 that uses an implicit Runge-Kutta method of 
order 5 with step size control, are recommended for the solution of stiff differential 
equations. Discussion of these methods is outside the scope of this book. The 
interested user may read the aforementioned references for more details. 
 

7.5.3 The Adams and Adams-Moulton methods 
The Runge-Kutta family of integration techniques, developed above, are called 
single-step methods. The value of  yi + 1 is obtained from yi and the trajectories of y 
within the single step from (ti, yi) to (ti + 1, yi + 1). This procedure marches forward, 
taking single step of width h, over the entire interval of integration. These methods 
are very suitable for solving initial-value problems because they are self-starting 
from a given initial point of integration. 

Other categories of integration techniques, called multiple-step methods, have 
been developed. These compute the value of yi+1 utilizing several previously 
unknown, or calculated, values of y (yi, yi - 1, yi - 2, etc.) as the base points. For this 
reason, the multiple-step methods are non-self-starting. For the solution of initial-
value problems, where only y0 is known, the multiple-step methods must be “primed” 
by first utilizing a self-starting procedure to obtain the requisite number of base 
points. There are several multiple-step methods. Two of these, the Adams and 
Adams-Moulton methods, are covered in this section. 

Once again, let us start by evaluating yi+1 by integrating the derivative function 
over the interval [ti, ti + 1] 
 

 ( )1
1 ,i

i
i i

t

t
y y f t y dt+

+ − = ∫  (7.37) 
 
In order to evaluate the right-hand side of Eq. (7.37), f(t, y) may be approximated by 
an nth-degree polynomial. In the Adams method, a quadratic polynomial is passed 
through the three past points, that is, (ti - 2, yi - 2), (ti - 1, yi - 1), and (ti, yi), and is used to 
extrapolate the value of ( )1 1,i if t y+ + . If we choose a uniform step size, a second-
degree backward Gregory-Newton interpolating polynomial may be applied to this 
problem, and Eq. (7.37) becomes 
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t t t t t t
y y f f f dt R t dt

h h
+ ++

+

 − − − 
= + − ∇ + ∇ + 

 
∫ ∫  (7.79) 

where ( ),i i if f t y= , and it may be considered a function of t only. Noting that 

( )1i it t h+ − = , Eq. (7.79) reduces to 
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 ( )2 4
1

1 5
2 12i i i i iy y h f f f O h+

 = + + ∇ + ∇ + 
 

 (7.80) 

 
This equation would be easier to use by expanding the backward differences in terms 
of the function values given in Table ???. Replacing the backward differences, 
followed by further rearrangements, results in the following formula known as the 
Adams method for solution of the ordinary differential equations: 
 

 ( ) ( ) ( ) ( )4
1 1 1 2 223 , 16 , 5 ,

12i i i i i i i i
hy y f t y f t y f t y O h+ − − − −= +  − +  +   (7.81) 

 
Eq. (7.81) shows that prior to evaluating yi + 1, the values of the function at 

three points before that have to be known. Because in an initial-value problem only 
the value of the function at the start of the solution interval is known, two additional 
succeeding values should be calculated by a single-step method, such as Runge-
Kutta. Solution of the ordinary differential equation from the fourth point may then 
be continued with Eq. (7.81). 

In order to derive the Adams-Moulton technique, we repeat the same procedure 
by applying a third-degree Gregory-Newton interpolating polynomial (using four past 
points) instead of a second-degree polynomial to approximate f(t, y) in Eq. (7.37). 
This procedure results in the prediction of yi + 1 
 

( ) ( ) ( ) ( ) ( ) ( )5
1 1 1 2 2 3 3Pr

55 , 59 , 37 , 9 ,
24i i i i i i i i i i
hy y f t y f t y f t y f t y O h+ − − − − − −= +  − + −  + 

(7.82) 
 

In the Adams-Moulton method we do not stop here, but we further correct yi + 1 before 
moving to the next step. The value of yi + 1 calculated from Eq. (7.82) is a good 
approximation of the dependent variable at position (i + 1); therefore, almost the 
correct value of f(ti + 1, yi + 1) may be evaluated from f(ti + 1, (yi + 1)Pr) at this stage. We 
now interpolate the function f(t, y), using a cubic Gregory-Newton backward 
interpolating polynomial over the range from ti - 2 to ti + 1 and calculate the corrected 
value of yi + 1 by the integral of Eq. (7.37): 
 

( ) ( )( ) ( ) ( ) ( ) ( )5
1 1 1 1 1 2 2Cor Pr

9 , 19 , 5 , ,
24i i i i i i i i i i
hy y f t y f t y f t y f t y O h+ + + − − − −
 = + + − + + 

  (7.83) 
 

Eqs. (7.82) and (7.83) should be used as predictor and corrector, respectively. 
Correction by Eq. (7.83) may be applied more than once until the corrected value 
converges; that is, the difference between the two consecutive corrected values 
becomes less than the convergence criterion. However, two applications of the 



7.5 NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 35 

 

corrector is probably optimum in terms of computer time and the accuracy gained. 
Once again, solution of the ordinary differential equation by this technique may start 
from the fifth point; therefore, some other technique should be applied at the 
beginning of the solution to evaluate y1 to y3. 
 

7.5.4 Simultaneous differential equations 
It was mentioned at the beginning of Sec. 7.5 that the methods of solution of a single 
differential equation are readily adaptable for solving sets of simultaneous 
differential equations. To illustrate this, we use the set of n simultaneous ordinary 
differential equations in their canonical form: 
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 (7.84) 

 
and expand, for example, the fourth-order Runge-Kutta formulas to 
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 (7.85) 

 
This method is programmable using nested loops. In MATLAB, the values of k 

and yi can be put in vectors, thus easily evaluating Eq. (7.85) in matrix form. 
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7.6 Steady State Solutions and Stability Analysis 
Before we attempt to obtain the numerical solution of a set of differential equations, 
it is strongly recommended that we examine the steady state solution of the problem. 
The steady state is reached when variations with respect to time become zero. To 
accomplish this mathematically, we force the time-derivatives to become zero and 
solve the resulting algebraic equations. It is likely that the set of equations will have 
multiple steady states, including the trivial case, where all variables are zero. We 
demonstrate these concepts by analyzing a set of two simultaneous nonlinear 
ordinary differential equations of the form 
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At steady state the derivatives are set to zero to obtain 
 

 ( ) ( )* * * *
1 1 2 2 1 2, 0 , 0f N N f N N= =  (7.87) 

 

where * *
1 2 and N N  are the steady state values of the dependent variables. We also 

define the small deviations (perturbations), 1 2and N N , away from the steady state, so 
that  
 * *

1 1 1 2 2 2N N N N N N= + = +  (7.88) 
 

By direct substitution of Eqs. (7.88) into Eqs. (7.86), we obtain 
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 (7.89) 

 

The left-hand sides are expanded into the corresponding two derivatives, and the 
right-hand sides into Taylor series: 
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 (7.90) 
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We apply the condition of steady state (time-derivatives and functions at steady state 
are zero), and assume that the perturbations around the steady state are small. The 
latter assumption enables us to drop the higher order terms that involve 

2 2 3 3
1 2 1 2, , , , etc.N N N N , thus essentially linearizing the equations that describe the 

perturbation around the steady state. Eqs. (7.90) simplify to: 
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 (7.91) 

 
The matrix of partial derivatives is the Jacobian of the original set of differential 
equations evaluated near the neighborhood of the steady state: 
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It should be obvious that Eq. (7.91) is a set of simultaneous linear ordinary 

differential equations of the form  
 
 ′ *Ν = J Ν  (7.93) 
 
It was demonstrated in Sec. 7.4 that the solution of a set of linear ordinary differential 
equations of the form of Eq. (7.18) can be obtained from the eigenvalues of the 
matrix A. Similarly, the solution of Eq. (7.93) will depend on the eigenvalues of the 
Jacobian matrix. The eigenvalues could be real positive, real negative, and/or 
complex with positive or negative real parts.  

Let us show the eigenvalues in their most general form 
 
 1,2, ,k k ka b i k nλ = ± = …  (7.94) 
 
where ka  are the real parts, kb  are the coefficients of the imaginary parts of the 
eigenvalues, and 1i = − ; remembering that complex eigenvalues appear as 
conjugate pairs. We now summarize all possible cases and their stability analysis in 
Table 7.3, and show time profiles and phase plots of (N1 vs. N2) for the corresponding 
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cases in Fig. 7.5. Negative eigenvalues result in stable solutions (Cases 1 & 2), while 
positive eigenvalues cause instability (Cases 3 & 4). The presence of complex 
eigenvalues introduces oscillatory behavior in the solutions (Cases 2, 4, & 6). If both 
positive and negative real values exist, the solution is a metastable saddle point (Case 
5). Finally, if the eigenvalues are complex and the real parts are zero, the results are 
neutrally stable oscillatory (Case 6).  

Similar analysis applies to sets of equations that contain n dependent variables 
(where n > 2). In that case, the Jacobian is of size (n × n), and phase plots of pairs of 
variables are constructed. Three-dimensional phase plots may also be constructed, if 
their use is deemed instructive. 
 

Table 7.3  Stability Analysis Based on the Eigenvalues of the Jacobian Matrix. 

Case ka  kb  Stability analysis 

1 All negative Zero Stable, nonoscillatory 

2 All negative Nonzero Stable, oscillatory 

3 All positive Zero Unstable, nonoscillatory 

4 All positive Nonzero Unstable, oscillatory 

5 Positive and negative Zero Metastable, saddle point 

6  Zero Nonzero Neutrally stable, oscillatory 
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Case 1 - Stable node:   no oscillations
               Eigenvalues:  negative real parts
                                      zero complex parts
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Case 2 - Stable focus:  stable damped oscillations
               Eigenvalues:  negative real parts
                                      nonzero complex parts
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Case 3 - Unstable node:  no oscillations
               Eigenvalues:     positive real parts
                                         zero complex parts
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Figure 7.5  Time profiles and phase plots for stability analysis. 
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Case 4 - Unstable focus:  unstable oscillations
               Eigenvalues:  positive real parts
                                     nonzero complex parts
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Case 5 - Metastable saddle point
               Eigenvalues:  one positive real 
                                     one negative real 
                                     zero complex parts
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Case 6 - Neutrally stable oscillations
               Eigenvalues:  zero real parts
                                     nonzero complex parts
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Time profiles Phase plot
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N2

 
Figure 7.5 (cont.)  Time profiles and phase plots for stability analysis. 
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Example 7.3  Solution of enzyme catalysis reactions. 

 
Statement of the problem 
 
An enzyme, E, catalyzes the conversion of a substrate, S, to form a product, P, via the 
formation of an intermediate complex, ES, as shown below: 
 

-1

1 2             
k k
k

S E ES P E→+ → +←  
 
Apply the law of mass action to this simple enzymatic reaction to obtain the 
differential equations that describe the dynamics of the reaction. Use the following 
values of initial conditions and rate constants to integrate the differential equations 
and plot the time profiles for all variables in the model: 
 

Initial Conditions: [S]0 = 1.0 µM [E]0 = 0.1 µM [ES]0 = 0 [P]0 = 0 
 

Constants: k1 = 0.1 (µM)-1s-1 k-1 = 0.1 s-1 k2 = 0.3 s-1 
 
Determine the time (in seconds) it takes for the reaction to reach 99.9% conversion of 
the substrate. 
 
Solution 
 
The law of mass action states that the rate of molecular collision of two chemical 
species in a dilute gas or solution is proportional to the product of the two 
concentrations. Based on this, the model equations are: 
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We integrate the equations for the period 0 to 1000 seconds using the program listed 
below as example7_3.m and the function enzyme_kinetics_equations.m: 
 
 

% example7_3.m - Integration of simple enzyme kinetics model 
% using MATLAB function ode45.m to integrate the differential  
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% equations that are contained in the file:  
% enzyme_kinetics_equations.m 
 
clc; clear all;  
% Set the initial conditions, constants, & time span 
yzero=[1, 0.1, 0, 0]; 
k1=0.1; k_1=0.1; k2=0.3; 
tspan=[0 1000]; 
 
% Integrate the equations 
[t,y]=ode45('enzyme_kinetics_equations',tspan,yzero,[],k1,k_1,k2); 
n=length(t); 
 
% Print out the results 
n=length(y); 
for i=1:n 
    if y(i,1)<=0.001*yzero(1) 
    fprintf('Reaction is 99.9 percent complete at time = %4.0f 
seconds',t(i)); 
    break 
    end  
end 
% Plot concentration profiles 
clf; figure(1); plot(t,y(:,1),'-',t,y(:,4),'-.') 
title('Figure E7.3a: Concentration Profiles of Substrate and 
Product', 'FontSize',12) 
xlabel('Time, s','FontSize',12);  
ylabel('Concentration, \muM', 'FontSize',12);  
legend('S','P'); 
figure(2); plot(t,y(:,2),'-',t,y(:,3),'-.') 
title('Figure E7.3b: Concentration Profiles of Enzyme and 
Complex', 'FontSize',12) 
xlabel('Time, s','FontSize',12);  
ylabel('Concentration, \muM', 'FontSize',12); 
legend('E','ES') 

 
Function that contains equations (enzyme_kinetics_equations.m) 
 

function dy=enzyme_kinetics_equations(t,y,flag,k1,k_1,k2) 
% enzyme_kinetics_equations.m 
% Contains the equations for example7_3 
 
% Variables 
S=y(1); E=y(2); ES=y(3);  
% Equations 
dy=[-k1*S*E+k_1*ES 
    -k1*S*E+k_1*ES+k2*ES 
    k1*S*E-k_1*ES-k2*ES 
    k2*ES]; 
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Results 
 

The plots show that the enzyme complex, [ES], forms quickly within the first few 
seconds of the reaction. The substrate gets converted steadily to product. The 
program determines that the reaction reaches 99.9% conversion at 960 seconds. By 
this time, the enzyme complex disappears and the enzyme returns back to its original 
free state. 
 
 

Reaction is 99.9 percent complete at time = 960 seconds 
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7.7 Numerical Stability and Error Propagation 
Topics of paramount importance in the numerical integration of differential equations 
are the error propagation, stability, and convergence of these solutions. Two types of 
stability considerations enter in the solution of ordinary differential equations: 
inherent stability (or instability) and numerical stability (or instability). Inherent 
stability is determined by the mathematical formulation of the problem and is 
dependent on the eigenvalues of the Jacobian matrix of the differential equations, as 
was shown in Sec. 7.6. On the other hand, numerical stability is a function of the 
error propagation in the numerical integration method. The behavior of error 
propagation depends on the values of the characteristic roots of the difference 
equations that yield the numerical solution. In this section, we concern ourselves with 
numerical stability considerations as they apply to the numerical integration of 
ordinary differential equations. 

There are three types of errors present in the application of numerical 
integration methods. These are the truncation error, the roundoff error, and the 
propagation error. The truncation error is a function of the number of terms that are 
retained in the approximation of the solution from the infinite series expansion. The 
truncation error may be reduced by retaining a larger number of terms in the series or 
by reducing the step size of integration h. The plethora of available numerical 
methods of integration of ordinary differential equations provides a choice of 
increasingly higher accuracy (lower truncation error), at an escalating cost in the 
number of arithmetic operations to be performed, and with the concomitant 
accumulation of roundoff errors. 

Computers carry numbers using a finite number of significant figures. A 
roundoff error is introduced in the calculation when the computer rounds up or down 
(or just chops) the number to n significant figures. Roundoff errors may be reduced 
significantly by the use of double precision. However, even a very small roundoff 
error may affect the accuracy of the solution, especially in numerical integration 
methods that march forward (or backward) for hundreds or thousands of steps, each 
step being performed using rounded numbers. 

The truncation and roundoff errors in numerical integration accumulate and 
propagate, creating the propagation error, which, in some cases, may grow in 
exponential or oscillatory pattern, thus causing the calculated solution to deviate 
drastically from the correct solution. 

Fig. 7.6 illustrates the propagation of error in a numerical integration method. 
Starting with a known initial condition y0, the method calculates the value y1, which 
contains the truncation error for this step and a small roundoff error introduced by the 
computer. The error has been magnified in order to illustrate it more clearly. The next 
step starts with y1 as the initial point and calculates y2. But because y1 already  
contains truncation and roundoff errors, the value obtained for y2 contains these 
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errors propagated, in addition to the new truncation and roundoff errors from the 
second step. The same process occurs in subsequent steps. 

Error propagation in numerical integration methods is a complex operation that 
depends on several factors. Roundoff error, which contributes to propagation error, is 
entirely determined by the accuracy of the computer being used. The truncation error 
is fixed by the choice of method being applied, by the step size of integration, and by 
the values of the derivatives of the functions being integrated. For these reasons, it is 
necessary to examine the error propagation and stability of each method individually 
and in connection with the differential equations to be integrated. Some techniques 
work well with one class of differential equations but fail with others. 

In the sections that follow, we examine systematically the error propagation 
and stability of several numerical integration methods and suggest ways of reducing 
these errors by the appropriate choice of step size and integration algorithm. 
 

Figure 7.6  Error propagation in numerical integration methods. The error has been  
  magnified in order to illustrate it more clearly. 
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7.7.1 Stability of the Euler methods 
Let us consider the initial-value differential equation in the linear form: 
 

 dy y
dt

λ=  (7.95) 

 
where the initial condition is given as 
 

 ( )0 0y t y=  (7.96) 
 
We assume that λ  is real and y0 is finite. The analytical solution of this differential 
equation is 
 

 ( ) 0
ty t y eλ=  (7.97) 

 
This solution is inherently stable for λ  < 0. Under these conditions: 
 

 ( )lim 0
t

y t
→∞

=  (7.98) 
 

Next, we examine the stability of the numerical solution of this problem 
obtained from using the explicit Euler method. Momentarily we ignore the truncation 
and roundoff errors. Applying Eq. (7.42), we obtain the recurrence equation 
 

 1n n ny y h yλ+ = +  (7.99) 
 
which rearranges to the following first-order homogeneous difference equation 
 

 ( )1 1 0n ny h yλ+ − + =  (7.100) 
 
Using the methods described in Sec. 6.???, we obtain the characteristic equation 
 

 ( )1 0E hλ− + =  (7.101) 
 
whose root is 
 

 ( )1 1 hµ λ= +  (7.102) 
 
From this, we obtain the solution of the difference equation (7.100) as 
 

 ( )1 n
ny C hλ= +  (7.103) 
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The constant C is calculated from the initial condition, at 0t t= : 
 

 00 nn y y C= = =  (7.104) 
 
Therefore, the final form of the solution is 
 

 ( )0 1 n
ny y hλ= +  (7.105) 

 
The differential equation is an initial-value problem; therefore, n can increase without 
bound. Because the solution yn is a function of ( )1 nhλ+ , its behavior is determined 

by the value of ( )1 hλ+ . A numerical solution is said to be absolutely stable if 
 

 lim 0nn
y

→∞
=  (7.106) 

 
The numerical solution of the differential equation (7.95) using the explicit Euler 
method is absolutely stable if 
 

 1 1hλ+ ≤  (7.107) 
 

Because ( )1 hλ+  is the root of the characteristic equation (7.101), an alternative 
definition of absolute stability is 
 

 1 1,2, ,i i kµ ≤ = …  (7.108) 
 
where more than one root exists in the multi-step numerical methods. 

Returning to the problem at hand, the inequality (7.107) is rearranged to 
 
 2 0hλ− ≤ ≤  (7.109) 
 
This inequality sets the limits of the integration step size for a stable solution as 
follows: Because h is positive, then 0λ <  and 
 

 2h
λ

≤  (7.110) 

 
Inequality (7.110) is a finite general stability boundary, and for this reason, the 

explicit Euler method is called conditionally stable. Any method with an infinite 
general stability boundary can be called unconditionally stable. 
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At the outset of our discussion, we assumed that λ was real in order to simplify 
the derivation. This assumption is not necessary: λ can be a complex number. In the 
earlier discussion of the stability of difference equations (Sec. ???), we mentioned 
that a solution is stable, converging with damped oscillations, when complex roots 
are present, and the moduli of the roots are less than or equal to unity: 
 

 1r ≤  (7.111) 
 

The two inequalities (7.109) and (7.111) describe the circle with a radius of unity on 
the complex plane shown in Fig. 7.7. Since the explicit Euler method can be 
categorized as a first-order Runge-Kutta method, the corresponding curve in this 
figure is marked by RK1. The set of values of hλ  inside the circle yields stable 
numerical solutions of Eq. (7.95) using the Euler integration method. 
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Figure 7.7  Stability regions in the complex plane for Runge-Kutta methods of  
order 1 (explicit Euler), 2, 3, 4, and 5. 

 

We now return to the consideration of the truncation and roundoff errors of the 
Euler method and develop a difference equation, which describes the propagation of 
the error in the numerical solution. We work with the nonlinear form of the initial-
value problem 
 

 ( ),dy f t y
dt

=  (7.112) 
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where the initial condition is given by 
 

 ( )0 0y t y=  (7.113) 

We define the accumulated error of the numerical solution at step ( )1n +  as 
 

 ( )1 1 1n n ny y tε + + += −  (7.114) 
 

where 1( )ny t +  is the exact value of y, and 1ny +  is the calculated value of y at 1nt + . We 
then write the exact solution, 1( )ny t + , as a Taylor series expansion, showing as many 
terms as needed for the Euler method: 
 

 ( ) ( ) ( )( )1 , 1,n n n n E ny t y t hf t y t T+ += + +  (7.115) 
 

where TE, n + 1 is the local truncation error for step ( )1n + . We also write the 
calculated value yn + 1 obtained from the explicit Euler formula 
 

 ( )1 , 1,n n n n E ny y hf t y R+ += + +  (7.116) 
 
where RE,n+1 is the roundoff error introduced by the computer in step ( 1)n + . 
Combining Eqs. (7.114)-(7.116) we have 
 

 ( ) ( ) ( )( )1 , 1 , 1, ,n n n n n n n E n E ny y t h f t y f t y t T Rε + + + = − + − − +   (7.117) 
 
which simplifies to 
 

 ( ) ( )( )1 , 1 , 1, ,n n n n n n E n E nh f t y f t y t T Rε ε+ + + = + − − +   (7.118) 
 
The mean-value theorem 
 

 ( ) ( )( ) ( ) ( )
,

, ,
n

n n n n n n n n
x

ff t y f t y t y y t y y t
y α

α∂
− =  −  < < ∂

 (7.119) 

 
can be used to further modify the error equation (7.118) to 
 

 1 , 1 , 1
,

1
n

n n E n E n
x

fh T R
y α

ε ε+ + +

 ∂
− + = − + 

∂  
 (7.120) 
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This is a first-order nonhomogeneous difference equation with varying coefficients, 
which can be solved only by iteration. However, by making the following 
simplifying assumptions 
 

 , 1 constantE n ET T+ = =  (7.121) 
 , 1 constantE n ER R+ = =  (7.122) 
 

 
,

constant
nx

f
y α

λ∂
= =

∂
 (7.123) 

 
Eq. (7.120) simplifies to 
 

 ( )1 1n n E Eh T Rε λ ε+ − + = − +  (7.124) 
 
whose solution is given by the sum of the homogeneous and particular solutions: 
 

 ( ) ( )1 1
1 1

n E E
n

T RC h
h

ε λ
λ

− +
= + +

− +
 (7.125) 

 
Comparison of Eqs. (7.100) and (7.124) reveals that the characteristic equations for 
the solution yn and the error nε  are identical. The truncation and roundoff error terms 
in Eq.(7.124) introduce the particular solution. The constant C1 is calculated by 
assuming that the initial condition of the differential equation has no error; that is, 

0 0ε = . The final form of the equation that describes the behavior of the propagation 
error is 
 

 ( )1 1nE E
n

T R h
h

ε λ
λ

− +  = + −   (7.126) 

 
A great deal of insight can be gained by thoroughly examining Eq. (7.126). As 

expected, the value of (1 )hλ+  is the determining factor in the behavior of the 
propagation error. Consider first the case of a fixed finite step size h, with the number 
of integration steps increasing to a very large n. The limit on the error as n →∞  is 
 

 lim for 1 1E E
nn

T R h
h

ε λ
λ→∞

− +
= + <  (7.127) 

 

 lim for 1 1nn
hε λ

→∞
= ∞ + >  (7.128) 
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In the first situation [Eq. (7.127)], 0λ < , 20 h
λ

< < , the error is bounded, and 

the numerical solution is stable. The numerical solution differs from the exact 

solution by only the finite quantity E ET R
hλ

− + , which is a function of the truncation 

error, the roundoff error, the step size, and the eigenvalue of the differential equation. 
In the second situation [Eq. (7.128)], 0λ > , 0h > , the error is unbounded and 

the numerical solution is unstable. For 0λ > , however, the exact solution itself is 
inherently unstable. For this reason we introduce the concept of relative error 
defined as 
 

 relative error n

ny
ε

=  (7.129) 

 
Utilizing Eqs. (7.105) and (7.126), we obtain the relative error as 
 

 
( )0

11
1

n E E
n

n

T R
y y h h
ε

λ λ

 − +
= − 

+  
 (7.130) 

 
The relative error is bounded for 0λ >  and unbounded for 0λ < . So we conclude 
that for inherently stable differential equations, the absolute propagation error is the 
pertinent criterion for numerical stability, whereas for inherently unstable differential 
equations, the relative propagation error must be investigated. 

Let us now consider a fixed interval of integration, 0 t α< < , so that 
 

 h
n
α

=  (7.131) 

 
and we increase the number of integration steps to a very large n. This, of course, 
causes 0h → . A numerical method is said to be convergent if 
 

 
0

lim 0nh
ε

→
=  (7.132) 

 
In the absence of roundoff error, the Euler method, and most other integration 
methods, would be convergent because 
 

 
0

lim 0Eh
T

→
=  (7.133) 
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therefore, Eq. (7.132) would be true. However, roundoff error is never absent in 
numerical calculations. As 0h →  the roundoff error is the crucial factor in the 
propagation of error: 
 

 ( )
0 0

1 1
lim lim

n

n Eh h

h
R

h
λ

ε
λ→ →

+ −
=  (7.134) 

 
Application of L'Hôpital's rule shows that the roundoff error propagates unbounded 
as the number of integration steps becomes very large: 
 

 [ ]
0

lim n Eh
Rε

→
= ∞  (7.135) 

 
This is the “catch 22” of numerical methods: A smaller step size of integration 
reduces the truncation error but requires a large number of steps, thereby increasing 
the roundoff error. 

A similar analysis of the implicit Euler method (backward Euler) results in the 
following two equations, for the solution 
 

 
( )

0
1

1
n n

yy
hλ

+ =
−

 (7.136) 

 
and the propagation error 
 

 ( )
( )1

11 1
1

E E
n n

T R h
h h

ε λ
λ λ

+

 − +
= − − 

−  
 (7.137) 

 
For 0λ <  and 0 h< < ∞ , the solution is stable: 
 

 lim 0nn
y

→∞
=  (7.138) 

 
and the error is bounded: 
 

 ( )lim 1E E
nn

T R h
h

ε λ
λ→∞

− +
= − −  (7.139) 

 
No limitation is placed on the step size; therefore, the implicit Euler method is 
unconditionally stable for 0λ < . On the other hand, when 0λ > , the following 
inequality must be true for a stable solution: 
 

 1 1hλ− ≤  (7.140) 



7.7 NUMERICAL STABILITY AND ERROR PROPAGATION 53 
 

 

This imposes the limit on the step size: 
 
 2 0hλ− ≤ <  (7.141) 
 

It can be concluded that the implicit Euler method has a wider range of stability 
than the explicit Euler method (see Table 7.4). 

7.7.2 Stability of the Runge-Kutta methods 
Using methods parallel to those of the previous section, the recurrence equations and 
the corresponding roots for the Runge-Kutta methods can be derived (Lapidus and 
Sienfeld, 1971). For the differential equation (7.95), these are: 
 
Second-order Runge-Kutta: 
 

 2 2
1

11
2n ny h h yλ λ+

 = + + 
 

 (7.142) 

 

 2 2
1

11
2

h hµ λ λ= + +  (7.143) 

Third-order Runge-Kutta: 
 

 2 2 3 3
1

1 11
2 6n ny h h h yλ λ λ+

 = + + + 
 

 (7.144) 

 

 2 2 3 3
1

1 11
2 6

h h hµ λ λ λ= + + +  (7.145) 

 
Fourth-order Runge-Kutta: 
 

 2 2 3 3 4 4
1

1 1 11
2 6 24n ny h h h h yλ λ λ λ+

 = + + + + 
 

 (7.146) 

 

 2 2 3 3 4 4
1

1 1 11
2 6 24

h h h hµ λ λ λ λ= + + + +  (7.147) 

 
Fifth-order Runge-Kutta: 
 

 2 2 3 3 4 4 5 5 6 6
1

1 1 1 1 0.56251
2 6 24 120 720n ny h h h h h h yλ λ λ λ λ λ+

 = + + + + + + 
 

(7.148) 

 

 2 2 3 3 4 4 5 5 6 6
1

1 1 1 1 0.56251
2 6 24 120 720

h h h h h hµ λ λ λ λ λ λ= + + + + + +  (7.149) 
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The last term in the right-hand side of Eqs. (7.148) and (7.149) is specific to the fifth-
order Runge-Kutta, which appears in Table 7.2 and varies for different fifth-order 
formulas. The condition for absolute stability 
 

 1 1,2, ,i i kµ ≤ = …  (7.150) 
 
applies to all the above methods. The absolute real stability boundaries for these 
methods are listed in Table 7.4, and the regions of stability in the complex plane are 
shown on Fig. 7.6. In general, as the order increases, so do the stability limits. 
 

Table 7.4  Real stability boundaries 

Method  Boundary 

Explicit Euler  2 0hλ− ≤ <  

Implicit Euler  0 for 0
2 0 for 0

h
h

λ
λ λ

< < ∞ <
− ≤ < >

 

Modified Euler  
  (predictor-corrector)  1.077 0hλ− ≤ <  

Second-order Runge-Kutta  2 0hλ− ≤ <  

Third-order Runge-Kutta  2.5 0hλ− ≤ <  

Fourth-order Runge-Kutta  2.785 0hλ− ≤ <  

Fifth-order Runge-Kutta  5.7 0hλ− ≤ <  

Adams  0.546 0hλ− ≤ <  

Adams-Moulton  1.285 0hλ− ≤ <  
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7.7.3 Stability of multistep methods 
Using methods parallel to those of the previous section, the recurrence equations and 
the corresponding roots for the modified Euler, Adams, and Adams-Moulton 
methods can be derived (Lapidus and Sienfeld, 1971). For the differential equation 
(7.95), these are: 
 

Modified Euler (combination of predictor and corrector): 
 

 ( )2 2
1 1n ny h h yλ λ+ = + +  (7.151) 

 

 2 2
1 1 h hµ λ λ= + +  (7.152) 

 

Adams: 
 

 1 1 2
23 4 51
12 3 12n n n ny h y h y h yλ λ λ+ − −

     = + − +     
     

 (7.153) 

 

 3 223 4 51 0
12 3 12

h h hµ λ µ λ µ λ     − + + − =     
     

 (7.154) 

 

Adams-Moulton (combination of predictor and corrector): 
 

 

2 2 2 2
1 1

2 2 2 2
2 3

7 55 5 591
6 64 24 64

1 37 9
24 64 64

n n n

n n

y h h y h h y

h h y h y

λ λ λ λ

λ λ λ

+ −

− −

   = + + − +   
   
   + + −   
   

 (7.155) 

 

 

4 2 2 3 2 2 2

2 2 2 2

7 55 5 591
6 64 24 64
1 37 9 0
24 64 64

h h h h

h h h

µ λ λ µ λ λ µ

λ λ µ λ

   − + + + +   
   
   − + + =   
   

 (7.156) 

 

The condition for absolute stability 
 

 1 1,2, ,i i kµ ≤ = …  (7.150) 
 

applies to all the above methods. The absolute real stability boundaries for these 
methods are also listed in Table 7.4, and the regions of stability in the complex plane 
are shown on Fig. 7.8.  
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Figure 7.8  Stability regions in the complex plane for the modified Euler (Euler predictor-
corrector), Adams, and Adams-Moulton methods. 

 
7.8 Step Size Control 
The discussion of stability analysis in the previous sections made the simplifying 
assumption that the value of λ remains constant throughout the integration. This is 
true for linear equations such as Eq. (7.95); however, for the nonlinear equation 
(7.11), the value of λ may vary considerably over the interval of integration. The step 
size of integration must be chosen using the maximum possible value of λ, thus 
resulting in the minimum step size. This, of course, will guarantee stability at the 
expense of computation time. For problems in which computation time becomes 
excessive, it is possible to develop strategies for automatically adjusting the step size 
at each step of the integration. 

A simple test for checking the step size is to do the calculations at each interval 
twice: Once with the full step size, and then repeat the calculations over the same 
interval with a smaller step size, usually half that of the first one. If at the end of the 
interval, the difference between the predicted values of y by both approaches is less 
than the specified convergence criterion, the step size may be increased. Otherwise, a 
larger than acceptable difference between the two calculated y values suggests that 
the step size is large, and it should be shortened in order to achieve an acceptable 
truncation error. 
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Another method of controlling the step size is to obtain an estimation of the 
truncation error at each interval. A good example of such an approach is the Runge-
Kutta-Fehlberg method (see Table 7.2), which provides the estimation of the local 
truncation error. This error estimate can be easily introduced into the computer 
program, and let the program automatically change the step size at each point until 
the desired accuracy is achieved. 

As mentioned before, the optimum number of application of corrector is two. 
Therefore, in the case of using a predictor-corrector method, if the convergence is 
achieved before the second corrected value, the step size may be increased. On the 
other hand, if the convergence is not achieved after the second application of the 
corrector, the step size should be reduced. 

 
7.9 Stiff Differential Equations 
In Sec. 7.7, we showed that the stability of the numerical solution of differential 
equations depends on the value of hλ, and that λ together with the stability boundary 
of the method determine the step size of integration. In the case of the linear 
differential equation 
 

 dy y
dt

λ=  (7.95) 
 

λ is the eigenvalue of that equation, and it remains constant throughout the 
integration. The nonlinear differential equation 

 ( ),dy f t y
dt

=  (7.11) 
 

can be linearized at each step using the mean-value theorem (7.119), so that λ can be 
obtained from the partial derivative of the function with respect to y: 
 

 
, nt

f
y α

λ ∂
=
∂

 (7.157) 

 

The value of λ is no longer a constant but varies in magnitude at each step of the 
integration. 
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This analysis can be extended to a set of simultaneous nonlinear differential 
equations: 

 

( )

( )

( )

1
1. 1 2

2
2 1 2

1 2

, , , ,

, , , ,

, , , ,

n

n

n
n n

dy f t y y y
dt
dy f t y y y
dt

dy f t y y y
dt

=

=

=

…

…

#

…

 (7.84) 

 

Linearization of the set produces the Jacobian matrix 
 

 

1 1

1

1

n

n n

n

f f
y y

f f
y y

∂ ∂ 
 ∂ ∂ 
 =
 ∂ ∂ 
 ∂ ∂ 

J

…

# % #

"

 (7.158) 

 

The eigenvalues {λ | i = 1, 2, …, n} of the Jacobian matrix are the determining 
factors in the stability analysis of the numerical solution. The step size of integration 
is determined by the stability boundary of the method and the maximum eigenvalue. 

When the eigenvalues of the Jacobian matrix of the differential equations are 
all of the same order of magnitude, no unusual problems arise in the integration of 
the set. However, when the maximum eigenvalue is several orders of magnitude 
larger than the minimum eigenvalue, the equations are said to be stiff. The stiffness 
ratio (SR) of such a set is defined as 

 
( )
( )

1

1

max Real
SR

min Real

ii n

ii n

λ

λ
≤ ≤

≤ ≤

=  (7.159) 

 

The step size of integration is determined by the largest eigenvalue, and the 
final time of integration is usually fixed by the smallest eigenvalue; therefore, 
integration of stiff differential equations using explicit methods may be time 
intensive.  

The MATLAB functions ode23s and ode15s are solvers suitable for the 
solution of stiff ordinary differential equations (see Table 7.1). 
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7.10 Advanced examples 
Example 7.4  Modeling the glycolysis pathways of living cells. 

 
Statement of the problem 
 
An important step in the glycolytic pathway is the phosphorylation of fructose 6-
phosphate to fructose 1,6-biphosphate. This reaction is catalyzed by the enzyme 
phosphofructokinase. This enzyme is an example of an allosteric enzyme that is 
inhibited by ATP and stimulated by adenosine diphosphate (ADP) or by adenosine-
monophosphate (AMP). The enzyme becomes active when it combines with γ 
molecules of ADP: 
 

 3

-3

k γ
k

Enzyme + γADP  Enzyme-ADP→←   
 
The active complex catalyzes the reaction of fructose 6-phosphate to fructose 1,6-bi-
phosphate, and in this process it converts one molecule of ATP to one molecule of 
ADP, as follows: 
 

 1 2

-1

k kγ γ γ
k

                                              Fructose 6-phosphate
                                                            

ATP + Enzyme-ADP   ATP-Enzyme-ADP Enzyme-ADP + ADP

        

→ →←

8

                                                    
                                            Fructose 1,6-biphosphate

8

  

 

This is the Sel'kov model as discussed by Keener and Sneyd (1998). Since the net 
result of this reaction is the formation of an additional ADP molecule that may 
further activate the enzyme, this reaction has a positive feedback effect on itself. 
Assuming that there is a steady supply of the ATP available to this reaction at the rate 
of ν1, and an irreversible flow of ADP away from the reaction at the rate of ν2, the 
steps of the reaction that involve the consumption of ATP and the formation of ADP, 
via the formation of enzyme complexes, may be shown schematically as: 
 

 

1

3

-3

1 2

-1

2

1

γ
2 2

γ γ γ
1 2 1 2 2 2

2

                        S

    γS  + E       ES

      S  + ES   S ES ES  + S

                 S  

k

k

k k
k

ν

ν

→

→←

→ →←

→
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where S1 represents the ATP molecule, S2 stands for the ADP molecule, and E 
represents the enzyme phosphofructokinase. 

Keener and Sneyd applied the law of mass action to this reaction scheme to 
obtain the following set of ordinary differential equations that describe the dynamics 
of the reactions: 

 

1
1 1 1 1 1 2

2
2 2 3 2 3 1 2 2

1
1 1 1 1 2 2 3 2 3 1

2
1 1 1 1 2 2

1 2

( )

( )

ds k s x k x
dt
ds k x k s e k x s
dt
dx k s x k k x k s e k x
dt
dx k s x k k x
dt

dx dxde
dt dt dt

γ

γ

ν

ν

−

−

− −

−

= − +

= − + −

= − + + + −

= − +

= − −

  (7.160) 

 

where 1 2 1 2 12 2
γ γ = [ATP],  = [ADP],  = [E],  = ES ,  = S ESs s e x x   

    . The square 

brackets are used to denote concentration of the particular compound in the cell. The 
last equation that describes the rate of change ( )/de dt  of the free enzyme is obtained 
from the balance equation for the total enzyme in the cell (e0), assuming that the total 
amount of enzyme remains constant: 
 

 1 2 0e x x e+ + =  (7.161) 
 

The above equations are a set of simultaneous first order nonlinear ordinary 
differential equations. Methods of solution for such a set were developed in Sec. 7.5, 
and are applied here to obtain the solution of the glycolysis problem in this example.  
 
Solution 
 
(a) It is well known in the literature that the rate of glycolysis is oscillatory in nature. 

To show this, integrate the above set of differential equations with the following 
initial conditions and constants: 

 
Initial Conditions: s1(0) = 1.0   s2(0) = 0.2  x1(0) = 0 x2(0) = 0   e0(0) = 1.4 

 
Constants: γ = 2.0 ν1 = 0.003 ν2 = 2.5*ν1 k1 = 0.1 

 k-1 = 0.2 k2 = 0.1 k3 = 0.2 k-3 = 0.2 
 

Note: The constants contain units of time (seconds) and concentrations (nM) as 
needed for unit consistency of the equations.   
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Plot the concentration profiles of all five dependent variables and discuss the 
results. Plot the phase plot of s1 and s2, and discuss what this phase plot 
demonstrates.  

 

(b) Perform a stability analysis of these equations by examining the eigenvalues of 
the Jacobian matrix evaluated around the steady state. How do the eigenvalues 
predict the oscillatory behavior of the concentration vs. time profiles? 

 

(a) Integration of equations 
 

The program example7_4a.m, listed below, integrates the differential equations using 
ode45 and plots the results. 
 

% example7_4a.m - Integration of the glycolysis model 
% using the MATLAB function ode45.m to integrate the   
% differential equations that are contained in the file:  
% glycolysis_equations.m 
 
clc; clear all;  
 
% Set the initial conditions & time span 
yzero=[1, .2, 0, 0, 1.4];   
tspan=[0 3000]; 
 
% Integrate the equations 
[t,y]=ode45(@glycolysis_equations,tspan,yzero); 
n=length(t); 
 
% Plot concentration profiles 
clf; figure(1); plot(t,y) 
title('Figure E7.4a: Concentration Profiles of Glycolysis') 
xlabel('Time, s'); ylabel('Concentration') 
text(530,1.35,'ATP (s_1)'); text(900,0.65,'ADP (s_2)') 
text(1600,0.25,'Enzyme-ADP complex (x_1)') 
text(1600,0.09,'ATP-Enzyme-ADP complex (x_2)') 
text(1600,1.28,'free enzyme (e)') 
 
% Plot phase diagrams 
figure(2); plot(y(:,1),y(:,2)) 
title('Figure E7.4b: Phase Plot of Glycolysis') 
xlabel('ATP (s_1)'); ylabel('ADP (s_2)') 

 

Function that contains equations (glycolysis_equations.m): 
 
function dy=glycolysis_equations(t,y) 
% glycolysis_equations.m  
% Contains the glycolysis model for example7_4a 
 
% Constants 



62  CHAPTER 7  DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS 

 

gamma=2; neu1=0.003; neu2=2.5*neu1;  
k1=0.1; k_1=2*k1; k2=0.1; k3=0.2; k_3=k3; 
s1=y(1); s2=y(2); x1=y(3); x2=y(4); e =y(5); 
% Equations 
dy=[neu1-k1*s1*x1+k_1*x2 
    k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2 
    -k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1 
    k1*s1*x1-(k_1+k2)*x2 
    -(-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1)-(k1*s1*x1-
(k_1+k2)*x2)]; 

 

Results of integration 
 

 
 

 



EXAMPLE 7.4  GLYCOLYSIS PATHWAYS OF LIVING CELLS  63 

 

The concentration profiles (Fig. E7.4a) of the glycolysis system of equations indicate 
that the above set of constants and initial conditions represent a case that is 
oscillatory at first, but approaches steady state within 3000 seconds (50 minutes). The 
phase plot of ADP vs. ATP (Fig. E7.4b) exhibits a stable focus of the type shown on 
Fig. 7.5 Case (2). 
 

(b) Steady state analysis of glycolysis equations 
 

The program example7_4b.m, listed below, performs the stability analysis of Eqs. 
(7.160) by first evaluating the Jacobian matrix of the differential equations using the 
MATLAB command jacobian(dy,v), where dy is the vector of derivatives and v is 
the vector of variables. Next, it calculates the steady state solution of the differential 
equations by setting the derivatives equal to zero and solving for the unknown 
variables using the MATLAB command solve. Finally, the stability of the steady 
state is examined by obtaining the eigenvalues of the Jacobian matrix around the 
steady state, using the command eig. 
 
 

% example7_4b.m - Steady state analysis of the glycolysis model 
% using MATLAB functions jacobian.m and eig.m 
 
clc; clear all;  
 
% Set the constants 
e0=1.4; gamma=2; neu1=0.003; neu2=2.5*neu1;  
k1=0.1; k_1=2*k1; k2=0.1; k3=0.2; k_3=k3; 
 
% Evaluate the Jacobian matrix 
syms s1 s2 x1 x2 e 
disp('Steady State Analysis of the Glycolysis Equations:') 
v=[s1, s2, x1, x2, e]; 
dy=[neu1-k1*s1*x1+k_1*x2;  
    k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2;  
    -k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1;  
    k1*s1*x1-(k_1+k2)*x2;  
    -(-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1)-(k1*s1*x1-
(k_1+k2)*x2)]; 
J=jacobian(dy,v); 
disp('The Jacobian matrix is:'), J 
% Evaluate the steady state solution 
[SteadyState]=solve('neu1-k1*s1*x1+k_1*x2=0',... 
    'k2*x2-k3*s2^gamma*e+k_3*x1-neu2*s2=0',... 
    '-k1*s1*x1+(k_1+k2)*x2+k3*s2^gamma*e-k_3*x1=0',... 
    'k1*s1*x1-(k_1+k2)*x2=0',... 
    'e+x1+x2=e0', 's1,s2,x1,x2,e'); 
disp(' '), disp('The steady state values of each variable are:')  
disp('s1'),disp(SteadyState.s1),disp(' ') 
disp('s2'),disp(SteadyState.s2),disp(' ') 
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disp('x1'),disp(SteadyState.x1),disp(' ') 
disp('x2'),disp(SteadyState.x2),disp(' ') 
disp('e '),disp(SteadyState.e), disp(' ') 
n=length(SteadyState.s1); 
disp('Value of each variable at the steady state(s):') 
disp('           s1         s2         x1         x2         e') 
for i=1:n;   
    s1=eval(SteadyState.s1); s2=eval(SteadyState.s2); 
    x1=eval(SteadyState.x1); x2=eval(SteadyState.x2); 
    e =eval(SteadyState.e);  
    fprintf(' %2i   %9.4f  %9.4f  %9.4f  %9.4f  %9 .4f   \n',... 
       i, s1(i), s2(i), x1(i), x2(i), e);  
end 
for i=1:n 
    s1=eval(SteadyState.s1); s2=eval(SteadyState.s2); 
    x1=eval(SteadyState.x1); x2=eval(SteadyState.x2); 
    e =eval(SteadyState.e); 
   fprintf('\nSteady state %2i \n',i) 
   disp(' '); disp('Jacobian matrix at steady state:'), eval(J) 
   disp(' '); disp('Eigenvalues of Jacobian at steady state:'); 
eig(eval(J)) 
end 
 

Results of steady state analysis 
 

Steady State Analysis of the Glycolysis Equations: 
The Jacobian matrix is: 
J = 
[        -1/10*x1,               0,        -1/10*s1,             
1/5,               0] 
[               0, -2/5*s2*e-3/400,             1/5,            
1/10,       -1/5*s2^2] 
[        -1/10*x1,        2/5*s2*e,    -1/10*s1-1/5,            
3/10,        1/5*s2^2] 
[         1/10*x1,               0,         1/10*s1,              
-3/10,              0] 
[               0,       -2/5*s2*e,             1/5,               
0,       -1/5*s2^2] 
  
The steady state values of each variable are: 
s1 
neu1*(k_1+k2)*(k3*exp(log(neu1/neu2)*gamma)+k_3)/k1/exp(log(neu1/n
eu2)*gamma)/k3/(-neu1+e0*k2) 
  
s2 
neu1/neu2 
  
x1 
exp(log(neu1/neu2)*gamma)*k3*(-
neu1+e0*k2)/k2/(k3*exp(log(neu1/neu2)*gamma)+k_3) 
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x2 
neu1/k2 
  
e  
k_3*(-neu1+e0*k2)/k2/(k3*exp(log(neu1/neu2)*gamma)+k_3) 
  
 
Value of each variable at the steady state(s): 
           s1         s2         x1         x2         e 
  1      0.4763     0.4000     0.1890     0.0300   
Steady state  1  
  
Jacobian matrix at steady state: 
ans = 
   -0.0189         0   -0.0476    0.2000         0 
         0   -0.1965    0.2000    0.1000   -0.0320 
   -0.0189    0.1890   -0.2476    0.3000    0.0320 
    0.0189         0    0.0476   -0.3000         0 
         0   -0.1890    0.2000         0   -0.0320 
  
Eigenvalues of Jacobian at steady state: 
ans = 
  -0.4859           
  -0.3060           
  -0.0015 + 0.0044i 
  -0.0015 - 0.0044i 
  -0.0000           
 

 
For this system of equations and constants, the steady state analysis shows that one 
steady state exists at which the concentrations of the main components are: 
 

[ATP] = 0.4763     [ADP] = 0.4000  [Enzyme-ADP complex] = 0.1890 
[ATP-Enzyme-ADP complex] = 0.0300    [free Enzyme] = 1.1810    

 

The eigenvalues of the Jacobian matrix of this system are: two real negative, two 
complex with negative real parts, and one zero eigenvalue. Such a combination of 
eigenvalues predicts an oscillatory behavior with dumped oscillations approaching a 
steady state (see Sec. 0). The zero eigenvalue is a direct consequence of the 
conservation of mass principle applied to the enzyme (see Eq. (7.9)). These results 
confirm the evolution of the system shown by the concentration profiles. 
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Example 7.5  The dynamics of membrane and nerve cell potentials. 
 
Formulation of the problem 
 
The activation and inactivation of the potassium/sodium channels and the role they 
play in the generation of nerve action potential formed the basis of the Nobel Prize 
winning work of Hodgkin and Huxley in the 1940s and 50s (Hodgkin and Huxley, 
1952). They studied the effect of the application of voltage potentials on the Na+ and 
K+ channels on the squid giant axon and developed mathematical models that 
describe the dynamics of the processes. 

Numerous papers and books have been written on the Hodgkin-Huxley model. 
A very concise description of this model is that of Keener and Sneyd (1998). They 
begin by showing that the cell membrane can be modeled as a capacitor in parallel 
with an ionic current, and since there can be no buildup of charge on either side of 
the membrane, the sum of the ionic and capacitive currents must be zero, resulting in 
the equation  
 

 0m ion
dVC I
dt

+ =  (7.162) 

 
where V denotes the internal minus the external potential.  In the squid giant axon, 
and in many nerve cells, the principal ionic currents are the sodium current, INa, and 
the potassium current, IK. Other currents that are present, such as the chloride current, 
are lumped together into one current called the leakage current, IL. The ionic currents 
for sodium and potassium ions can be modeled by the current-voltage relationships 
 

 Na Na Na( )I g V V= −  (7.163) 
 

 K K K( )I g V V= −  (7.164) 
 
and the leakage current may be shown as 
 

 L L L( )I g V V= −  (7.165) 
 
where gNa and gK are the membrane conductances for sodium and potassium ions, 
respectively, and gL is a combined conductance for leakage current. VNa and VK are 
the equilibrium membrane potentials due to concentration differences of the two ions, 
sodium and potassium, and VL is the potential at which the leakage current due to 
chloride and other ions is zero. The sodium and potassium potentials are calculated 
from the Nernst equation: 
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Ionic channels open and close in response to a voltage. This behavior of ionic 
channels in response to changes in membrane potential is the basis for electrical 
excitability, and is of fundamental significance to neurophysiology. According to 
Keener and Sneyd (1998), the current flow through a population of channels is the 
product of two terms 
 
 ( , ) ( )I V t Vη φ=  (7.168) 
 
where ( , )V tη  is the proportion of open channels in a population, and ( )Vφ  is the I-V 
curve of a single channel. The simplest model for the K+ channel assumes that the 
channel can exist either in the closed state in the proportion of ( )1 η− , or in the open 
state in the proportion of η : 
 

 ( ) ( )
P

( )

( )
1

OpenClosed
V

V

α

β
η η→− ←


��
 (7.169) 

 
Then the rate of change of the open channels may be modeled by the differential 
equation 
 

 ( )( ) ( )1d V V
dt
η α η β η= − −  (7.170) 

 
It is sometimes instructive to write Eq. (7.170) in the form 
 

 ( ) ( )dV V
dtη
ητ η η∞= −  (7.171) 

 

where ( )Vη∞  is the steady state value of η , that may be obtained from Eq. (7.170) as 
 

 ( )V αη
α β∞ =
+

 (7.172) 
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and ητ  is the time constant of approach to steady state: 
 

 1
ητ α β
=

+
 (7.173) 

 
Hodgkin and Huxley used a voltage clamp in their studies of the giant squid 

axon. The user of a voltage clamp fixes the membrane potential by applying a rapid 
step from one voltage to another and then measures the current that must be applied, 
Iapp, to hold the voltage constant. Based on their experimental data, Hodgkin and 
Huxley modified the potassium conductance, gK, in order to obtain sigmoidal 
increase and exponential decrease: 
 

 4
K Kg g n=  (7.174) 

 
They also modified the sodium conductance, gNa, to account for two processes at 
work, one that turns on the sodium current and one that turns it off: 
 

 3
Na Nag g m h=  (7.175) 

 
Keener and Sneyd (1998) interpret the potassium mechanism to be equivalent to 
having four “n” gates per potassium channel, all of which must be open for potassium 
to flow. They also elucidate the mechanism of the Na+ channel as consisting of three 
“m” gates and one “h” gate, each of which can be either closed or open. Combining 
equations (7.162)-(7.165), (7.170), (7.174), and (7.175) results in the complete 
Hodgkin-Huxley model: 
 

 

4 3
K Na L app( ) ( ) ( )

(1 )

(1 )

(1 )

m K Na L

n n

m m

h h

dvC g n v v g m h v v g v v I
dt

dn n n
dt
dm m m
dt
dh h h
dt

α β

α β

α β

= − − − − − − +

= − −

= − −

= − −

 (7.176) 

 
The potential, v, is the deviation from rest potential (v = V- Veq) measured in units of 
mV, current density I is in units of µA/cm2, conductances are in units of mS/cm2, and 
capacitance Cm is in µF/cm2. The rate constants of α and β are, in units of (ms)-1, 
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 (7.177) 

 
The steady state values of the gating variables and the time constants are:  
 

 1 1 1

n m h

n n m m h h

n m h
n n m m h h

n m hα α α
α β α β α β

τ τ τ
α β α β α β

∞ ∞ ∞= = =
+ + +

= = =
+ + +

 (7.178) 

 
The constants and initial conditions for this simulation are: 
 

( ) ( ) ( ) ( )

2 2 2
K Na

K Na L

36 mS/cm        120 mS/cm       0.3 mS/cm
-12 mV             115 mV              10.6 mV

0 8 mV 0 0.3177 0 0.0529 0 0.5961 

Lg g g
v v v
v n m h

= = =
= = =

= = = =

 

 

The initial conditions for the four variables (v, n, m, and h) in Eq. (7.176) are chosen 
based on the following statement made by Hodgkin and Huxley: 
 

“By a membrane action potential is meant one in which the membrane potential 
is uniform, at each instant, over the whole of the length of the fibre considered. 
There is no current along the axis of the cylinder and the net membrane current 
must therefore always be zero, except during the stimulus. If the stimulus is a 
short shock at t = 0, the form of the action potential should be given by solving 
Eq. (7.176) with I = 0 and the initial conditions that V=V0 and m, n, and h have 
their resting steady state values, when t = 0.” 

 

(a) First verify the values of the initial conditions, n(0), m(0), and h(0); they must be 
the resting steady state values of these variables (when v = 0). Integrate the 
differential equations for the time span of 0 to 20 ms, using an initial voltage of 8 
mV. There is no current along the axis of the cylinder and the net membrane 
current must always be zero, therefore, use a current density of 0 µA/cm2 and a 
membrane capacitance of 1 µF/cm2. Plot the time profiles of the potential, v, the 
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gating variables, n, m, and h, and the conductances, gK and gNa (Eqs. (7.174) and 
(7.175)).  

(b) Calculate and plot the steady state values of the time constants and the gating 
variables (Eqs. (7.178)) as functions of the potential in the range of voltages from 
–100 mV to +100 mV. 

 
Solution 
 
(a) Integration of equations 
 

The program example7_5.m, listed below, first calculates the initial conditions of the 
gating variables using Eqs. (7.178), and then integrates the differential equations that 
are contained in the function hodgkin_huxley_equations.m using the MATLAB 
function ode45.m. The program also uses the function rate_constants.m to 
calculate the values of α and β. The same program also calculates the steady state 
values of the time constants and the gating variables and plots the results. 

 
% example7_5.m - Simulation of the Hodgkin-Huxley model 
% using MATLAB function ode45.m to integrate the differential  
% equations that are contained in the file:  
% hodgkin_huxley_equations.m 
 
clc; clear all; 
warning off MATLAB:divideByZero 
 
% Evaluate the initial conditions for gating variables 
v=0; 
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v); 
tau_n=1./(alpha_n+beta_n); 
n_ss=alpha_n.*tau_n; 
tau_m=1./(alpha_m+beta_m); 
m_ss=alpha_m.*tau_m; 
tau_h=1./(alpha_h+beta_h); 
h_ss=alpha_h.*tau_h; 
fprintf('\n The following initial conditions of the gating 
variables are used:')  
fprintf('\n n_ss= %5.4g \n m_ss= %5.4g \n h_ss= %5.4g ', 
n_ss,m_ss,h_ss) 
fprintf('\n They are the resting steady state values of these 
variables (when v=0).') 
 
% Integrate the equations 
yzero=[8,n_ss,m_ss,h_ss];                                           
tspan=[0,20]; 
[t,y]=ode45(@hodgkin_huxley_equations,tspan,yzero); 
% Evaluate the conductances 
ggK=36; ggNa=120;   
gK=ggK*y(:,2).^4; gNa=ggNa*y(:,3).^3.*y(:,4); 
 
% Plot the results 
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clf; figure(1); plot(t,y(:,1),'k'); 
title('Figure E7.5a: Time Profile of Membrane Potential in Nerve 
Cells') 
xlabel('Time (ms)'); ylabel('Potential (mV)') 
figure(2); plot(t,y(:,2:4)); 
title('Figure E7.5b: Time Profiles of Gating Variables') 
xlabel('Time (ms)'); ylabel('Gating variables') 
text(7,0.6,'\leftarrow n(t)'); text(4.5,0.9,'\leftarrow m(t)');  
text(7,0.25,'\leftarrow h(t)') 
figure(3); plot(t,gK,t,gNa); 
title('Figure E7.5c: Time Profiles of Conductances') 
xlabel('Time (ms)'); ylabel('Conductances') 
text(7,6,'g _K'); text(3.6,25,'g _{Na}');  
 
% Evaluate the rate constants 
v=[-100:1:100]; 
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v); 
 
% Evaluating time constants and gating variables at steady state   
tau_n=1./(alpha_n+beta_n); 
n_ss=alpha_n.*tau_n; 
tau_m=1./(alpha_m+beta_m); 
m_ss=alpha_m.*tau_m; 
tau_h=1./(alpha_h+beta_h); 
h_ss=alpha_h.*tau_h; 
 
% Plot the time constants 
figure(4); plot(v,tau_n,v,tau_m,v,tau_h) 
axis([-100 100 0 10]) 
title('Figure E7.5d: Time Constants as Functions of Potential') 
xlabel('Potential (mV)'); ylabel('Time constants (ms)') 
 
text(-75,4,'\tau _n'); text(0,0.8,'\tau _m'); text(15,8,'\tau 
_h');   
 
% Plot the gating variables at steady state  
figure(5); plot(v,n_ss,v,m_ss,v,h_ss) 
axis([-100 100 0 1]) 
title('Figure E7.5e: Gating Variables at Steady State as Functions 
of Potential') 
xlabel('Potential (mV)'); ylabel('Gating variables at steady 
state') 
text(-35,0.1,'n_\infty'); text(25,0.4,'m_\infty');   
text(-20,0.8,'h_\infty');  

 

Function that contains equations (hodgkin_huxley_equations.m) 
 

function dy=hodgkin_huxley_equations(t,y) 
% hodgkin_huxley_equations.m  
% Contains the Hodgkin-Huxley model for example7_5 
 
% Constants 
ggK=36; ggNa=120; ggL=0.3; 



72  CHAPTER 7  DYNAMIC SYSTEMS: ORDINARY DIFFERENTIAL EQUATIONS 

 

vK=-12; vNa=115; vL=10.6;  
Iapp=0;  Cm=1; 
% Equations 
v=y(1); n=y(2); m=y(3); h=y(4); 
[alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h]=rate_constants(v); 
 
dy=[(-ggK*n^4*(v-vK)-ggNa*m^3*h*(v-vNa)-ggL*(v-vL)+Iapp)/Cm 
    alpha_n*(1-n)-beta_n*n 
    alpha_m*(1-m)-beta_m*m 
    alpha_h*(1-h)-beta_h*h];  

 

Function that calculates the rate constants (rate_constants.m) 
 

function [alpha_n,beta_n,alpha_m,beta_m,alpha_h,beta_h] =  
 rate_constants(v) 
% rate_constants.m 
% Calculates the rate constants for the Hodgkin-Huxley model 
 
alpha_n=0.01*(10-v)./(exp((10-v)/10)-1); 
beta_n=0.125*exp(-v/80); 
alpha_m=0.1*(25-v)./(exp((25-v)/10)-1); 
beta_m=4*exp(-v/18); 
alpha_h=0.07*exp(-v/20); 
beta_h=1./(exp((30-v)/10)+1); 

 

Results 
 

The following initial conditions of the gating variables are used: 
n_ss= 0.3177  
m_ss= 0.05293  
h_ss= 0.5961  
They are the resting steady state values of these variables (when 
v=0). 
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Discussion of results 
 
The application of a stimulus to the cell, in the form of a voltage of 8 mV at t = 0, 
raises the membrane potential above the threshold value and causes the generation of 
a self-propagating action potential, as shown in Fig. E7.5a. The membrane potential 
rises rapidly to over 100 mV and then drops back to its resting potential, all in a 
matter of less than 20 milliseconds. This action is explained as follows: the sodium 
gates have a much smaller time constant, mτ , (Fig. E7.5d), therefore m(t) responds 
faster, i.e. the sodium channels open faster allowing the flow of Na+ into the cell, thus 
making the potential more positive. As the potential rises, the value of h∞  goes to 
zero (Fig. E7.5e), thus causing the sodium current to inactivate because its 
conductance, gNa, goes to zero (Fig. E7.5c). This mechanism, however, has a higher 
time constant, thus it is slower to show its effect. The voltage-gated potassium 
channels also open when the membrane potential becomes more positive than during 
the resting state; however, unlike the sodium channels, they open more slowly and 
become fully opened only after the sodium channels have closed. The potassium 
channels then remain open until the membrane potential has returned to near its 
resting value.  
 

The student is encouraged to work out Problem 7.1 (at end of this chapter), which 
applies a constant current of 10 µA/cm2, and to observe and interpret the results. 
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Example 7.6  The dynamics of stem cell differentiation. 
 

Formulation of the problem 
 

Stem cells in a growing fetus replicate and differentiate to develop into specialized types 
of cells, such as bone cells, skin cells, liver cells, muscle cells, etc. In an adult human 
body, the bone marrow contains stem cells, such as hematopoietic cells that generate red 
blood cells, and mesenchymal cells that produce connective tissue cells. The 
differentiation process involves a series of changes in cell phenotype and morphology 
that typically become more pronounced and easier to observe directly at the latter stages 
of the process (Palsson and Bhatia, 2004). This process begins with the stem cell’s 
commitment to differentiation, followed by a coordinated series of gene-expression 
events, causing the cell to differentiate to a new state. A series of such progressive states 
leads to fully mature specialized cells. These mature cells perform their intended 
function in the body and eventually die, or undergo change to another type of cell 
through a process called transdifferentiation. The progressive series of events that 
converts a stem cell to a fully mature specialized cell may be depicted schematically as 
follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where   Xi = number of cells in stage i of differentiation (cells) 

I  = number of cells entering the differentiation process (cells/day) 
ki = the transition rate of cells from stage i to stage i+1 (1/day) 
N = the total number of stages of differentiation (may be as high as 16 to 18). 

 
The final stage of the process, N, may be considered as the intended goal of the 

differentiation, i.e., the state of specialized mature cells. This last stage may have a zero 
transition rate constant. That is, if kN is equal to zero, then cells do not die or 
transdifferentiate. 

        I 
 
Commitment 

k2 k1 
   

 X1 
  

 X2 … 

kN-1 kN 
 

Death  or 

Transdifferentiation   

… 
 

 XN 

ki+1 ki ki-1 ki-2   

 Xi+1

  

 Xi-1

   

 Xi … … 
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The dynamics of the differentiation process may be easily simulated using a multi-
compartment model. Assuming that each stage is homogeneous in its cellular content, an 
unsteady state balance on each compartment yields the following set of ordinary 
differential equations: 
 

1
1 1

2
1 1 2 2

1 1

1 1

i
i i i i

N
N N N N

dX I k X
dt

dX k X k X
dt

dX k X k X
dt

dX k X k X
dt

− −

− −

= −

= −

= −

= −

#

#

 

 
The above model reflects the transition of cells from one stage of differentiation to the 
next, with no cell division and no self-renewal. These two concepts are explored in 
Problems 7.9 and 7.10, at the end of this chapter. 
 
Using the above differential equations, simulate numerically the following stem cell 
differentiation cases: 
(a) Stem cells commit to the differentiation process at a continuous rate of I = 5000 

cells/day. Assume that these cells undergo 10 stages of differentiation (N = 10). No 
death occurs at the last step in the process (kN = 0). Integrate the differential 
equations and trace the path of these cells through the 10 stages of differentiation, 
using the following initial conditions and constants: 

 

( )
( )1

5000 cells/day
0 0 cells,  for  1, ,
2.2 day ,  for  1, , 1
0 no death or transdifferentiation

i

i

N

I
X i N
k i N
k

−

=
= =

= = −

=

…
…

 

 
Examine and discuss the time profiles. Does this case reach a steady state? 

 
(b) There are no new cells entering the process, i.e., I = 0, but the initial number of cells 

in the first stage of differentiation, 1(0),X is 5000.  Assume that these cells undergo 
the same number of stages of differentiation as in case (a). No death occurs at the 
last stage of the process. Integrate the differential equations and trace the path of 
these cells through the 10 stages of differentiation, using the following initial 
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conditions and constants: 
 

( ) ( )
( )

1

1

0 cells/day
0 5000 cells, 0 0 cells,  for  2, ,
2.2 day ,  for  1, , 1
0 no death or transdifferentiation

i

i

N

I
X X i N
k i N
k

−

=
= = =

= = −

=

…
…

 

 
Examine and discuss the time profiles. How many days does it take for the 
completion of this process? 

 
(c) This is the same as case (a), except for the occurrence of death at the completion of 

stage 10. Examine the time profiles and predict the steady state behavior of this 
system using the following initial conditions and constants: 

 

( )
1

5000 cells/day
0 0 cells,  for  1, ,
2.2 day ,  for  1, , , with death

i

i

I
X i N
k i N−

=
= =

= =

…
…

 

 
Solution 
 
(c) The MATLAB program and function that solve all three cases are listed below: 

 
% example7_6.m - Solution of the stem cell differentiation model 
% using MATLAB function ode45.m to integrate the differential  
% equations that are contained in the file:  
% cell_differentiation_equations.m 
clc; clear all;  
% Set the number of stages & time span 
N=10; tzero=0; tmax=10; tspan=[tzero:0.1:tmax]; 
% Case (a): With continuous input; no death 
I=5000;                     % Input 
Xzero=zeros(N,1);           % Initial conditions 
k=2.2*ones(N-1,1); k(N)=0;  % Transiton rate constants, no death 
% Integrate the equations 
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k); 
% Pseudo steady state values for stages 1 to N-1 
SS=I/k(1); X_last=X(length(X),N); 
disp('Case (a)') 
fprintf('The pseudo steady state number of cells in stages %1d to%2d 
= %4.0f',1,N-1,SS) 
fprintf('\nThe number of cells in stage %2d, at %2d days = %4.0f 
\n',N,tmax,X_last) 
% Plot concentration profiles 
clf; figure(1); subplot(2,1,1), plot(t,X(:,1:1:N-1)) 
title(['Figure E7.6 (a):  Continuous input (I = ',num2str(I),... 
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        '); no death (k(1:', num2str(N-1),') = ',num2str(k(1)),... 
        ', k(', num2str(N),') = ',num2str(k(N)),') ']) 
text(0.4,SS,'i = 1'); text(0.45*tmax,SS/2,['i = ', num2str(N-1)]); 
xlabel('Time, days'); ylabel('Number of cells'); 
subplot(2,1,2), plot(t,X(:,N)/1000) 
axis([tzero, tmax, 0, 1.1*X_last/1000]) 
text(tmax/2,X_last/2000,['i = ', num2str(N)]); 
xlabel('Time, days'); ylabel('Number of cells (thousands)'); 
% Case (b): With no new input; no death 
I=0;                             % Input 
Xzero=zeros(N,1); Xzero(1)=5000; % Initial conditions 
% Integrate the equations 
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k); 
% Steady state values for stages 1 to N-1 
SS=I/k(1); 
X_last=X(length(X),N); 
disp('Case (b)') 
fprintf('The steady state number of cells in stages %1d to%2d = 
%4.0f',1,N-1,SS) 
fprintf('\nThe final number of cells in stage %2d at %2d days = %4.0f 
\n',N,tmax,X_last) 
% Plot concentration profiles 
figure(2); plot(t,X(:,1:1:N)) 
title(['Figure E7.6 (b):  No new input (I = ', num2str(I),... 
        '); no death (k(1:', num2str(N-1),') = ', num2str(k(1)),... 
        ', k(', num2str(N),') = ', num2str(k(N)),')']) 
text(0.4,0.8*X(1),'i = 1');  
text(0.45*tmax,X(1)/2,['i = ',num2str(N)]); 
xlabel('Time, days'); ylabel('Number of cells'); 
% Case (c): With continuous input; with death (or transdiff.)  
I=5000;             % Input 
Xzero=zeros(N,1);   % Initial conditions 
k(N)=k(1);          % reset the death rate constant 
% Transiton rate constants, with death 
% Integrate the equations 
[t,X]=ode45('cell_differentiation_equations',tspan,Xzero,[],N,I,k); 
% Pseudo steady state values for stages 1 to N-1 
SS=I/k(1); 
X_last=X(length(X),N); 
disp('Case (c)') 
fprintf('The steady state number of cells in all stages = %4.0f',SS) 
% Plot concentration profiles 
figure(3); plot(t,X(:,1:1:N)) 
axis([tzero, tmax, 0, 1.1*I/k(1)]) 
title(['Figure E7.6 (c):  Continuous input (I = ',... 
        num2str(I), '); with death (k(1:', num2str(N),... 
        ') = ',num2str(k(1)),')']) 
text(0.4,SS,'i = 1'); text(0.5*tmax,SS/2,['i = ', num2str(N)]); 
xlabel('Time, days'); ylabel('Number of cells'); 
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Function that contains the equations (cell_differentiation_equations.m) 
 
function dX=cell_differentiation_equations(t,X,flag,N,I,k) 
% cell_differentiation_equations.m 
% Contains the equations for example7_6 
 
% Equations 
dX(1)=I-k(1)*X(1); 
for i=2:N 
    dX(i)=k(i-1)*X(i-1)-k(i)*X(i); 
end 
% Convert to column vector 
dX=dX';  
 

 

Case (a) Results and discussion 
 

The results of this case are plotted on Fig. E7.6 (a). The top half of the plot shows the 
time profiles for stages 1 to 9. The constant input of cells into stage one (I = 5000 
cells/day) causes the first 9 stages of differentiation to reach a steady state in less than 10 
days, with the number of cells in each stage given by  
 

 * 5000 cells/day 2273 cells
2.2 /i

i

IX
k day

= = =  

 

This result is obtained mathematically by setting the derivatives of the first nine 
differential equations to zero (steady state) and solving for *

iX  (the steady state level of 
the cells). However, the differential equation for the final stage does not have a steady 

state because of the no death assumption (k10 = 0). Setting 10 0dX
dt

=  yields 0,I = , 

which we know is incorrect. For this reason, we call this case a pseudo steady state. The 
number of cells in the final stage is 29,547 in 10 days and continues to increase, as 
shown in the bottom half of Fig. E7.6 (a). This final stage of the process is the intended 
goal of the differentiation; therefore it is reasonable to expect that cells will continue to 
accumulate in this stage.  
 
 

Case (a) 
The pseudo steady state number of cells in stages 1 to 9 = 2273 
The number of cells in stage 10, at 10 days = 29547  
 

 

Case (b) Results and discussion 
 

The results of this case are plotted on Fig. E7.6 (b). There is no input of new cells  
and no death occurs in the last stage of differentiation. Therefore, the cells differentiate 
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completely from one stage to the next, without any renewal from new cells entering, and 
finally accumulate in the last compartment of the process, as is clearly shown by Fig. 
E7.6 (b). Since I = 0, the steady states for stages 1 to 9 are all zero, i.e., 
 

* 0 cells/day 0 cells
2.2 /i

i

IX
k day

= = =  

 

The final number of cells in stage 10 is ~5000, as expected, remembering that the initial 
number of cells was 5000, and there is no death of cells anywhere in this pathway. 
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Case (b) 
The steady state number of cells in stages 1 to 9 =    0 
The final number of cells in stage 10 at 10 days = 4997  
 

 
Case (c) Results and discussion 
 
In this case, there is a continuous rate of new stem cells, I = 5000 cells/day, that commit 
to the differentiation process. There is also the occurrence of death at the completion of 
stage 10. The results of this case are plotted on Fig. E7.6 (c). Under these circumstances, 
all 10 stages reach their steady states at 
 

* 5000 cells/day 2273 cells
2.2 /i

i

IX
k day

= = =  

 
The cells continue to differentiate from one stage to the next, with death occurring after 
the last stage. It is theoretically possible that this cell differentiation process may 
continue for the duration of the lifetime of the individual.  
 

 
Case (c) 
The steady state number of cells in all stages = 2273 
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Example 7.7  Tissue engineering: models of epidermal cell migration.   
 

Introduction 
 

One aspect of tissue engineering is the proper design and manufacture of porous 
matrices (membranes) that imitate the properties of the epidermis and may be used as 
prosthetic scaffolding to promote dermal regeneration, thus enhancing the healing 
process of wounded or burned skin. During the healing process, cell migration is 
necessary for cells to repopulate a healing wound, and to imbed themselves in an 
implanted scaffold for successful tissue regeneration. Cellular migration is known to 
depend on the interaction of specific cell surface receptors with cell-internalizable 
ligands that are present on the extracellular matrix. The formation of ligand-receptor 
bonds between skin epidermal cells (keratinocytes) and ligand presenting 
microcarriers may initiate and promote the process of endocytosis – the ingestion of 
molecules by the cells – thus, significantly enhancing the levels of cell motility. 

The dynamics of cell-ligand interactions and endocytically-coupled cell 
motility have been modeled from a kinetic-mechanistic point of view (Tjia and 
Moghe, 2002c) using diffusion-reaction descriptions and equations similar to those in 
the traditional Michaelis-Menten kinetics. 
 

 

Figure E7.7  Cell-ligand interactions. 
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Formulation of the mechanism 
 

Fig. 7.7 shows the mechanism of cell-ligand interactions schematically. The 
individual steps of this process are described below: 
 
1. A ligand-adsorbed microcarrier, (L), interacts with a free receptor site, (B), on the 

surface of a cell to form an inactive complex, ( ) :B Li   
 

 B L

B L

k

k
L B B L

−

→+ ←
i

i
i  (7.179) 

 
2. The inactive complex, in turn, binds reversibly with a second receptor to form the 

active complex 2( ) :B Li   
 

 2

2
2

B L

B L

k

k
B L B B L

−

→+ ←
i

i
i i  (7.180) 

 
3. The active complex is ingested by the cell to produce an intracellular vesicle, 

(V). Once ingested, the microcarrier dissociates itself from the membrane 
receptors thus freeing the receptors to recycle back to the cell surface. For the 
purposes of this model, the rates of ingestion and binding site recycling are 
lumped into one parameter, kV: 

 

 2 2VkB L V B→ +i  (7.181) 
 
Formulation of the mathematical model 
 

Cell migration will affect the degree of exposure of microcarriers to the cell, as 
migration would make new microcarriers available for internalization. The rate of 
cell migration has been derived, based on an analogy to molecular diffusion in a 
semi-infinite plane, to be  
 

 [ ] 0

cellMigration

d L L
dt A

µ
=  (7.182) 

 
where    L  = effective ligand density encountered by the cell 

µ  = the random motility coefficient,  
Acell = the spread area of the cell, 
L0 = the overall density of microcarriers. 

 
The composite model that includes both cell migration and ligand-receptor adhesion 
is given below: 
 
 
1. The density of local extracellular microcarriers encountered by the cell, [L], 
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changes according to the following rate equation: 
 

 [ ] [ ][ ] [ ] 0

cell
B L B L

d L Lk L B k B L
dt A

µ
−= − + +i i i  (7.183) 

 
The first term in this equation corresponds to the forward rate in reaction (7.179), 
the second term corresponds to the reverse rate, and the third term reflects the 
rate of the cell migration given by Eq. (7.182).  

 
2. The balance of the density of inactive microcarrier-receptor complex, [B•L], 

gives the rate equation (7.184): 
 

[ ] [ ][ ] [ ] [ ][ ] [ ]
2 2 2B L B L B L B L

d B L
k L B k B L k B L B k B L

dt − −= − − +i i i i
i i i i  (7.184) 

 
3. The rate of change of the density of activated microcarrier-receptor complex, 

[ ]2B Li , is  
 

 [ ] [ ][ ] [ ] [ ]
2 2

2
• 2 2B L B L V

d B L
k B L B k B L k B L

dt −= − −i
i i i i  (7.185) 

 
4. The density of ingested microcarrier, [V], changes at the following rate: 
 

 [ ] [ ]2V
d V

k B L
dt

= i  (7.186) 
 
5. The total number of binding sites on the cell, [BT], is assumed to be constant 
 

 [ ] [ ] [ ] [ ]2TB B B L B L= + +i i  (7.187) 
 
The net effects of cell migration may be measured in terms of the rate at which cells 
effectively clear an area covered with ingestible microcarriers. For a given initial 
surface particle density, the rate of area clearance by a cell is equal to the sum of the 
rates of bounding and ingesting, divided by the initial particle density: 
 

 [ ] [ ] [ ] [ ]2• •1
o

d clearance d B L d B L d V
dt L dt dt dt

 = + + 
 

 (7.188) 

 
It should be noted that that the density terms in this model are in units of particle per 
surface area of cell. The [ ]clearance  term is in (min)-1. 
 
 
In order to simplify the model, we make the following assumptions: 



EXAMPLE 7.6  STEM CELL DIFFERENTIATION  85 

 

 
(a) The rate constant of decomposition of the inactivated microcarrier-receptor 

complex , B Lk− i , is very small in comparison to the rate of initial binding, B Lk i , 
and can be neglected. This effectively makes reaction (7.179) irreversible.  

 
(b) The fully activated complex, [B2•L], once formed, is highly reactive and is 

quickly ingested. Thus, this complex would be present only in low densities and 
may be assumed to be at pseudosteady-state. This assumption causes the rate in 
Eq. (7.185) to be equal to zero, enabling us to solve for [ ]B Li , as follows: 

 

 [ ] [ ][ ]
2

m

B L B
B L

K
=

i
 (7.189) 

where Km is a dissociation constant of the Michaelis-Menten type, defined as: 
 

 2

2

B L V
m

B L

k k
K

k
− +

= i

i
 (7.190) 

 
The above two assumptions are utilized in Eqs. (7.183)-(7.188) to eliminate [ ]B Li  
and [ ]B , which simplifies the model to the following set of equations: 
 

 

[ ] [ ] [ ] [ ]( )

[ ] [ ] [ ] [ ]( ) [ ] [ ]( )[ ]
[ ]

[ ] [ ] [ ]( )[ ]
[ ]

[ ] [ ] [ ]

0

cell

• 2

2

•1

B L T

T
B L T V

m

T
V

m

o

d L Lk L B B L
dt A

B B L B Ld B L
k L B B L k

dt K B L

B B L B Ld V
k

dt K B L

d clearance d B L d V
dt L dt dt

µ
= − − +

− = − −  + 

− =  + 

 = + 
 

i i

i ii i
i

i i
i

 (7.191) 

 
Equations (7.191) define the mathematical model of the dynamics of cellular 
migration enhanced by the presence of ligand-associated microcarriers. This is a set 
of ordinary differential equations that may be integrated to yield the temporal 
behavior of this process. For this problem, perform the following tasks: 
 
(a) Evaluate and plot the time profiles, and discuss the results of the integration 

for the period of 300 minutes, using the following initial conditions and 
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constants, based on the experiment work of Tjia and Moghe (2002c):  
 

Initial conditions: 
 

 
[ ]

[ ] [ ]

2
0 0

0 0

1.0 particle/ m 0

0 0

L B L

clearance V

µ= =

= =

i
 

Constants: 
 

 
( )

2 2 2
cell

2 3 -1

3 2

3.74 particles/ m 10 m / min 3400 m
0.73 particles/ m 1.3 10 min
2.0 10 m / particle.min

T

m V

B L

B A
K k
k

µ µ µ µ
µ

µ

−

−

= = =

= = ×

= ×i

 

 
(b) Define the term “Sampling rate” as  
 

 [ ] [ ](Sampling rate)
d B L d V

dt dt
= −

i
 

 
and show its effect on the internalization rate, d[V]/dt, and the clearance rate, 
d[clearance]/dt. 

 
Solution 
 

The program, example7_7.m, and the function, cell_migration_equations.m, that 
solve this problem are listed below: 
 

 
% example7_7.m - Solution of the epidermal cell migration 
% model using MATLAB function ode45.m to integrate the  
% differential equations that are contained in the file:  
% cell_migration_equations.m 
 
clc; clear all;  
% Set the time span 
tspan=[0:1:300];  
% Set the constants 
BT=3.74; mu=10; A_cell=3400;  
Km=0.73; kV=1.3e-3; kBL=2.0e-3; 
% Set the initial conditions 
yzero=[1, 0, 0, 0]; 
L0=yzero(1); 
% Integrate the equations 
[t,y]=ode45('cell_migration_equations',tspan,yzero,[],... 
    BT,mu,A_cell,Km,kV,kBL,L0); 
 
% Plot concentration profiles 
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figure(1); plot(t,y(:,1),'-',t,y(:,2),':',t,y(:,3),'-.',... 
    t,y(:,4),'--') 
title('Figure E7.7(a): Time profiles of epidermal cell migration') 
xlabel('Time, min'); ylabel('Densities, number/\mum^2'); 
legend('L','B{\bf\cdot}L','V','clearance',2) 
n=length(y); 
 
% Evaluate the derivatives 
for i=1:n 
dy(:,i)=feval('cell_migration_equations',t(i),y(i,:),flag,... 
    BT,mu,A_cell,Km,kV,kBL,L0); 
end 
dy=dy'; 
rate_BL=dy(:,2); 
rate_V=dy(:,3); 
clearance_rate=dy(:,4); 
sampling_rate=rate_BL-rate_V; 
 
% Show the effect of microcarrier sampling rate on internalization  
% and clearance rates  
figure(2);  
plot(sampling_rate*1e3,clearance_rate*1e3) 
title('Figure E7.7(b): The effect of microcarrier sampling rate on 
clearance rate')  
ylabel('Clearance rate, d[clearance]/dt  x  10^3') 
xlabel('Sampling rate, (d[B{\bf\cdot}L]/dt - d[V]/dt)  x  10^3') 
 
function dy=cell_migration_equations(t,y,flag,BT,mu,A_cell,... 
    Km,kV,kBL,L0) 
% cell_migration_equations.m 
% Contains the equations for example7_7 
 
% Equations 
dy=[-kBL*y(1)*(BT-y(2))+mu*L0/A_cell 
     kBL*y(1)*(BT-y(2))-kV*((BT-y(2))*y(2))/(Km+2*y(2)) 
     kV*((BT-y(2))*y(2))/(Km+2*y(2)) 
     (kBL*y(1)*(BT-y(2))-kV*((BT-y(2))*y(2))/(Km+2*y(2))... 

         +kV*((BT-y(2))*y(2))/(Km+2*y(2)))/L0];   
 

Discussion 
 

In Fig. E7.7(a), the dynamics of ligand interactions with skin epidermal cells 
are plotted as a function of time.  The free ligand concentration decreased slowly 
over time indicating the steady depletion of instantaneous ligand concentration due to 
cell internalization of the ligand.  Concurrently, the concentrations of membrane-
bound ligand complex (B.L) as well as internalized ligand (V) increase over time.  
The instantaneous clearance of ligands increases over time as well, indicating the 
cells are not yet saturated with ligand-microcarriers. 
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In Fig. E7.7(b), the cell clearance rate is graphed versus the net rate of ligand 
sampling by the cells (defined as the on-rate of ligand binding minus the off-rate of 
ligand internalization).  It is assumed that internalized ligands can no longer activate 
the intracellular signaling necessary for increased cell migration.  A monotonic 
increase in cell clearance rate of the ligands was observed with increased ligand 
sampling rate.  This suggests that the migration may be a strong function of the 
dynamics of ligand sampling processes. 
 

Results 
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7.11 Lessons Learned in this Chapter 
 
After studying this chapter, the student should have learned the following: 

• The dynamics of physiological systems may be modeled using ordinary 
differential equations. 

• Ordinary differential equations may be classified as: 
o First, second, third order, etc. 
o Linear or nonlinear 
o Homogeneous or nonhomogeneous 
o Autonomous or non-autonomous 
o Initial value or boundary value 

• Second order and higher ordinary differential equations may be converted to 
sets of first order differential equations for numerical integration by the 
methods discussed in this chapter. 

• The solution of linear ordinary differential equations depends on the 
eigenvalues and eigenvectors of the equations. 

• Nonlinear differential equations (as well as linear ones) may be integrated 
numerically using methods that are based on finite differences. 

• Integrating differential equations is like climbing a mountain: You move in 
the direction of the slope (or the weighted average of the slope at different 
points), taking many small steps (carefully), until you reach the destination. 

• The stability of nonlinear differential equations depends on the eigenvalues 
of the Jacobian matrix of the equations.  

• The stability of the numerical solution depends on the form of the equations, 
the method of solution, and the step size of integration. 
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7.12 Problems 
7.1  Integrate the Hodgkin-Huxley model (see Example 7.5) for the period 0 to 50 ms 
using a constant current of 10 µA/cm2.  Examine and explain the results thoroughly. 
 
7.2  The pool of fluid in the body of a patient undergoing dialysis has been modeled 
by Enderle et al. (2000) as a two-compartment system, as shown diagrammatically on 
Figure P7.2, where R is the rate of production of urea by the patient’s body, V1 is the 
volume of the intracellular fluid, V2 is the volume of the extracellular fluid (blood and 
interstitial fluids), C1 and C2 are the concentrations of urea in the fluids of the two 
compartments, respectively, k12 and k21 are the mass transport parameters between the 
two compartments, and k2 is the clearance rate constant for the dialysis unit.  
 

 

Figure P7.2  A two-compartment model of the fluid of a patient undergoing dialysis. 
 
An unsteady state mass balance of urea on each of the compartments yields the 
following two differential equations: 
 

 
1

1 12 1 21 2

2
2 12 1 21 2 2 2

dCV R k C k C
dt
dCV k C k C k C
dt

= − +

= − −
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For Patient X, the following parameters apply: 
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The dialysis unit clearance rate constant is 2 8  liters/h.k =  
 
When Patient X arrives at the dialysis unit his blood urea nitrogen (BUN) is 150 
mg/liter.  Integrate the differential equations (P7.2)-(1) to obtain answers to the 
following: 
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(a) How many hours of dialysis will the patient require in order to reduce the level 
of BUN to 75 mg/liter? 

(b) After the completion of the treatment, how long will it take for the BUN of the 
patient to rise back to the 150 mg/liter level? 

(c) Experiment with setting the values of k12 and k21 to be unequal to each other 
(say k21 = 0.7 k12, i.e., slower transfer from the extracellular pool to the intra-
cellular one) and interpret the results. 
 

Show clearly how you obtain your answers and illustrate this by showing the 
concentrations vs. time profiles of C1 and C2 in all parts of the problem. 
 
7.3  A computer simulation of the physiological human knee jerk reflex has been 
developed by Huang (1994).  A strong tap on the patellar ligament of the leg elicits a 
knee jerk reflex, which follows closely the oscillations of the pendulum.  The jerk of 
the patellar tendon stretches the muscle that sends a barrage of neural impulses to the 
spinal cord.  The reflex signal passes back to the quadriceps muscle via the alpha 
motor neuron to produce a sudden contraction and forces the leg to move forward 
with a jerk.  As the muscle relaxes, the leg system acts as a damped compound 
pendulum, swinging back and forth for a few oscillations.  Eventually the leg returns 
to the normal position.   

In his analysis, Huang assumed that the extensor and flexor muscles are 
identical and opposite in action.  The numbers of primary and secondary nerve 
endings are considered equal, and the nervous signals are instantaneous when 
compared to the system response.  Small deflection angles are considered with 
constant damping coefficient within the range. Based on the equation of the 
pendulum, and for small oscillations, Huang developed a second order differential 
equation 
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that describes the angular position, θ, of the leg during the knee jerk reflex, where m 
is the mass of the leg, g is the gravitational acceleration constant, L is the length of 
the leg, J is the moment of inertia of the leg, and T is the gain produced by the 
isometric torque of the muscle. The natural frequency, ωn, of the system is calculated 
by  
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and the damping factor, α, is given by 
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 (P7.3)-(3) 

 

The values of ωn and α are obtained experimentally.  Solve the above equations with 
the following values of m, g, L, J, ωn and α, and plot the time profile of the angular 
position of the leg during the jerk reflex. 
 

m = 4 kg g = 9.81 m/s2 L = 0.34 m  
J = 0.154 kg.m2 ωn = 6.28 rad/s  α = 0.228 

 

Use the following initial conditions θ(0) = 0 rad and dθ(0)/dt = 2π rad/s for the 
solution of the differential equation (P7.3)-(1). HINTS: Use the MATLAB solve 
command for the algebraic equations and the dsolve command for the differential 
equation.  
 
7.4  The pool of fluid in the body of a patient undergoing dialysis was modeled in 
Problem 7.2 (above) as a two-compartment system. Change this analysis to a one-
compartment model by treating the total fluid of the patient as one unit of volume VT 
(see Fig. P7.4).  
 

 
 
 
 
 
 
 

Figure P7.4  A one-compartment model of the fluid of a patient undergoing dialysis. 

Derive the unsteady state mass balance of urea for this one-compartment model. For 
Patient X, the following parameters apply for the one-compartment analysis: 
 

 2100  mg/h 35  liters 8  liters/hTR V k= = =   
 

When Patient X arrives at the dialysis unit his blood urea nitrogen (BUN) is 150 
mg/liter. Integrate the differential equation to obtain answers to the following: 
 

(a) How many hours of dialysis will the patient require in order to reduce the level 
of BUN to 75 mg/liter? 

(b) After the completion of the treatment, how long will it take for the BUN of the 
patient to rise back to the 150 mg/liter level? 
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Compare these results with those of the two-compartment model (Problem 7.2). 
 
7.5  A simple model of an epidemic is shown on Fig. P7.5, where S is the number of 
persons susceptible to the disease, I is the number infected with it, R is the number 
that have already been affected but have recovered (or died), α is the rate constant for 
infection, and β is the rate constant of recovery. Those who have recovered develop 
immunity to the infection. 
 

 

Figure P7.5  A simple model of an epidemic. 

A dynamic model of the interactions between these three groups is given by 
Edelstein-Keshet (1988), as follows: 
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 (P7.5)-(1) 

 
One person, highly contagious with a new influenza virus, enters a small community 
that has a population of 5000 individuals that are susceptible to the infection. The 
virus epidemic spreads quickly and eventually infects all susceptible individuals. The 
rate constants for this epidemic are  
 

-1 -1
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0.005 (person) (week)
=1 (week)
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=

 

 
Integrate the differential equations (P7.5)-(1) and determine the following: 
 

(a) How many weeks does it take for this epidemic to reach its peak? 
(b) What is the maximum number of persons sick at the peak of the epidemic? 
(c) In how many weeks will the epidemic subside, (when less the 0.5 % of the 

susceptible population is still infected)? 
 

7.6  Modify the epidemic model in Problem 7.5 to allow loss of immunity that causes 
recovered individuals to become susceptible to the virus again (see Fig. P7.6). The 
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loss of immunity rate constant has the following value (α and β remain the same as in 
Problem 7.5):  

-10.1 (week)γ =  
 

 

Figure P7.6  A modified model of an epidemic to account for loss of immunity. 
 

Integrate the modified set of differential equations for this epidemic and determine 
the following: 
 

(a) How many weeks does it take for the epidemic to approach steady state? 
(b) How many people will remain infected during steady state? 
(c) Show phase plots and discuss the stability of the solutions with respect to the 

eigenvalues of the Jacobian matrix. 
 
7.7  The well-known van der Pol oscillator is the second order nonlinear differential 
equation shown below: 
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2
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The solution of this equation exhibits stable oscillatory behavior. Van der Pol 
realized the parallel between the oscillations generated by this equation and certain 
biological rhythms, such as the heart beat, and proposed this as a model of an 
oscillatory cardiac pacemaker. Integrate the van der Pol equation with the following 
value of k and initial conditions 
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and determine the value of a that would give a heart rate of 1.25 beats/second (75 
beats/minute, which is a typical heart rate in a resting adult). 
 
7.8  It is well known that most living cells – bacteria cells, stem cells, yeasts, etc. – 
replicate themselves by cell division. The growth of an organism is accompanied by 
an orderly increase in its mass and all of its chemical constituents, followed by 
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division of the cell into two identical daughter cells or a mother and daughter cell, as 
in the case of yeasts. In Example 7.6, we simulated the process of stem cell 
differentiation without cell division. That was a rather simplistic model of cell 
differentiation, because most stages of differentiation have cell replication activity. 
The act of replication marks the completion of one stage of differentiation and the 
beginning of the next.  
 
The human body produces and consumes approximately 200 billion red blood cells 
daily. The process of turning a bone marrow stem cell to a red blood cell is called 
erythropoiesis. The differentiation from the early precursor stage (pronormoblast) to 
a fully mature enucleated erythrocyte takes approximately one week (Palsson and 
Bhatia, 2004).  This concept is depicted diagrammatically in Fig. P7.9. 
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Figure P7.8  Stem cell differentiation with replication. 

With the assumptions that a single cell that leaves compartment (i-1) splits into two 
cells that enter compartment i, we derive the mass balances for the N compartments 
representing differentiation, as follows:   
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 (P7.8)-(1) 

 
In addition, we make the assumption that all the red blood cells that are formed by 
this process enter the blood stream, where they serve their purpose and die, at the rate 
of 200 billion cells per day. The number of red blood cells in a healthy individual 
remains relatively constant, i.e., there is steady state. Then the balance on the blood 
stream results in the following equation: 
 

 Blood 92 200 10 0N N
dX k X

dt
= − × =  (P7.8)-(2) 

 
Using the above differential equations, simulate numerically the erythropoiesis 
process and answer the following questions: 

(a) What is the total number of stem cells per day, I, that need to commit to the 
erythropoiesis process in order to produce the required 200 billion red blood 
cells per day? Assume that the stem cells undergo a total of 10 stages of 
differentiation (N = 10), and that the initial conditions and transition rate 
constants are: 
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Explain carefully how you calculate the value of I. 

 
(b) Show and discuss thoroughly the time profiles in the N stages of the differen-

tiation/replication process and compare these results with those of Example 7.6 
Case (c). 
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