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Systems of First Order Linear Differential Equations 
 

 

We will now turn our attention to solving systems of simultaneous 

homogeneous first order linear differential equations.  The solutions of such 

systems require much linear algebra (Math 220).  But since it is not a 

prerequisite for this course, we have to limit ourselves to the simplest 

instances: those systems of two equations and two unknowns only.  But first, 

we shall have a brief overview and learn some notations and terminology.   

 

 

A system of n linear first order differential equations in n unknowns (an n × 

n system of linear equations) has the general form: 

 

 

x1′ = a11 x1 + a12 x2 + … + a1n xn + g1      

x2′ = a21 x1 + a22 x2 + … + a2n xn + g2      

x3′ = a31 x1 + a32 x2 + … + a3n xn + g3       (*) 
 :   :   : 

 :   :   : 

xn′ = an1 x1 + an2 x2 + … + ann xn + gn      

 

    
 

Where the coefficients aij’s, and gi’s are arbitrary functions of t.  If every 

term gi is constant zero, then the system is said to be homogeneous.  

Otherwise, it is a nonhomogeneous system if even one of the g’s is nonzero. 
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The system (*) is most often given in a shorthand format as a matrix-vector 

equation, in the form: 

x′ = Ax + g 
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      x′        A        x         g 

 

 

Where the matrix of coefficients, A, is called the coefficient matrix of the 

system.  The vectors x′, x, and g are 
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For a homogeneous system, g is the zero vector.  Hence it has the form 

 

     x′ = Ax. 
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Fact:  Every n-th order linear equation is equivalent to a system of n first 

order linear equations.  (This relation is not one-to-one.  There are multiple 

systems thus associated with each linear equation, for n > 1.) 

 

 

 

Examples:   

 

(i)  The mechanical vibration equation m u″ + γ u′ + k u = F(t) is equivalent to 
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Note that the system would be homogeneous (respectively, 

nonhomogeneous) if the original equation is homogeneous 

(respectively, nonhomogeneous). 

 

 

(ii)     y″′ − 2y″ + 3y′ − 4y = 0   is equivalent to 

 

    x1′ =  x2   

    x2′ =   x3 

    x3′ = 4 x1 − 3 x2 + 2 x3      
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This process can be easily generalized.  Given an n-th order linear equation  

 

any
(n)

 + an−1 y
(n−1)

 + an−2 y
(n−2)

 + … + a2 y″ + a1 y′ + a0 y = g(t). 

 

 

Make the substitutions: x1 = y, x2 = y′, x3 = y″, … , xn = y
(n−1)

, and xn′ = y
(n)

.   

The first n − 1 equations follow thusly.   Lastly, substitute the x’s into the 

original equation to rewrite it into the n-th equation and obtain the system of 

the form:  

 

 

 x1′    =   x2   

 x2′    =    x3 

 x3′    =     x4    

  :    :    : 

  :   :   : 

 xn−1′    =   xn 
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Note:  The reverse is also true (mostly)
*
.  Given an n × n system of linear 

equations, it can be rewritten into a single n-th order linear equation.     

 

                                                 
*
 The exceptions being the systems whose coefficient matrices are diagonal matrices.  However, our 

Eigenvector method will nevertheless be able to solve them without any modification. 



© 2008, 2012  Zachary S Tseng         D-1 - 5 

Exercises D-1.1: 

 

1 – 3  Convert each linear equation into a system of first order equations. 

1.     y″ − 4y′ + 5y = 0 

 

2.     y″′ − 5y″ + 9y = t cos 2t      

 

3.     y
(4)

 + 3y″′ − πy″ + 2πy′ − 6y = 11   

 

4.  Rewrite the system you found in (a) Exercise 1, and (b) Exercise 2, into a 

matrix-vector equation.  

 

5.  Convert the third order linear equation below into a system of 3 first 

order equation using  (a) the usual substitutions, and (b) substitutions in the 

reverse order: x1 = y″, x2 = y′, x3 = y.  Deduce the fact that there are multiple 

ways to rewrite each n-th order linear equation into a linear system of n 

equations.  

   y″′ + 6y″ + y′ − 2y = 0 

 

 

 

 

Answers D-1.1: 

1.   x1′ =  x2     2.   x1′ =  x2          

 x2′ =  −5x1 + 4x2         x2′ =  x3 

         x3′ = −9x1 + 5x3 + t cos 2t      

3.    x1′ =  x2   

 x2′ =  x3 

 x3′ =  x4    

   x4′ =  6x1 − 2πx2 + πx3 − 3x4 + 11      

4.  (a)  x′ = 








− 45

10
x     (b)  x′ = 

















− 509

100

010

x +
















tt 2cos

0

0

 

 

5.  (a)  x1′ =  x2        (b)   x1′ = −6x1 − x2 + 2x3          

  x2′ =  x3               x2′ =  x1        

    x3′ = 2x1 − x2 − 6x3                  x3′ =  x2        
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A Crash Course in (2 ×××× 2) Matrices 
 

 

Several weeks worth of matrix algebra in an hour…  (Relax, we will only 

study the simplest case, that of 2 × 2 matrices.) 

 

 

Review topics: 

 

1. What is a matrix (pl. matrices)? 

 

A matrix is a rectangular array of objects (called entries).  Those 

entries are usually numbers, but they can also include functions, 

vectors, or even other matrices.  Each entry’s position is addressed by 

the row and column (in that order) where it is located.  For example, 

a52 represents the entry positioned at the 5th row and the 2nd column 

of the matrix A. 

 

 

2. The size of a matrix 

 

 The size of a matrix is specified by 2 numbers 

 

   [number of rows] × [number of columns]. 

 

Therefore, an m × n matrix is a matrix that contains m rows and n 

columns.  A matrix that has equal number of rows and columns is 

called a square matrix.  A square matrix of size n × n is usually 

referred to simply as a square matrix of size (or order) n.  

 

 

Notice that if the number of rows or columns is 1, the result (respectively, a 

1 × n, or an m × 1 matrix) is just a vector.  A 1 × n matrix is called a row 

vector, and an m × 1 matrix is called a column vector.  Therefore, vectors are 

really just special types of matrices.  Hence, you will probably notice the 

similarities between many of the matrix operations defined below and vector 

operations that you might be familiar with.   
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3.  Two special types of matrices 

 

 Identity matrices (square matrices only) 

 

  The n × n identity matrix is often denoted by In. 

 

   I2 = 







10

01
,  I3 = 

















100

010

001

,  etc. 

 

 

  Properties (assume A and I are of the same size): 

  

   AI = IA = A    

   In x = x,   x = any n × 1 vector 

 

 

 Zero matrices – matrices that contain all-zero entries. 

 

  Properties: 

 

   A + 0 = 0 + A = A 

   A 0 = 0 = 0 A  

 

 

 

4.  Arithmetic operations of matrices 

 

 (i)  Addition / subtraction 

 

  








±±

±±
=








±









hdgc

fbea

hg

fe

dc

ba
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 (ii)  Scalar Multiplication 

 

   







=









kdkc

kbka

dc

ba
k ,  for any scalar k. 

 

 

 (iii)  Matrix multiplication 

 

   







++

++
=
















dhcfdgce

bhafbgae

hg

fe

dc

ba
 

 

 

The matrix multiplication AB = C is defined only if there are as many 

rows in B as there are columns in A.  For example, when A is m × k 

and B is k × n.  The product matrix C is going to be of size m × n, and 

whose ij-th entry, cij, is equal to the vector dot product between the i-

th row of A and the j-th column of B.  Since vectors are matrices, we 

can also multiply together a matrix and a vector, assuming the above 

restriction on their sizes is met.  The product of a 2 × 2 matrix and a 2-

entry column vector is 

 

   







+

+
=
















dycx

byax

y

x

dc

ba
. 

 

 

Note 1:  Two square matrices of the same size can always be 

multiplied together.  Because, obviously, having the same number of 

rows and columns, they satisfy the size requirement outlined above. 

 

Note 2:  In general, AB ≠ BA.  Indeed, depending on the sizes of A 

and B, one product might not even be defined while the other product 

is. 
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5.  Determinant (square matrices only) 

 

 For a 2 × 2 matrix, its determinant is given by the formula 

 

    bcad
dc

ba
−=








det  

 

Note:  The determinant is a function whose domain is the set of all 

square matrices of a certain size, and whose range is the set of all real 

(or complex) numbers. 

 

 

6.  Inverse matrix (of a square matrix) 

 

Given an n × n square matrix A, if there exists a matrix B (necessarily 

of the same size) such that  

 

     AB = BA = In, 

 

then the matrix B is called the inverse matrix of A, denoted A
−1

.  The 

inverse matrix, if it exists, is unique for each A.  A matrix is called 

invertible if it has an inverse matrix. 

 

 

 Theorem:  For any 2 × 2 matrix A = 








dc

ba
,  

its inverse, if exists, is given by  

 

  A
−1

 = 








−

−

− ac

bd

bcad

1
. 

 

 

Theorem:  A square matrix is invertible if and only if its 

determinant is nonzero. 
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Examples:  Let A = 






 −

25

21
 and B = 









−
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41

32
. 

 

 

(i)  2A − B = 2 
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On the other hand:  

BA = 






 −−
=








++−

−−−
=







 −








−

−

1019

1013

82201

64152

25

21

41

32
 

 

 

(iii)  det(A) = 2 − (−10) = 12,  det(B) = 8 − 3 = 5. 

 

 Since neither is zero, as a result, they are both invertible matrices. 

 

 

(iv)  A
−1

 = 








−
=









−
=









−−− 12/112/5

6/16/1

15

22

12

1

15

22

)10(2

1
 

 

 



© 2008, 2012  Zachary S Tseng         D-1 - 11 

7.  Systems of linear equations (also known as linear systems) 

 

A system of linear (algebraic) equations, Ax = b, could have zero, 

exactly one, or infinitely many solutions.  (Recall that each linear 

equation has a line as its graph.  A solution of a linear system is a 

common intersection point of all the equations’ graphs − and there are 

only 3 ways a set of lines could intersect.)    

 

If the vector b on the right-hand side is the zero vector, then the 

system is called homogeneous.  A homogeneous linear system always 

has a solution, namely the all-zero solution (that is, the origin).  This 

solution is called the trivial solution of the system.  Therefore, a 

homogeneous linear system Ax = 0 could have either exactly one 

solution, or infinitely many solutions.  There is no other possibility, 

since it always has, at least, the trivial solution.  If such a system has n 

equations and exactly the same number of unknowns, then the number 

of solution(s) the system has can be determined, without having to 

solve the system, by the determinant of its coefficient matrix: 

 

 

Theorem:  If A is an n × n matrix, then the homogeneous linear 

system Ax = 0 has exactly one solution (the trivial solution) if and 

only if A is invertible (that is, it has a nonzero determinant).  It 

will have infinitely many solutions (the trivial solution, plus 

infinitely many nonzero solutions) if A is not invertible 

(equivalently, has zero determinant). 
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8.  Eigenvalues and Eigenvectors 

 

Given a square matrix A, suppose there are a constant r and a nonzero 

vector x such that  

     Ax = r x, 

 

then r is called an Eigenvalue of A, and x is an Eigenvector of A 

corresponding to r. 

 

Do eigenvalues/vectors always exist for any given square matrix?  

The answer is yes.  How do we find them, then? 

 

Rewrite the above equation, we get Ax − r x = 0.  The next step would 

be to factor out x.  But doing so would give the expression  

(A − r ) x = 0. 

Notice that it requires us to subtract a number from an n × n matrix.  

That’s an undefined operation.  Hence, we need to further refined it by 

rewriting the term r x = r I x, and then factoring out x, obtaining 

 

     (A − r I) x = 0. 

 

This is an n × n system of homogeneous linear (algebraic) equations, 

where the coefficient matrix is (A − r I).  We are looking for a nonzero 

solution x of this system.  Hence, by the theorem we have just seen, 

the necessary and sufficient condition for the existence of such a 

nonzero solution, which will become an eigenvector of A, is that the 

coefficient matrix (A − r I) must have zero determinant.  Set its 

determinant to zero and what we get is a degree n polynomial 

equation in terms of r.  The case of a 2 × 2 matrix is as follow: 

 

 

A − r I = 







−

−
=








−








rdc

bra
r

dc

ba

10

01
. 
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Its determinant, set to 0, yields the equation 

 

 

0)()())((det 2 =−++−=−−−=







−

−
bcadrdarbcrdra

rdc

bra

 

 

It is a degree 2 polynomial equation of r, as you can see. 

 

This polynomial on the left is called the characteristic polynomial of 

the (original) matrix A, and the equation is the characteristic equation 

of A.  The root(s) of the characteristic polynomial are the eigenvalues 

of A.  Since any degree n polynomial always has n roots (real and/or 

complex; not necessarily distinct), any n × n matrix always has at least 

one, and up to n different eigenvalues. 

 

Once we have found the eigenvalue(s) of the given matrix, we put 

each specific eigenvalue back into the linear system (A − r I) x = 0  to 

 find the corresponding eigenvectors. 
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Examples:      A = 








34

32
 

 

 

A − r I = 







−

−
=








−








r

r
r

34

32

10

01

34

32
. 

 

Its characteristic equation is 

 

0)6)(1(6512)3)(2(
34

32
det 2 =−+=−−=−−−=









−

−
rrrrrr

r

r

 

The eigenvalues are, therefore, r = −1 and 6. 

 

Next, we will substitute each of the 2 eigenvalues into the matrix 

equation (A − r I) x = 0. 

 

 For r = −1, the system of linear equations is  

 

 (A − r I) x = (A + I) x = 







=








=








+

+

0

0

44

33

134

312
xx . 

 

Notice that the matrix equation represents a degenerated system of 2 

linear equations.  Both equations are constant multiples of the 

equation x1 + x2 = 0.  There is now only 1 equation for the 2 

unknowns, therefore, there are infinitely many possible solutions.  

This is always the case when solving for eigenvectors.  Necessarily, 

there are infinitely many eigenvectors corresponding to each 

eigenvalue.  
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 Solving the equation x1 + x2 = 0, we get the relation x2 = − x1.  Hence, 

the eigenvectors corresponding to r = −1 are all nonzero multiples of 

  

  

     








−
=

1

1
1k . 

 

 

 

 Similarly, for r = 6, the system of equations is  

 

 (A − r I) x = (A − 6 I) x = 







=








−

−
=








−

−

0

0

34

34

634

362
xx . 

 

 Both equations in this second linear system are equivalent to  

4 x1 − 3 x2 = 0.   Its solutions are given by the relation 4 x1 = 3 x2.  

Hence, the eigenvectors corresponding to r = 6 are all nonzero 

multiples of 

 

     







=

4

3
2k . 

 

 

 

 

 

Note:  Every nonzero multiple of an eigenvector is also an eigenvector.   
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Two short-cuts to find eigenvalues:   

 

 

1.  If A is a diagonal or triangular matrix, that is, if it has the form 

 

  








d

a

0

0
, or  









d

ba

0 , or  








dc

a 0
. 

 

Then the eigenvalues are just the main diagonal entries, r = a and d in all 3 

examples above. 

 

 

2.  If A is any 2 × 2 matrix, then its characteristic equation is 

 

0)()(det 2 =−++−=








−

−
bcadrdar

rdc

bra
 

 

If you are familiar with terminology of linear algebra, the characteristic 

equation can be memorized rather easily as  

 

 

r 
2
 − Trace(A) r + det(A) = 0. 

    
 

 

 

Note:  For any square matrix A, Trace(A) = [sum of all entries on the main 

diagonal (running from top-left to bottom-right)].  For a 2 × 2 matrix A,   

Trace(A) = a + d. 

 



© 2008, 2012  Zachary S Tseng         D-1 - 17 

A short-cut to find eigenvectors (of a 2 ×××× 2 matrix): 

 

Similarly, there is a trick that enables us to find the eigenvectors of any 2 × 2 

matrix without having to go through the whole process of solving systems of 

linear equations.  This short-cut is especially handy when the eigenvalues 

are complex numbers, since it avoids the need to solve the linear equations 

which will have complex number coefficients.  (Warning:  This method does 

not work for any matrix of size larger than 2 × 2.) 

 

We first find the eigenvalue(s) and then write down, for each eigenvalue, the 

matrix (A − r I) as usual.  Then we take any row of (A − r I) that is not 

consisted of entirely zero entries, say it is the row vector (α , β).  We put a 

minus sign in front of one of the entries, for example, (α , −β).  Then an 

eigenvector of the matrix A is found by switching the two entries in the 

above vector, that is, k = (−β , α). 

 

 

Example:   Previously, we have seen A = 








34

32
 . 

 

The characteristic equation is  

r 
2
 − Trace(A) r + det(A) = r 

2
 − 5r − 6 = (r + 1)(r − 6) =0, 

 

which has roots r = −1 and 6.  For r = −1, the matrix (A − r I) is 







44

33
. 

 

Take the first row, (3, 3), which is a non-zero vector; put a minus sign to the 

first entry to get (−3, 3); then switch the entry, we now have k1 = (3, −3).  It 

is indeed an eigenvector, since it is a nonzero constant multiple of the vector 

we found earlier.  

 

 

 

On very rare occasions, both rows of the matrix (A − r I) have all zero 

entries.  If so, the above algorithm will not be able to find an eigenvector.  

Instead, under this circumstance any non-zero vector will be an eigenvector. 
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Exercises D-1.2: 

 

Let C = 






 −−

37

15
  and   D = 









−− 12

02
. 

 

1.  Compute: (i)  C + 2D and (ii)  3C – 5D.  
 

2.  Compute: (i)  CD and (ii)  DC.     

 

3.  Compute: (i)  det(C), (ii)  det(D), (iii)  det(CD), (iv)  det(DC). 

 

4.  Compute: (i)  C −1
, (ii)  D −1

, (iii)  (CD) −1
, (iv) show (CD) −1

 = D −1
C −1

.  

  

5.  Find the eigenvalues and their corresponding eigenvectors of C and D.  

 

 

 

 

Answers D-1.2: 

1.  (i) 






 −−

13

11
,  (ii) 







 −−

1431

325
 

2.  (i) 








−

−

38

18
,  (ii) 









−

−−

13

210
 

3.  (i) −8,  (ii) −2,  (iii) 16,  (iv) 16   

4.  (i)  






 −−

8/58/7

8/18/3
,  (ii) 









−− 11

02/1
,  (iii) 









−−

−−

2/12/1

16/116/3
, (iv) The 

equality is not a coincidence.  In general, for any pair of invertible matrices 

C and D, (CD) −1
 = D −1

C −1
. 

5.  (i)  r1 = 2, 








−
=

s

s
k

7
1 ; r2 = −4, 









−
=

s

s
k2  ; s = any nonzero number 

(ii)  r1 = 2, 








−
=

3/2
1

s

s
k ; r2 = −1, 








=

s
k

0
2  ; s = any nonzero number 
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Solution of 2 ×××× 2 systems of first order linear equations 
 

 

Consider a system of 2 simultaneous first order linear equations 

 

    x1′ = a x1 + b x2   

    x2′ = c x1 + d x2  

 

It has the alternate matrix-vector representation 

 

    x′ = 








dc

ba
x.  

 

Or, in shorthand x′ = Ax, if A is already known from context.   

 

 

We know that the above system is equivalent to a second order 

homogeneous linear differential equation.  As a result, we know that the 

general solution contains two linearly independent parts.  As well, the 

solution will be consisted of some type of exponential functions.  Therefore, 

assume that x = k e
 rt

 is a solution of the system, where k is a vector of 

coefficients (of x1 and x2).  Substitute x and x′ = r k e 
rt
 into the equation    

x′ = Ax, and we have 

 

    r k e
 rt

 = A k e
 rt

. 

 

Since e 
rt
 is never zero, we can always divide both sides by e 

rt
 and get 

 

       r k = A k. 

 

We see that this new equation is exactly the relation that defines eigenvalues 

and eigenvectors of the coefficient matrix A.  In other words, in order for a 

function x = k e 
rt
 to satisfy our system of differential equations, the number r 

must be an eigenvalue of A, and the vector k must be an eigenvector of A 

corresponding to r.  Just like the solution of a second order homogeneous 

linear equation, there are three possibilities, depending on the number of 

distinct, and the type of, eigenvalues the coefficient matrix A has. 
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The possibilities are that A has 

 

  I.   Two distinct real eigenvalues 

  II.   Complex conjugate eigenvalues 

  III.   A repeated eigenvalue 

 

 

 

 

A related note, (from linear algebra,) we know that eigenvectors that each 

corresponds to a different eigenvalue are always linearly independent from 

each others.  Consequently, if r1 and r2 are two different eigenvalues, then 

their respective eigenvectors k1 anf k2, and therefore the corresponding 

solutions, are always linearly independent. 
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Case I Distinct real eigenvalues 

 

 

If the coefficient matrix A has two distinct real eigenvalues r1 and r2, and 

their respective eigenvectors are k1 and k2.  Then the 2 × 2 system x′ = Ax 

has a general solution 

 

trtr
ekCekCx 21

2211 += . 

 

 

 

 

Example:     x′ = 








34

32
x. 

 

 We have already found that the coefficient matrix has eigenvalues  

 r = −1 and 6.  And they each respectively has an eigenvector 

   








−
=

1

1
1k ,  








=

4

3
2k . 

  

 Therefore, a general solution of this system of differential equations is 

 

   

tt eCeCx 6

21
4

3

1

1








+









−
= −
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Example:     x′ = 








−

−

22

23
x,    x(0) = 









−1

1
 

 

 

The characteristic equation is r 
2
 − r − 2 = (r + 1)(r − 2) = 0.  The 

eigenvalues are r = −1 and 2.  They have, respectively, eigenvectors 

 

For r = −1, the system is  

 

 (A − r I) x = (A + I) x = 







=








−

−
=








+−

−+

0

0

12

24

122

213
xx . 

 

Solving the bottom equation of the system: 2x1 − x2 = 0, we get the 

relation x2 = 2 x1.  Hence, 

 

     







=

2

1
1k ,   

 

For r = 2, the system is  

 

 (A − r I) x = (A − 2 I) x = 







=








−

−
=








−−

−−

0

0

42

21

222

223
xx . 

 

Solving the first equation of the system: x1 − 2x2 = 0, we get the 

relation x1 = 2x2.  Hence, 

 









=

1

2
2k . 
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 Therefore, a general solution is  

 

    
tt eCeCx 2

21
1

2

2

1








+








= −

. 

 

 

 

Apply the initial values,  

 










−
=









+

+
=








+








=

1

1

2

2

1

2

2

1
)0(

21

210

2

0

1
CC

CC
eCeCx

. 

 

 

 That is  

1

1

2

2

21

21

−=+

=+

CC

CC
. 

 

 

We find C1 = −1 and C2 = 1, hence we have the particular solution 

 

 

  








+−

+−
=








+








−=

−

−
−

tt

tt

tt

ee

ee
eex

2

2

2

2

2

1

2

2

1
. 
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Case II Complex conjugate eigenvalues 

 

 

If the coefficient matrix A has two distinct complex conjugate eigenvalues  

λ ± µi. Also suppose k = a + b i is an eigenvector (necessarily has complex-

valued entries) of the eigenvalue λ + µi.  Then the 2 × 2 system x′ = Ax has a 

real-valued general solution 

 

( ) ( ))cos()sin()sin()cos( 21 tbtaeCtbtaeCx tt µµµµ λλ ++−=  

 

 

 

A little detail:  Similar to what we have done before, first there was the 

complex-valued general solution in the form 
titi ekCekCx )(

22

)(

11

µλµλ −+ += . 

We “filter out” the imaginary parts by carefully choosing two sets of 

coefficients to obtain two corresponding real-valued solutions that are also 

linearly independent:  

 

( ))sin()cos( tbtaeu t µµλ −=  

( ))cos()sin( tbtaev t µµλ +=  

 

The real-valued general solution above is just x = C1 u + C2 v.  In particular, 

it might be useful to know how u and v could be derived by expanding the 

following complex-valued expression (the front half of the complex-valued 

general solution): 

 

))cos()sin(())sin()cos((

))sin()cos()sin()cos((

))sin())(cos(()(

2

)()(

1

tbtaeitbtae

tbitibtiatae

titbiaeeebiaek

tt

t

tittti

µµµµ

µµµµ

µµ

λλ

λ

λµλµλ

++−=

+++=

++=+=+

 

Then, u is just the real part of this complex-valued function, and v is its 

imaginary part. 
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Example:      x′ = 








−

−

21

52
x 

 

 

The characteristic equation is r 
2
 + 1 = 0, giving eigenvalues r = ± i.  

That is, λ = 0 and µ =1. 

 

Take the first (the one with positive imaginary part) eigenvalue r = i, 

and find one of its eigenvectors: 

 

   (A − r I) x = 







=








−−

−−

0

0

21

52
x

i

i
. 

 

Solving the first equation of the system: (2 − i) x1 − 5x2 = 0, we get 

the relation (2 − i) x1 = 5x2.  Hence, 

 

   ibai
i

k +=








−
+







=









−
=

1

0

2

5

2

5
 

                                                          a          b 
 

 

 

 Therefore, a general solution is 

 

 









−

+







+

=

















−

+







+
















−

−







=

)cos()sin(2

)sin(5

)sin()cos(2

)cos(5

)cos(
1

0
)sin(

2

5
)sin(

1

0
)cos(

2

5

21

0

2

0

1

tt

t
C

tt

t
C

tteCtteCx tt
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Example:    x′ = 






 −−

53

61
x,    x(0) = 









2

0
. 

 

 

The characteristic equation is r 
2
 − 4r + 13 = 0, giving eigenvalues  

r = 2 ± 3i.  Thus, λ = 2 and µ =3. 

 

 

 Take r = 2 + 3i and find one of its eigenvectors: 

 

  (A − r I) x = 







=








−

−−−
=








+−

−+−−

0

0

333

633

)32(53

6)32(1

i

i
x

i

i
. 

 

 

Solving the second equation of the system: 3x1 + (3 − 3i) x2 = 0, we 

get the relation  x1 = (−1 + i) x2.  Hence, 

 

   ibai
i

k +=







+






−
=







 +−
=

0

1

1

1

1

1
 

 

 

 

 The general solution is  

 








 −
+






 −−
=

















+







−
+
















−







−
=

)3sin(

)3sin()3cos(

)3cos(

)3sin()3cos(

)3cos(
0

1
)3sin(

1

1
)3sin(

0

1
)3cos(

1

1

2

2

2

1

2

2

2

1

t

tt
eC

t

tt
eC

tteCtteCx

tt

tt
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Apply the initial values to find C1 and C2: 

 









=







 +−
=








+






−
=

















+







−
+
















−







−
=

2

0

0

1

1

1

)0cos(
0

1
)0sin(

1

1
)0sin(

0

1
)0cos(

1

1
)0(

1

21

21

0

2

0

1

C

CC
CC

eCeCx

 

 

Therefore, C1 = 2 and C2 = 2.  Consequently, the particular solution is 

 

 









+

−
=








 −
+






 −−
=

)3sin(2)3cos(2

)3sin(4

)3sin(

)3sin()3cos(
2

)3cos(

)3sin()3cos(
2

2

22

tt

t
e

t

tt
e

t

tt
ex

t

tt

 

 

 

 



© 2008, 2012  Zachary S Tseng         D-1 - 28 

Case III Repeated real eigenvalue 

 

 

Suppose the coefficient matrix A has a repeated real eigenvalues r, there are 

2 sub-cases. 

 

(i)  If r has two linearly independent eigenvectors k1 and k2.  Then the 2 × 2 

system x′ = Ax has a general solution 

 

x = C1 k1 e 
rt + C2 k2 e 

rt
. 

  

 

Note: For 2 × 2 matrices, this possibility only occurs when the coefficient 

matrix A is a scalar multiple of the identity matrix. That is, A has the form 

 

   







=









α
α

α
0

0

10

01
,   for any constant α. 

 

 

Example:     x′ = 








20

02
x. 

 

 

The eigenvalue is r = 2 (repeated).  There are 2 sets of linearly 

independent eigenvectors, which could be represented by any 2 

nonzero vectors that are not constant multiples of each other.  For 

example 

   







=

0

1
1k ,   








=

1

0
2k . 

 

 Therefore, a general solution is  

 

   
tt eCeCx 2

2

2

1
1

0

0

1








+








= . 
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(ii)  If r, as it usually does, only has one linearly independent eigenvector k.  

Then the 2 × 2 system x′ = Ax has a general solution 

 

 

x = C1 k e 
rt + C2 (k t e 

rt + η e 
rt). 

    

 

Where the second vector η is any solution of the nonhomogeneous linear 

system of algebraic equations 

 

(A − r I) η = k. 

 

 

      

 

 

Example:    x′ = 








−

−

74

41
x,    x(0) = 







−

1

2
. 

 

 

The eigenvalue is r = −3 (repeated).  The corresponding system is  

 

 (A − r I) x = 







=








−

−
=








+−

−+

0

0

44

44

374

431
xx . 

 

Both equations of the system are 4x1 − 4x2 = 0, we get the same 

relation x1 = x2.  Hence, there is only one linearly independent  

eigenvector:   

 









=

1

1
k . 
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 Next, solve for η:    

 










−

−

44

44
η  = 









1

1
. 

 

 

 It has solution in the form η  = 











 +

2

2
4

1

η

η
. 

 

 Choose η2 = 0, we get η  = 








0

4/1
. 

 

 

 A general solution is, therefore, 

 

















+








+








= −−− ttt eetCeCx 33

2

3

1
0

41

1

1

1

1

 

 

 

Apply the initial values to find C1 = 1 and C2 = −12.  The particular 

solution is 

 

tttt e
t

t
eetex 3333

112

212

0

41

1

1
12

1

1 −−−−








+−

−−
=















+








−








=
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Summary:  Solving a Homogeneous System of Two Linear 

First Order Equations in Two Unknowns 
 

 

Given: 

x′ = Ax. 
 

First find the two eigenvalues, r, and their respective corresponding 

eigenvectors, k, of the coefficient matrix A.  Depending on the eigenvalues 

and eigenvectors, the general solution is: 

 

I.  Two distinct real eigenvalues r1 and r2: 

 

trtr
ekCekCx 21

2211 += . 

 

 

 

II.  Two complex conjugate eigenvalues λ ± µi, where λ + µi has as an 

eigenvector k = a + b i: 

 

( ) ( ))cos()sin()sin()cos( 21 tbtaeCtbtaeCx tt µµµµ λλ ++−=
 

 

 

III.  A repeated real eigenvalue r: 

 

 (i)  When two linearly independent eigenvectors exist – 

 

x = C1 k1 e 
rt + C2 k2 e 

rt
. 

 

 (ii)  When only one linearly independent eigenvector exist – 

 

   x = C1 k e 
rt + C2 (k t e 

rt + η e 
rt). 

 

 Note: Solve the system (A − r I) η = k  to find the vector η. 

 

 



© 2008, 2012  Zachary S Tseng         D-1 - 32 

Exercises D-1.3: 

 

1.  Rewrite the following second order linear equation into a system of two 

equations.   

    y″ + 5y′ − 6y = 0 

 

Then:  (a) show that both the given equation and the new system have the 

same characteristic equation.  (b) Find the system’s general solution.  

 

2 – 7  Find the general solution of each system below. 

2.   x′ = 








−− 105

72
x.    3.   x′ = 









−

−

33

63
x. 

 

4.  x′ = 






 −

41

48
x.    5.   x′ = 









−−

−

51

23
x. 

 

6. x′ = 







21

12
x.    7.  x′ = 








−

−

41

52
x.   

 

8 – 15  Solve the following initial value problems. 

8.   x′ = 








−

−−

11

11
x,    x(0) = 







−

2

4
. 

 

9.   x′ = 







−

−

40

04
x,    x(3) = 








−2

5
. 

 

10.   x′ = 








32

41
x,    x(1) = 









3

0
. 

 

11.   x′ = 








62

86
x,    x(0) = 









0

8
. 

 

12.  x′ = 








−

−

11

11
x,    x(0) = 









4

6
. 
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13.   x′ = 








−

−

31

93
x,   x(−55) = 









5

3
. 

 

14.   x′ = 








− 12

36
x,    x(20) = 









−

−

1

1
. 

 

15.  x′ = 








− 12

53
x,    x(243) = 









14

5
. 

 

16.  For each of the initial value problems #8 through #15, how does the 

solution behave as t → ∞? 

 

17.  Find the general solution of the system below, and determine the 

possible values of α and β such that the initial value problem has a solution 

that tends to the zero vector as t → ∞. 

  x′ = 






 −−

37

15
x,    x(0) = 









β
α

. 

 

 

 

 

 

 

 

 

 

 

Answers D-1.3: 

1.  (a)  r
2
 + 5r – 6 = 0,  (b) 

tt eCeCx 







+







−
= −

1

1

6

1
2

6

1  

2. 
tt eCeCx 5

2

3

1
1

1

5

7 −−









−
+









−
=   

3. 






 +−
+







 +
=

)3sin(

)3sin()3cos(

)3cos(

)3sin()3cos(
21

t

tt
C

t

tt
Cx   
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4. 















+








+








= ttt eetCeCx 66

2

6

1
0

1

1

2

1

2
 

5. 








−

+
+









−

−
= −−

)sin(

)sin()cos(

)cos(

)sin()cos(
4

2

4

1
t

tt
eC

t

tt
eCx tt

 

6. 
tt eCeCx 3

21
1

1

1

1








+









−
=  

7. 
tt eCeCx 3

21
1

1

1

5 −








+








=  

8. 








−

−−
= −

tt

tt
ex t

sin4cos2

sin2cos4
      9. 









−
=

+−

+−

124

124

2

5
t

t

e

e
x   

10. 








+

−
=

+−−

+−−

155

155

2

22
tt

tt

ee

ee
x      11. 









+−

+
=

tt

tt

ee

ee
x

102

102

22

44
 

12. 








−

+
=

t

t

e

e
x

2

2

5

5
    13.  









+

−
=

+−

+−

3306

3306

23

69
t

t

e

e
x  

14. 








+−

−
=

−−

−−

804603

804603

45

65
tt

tt

ee

ee
x     

15. 








−−−

−+−
= −

)7293sin(8)7293cos(14

)7293sin(25)7293cos(5
4862

tt

tt
ex t

 

16.  For #8 and 9, 







=

∞→ 0

0
)(lim tx

t
.  For #10, 11, 12, 14, and 15, the limits do 

not exist, as x(t) moves infinitely far away from the origin.  For #13, 









=

∞→ 3

9
)(lim tx

t
 

17. 
tt eCeCx 4

2

2

1
1

1

7

1 −









−
+









−
= ; the particular solution will tend to 

zero as t → ∞ provided that C1 = 0, which can be achieved whenever the 

initial condition is such that α = −β (i.e., α + β = 0, including the case α = β = 

0). 
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The Laplace Transform Method of  

Solving Systems of Linear Equations 

(Optional topic) 
 

 

The method of Laplace transforms, in addition to solving individual linear 

differential equations, can also be used to solve systems of simultaneous 

linear equations.  The same basic steps of transforming, simplifying, and 

taking the inverse transform of the solution still apply. 

 

 

Example:    x′ = 








−

−

74

41
x,    x(0) = 







−

1

2
. 

 

 

Before we start, let us rewrite the problem into the explicit form of 

individual linear equations: 

 

x1′ =    x1 − 4 x2        x1(0) = −2 

  x2′ = 4 x1 − 7 x2        x2(0) = 1 

   

 
We then first transform both equations using the usual rules of 

Laplace transform: 

 

 

 sL{x1} − x1(0) = sL{x1} + 2 =  L{x1} − 4L{x2}  (1) 
 

 sL{x2} − x2(0) = sL{x2} − 1 = 4L{x1} − 7L{x2}  (2) 
 

 

 Partially simplifying both equations  

 

 (s – 1)L{x1} + 4L{x2} =  −2      (1*) 
 

  −4L{x1} + (s + 7)L{x2} = 1     (2*) 
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 Then multiply eq. (1*) by −4 and eq. (2*) by s – 1.    

 

 −4(s – 1)L{x1} − 16L{x2} =  8     (1**) 
 

 −4(s – 1)L{x1} + (s – 1) (s + 7)L{x2} = s – 1   (2**) 
 

 Subtract eq. (1**) from eq. (2**) 

 

 [(s – 1) (s + 7) – (–16)]L{x2} = s – 9    

  

(s
2
 + 6s + 9)L{x2} = s – 9      

 

 Therefore, 

  

 L{x2} = 22 )3(

12

3

1

)3(

9

+
−

+
=

+
−

sss

s
 

  

 →  x2 = e
−3t

 – 12t e
−3t

     
 

Similarly, multiply eq. (1*) by s + 7 and eq. (2*) by 4.    

 

(s – 1)(s + 7)L{x1} + 4(s + 7)L{x2} =  −2(s + 7)  (3) 
 

  −16L{x1} + 4(s + 7)L{x2} = 4     (4) 
 

 Subtract eq. (4) from eq. (3) 

 

 [(s – 1) (s + 7) + 16]L{x1} = −2s – 18 

 

 (s
2
 + 6s + 9)L{x1} = −2s – 18  

  

 L{x1} = 22 )3(

12

3

2

)3(

182

+
−

+
−

=
+
−−

sss

s
 

 

→  x1 = –2e
−3t

 – 12t e
−3t
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Therefore, 

 

t

tt

tt

e
t

t

ete

ete

x

x
x 3

33

33

2

1

112

212

12

212 −

−−

−−










+−

−−
=









+−

−−
=







= . 

 

This agrees with the solution we have found earlier using the 

eigenvector method. 

 

 

 

The method above can also, without any modification, be used to solve 

nonhomogeneous systems of linear differential equations.  It gives us a way 

to solve nonhomogeneous linear systems without having to learn a separate 

technique.  In addition, it also allows us to tackle linear systems with 

discontinuous forcing functions, if necessary. 

 

 

 

Example:    x′ = 






 −−

13

24
x + 









−

−

12t

t
, x(0) = 









−5

3
. 

 

Rewrite the problem explicitly and transform: 

 

x1′ = −4x1 − 2x2 − t         x1(0) = 3 

  x2′ =   3 x1 +   x2 + 2t − 1     x2(0) = −5 

   

 

 sL{x1} − 3 =  −4L{x1} − 2L{x2} − 2

1

s
   (5) 

 

 sL{x2} + 5 = 3L{x1} + L{x2} +
ss

12
2
−    (6) 

 

 Simplify: 
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(s + 4)L{x1} + 2L{x2} = − 2

2

2

13
3

1

s

s

s

−
=+    (5*) 

 

 −3L{x1} + (s – 1)L{x2} = 2

2

2

25
5

12

s

ss

ss

+−−
=−−  (6*) 

 

 

Multiplying eq. (5*) by s − 1 and eq. (6*) by 2, then subtract the latter 

from the former.  We eliminate L{x2}, to find L{x1}.  

  

(s
2
 + 3s + 2)L{x1} = 2

23 373

s

sss −++
    

 

 Therefore, 

 L{x1} = 
ssssss

sss

4

11

2

3

)2(4

1

)2)(1(

373
22

23

+−
+

=
++
−++

 

  

 →  x1 = 
4

11

2

3

4

1 2 +−− te t

     

 

 

Likewise, multiplying eq. (5*) by 3 and eq. (6*) by s + 4, then add 

them together.  We find L{x2}.  

  

(s
2
 + 3s + 2)L{x2} = 2

23 52125

s

sss +−−−
    

 

 Therefore, 

 L{x2} = 
ssssss

sss

4

19

2

5

)2(4

1

)2)(1(

52125
22

23

−+
+
−

=
++

+−−−
 

  

 →  x2 = 
4

19

2

5

4

1 2 −+
− − te t
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Finally, 

 










−+−

+−
=

















−+
−

+−
=







=

−

−

−

−

1910

116

4

1

4

19

2

5

4

1
4

11

2

3

4

1

2

2

2

2

2

1

te

te

te

te

x

x
x

t

t

t

t

. 

 

 

 

 

 

 

 

 

 

Exercise D-1.4: 

 

Use Laplace transforms to solve each nonhomogeneous linear system. 

1.  x′ = 








− 42

31
x + 









− −

−

t

t

e

e
3

3

6

5
,  x(0) = 









3

10
. 

 

2.  x′ = 








− 21

12
x + 







−

8

1
,   x(0) = 









1

1
.  

 

3.  x′ = 








− 25

03
x + 







−

t

t

2cos

2sin4
,  x(0) = 









−1

2
. 

 

4.  x′ = 








−

−

41

82
x + 









−−

+

26

13

t

t
,  x(0) = 









4

0
. 
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Answers D-1.4: 

1. 
















++
−

−+
=

−−

−−

ttt

ttt

eee

eee
x

523

523

3
5

17

5

17
2

3

5

51

10

13

 

2. 








−+

++−
=

3sincos4

2sin4cos
22

22

tete

tete
x

tt

tt

 

3. 
















+−−

++
=

− ttee

tte
x

tt

t

2sin
52

113
2cos

52

7

52

117

13

18

2sin
13

12
2cos

13

8

13

18

23

3

 

4. 
















++−

+−−
−

=

24

41

4

1

4

3

24

55
12

55

2

7
3

12

55

26

26

tte

tte
x

t

t

 

 

 


