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Monte Carlo

 

Monte Carlo is a computational technique based on
constructing a random process for a problem and
carrying out a NUMERICAL EXPERIMENT by N-fold
sampling from a random sequence of numbers with a
PRESCRIBED probability distribution.

x - random variable

 - the estimated or sample mean of x
x - the expectation or true mean value of x

If a problem can be given a PROBABILISTIC
interpretation, then it can be modeled using RANDOM
NUMBERS.

x̂
1
N
---- xi

i 1=

N

∑=

X̂
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Monte Carlo

 

• Monte Carlo techniques came from the complicated diffusion 
problems that were encountered in the early work on atomic energy.

• 1772 Compte de Bufon - earliest documented use of random 
sampling to solve a mathematical problem.

• 1786 Laplace suggested that 

 

π

 

 could be evaluated by random 
sampling.

• Lord Kelvin used random sampling to aid in evaluating time 
integrals associated with the kinetic theory of gases.

• Enrico Fermi was among the first to apply random sampling 
methods to study neutron moderation in Rome.

• 1947 Fermi, John von Neuman, Stan Frankel, Nicholas Metropolis, 
Stan Ulam and others developed computer-oriented Monte Carlo 
methods at Los Alamos to trace neutrons through fissionable 
materials
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Monte Carlo methods can be used to solve:

a) The problems that are stochastic (probabilistic) by
nature:

- particle transport,
- telephone and other communication systems,
- population studies based on the statistics of

survival and reproduction.

b) The problems that are deterministic by nature:
- the evaluation of integrals,
- solving the systems of algebraic equations,
- solving partial differential equations.

 

Monte Carlo



 

[5]

UCBNE, J. Vujic

 

Monte Carlo methods are divided into:

a) ANALOG, where the natural laws are PRESERVED
- the game played is the analog of the physical
problem of interest
(i.e., the history of each particle is simulated
exactly),

b) NON-ANALOG, where in order to reduce required
computational time the strict analog simulation of
particle histories is abounded (i.e., we CHEAT!)
Variance-reduction techniques:

- Absorption suppression
- History termination and Russian Roulette
- Splitting and Russian Roulette
- Forced Collisions
- Source Biasing

 

Monte Carlo
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 - area uder the function f(x),  - area of rectangle

 - is a probability that a random point lies under f(x), thus 

Step 1: Choose a random point (x1,y1):  and 

Step 2: Check if  - accept the point, if  - reject the point

Step 3: Repeat this process N times, Ni - the number of accepted points

Step 4: Determine  and the value of integral 

f x( )

a

• reject

• accept

fmax

bx1

y1

I f x( ) xd
a

b

∫= R b a–( )fmax=

P I
R
----= I RP=

x1 a b a–( )ξ1+= y1 fmaxξ2=

y1 f x1( )≤ y1 f x1( )<

P Ni
N
------= I R

Ni
N
------=

 

Example 1: Evaluation of Integrals
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Major Components of a Monte Carlo Algorithm

 

• Probability distribution functions (pdf’s) - the physical (or 
mathematical) system must be described by a set of pdf’s.

• Random number generator - a source of random numbers uniformly 
distributed on the unit interval must be available.

• Sampling rule - a prescription for sampling from the specified pdf, 
assuming the availability of random numbers on the unit interval.

• Scoring (or tallying) - the outcomes must be accumulated into 
overall tallies or scores for the quantities of interest.

• Error estimation - an estimate of the statistical error (variance) as a 
function of the number of trials and other quantities must be 
determined.

• Variance reduction techniques - methods for reducing the varinace 
in the estimated solution to reduce the computational time for Monte 
Carlo simulation.

• Parallelization and vectorization - efficient use of advanced 
computer architectures.

 

Major Components of Monte Carlo
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Probability Distribution Functions

Random Variable, x, - 

 

a variable that takes on particular val-
ues with a frequency that is determined by some underlying 
probability distribution.

 

Continuous Probability Distribution

Discrete Probability Distribution

P a x b≤ ≤{ }

P x xi={ } pi=

 

Probability Distribution Functions
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PDFs and CDFs (continuous)

 

Probability Density Function  (PDF) - continuous

 

• f(x), 

• , 

• Probability{  }  =   

 

Cumulative Distribution Function (CDF) - continuous

 

• 

• 

• 

• 

f x( )dx P x x' x dx+≤ ≤{ }=

0 f x( )≤ f x( )dx

∞–

∞

∫ 1=

a x b≤ ≤ f x( )dx

a

b

∫

F x( ) f x'( )dx'

∞–

x

∫ P x' x≤{ }= =

0 F x( ) 1≤ ≤

0
xd

d
F x( )≤ f x( )=

f x'( )dx'

a

b

∫ P a x b≤ ≤{ } F b( ) F a( )–= =

Probability Distribution Functions

f x( )

x →

F x( )

x →
0

1
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PDFs and CDFs (discrete)

Probability Density Function  (PDF) - discrete

• f(xi), 

• 

•  or 

Cumulative Distribution Function (CDF) - discrete

• 

• 

• 

f xi( ) piδ x xi–( )=

0 f xi( )≤

f xi( ) ∆xi( )
i

∑ 1= pi
i

∑ 1=

F x( ) pi
xi x<
∑ f xi( )∆xi

xi x<
∑= =

0 F x( ) 1≤ ≤

Probability Distribution Functions

f x( ) p1

p2

p3

x1    x2     x3

x1    x2     x3

p1

p1+p2

p1+p2+p3 1

F(x)



[11]

UCBNE, J. Vujic

Sampling from a given discrete distribution

Given  and , i = 1, 2, ..., N

and , then  or

f xi( ) pi= pi
i

∑ 1=

p1 p1+p2 p1+p2+p30

ξ

p1+p2+...+pN=1

0 ξ 1≤ ≤ P x xk=( ) pk P ξ dk∈( )= =

pi

i 1=

k 1–

∑ ξ pi

i 1=

k

∑<≤

Monte Carlo & Random Sampling
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Sampling from a given continuous distribution

If f(x) and F(x) represent PDF and CDF od a random variable x, and if  is a random 
number distributed uniformly on [0,1] with PDF g( )=1, and if x is such that

F(x) = 

than for each  there is a corresponding x, and the variable x is distribute according 
to the probability density function f(x).

Proof:

For each  in ( , +∆ ), there is x in (x,x+∆x). Assume that PDF for x is q(x). Show 
that q(x) = f(x):

q(x)∆x = g( )∆  =∆  = ( +∆ )-  = F(x+∆x)- F(x)

q(x) = [F(x+∆x)- F(x)]/∆x = f(x)

Thus, if x = F-1( ), then x is distributed according to f(x).

ξ
ξ

ξ

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ

Monte Carlo & Random Sampling
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Monte Carlo Codes

Categories of Random Sampling

• Random number generator   uniform PDF on [0,1]

• Sampling from analytic PDF’s   normal, exponential, Maxwellian, .....

• Sampling from tabulated PDF’s   angular PDF’s,  spectrum, cross sect

For Monte Carlo Codes...

• Random numbers, , are produced by the R.N. generator on [0,1]

• Non-uniform random variates are produced from the  ’s by
— direct inversion of CDFs
— rejection methods
— transformations
— composition (mixtures)
— sums, products, ratios, .....
— table lookup + interpolation
— lots (!) of other tricks .....

•  < 10%  of total cpu time (typical)

ξ

ξ

Monte Carlo & Random Sampling
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Random Number Generator

Pseudo-Random Numbers
• Not strictly "random",  but good enough

— pass statistical tests
— reproducible sequence

• Uniform PDF on [0,1]
• Must be easy to  compute, must have a large period

Multiplicative congruential method
• Algorithm

S0 = initial seed, odd integer, < M

Sk = G • Sk-1  mod M, k = 1, 2, .....

k = Sk / M

• Typical (vim, mcnp):
Sk = 519 • Sk-1  mod 248

k = Sk / 2
48

period   =   246      7.0 x 1013

ξ

ξ

≈

Random Sampling Methods

f x( )
1

10

1

1

F x( )

0
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Direct Sampling (Direct Inversion of CDFs)

Direct Solution of

Sampling Procedure:
• Generate 
• Determine  such that 

Advantages
• Straightforward mathematics & coding
• "High-level" approach

Disadvantages
• Often involves complicated functions
• In some cases, F(x) cannot be inverted   (e.g., Klein-Nishina)

x̂ F 1– ξ( )←

ξ
x̂ F x̂( ) ξ=

Random Sampling Methods

F x( )

x →
0

1
ξ

x̂
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Rejection Sampling
Used when the inverse of CDF is costly ot impossible to find.
Select a bounding function, g(x), such that

•   for all x
• g(x) is an easy-to-sample PDF

Sampling Procedure:
• sample  from g(x):

• test:

if true  accept , done
if false  reject   , try again

6

Advantages
• Simple computer operations

Disadvantages
• "Low-level" approach,  sometimes hard to understand

c g x( )⋅ f x( )≥

x̂ x̂ g 1– ξ1( )←

ξ2 cg x̂( )⋅ f x̂( )≤

x̂
x̂

Random Sampling Methods

f x( )

x →

• reject

• accept

cg x( )
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Table Look-Up
Used when f(x) is given in a form of a histogram

Then by linear interpolation

,

 

f x( )

f1
f2

fi

x1    x2      xi-1     xi  

x1    x2     xi-1  x    xi 

F(x)

ξ

F x( )
x xi 1––( )Fi xi x–( )Fi 1–+

xi xi 1––
---------------------------------------------------------------------= x

xi xi 1––( )ξ xiFi 1– xi 1– Fi+–[ ]
Fi Fi 1––

----------------------------------------------------------------------------------=

Random Sampling Methods
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Sampling Multidimensional Random Variables

If the random quantity is a function of two or more random variables that are 
independent, the joint  PDF and CDF can be written as

EXAMPLE: Sampling the direction of isotropically scattered particle in 3D

,

 

 or 

, or 

f x y,( ) f1 x( )f2 y( )=

F x y,( ) F1 x( )F2 y( )=

Ω Ω θ ϕ,( ) Ωxi Ωyj Ωzk+ + v w u+ += = =

dΩ
4π--------

θdθdϕsin
4π--------------------------

d θcos( )dϕ–
4π--------------------------------

dµdϕ–
4π------------------= = =

f Ω( ) f1 µ( )f2 ϕ( ) 1
2
---

1
2π------= =

F1 µ( ) f1 µ'( ) µ'd
1–

µ∫ 1
2
--- µ 1+( ) ξ1= = = µ 2ξ1 1–=

F1 ϕ( ) f2 ϕ'( ) ϕ'd
0

ϕ∫ ϕ
2π------ ξ2= = = ϕ 2πξ2=

Random Sampling Methods
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Random Sampling Methods

Probability Density Function Direct Sampling Method

Linear:
(L1, L2)

Exponential:
(E)

2D Isotropic:
(C)

3D Isotropic:
(I1, I2)

Maxwellian:
(M1, M2, M3)

Watt
Spectrum:
(W1, W2, W3)

Normal:
(N1, N2)

f x( ) 2x  ,= 0 x 1 < < x ξ←

ξ←

f x( ) e x–
,= 0 x< x ξlog–←

f ρ( ) 1
2π-----   ,=  ρ u v ,( ) =

u 2πξ1cos←

v 2πξ1sin←

f Ω( ) 1
4π------   ,=  Ω u v w , ,( ) =

u 2← ξ1 1–

v 1 u
2

– 2πξ2cos←

w 1 u
2

– 2πξ2sin←

f x( ) 2

T π
-----------

x
T
--- e x T/– ,= 0 x< x T ξ1log– ξ2

π
2
--ξ3cos2log–( )←

f x( ) 2e
a b 4⁄–

πa3b
---------------- e

x a⁄–
bxsinh=   , 0 x <

w a ξ1log– ξ2
π
2
--ξ3cos2log–( )←

x w a
2
b

4
---------

 

2

 

ξ

 

4

 

1–

 

( )

 

a

 

2

 

bw

 

+ +

 

←

f x( ) 1
σ 2π
------------- e

1
2-

x µ–
σ------------ 

  2
–

=
x µ σ 2 ξ1log– 2πξ2cos+←
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Example — 2D Isotropic

 

Rejection (

 

old vim

 

)

Direct (

 

racer, new vim

 

)

 

Random Sampling Examples

     subroutine azirn_new( s, c )
    implicit double precision  (a-h,o-z)
    parameter ( twopi = 2.*3.14159265 )
    

 

phi = twopi*ranf()
    c = cos(phi)
    s = sin(phi)

 

    return
    end

    SUBROUTINE AZIRN_VIM( S, C )
    IMPLICIT DOUBLE PRECISION  (A-H, O-Z)

 

100 R1=2.*RANF() - 1.
    R1SQ=R1*R1
    R2=RANF()
    R2SQ=R2*R2
    RSQ=R1SQ+R2SQ
    IF(1.-RSQ)100,105,105
105 S=2.*R1*R2/RSQ
    C=(R2SQ-R1SQ)/RSQ

 

    RETURN
    END

 

c

s

 

f

 

ρ( )

 

1

 

2

 

π

 

-----   ,=  ρ u v ,( ) =
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Example — Watt Spectrum

 

Rejection (

 

mcnp

 

)

 

• Based on Algorithm 

 

R12

 

 from 3rd Monte Carlo Sampler, Everett & Cashwell

• Define , ,

• Set ,

• If , accept: return  (Lx)
otherwise, reject

 

Direct (

 

new vim

 

)

 

• Sample from Maxwellian in C-of-M, transform to lab

 

(assume isotropic emission from fission fragment
moving with constant velocity in C-of-M)

 

• Unpublished sampling scheme, based on original Watt spectrum derivation

 x  ( )  2  e  
a b

 
4  ⁄

 
–  

π

 

a

 

3

 

b

 ---------------- e  x a  ⁄  –  bxsinh  =   , 0 x <

K 1 ab 8⁄+= L a K K2 1–( )1 2/+{ }= M L a⁄ 1–=

x ξ1log–← y ξ2log–←

y M x 1+( )–{ } 2 bLx≤

w a ξ1log– ξ2
π
2
--ξ3cos2log–( )←

x w a
2
b

4
--------- 2ξ4 1–( ) a

2
bw+ +←

 

Random Sampling Examples
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Example — Linear PDF

 

Rejection

 

(strictly — this is not "rejection", but has the same flavor)

 

if   , then

else

or

or

 

Direct Inversion

,

f x( ) 2x  ,= 0 x 1 ≤ ≤

ξ1 ξ2≥ x̂ ξ1←

x̂ ξ2←

x̂ max ξ1 ξ2,( )←

x̂ ξ1 ξ2–←

F x( ) x2= 0 x 1≤ ≤

ξ←

 

Random Sampling Examples
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Example — Collision Type Sampling

 
Assume (for photon interactions):

Define

, , and 

with
.

Then

Collision event: Photoefect

µtot µcs µfe µpp+ +=

p1

µcs

µtot
---------= p2

µfe

µtot
---------= p3

µpp

µtot
---------=

pi

i 1=

3

∑ 1=

p1 ξ p1 p2+< <

 

Random Sampling Examples

 

p1 p1+p2 p1+p2+p3=1

 

0
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How Do We Model A Complicated Physical  System?

a) Need to know the physics of the system
b) Need to derive equations describing physical

processes
c) Need to generate material specific data bases

(cross sections for particle interactions, kerma-
factors, Q-factors)

d) Need to “translate” equations into a computer
program (code)

e) Need to "describe" geometrical configuration of
the system to computer

f) Need an adequate computer system

g) Need a physicist smart enough to do the job and
dumb enough to want to do it.
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Time-Dependent Particle Transport Equation 
(Boltzmann Transport Equation):

1
v
---

t∂
∂ ψ r E Ω t, , ,( ) Ω ψ r E Ω t, , ,( )∇•+ Σt E( )ψ r E Ω t, , ,( )+ =

E' Σs E' E Ω' Ω→,→( )Ψ r E' Ω' t, , ,( ) Ω'd

4π
∫d

0

∞

∫
 
 
 
 

+

χ E( )
4π------------ E' υΣf E'( )Ψ r E' Ω' t, , ,( ) Ω'd

4π
∫d

0

∞

∫
 
 
 
 

+

1
4π------Q r E t, ,( )

Transport Equation
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