Monte Carlo Sampling Methods

Jasmina L. Vujic

Nuclear Engineering Department University of California, Berkeley

 Email:
 vujic@nuc.berkeley.edu

 phone:
 (510) 643-8085

 fax:
 (510) 643-9685

[1]

Monte Carlo

Monte Carlo is a computational technique based on constructing a random process for a problem and carrying out a NUMERICAL EXPERIMENT by N-fold sampling from a random sequence of numbers with a PRESCRIBED probability distribution.

x - random variable $\mathbb{N}^{\mathbb{N}}$

$$\hat{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$$

 \hat{x} - the estimated or sample mean of x \overline{x} - the expectation or true mean value of x

If a problem can be given a PROBABILISTIC interpretation, then it can be modeled using RANDOM NUMBERS.

Monte Carlo

- Monte Carlo techniques came from the complicated diffusion problems that were encountered in the early work on atomic energy.
- 1772 Compte de Bufon earliest documented use of random sampling to solve a mathematical problem.
- 1786 Laplace suggested that π could be evaluated by random sampling.
- Lord Kelvin used random sampling to aid in evaluating time integrals associated with the kinetic theory of gases.
- Enrico Fermi was among the first to apply random sampling methods to study neutron moderation in Rome.
- 1947 Fermi, John von Neuman, Stan Frankel, Nicholas Metropolis, Stan Ulam and others developed computer-oriented Monte Carlo methods at Los Alamos to trace neutrons through fissionable materials

Monte Carlo methods can be used to solve:

a) The problems that are stochastic (probabilistic) by nature:

- particle transport,
- telephone and other communication systems,
- population studies based on the statistics of survival and reproduction.

b) The problems that are deterministic by nature:

- the evaluation of integrals,
- solving the systems of algebraic equations,
- solving partial differential equations.

Monte Carlo methods are divided into:

- a) ANALOG, where the natural laws are PRESERVED
 the game played is the analog of the physical problem of interest (i.e., the history of each particle is simulated exactly),
- b) NON-ANALOG, where in order to reduce required computational time the strict analog simulation of particle histories is abounded (i.e., we CHEAT!) Variance-reduction techniques:
 - Absorption suppression
 - History termination and Russian Roulette
 - Splitting and Russian Roulette
 - Forced Collisions
 - Source Biasing

[5]

$$I = \int_{a}^{b} f(x) dx - \text{area uder the function } f(x), R = (b - a) f_{max} - \text{area of rectangle}$$
$$P = \frac{1}{a} - \frac{1}{a} -$$

 $R = \overline{R}$ - is a probability that a random point lies under I(x), thus I = RP

Step 1: Choose a random point $(x1,y1):x1 = a + (b-a)\xi_1$ and $y1 = f_{max}\xi_2$

Step 2: Check if $y_1 \le f(x_1)$ - accept the point, if $y_1 < f(x_1)$ - reject the point

Step 3: Repeat this process N times, Ni - the number of accepted points

Step 4: Determine P =
$$\frac{Ni}{N}$$
 and the value of integral I = R $\frac{Ni}{N}$

Major Components of a Monte Carlo Algorithm

- Probability distribution functions (pdf's) the physical (or mathematical) system must be described by a set of pdf's.
- Random number generator a source of random numbers uniformly distributed on the unit interval must be available.
- Sampling rule a prescription for sampling from the specified pdf, assuming the availability of random numbers on the unit interval.
- Scoring (or tallying) the outcomes must be accumulated into overall tallies or scores for the quantities of interest.
- Error estimation an estimate of the statistical error (variance) as a function of the number of trials and other quantities must be determined.
- Variance reduction techniques methods for reducing the varinace in the estimated solution to reduce the computational time for Monte Carlo simulation.
- Parallelization and vectorization efficient use of advanced computer architectures.

[7]

Probability Distribution Functions

Random Variable, x, - a variable that takes on particular values with a frequency that is determined by some underlying probability distribution.

Continuous Probability Distribution

 $\mathsf{P}\{a \le x \le b\}$

Discrete Probability Distribution

$$\mathsf{P}\{x = x_i\} = p_i$$

PDFs and CDFs (continuous)

Probability Density Function (PDF) - continuous

Cumulative Distribution Function (CDF) - continuous

• $0 \leq F(\mathbf{x}) \leq 1$

•
$$0 \le \frac{d}{dx} F(x) = f(x)$$

•
$$\int_{a} f(x')dx' = P\{a \le x \le b\} = F(b) - F(a)$$

UCBNE, J. Vujic

[9]

PDFs and CDFs (discrete)

Probability Density Function (PDF) - discrete

• $f(x_i)$, $f(x_i) = p_i \delta(x - x_i)$ • $0 \le f(\mathbf{x}_i)$ p_3 • $\sum_{i} f(\mathbf{x}_i)(\Delta \mathbf{x}_i) = 1$ or $\sum_{i} p_i = 1$ p₁ f(x)p₂ **X**1 X_2 X3 **Cumulative Distribution Function (CDF) - discrete** F(x) • $F(x) = \sum p_i = \sum f(x_i) \Delta x_i$ p₁+p₂+p₃ 1 $X_i < X$ $X_i < X$ p₁+p₂ • $0 \leq F(\mathbf{x}) \leq 1$ p₁ **X**1 X_2 X_3

Sampling from a given discrete distribution

Given

$$f(x_i) = p_i$$
 and $\sum_i p_i = 1, i = 1, 2, ..., N$

and $0 \leq \xi \leq 1\,,\, \text{then}\ \mathsf{P}(x=x_k) \ = \ p_k \ = \ \mathsf{P}(\xi \in \, d_k) \ \text{ or }$

$$\sum_{i = 1}^{k-1} p_i \le \xi < \sum_{i = 1}^{k} p_i$$

Sampling from a given continuous distribution

If f(x) and F(x) represent PDF and CDF od a random variable x, and if ξ is a random number distributed uniformly on [0,1] with PDF g(ξ)=1, and if x is such that

$$F(x) = \xi$$

than for each ξ there is a corresponding x, and the variable x is distribute according to the probability density function f(x).

Proof:

For each ξ in $(\xi, \xi + \Delta \xi)$, there is x in $(x, x + \Delta x)$. Assume that PDF for x is q(x). Show that q(x) = f(x):

$$q(x)\Delta x = g(\xi)\Delta \xi = \Delta \xi = (\xi + \Delta \xi) - \xi = F(x + \Delta x) - F(x)$$

$$q(x) = [F(x+\Delta x)-F(x)]/\Delta x = f(x)$$

Thus, if $x = F^{-1}(\xi)$, then x is distributed according to f(x).

Monte Carlo Codes

Categories of Random Sampling

- Random number generator
- Sampling from analytic PDF's
- Sampling from tabulated PDF's

uniform PDF on [0,1]

normal, exponential, Maxwellian,

angular PDF's, spectrum, cross sect

For Monte Carlo Codes...

- Random numbers, ξ , are produced by the R.N. generator on [0,1]
- \bullet Non-uniform random variates are produced from the $\ \xi$'s by
 - direct inversion of CDFs
 - rejection methods
 - transformations
 - composition (mixtures)
 - sums, products, ratios,
 - table lookup + interpolation
 - lots (!) of other tricks
- < 10% of total cpu time (typical)

Random Number Generator

Pseudo-Random Numbers

- Not strictly "random", but good enough
 - pass statistical tests
 - reproducible sequence
- Uniform PDF on [0,1]
- Must be easy to compute, must have a large period

Multiplicative congruential method

• Algorithm

$$\begin{split} S_0 &= \text{initial seed, odd integer, } < M \\ S_k &= G \bullet S_{k\text{-}1} \mod M, \qquad k = 1, \, 2, \, \dots \\ \xi_k &= S_k \, / \, M \end{split}$$

. - 18

• Typical (*vim, mcnp*):

$$S_k = 5^{19} \cdot S_{k-1} \mod 2^{40}$$

 $\xi_k = S_k / 2^{48}$
period = $2^{46} \approx 7.0 \times 10^{13}$

Direct Sampling (Direct Inversion of CDFs)

Direct Solution of

 $\hat{\mathbf{x}} \leftarrow \mathbf{F}^{-1}(\boldsymbol{\xi})$

Sampling Procedure:

- Generate ξ
- Determine \hat{x} such that $F(\hat{x}) = \xi$

Advantages

- Straightforward mathematics & coding
- "High-level" approach

Disadvantages

- Often involves complicated functions
- In some cases, F(x) cannot be inverted (e.g., Klein-Nishina)

Rejection Sampling

Used when the inverse of CDF is costly ot impossible to find. Select a bounding function, g(x), such that

- $c \cdot g(x) \ge f(x)$ for all x
- g(x) is an easy-to-sample PDF

Sampling Procedure:

- sample \hat{x} from g(x): $\hat{x} \leftarrow g^{-1}(\xi_1)$
- test: $\xi_2 \cdot cg(\hat{x}) \leq f(\hat{x})$

if *true* accept \hat{x} , done if *false* reject \hat{x} , try again

Advantages

• Simple computer operations

Disadvantages

• "Low-level" approach, sometimes hard to understand

Table Look-Up

Used when f(x) is given in a form of a histogram

Then by linear interpolation

$$\mathsf{F}(x) = \frac{(x - x_{i-1})\mathsf{F}_i + (x_i - x)\mathsf{F}_{i-1}}{x_i - x_{i-1}} \ , \qquad x = \frac{[(x_i - x_{i-1})\xi - x_i\mathsf{F}_{i-1} + x_{i-1}\mathsf{F}_i]}{\mathsf{F}_i - \mathsf{F}_{i-1}}$$

·[17]

Sampling Multidimensional Random Variables

If the random quantity is a function of two or more random variables that are independent, the joint PDF and CDF can be written as

 $f(\mathbf{x}, \mathbf{y}) = f_1(\mathbf{x})f_2(\mathbf{y})$

$$\mathsf{F}(\mathsf{x},\mathsf{y}) = \mathsf{F}_1(\mathsf{x})\mathsf{F}_2(\mathsf{y})$$

EXAMPLE: Sampling the direction of isotropically scattered particle in 3D

$$\begin{split} \underline{\Omega} &= \underline{\Omega}(\theta, \phi) = \Omega_{x} i + \Omega_{y} j + \Omega_{z} \underline{k} = \underline{v} + \underline{w} + \underline{u} ,\\ \frac{d\underline{\Omega}}{4\pi} &= \frac{sin\theta d\theta d\phi}{4\pi} = \frac{-d(\cos\theta) d\phi}{4\pi} = \frac{-d\mu d\phi}{4\pi} \\ f(\underline{\Omega}) &= f_{1}(\mu) f_{2}(\phi) = \frac{1}{2} \frac{1}{2\pi} \\ F_{1}(\mu) &= \int_{-1}^{\mu} f_{1}(\mu') d\mu' = \frac{1}{2}(\mu+1) = \xi_{1} \text{ or } \mu = 2\xi_{1} - 1 \\ F_{1}(\phi) &= \int_{0}^{\phi} f_{2}(\phi') d\phi' = \frac{\phi}{2\pi} = \xi_{2} \text{ , or } \phi = 2\pi\xi_{2} \end{split}$$

Probability Density Function		Direct Sampling Method
Linear: (L1, L2)	f(x) = 2x, $0 < x < 1$	$x \leftarrow \sqrt{\xi}$
Exponential: (E)	$f(\mathbf{x}) = \mathbf{e}^{-\mathbf{x}}, \qquad 0 < \mathbf{x}$	$x \leftarrow -\log \xi$
2D Isotropic: (C)	$f(\dot{\rho}) = \frac{1}{2\pi}$, $\dot{\rho} = (u, v)$	$u \leftarrow \cos 2\pi \xi_1$ $v \leftarrow \sin 2\pi \xi_1$
3D Isotropic: (I1, I2)	$f(\vec{\Omega}) = \frac{1}{4\pi}$, $\vec{\Omega} = (u, v, w)$	$u \leftarrow 2\xi_1 - 1$ $v \leftarrow \sqrt{1 - u^2} \cos 2\pi \xi_2$ $w \leftarrow \sqrt{1 - u^2} \sin 2\pi \xi_2$
Maxwellian: (M1, M2, M3)	$f(\mathbf{x}) = \frac{2}{T_{\sqrt{\pi}}} \sqrt{\frac{\mathbf{x}}{T}} e^{-\mathbf{x}/T}, \qquad 0 < \mathbf{x}$	$x \leftarrow T(-\log \xi_1 - \log \xi_2 \cos^2 \frac{\pi}{2} \xi_3)$
Watt Spectrum: (W1, W2, W3)	$f(x) = \frac{2e^{-ab/4}}{\sqrt{\pi a^3 b}} e^{-x/a} \sinh \sqrt{bx} , 0 < x$	$w \leftarrow a(-\log\xi_1 - \log\xi_2 \cos^2\frac{\pi}{2}\xi_3)$ $x \leftarrow w + \frac{a^2b}{4} + (2\xi_4 - 1)\sqrt{a^2bw}$
Normal: (N1, N2)	$f(\mathbf{x}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{\mathbf{x} - \mu}{\sigma}\right)^2}$	$\mathbf{x} \leftarrow \boldsymbol{\mu} + \sigma_{\sqrt{-2 \log \xi_1}} \cos 2\pi \xi_2$

-[19]

[20]

Example — 2D Isotropic $f(\vec{p}) = \frac{1}{2\pi}$, $\vec{p} = (u, v)$

Rejection (old vim)

```
SUBROUTINE AZIRN_VIM( S, C )
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
100 R1=2.*RANF() - 1.
R1SQ=R1*R1
R2=RANF()
R2SQ=R2*R2
RSQ=R1SQ+R2SQ
IF(1.-RSQ)100,105,105
105 S=2.*R1*R2/RSQ
C=(R2SQ-R1SQ)/RSQ
RETURN
END
```


Direct (racer, new vim)

```
subroutine azirn_new( s, c )
implicit double precision (a-h,o-z)
parameter ( twopi = 2.*3.14159265 )
phi = twopi*ranf()
c = cos(phi)
s = sin(phi)
return
end
```

-[21]

Example — Watt Spectrum

$$(x) = \frac{2e^{-ab/4}}{\sqrt{\pi a^{3}b}} e^{-x/a} \sinh \sqrt{bx} , \quad 0 < x$$

Rejection (mcnp)

- Based on Algorithm R12 from 3rd Monte Carlo Sampler, Everett & Cashwell
- Define K = 1 + ab/8, $L = a\{K + (K^2 1)_{1/2}\}$, M = L/a 1
- $\bullet \, \text{Set} \qquad \mathsf{x} \leftarrow -\text{log} \xi_1, \qquad \mathsf{y} \leftarrow -\text{log} \xi_2$
- If $\{y M(x + 1)\}^2 \le bLx$, accept: return (Lx) otherwise, reject

Direct (new vim)

• Sample from Maxwellian in C-of-M, transform to lab

$$\mathsf{w} \leftarrow \mathsf{a}(-\log\xi_1 - \log\xi_2 \cos^2\frac{\pi}{2}\xi_3)$$

$$\mathbf{x} \leftarrow \mathbf{w} + \frac{\mathbf{a}^2 \mathbf{b}}{4} + (2\xi_4 - 1)\sqrt{\mathbf{a}^2 \mathbf{b} \mathbf{w}}$$

(assume isotropic emission from fission fragment moving with constant velocity in C-of-M)

• Unpublished sampling scheme, based on original Watt spectrum derivation

Example — Linear PDF

 $f(\mathbf{x}) = 2\mathbf{x}, \qquad 0 \le \mathbf{x} \le 1$

Rejection

(strictly — this is not "rejection", but has the same flavor)

 $\begin{array}{ll} \text{if} \quad \xi_1 \geq \xi_2, \quad \text{ then } \quad & \hat{x} \leftarrow \xi_1 \\ & \text{else} \quad & \hat{x} \leftarrow \xi_2 \end{array}$

or

$$\hat{\mathbf{x}} \leftarrow \max(\xi_1, \xi_2)$$

or

Direct Inversion

$$F(\mathbf{x}) = \mathbf{x}^2, \qquad 0 \le \mathbf{x} \le 1$$
$$\leftarrow \sqrt{\xi}$$

Example — Collision Type Sampling

Assume (for photon interactions):

$$\mu_{tot} = \mu_{cs} + \mu_{fe} + \mu_{pp}$$

Define

 $p_1 = \frac{\mu_{cs}}{\mu_{tot}}$, $p_2 = \frac{\mu_{fe}}{\mu_{tot}}$, and $p_3 = \frac{\mu_{pp}}{\mu_{tot}}$ 3 with $\sum_{i=1}^{n} \mathsf{p}_i = 1.$ i = 1Then p1+p2 p1+p2+p3=1 0 **p1 Collision event: Photoefect** $p_1 < \xi < p_1 + p_2$

How Do We Model A Complicated Physical System?

- a) Need to know the physics of the system
- b) Need to derive equations describing physical processes
- Need to generate material specific data bases (cross sections for particle interactions, kermafactors, Q-factors)
- d) Need to "translate" equations into a computer program (code)
- e) Need to "describe" geometrical configuration of the system to computer
- f) Need an adequate computer system
- g) Need a physicist smart enough to do the job and dumb enough to want to do it.

Time-Dependent Particle Transport Equation (Boltzmann Transport Equation):

$$\frac{1}{v}\frac{\partial}{\partial t}\psi(\underline{r},\mathsf{E},\underline{\Omega},t) + \underline{\Omega} \bullet \nabla\psi(\underline{r},\mathsf{E},\underline{\Omega},t) + \Sigma_{t}(\mathsf{E})\psi(\underline{r},\mathsf{E},\underline{\Omega},t) =$$

$$\left(\int_{0}^{\infty} d\mathsf{E}' \int_{4\pi} \Sigma_{\mathsf{s}}(\mathsf{E}' \to \mathsf{E}, \underline{\Omega}' \to \underline{\Omega}) \Psi(\underline{\mathsf{r}}, \mathsf{E}', \underline{\Omega}', \mathsf{t}) d\underline{\Omega}'\right) +$$

$$\frac{\chi(\mathsf{E})}{4\pi} \left(\int_{0}^{\infty} \mathsf{d}\mathsf{E}' \int_{4\pi} \upsilon \Sigma_{\mathsf{f}}(\mathsf{E}') \Psi(\underline{\mathsf{r}}, \mathsf{E}', \underline{\Omega}', \mathsf{t}) \mathsf{d}\underline{\Omega}' \right) +$$

 $\frac{1}{4\pi}Q(\underline{r}, E, t)$