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A simple probability density function is presented, created as a model and having in mind to
make simulation easy, as well as are shown a (symmetrical) triangular and a truncated Gaussian.
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1. Introduction

A simple probability density function (pdf) is pesged, created as a model
for other user-defined functions and having in mimath to make Monte Carlo
simulation easy, and the proximity to the (symneafji triangular and the truncated
Gaussian distributions, which are shown.

2. A cosinusoidal pdf

The basic idea of this study is to take advantddbeeoproximity in shape of a
sine or cosine to the central part of a Gaussiatrusrcated Gaussian distribution.
The cosine was chosen, instead of the sine, justiuse its integral, which will be
needed for the cumulative distribution, is simgkaroiding the sign change). Several
criteria of proximity may be envisaged, and the ¢embitrarily) adopted here is the
selection of half a cycle of the cosine, suggestethe typical bell-shaped Gaussian
curve.

Intuitively, let the pdf have the form of Eq. {1}

f(x)= Acodalx-x, )] {1}

for x 0 (uxa), its form being apparently difficult, but adopt@dst for simplicity.
Indeed, it is equivalent to Eq. {2},

f(x) = Acodax — ax,) = Acodax — ax,) = Acodax) - B {2}

and it is intended that such a form will be able tze O for the left and right-hand
extremes ok; be always non-negative; and have an integral ofThese properties
obey those of a “legitimate” probability densitynfition.) It is the establishment of
these conditions that will completely define thadtion. Thus,

{f(u—a)=A005[w(u—a—xo)]=0
f(u+a)= Acodwlu+a-x)|=0

Noting that the cosine function is periodic, thuaving infinite solutions, our
(convenient) solution is

{3}
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codaf—a~-x)]=0 @
codefp+a-x,)]=0
We have used the two first properties mentioned.
p-a-x)=-=
2 5)
fpra=x)=7

The unknowns arevandx,. Adding the two expressions in Eq. {5}, it is

20— x,) =0 {6}

and (since it must obviously lze# 0)

Xo = H {7}
as expected. Using this and subtracting the tvpoessions in Eq. {5}, itis
Wp+a-x)-u-a-x)=m {8}
fa)-af-a)=1 {9}
n
w=— 10
2a {10}

Important Note always —in these derivations and anywhese-el the
dimensional homogeneity of these formulas. Supplaex has units g (gram) and
consider Eq. {1}. Then, of course, so hgvanda. As a matter of factw would
have to be T, so that the argument of the cosine may be diratesis. Verify that
the pdf has units inverse of those of its variabtbereas the cdf (a probability) is
dimensionless.

Eq. {1} then becomes

f(x)= ACO{Z_]; (x- ,u)} {11}

Applying now the 3.rd property mentioned, it is
F(x)=A[ co{zt_—’ujdt = A2 sin[zt_—'uj {12}
#-a 2 a m 2 a )],

whence it is

F(x)= A2 sin 224 a2 ZHZAZM -
T 2  a
(13}

or

1. .while | have never found this statement anywHer
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F(x)= Aﬁ{u sin(l—ZT Ao H {14}

T a
Probability goes from O to 1:

F(Iu— a) = A§{1+ Sm(]_TLa_'uj} =0
m 2 a

2a +a- {15}
F(u+a)= A—{1+ sin(zuﬂ =1
T 2 a
SO
Aé(l—l)EO
T
{16}
A§(1+1):1
T
The first relation becomes a confirmation. Theoselcgives
n
A=— 17
4a {17
Finally, we get
/g TTX— U
f(x)=—cos — 18
( ) 4a {2 a j {18}
F(x)=2 1+sin(i7ﬂ {19}
2 2 a
It is prudent to check the extremes (now only &woad):
1 (mu+ta-u 1
Flu+a)=—=|1+sin -——||==1+1)=1
(va) = e THE27H) - 200) 20}

The graph of the pdf(= 1020,a = 10) is given in Fig. 1, together with a Gausén
the sameu.
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3. Monte Carlo simulation

Eq. {19}, namely if convenient for simulation, che written as

F(x)=cos{g(x_”— ﬂ {21}

a

In the context of simulation, inverting Eq. {19} dukcq. {21}, it is

X“H =~ 2 aresi(2F -1) {22}
a T

X“H —1-2 arccos/F {23}
a T

Of course, these two expressions are equivalentor F=0 (with
arccos 0 =772), both give -1, i.ex=pu—a; for F =1 (with arccos 1 = 0), both give
+1,i.e.,.x=u+a; and, e.g., foF = 0.9, we get 0.59. The formula of Eq. {22} looks
computationally more economical (avoiding to conepiat supplementary square
root), so it is preferable. The formula can betten as follows, withr, a (uniform)
random number, instead Bf as implied in simulation:

X =+ a[% arcsir(2r - 1)} {24}

lllustration 3-A
A short simulation (500 values) of the cosinusoidatiable produced the
(relative) frequency histogram of Fig. 2, drawnheitit the traditional vertical bars.
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Important® There arewo kinds of frequency histograms. One of the few
places to know them is the NIST/Sematech onlinedbaok ([NIST/Sematech,
2010]), and unfortunately the description theresnconfusing. The first type of
histogram represents “the coum})(in a class K) divided by the total number of

observationsN)” (sic) (N = Z::lck , K classes), i.e.f, =c,/N; the second type

2 Rarely mentioned !
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represents “idem, times the class width)’( i.e., f =c./(Nw). Notice the

ambiguous “times” (above or below ?). (May it ®as a mnemonic that this has the
right units.) This second type permits the congmariwith the pdf, to which it must
tend in probability.

4. Some properties of the cosinusoidal

The calculation of the meap,, and standard deviatiot, can be done from
Eq. {18}, according to the definitions.

TT (u+a TTX— U
=| xf(x)Jdx=—| xcos— dx 2
H = [ X (Kdx=_ ] {2 aj {25)
Makingt = (x— ) / a, it is (the integral of being 1),
= u+Zaltcod
Mo =+ 1 aj_lgco{ztjdt (26}
\qf’_—d

2 2 ' @
——O——{co{ﬂtﬂ =0
T 2 )1,
or, as expected,
He = H {28}
For the variance, it is
B _TT pura 2 TTX—U
o2 = (x=pu)f f(x)dx===[" (x-u)’cog = dx
= [, b 109 2L ) ood 22 29)
2 7T (Y 20 T
¢ —Zj_la t CO{Etjdt {30}
Using some previous results, it is
4o: _pn, (m
;?_I-lt co{ztjdt {31}

Using the Integrator ([2010]), it is
408 _ 2 [z _gsinl )| 48 licod 7i)|
a2 P [(ﬂzt 8)S|n(2tﬂ_l = {t CO{ZtJL

L N

T a 7
or
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:_m-

o]

a 7

Oc 8
—=,/1-— [00.435... 33
a " 7 33}

5. Other pdf's with kindred features

Triangular (symmetrical triangular), witl, :ﬂ, z U (-1, +1), and a
a

=1—n;82 {32}

random number

f(x) =1(1+ z,) 2,520 {34}
F(x):i%zf+zx+%:%[1+zx(2:r z,)] {35}
{ z,=-1+J2r r<y2 36)
z, =1-21-r) r=12
a
o =—[10.408a
J6
Truncated Gaussian, witkl = X;’U , etc., andA® = d(b') - d(a')
f(x;,u,a', a, b) = EM {37}
o AD
_ o(x)-o(a)
F(x) e {38}
X' = cb‘“{q:(a')+ r (ACD)] {39}
In Eq. {39}, onlyr varies. With
AD
itis
My = U+ 00

(ﬁjz =1+ a’da')_b'db') _52 {41}
AD

o
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6. Conclusions

A simple pdf was presented and calculated, creadesl model for other user-
defined functions to show the essential steps tope. It had in mind the ease of
Monte Carlo simulation, because of the simple fdtngonometric functions), as
well as the proximity to a truncated Gaussian itistion.

The (symmetrical) triangular distribution and thencated Gaussian were
also briefly presented.
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