## How to invert the Gaussian distribution

$$
\begin{align*}
y & =\operatorname{gauss}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right] \\
Y & =\operatorname{Gauss}(x)=\int_{-\infty}^{x} \operatorname{gauss}(t) \mathrm{d} t=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \exp \left[-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right] \mathrm{d} t= \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{(x-\mu) / \sigma} \exp \left(-\frac{1}{2} u^{2}\right) \mathrm{d} u=\Phi\left(\frac{x-\mu}{\sigma}\right)
\end{align*}
$$

The function $\Phi$ is given by many programs (possibly computed by a Simpson rule ${ }^{*}$ numerical integration or a clever approximating formula):

Excel $\operatorname{NORMDIST}(x ; \mu ; \sigma$, cumulative $=1) ;\{1+E R F[0 ; 2 / S Q R T(2)]\} / 2$.
Fortran erf, such that $\Phi(\mathrm{x})=[1+\operatorname{erf}(x / \sqrt{ } 2)] / 2$
Taking only the standard function $\Phi$ (for simplicity), the inversion can be made by the well-known Newton-Raphson algorithm. Let $r$ be a " 0,1 " (typical) random value:

$$
\Phi(z)=r
$$

How to find $z$ (the value of the Gaussian variable whose probability is $r$ )?

$$
z=\Phi^{\mathrm{inv}}(r)
$$

Yes, but how do the various programs calculate $\Phi^{\text {inv }}$ ? (Usually, $\Phi^{\text {inv }}$ is called $\Phi^{-1}$.) Possibly this way:

$$
f(z)=\Phi(z)-r \stackrel{\text { solve }}{=} 0
$$

So, which $z$ solves this ?
The Newton-Raphson algorithm* says:

$$
x_{\text {new }}=x-\frac{f(x)}{f^{\prime}(x)}
$$

Our variable is $z$.

$$
f^{\prime}(z)=\frac{\mathrm{d}}{\mathrm{~d} z}[\Phi(z)-r]=\frac{\mathrm{d}}{\mathrm{~d} z} \int_{-\infty}^{z} \phi(t) \mathrm{d} t=\phi(z)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} z^{2}\right)
$$

Indeed, $r$ is constant (a given value).
Thus, we just need an initial guess, a first $x$ (or $z$ in our case), and the successive application of $\{5\}$ and $\{7\}$ in $\{6\}$. As these functions are "well-behaved", almost any value is a good initial guess (suggested, $z=1$ ).

The Newton-Raphson algorithm is general, and solves any ("well-behaved") problem of this type.

[^0]
[^0]:    * See references among the innumerable ones.

