CHEN, Der-San, Robert G. BATSON, Yu DANG, "Applied Integer Programming: modeling and solution", Wiley, 2010

Chapter 3 — Transformation using 0-1 variables

- 3.1 Transform Logical (Boolean) Expressions
- **3.2 Transform Nonbinary to 0–1 Variable**
- **3.3 Transform Piecewise Linear Functions**
- **3.4 Transform 0-1 Polynomial Functions**
- 3.5 Transform Functions with Products of Binary and Continuous Variables

3.6 Transform Nonsimultaneous Constraints

3.6.1 Either/or constraints

Two disjunctive regions: x is outside the interval (3, 10)

$$x \le 3 \lor x \ge 10$$

This becomes, exclusively,

$$\begin{cases} x-3 \le 0\\ -x+10 \le 0 \end{cases}$$

Let *M* be a big (enough) number and *y* binary.

$$\begin{cases} x-3 \le M \ y \\ -x+10 \le M(1-y) \end{cases}$$

Verify. If y = 1, the 2.nd constraint (only) applies:

$$\begin{cases} \left(x - 3 \le M \approx \infty\right) \\ -x + 10 \le 0 \end{cases}$$

If y = 0, the 1.st constraint (only) applies:

$$\begin{cases} x - 3 \le 0\\ \left(-x + 10 \le M \approx \infty\right) \end{cases}$$

3.6.2 *p* out of *m* constraints must hold

This case is a direct generalization of the previous one, where it was m = 2 and p = 1.

$$f_i(\mathbf{x}) \le b_i \qquad i = 1..m$$
$$f_i(\mathbf{x}) - b_i \le 0 \qquad i = 1..m$$

With vector **y** (i.e., y_i , i = 1..m) binary,

$$f_i(\mathbf{x}) - b_i \le M \ y_i \qquad i = 1..m$$
$$\sum_{i=1}^m y_i = m - p$$

3.6.3 Disjunctive constraint sets

3.6.4 Negation of a constraint

(Obvious.)

3.6.5 If/then constraints

If
$$f_1(\mathbf{x}) - b_1 \le 0$$
 then $f_2(\mathbf{x}) - b_2 \le 0$

is equivalent to

Either
$$-f_1(\mathbf{x}) + b_1 \le 0$$
 or $f_2(\mathbf{x}) - b_2 \le 0$

By "either/or",

$$\begin{cases} -f_1(\mathbf{x}) + b_1 \le M \ y \\ f_2(\mathbf{x}) - b_2 \le M (1 - y) \end{cases}$$

Solved (related) problems in the book

Problem text	Solution	Problem
page	page	No.
48	425	2.3
49	427	2.4
49	427	2.6
50	428	2.7
50	428	2.11
51	429	2.13
73	429	3.1
73	430	3.4
74	431	3.6
75	432	3.10
75	433	3.11
75	434	3.12

**