Chen, Der-San, Robert G. Batson, Yu Dang,
"Applied Integer Programming: modeling and solution", Wiley, 2010

Chapter 3 - Transformation using 0-1 variables

3.1 Transform Logical (Boolean) Expressions
3.2 Transform Nonbinary to 0-1 Variable
3.3 Transform Piecewise Linear Functions
3.4 Transform 0-1 Polynomial Functions
3.5 Transform Functions with Products of Binary and Continuous Variables

3.6 Transform Nonsimultaneous Constraints

3.6.1 Either/or constraints

Two disjunctive regions: x is outside the interval $(3,10)$

$$
x \leq 3 \vee x \geq 10
$$

This becomes, exclusively,

$$
\left\{\begin{array}{c}
x-3 \leq 0 \\
-x+10 \leq 0
\end{array}\right.
$$

Let M be a big (enough) number and y binary.

$$
\left\{\begin{array}{c}
x-3 \leq M y \\
-x+10 \leq M(1-y)
\end{array}\right.
$$

Verify. If $y=1$, the $2 .{ }^{\text {nd }}$ constraint (only) applies:

$$
\left\{\begin{array}{c}
(x-3 \leq M \approx \infty) \\
-x+10 \leq 0
\end{array}\right.
$$

If $y=0$, the $1 .{ }^{\text {st }}$ constraint (only) applies:

$$
\left\{\begin{array}{c}
x-3 \leq 0 \\
(-x+10 \leq M \approx \infty)
\end{array}\right.
$$

3.6.2 \boldsymbol{p} out of \boldsymbol{m} constraints must hold

This case is a direct generalization of the previous one, where it was $m=2$ and $p=1$.

$$
\begin{array}{cr}
f_{i}(\mathbf{x}) \leq b_{i} & i=1 . . m \\
f_{i}(\mathbf{x})-b_{i} \leq 0 & i=1 . . m
\end{array}
$$

With vector \mathbf{y} (i.e., $y_{i}, i=1 . . m$) binary,

$$
\begin{gathered}
f_{i}(\mathbf{x})-b_{i} \leq M \quad y_{i} \quad i=1 . . m \\
\sum_{i=1}^{m} y_{i}=m-p
\end{gathered}
$$

3.6.3 Disjunctive constraint sets

3.6.4 Negation of a constraint

(Obvious.)

3.6.5 If/then constraints

$$
\text { If } f_{1}(\mathbf{x})-b_{1} \leq 0 \text { then } f_{2}(\mathbf{x})-b_{2} \leq 0
$$

is equivalent to

$$
\text { Either }-f_{1}(\mathbf{x})+b_{1} \leq 0 \quad \text { or } \quad f_{2}(\mathbf{x})-b_{2} \leq 0
$$

By "either/or",

$$
\left\{\begin{array}{c}
-f_{1}(\mathbf{x})+b_{1} \leq M y \\
f_{2}(\mathbf{x})-b_{2} \leq M(1-y)
\end{array}\right.
$$

Solved (related) problems in the book

Problem text page	Solution page	Problem No.
48	425	2.3
49	427	2.4
49	427	2.6
50	428	2.7
50	428	2.11
51	429	2.13
73	429	3.1
73	430	3.4
74	431	3.6
75	432	3.10
75	433	3.11
75	434	3.12

