
Chapter 1

Introducing the Simplex Algorithm

1.1 Constrained Optimisation

Almost the whole of this course is concerned with the following general question:

Find the maximum, or minimum value of a function f = f(x1, . . . , xn) of n real
variables subject to the constraints that gi(x1, . . . , xn) ≥ 0 for i = 1, . . . ,m.

Such a problem will be referred to as a constrained optimisation problem, and the
corresponding value as the optimum value. The function we are to optimise is called the
objective function. The set of vectors x = (x1, . . . , xn) which satisfy the constraints is
known as the feasible region. A vector at which the objective function attains its optimal
value is known as an optimal feasible vector. Of course there is no guarantee that an
optimal feasible vector exists for a given problem.

Note first that there is no need to deal with maximising and minimising separately, since
finding a minimum of f(x1, . . . , xn) is the same as finding a maximum of −f(x1, . . . , xn).
Note also that if we have two constraints g1 ≥ 0 and g2 ≥ 0 and in addition we know that
g2 = −g1, then g1 = 0; in other words an equality constraint can be reformulated as a pair
of “≥” constraints.

As a simple example, consider the problem of maximising x2−5x+6 for 1 ≤ x ≤ 2. Such
a problem is familiar from first year calculus; it can be written as a constrained optimisation
problem by writing f(x) = x2 − 5x + 6 and defining constraints g1(x) = x − 1 ≥ 0 and
g2(x) = 2− x ≥ 0.

In the first part of the course, we concentrate on a special case of the problem in which
both the objective function, and the constraints are linear functions. Such a problem is
known as a Linear Programming Problem, or linear optimisation problem,

1.2 Some Sample Problems

We give a number of different examples of problems with linear constraints, aiming to show
that a large class of “interesting” problems are of this type.

1.2.1 Maximising a Function of Two Variables with Constraints

Our first example can be solved quite simply by geometric methods.
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The problem is to maximise x+y subject to the constraints that 2x+y ≤ 8, x+2y ≤ 7
and x− y ≥ −2. This is illustrated in Fig. 1.1. The feasible region is shaded, and consists
of the portion in the first quadrant (so x ≥ 0 and y ≥ 0), which lies below each of the three
thick lines. These lines, y = x + 2, y + 2x = 8 and 2y + x = 7 correspond to when the
constraint becomes tight. The objective function - the thing we are trying to maximise is
x + y, and the three parallel lines represent lines x + y = k for different values of k. The
largest value of k is attained at a point within the feasible region when the line just touches
the vertex M ; in the diagram, this corresponds to the largest value of k, with increasing
values of k corresponding to lines which are further up and to the right.
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Figure 1.1: Two dimensional optimisation problem.

1.2.2 Machine Shop Scheduling

Our next task is to show that problems of this sort can occur in “practical” situations;
that problems of interest in the “real world” lead to this type of constrained optimisation
problem.

A machine shop makes two products called (rather unimaginatively) A and B. Product
A can be made with two options — as A1 and A2, while product B is available in options B1,
B2 and B3. The machine shop makes the two products using an appropriate combination
of three machines, which can be used in any order. The production contract requires that
60 units of item A and 85 units of item B be produced per week, although they can be
produced in any of the various options. The objective of the exercise is to determine the
product mix that is most profitable. The situation is summed up in Table 1.1.

In order to write down in detail what is required, we need to introduce suitable variables.

Choosing variables is often the hardest part of the whole process. One way is
to think what you need to know in order to solve the problem — give the orders
or instruct the foreman. Such variables are often known as decision variables
because knowing their values enables a decision to be made. In this case, the
decision is “how many of each option of each product do we make each week?”

It is thus natural to introduce the following variables. Let x1 be the number of units
of product A1 to be produced per week, x2 be the number of units of product A2 to be
produced per week, x3 be the number of units of product B1 to be produced per week, x4
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Product Option Unit production time
on machine number

Unit Profit

1 2 3
A 1 0.5 - 0.2 2

2 - 0.4 0.2 2.5
1 0.4 0.3 - 5

B 2 0.4 - 0.3 4
3 - 0.6 0.3 4

Hours per week that ma-
chines are available

38 31 34

Table 1.1: Machine shop costs.

be the number of units of product B2 to be produced per week and x5 be the number of
units of product B3 to be produced per week.

The profit from such a product mix is given by

P = 2x1 + 2.5x2 + 5x3 + 4x4 + 4x5,

and this is the function (of x1, x2, . . . , x5) that we wish to maximise. The constraints are
of three sorts:

x1 + x2 =60,
x3 + x4 + x5 =85,

(Required production)

0.5x1 + 0.4x3 + 0.4x4 ≤38,
0.4x2 + 0.3x3 + 0.6x5 ≤31,

0.2x1 + 0.2x2 + 0.3x4 + 0.3x5 ≤34,
(Machine time)

xi ≥0 for each i. (Reality)

Solving this constrained optimisation problem then gives the values of x1, x2, . . . , x5 which
give the most profit for this particular contract.

1.1. Remark. Much of the remainder of the course is devoted to solving such problems.
When you can, and have enough facility with Maple, come back to this problem. You
should find that the problem is feasible and that the maximum profit is 520 units.

1.2.3 A Transport Problem

In the next introductory example, we give the data in purely symbolic form. As such this
describes a class of problems, known as transport problems.

A firm has warehouses W1, W2, . . . , Wm to supply retail outlets R1, R2, . . . , Rn with a
certain product. The warehouse Wi has a supply si of the product (i = 1, . . . ,m), measured
in some convenient units, and we assume that all the supply is to be shipped to the retail
outlets. In doing this, a demand dj at outlet Rj must be satisfied for each j = 1, . . . n.
It is given that the cost of shipping the product from warehouse Wi to retail outlet Rj is
proportional to the amount shipped, and that shipping a unit amount costs cij.
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We formulate the problem of determining how much of the product should be sent from
each warehouse to each retail outlet, so that all demands are satisfied, all the product is
shipped, and the transportation cost is minimised.

Again we have the problem of choosing variables which enable us to describe
a solution. And again they are suggested by the information that you would need
to pass to the manager of each warehouse

Let xij be the amount of product shipped from warehouse Wi to retail outlet Rj. The
the total shipping cost is

C =
m∑

i=1

n∑
j=1

cijxij .

Our supply constraint, that we ship all the product from warehouse Wi becomes
n∑

j=1

xij = si,

while the demand constraint, to meet the demand specified at retail outlet Rj is
m∑

i=1

xij ≥ dj .

Note we have the feasibility constraints that for each pair (i, j), xij ≥ 0, since we must ship
a non-negative amount of the product.

The problem then becomes one of minimising the cost C subject to these constraints.

1.2.4 A Blending Problem

Wine from three European countries is to be blended. We express all costs in £ (perhaps it
should be Euros?), so the three wines cost respectively C1, C2 and C3 per litre. The wines
are to be blended and sold for d per litre. The wines have acidities α1, α2, and α3, and the
blended wine must have an acidity ≤ α. Assuming that acidity blends by volume, so that
if the three wines are mixed in the proportions x1 : x2 : x3, then, by volume, the mixture
has acidity α1x1 + α2x2 + α3x3.
1.2. Remark. A separate question is whether the assumption is realistic. You could treat
this as an excuse to do some practical work if you wish. Even if the assumption is false,
there is a great temptation to behave as if it is true; because anything else is very much
harder to manage. It should come as no surprise to you that most “scientific” assessment
procedures behave as though their problem is linear even when it clearly isn’t: do you think
that all the marks on a given exam question are equally easy to get? Note that our system
invariably assumes that this is the case.

To continue with the problem, the cost per litre of wine which is sold at d is C1x1 +
C2x2 + C3x3. Our problem is to maximise the profit, which is thus

d−
3∑

i=1

Cixi,

subject to the constraints that xi ≥ 0 and α1x1 + α2x2 + α3x3 ≤ α.
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Another version This is the same problem, but there are only Qi litres of each wine
available. In this case, we use as variables qi, the number of litres of each wine to be
blended. The problem then becomes that of maximising

d

3∑
i=1

qi −
3∑

i=1

Ciqi

The limited volume gives the constraint that qi ≤ Qi for i = 1, 2, 3 while the acidity
constraint is

α1
q1∑3
i=1 qi

+ α2
q2∑3
i=1 qi

+ α3
q3∑3
i=1 qi

≤ α.

As it stands, this last constraint is not linear, but can be made so by multiplying through
by
∑3

i=1 qi.

1.3 A More Elaborate Example

In the past, the following example has been set as continuous assessment for this class. It is
presented here as a relatively realistic example of how the simplex algorithm might be used
in practice. You are invited to work the various parts of the example at the appropriate
time during the course. At present you can do the “formulation” part. Here then is the
“story”.

You have been engaged by a manufacturing company because they value your expertise
in Linear Programming. This may be a little premature, but they don’t need your report
until after you have finished Section 3, when you will have the necessary expertise. The
company is the Mendip Metals Manufacturing PLC. This example is borrowed, so I have
deliberately left in the original location! And the Muchals Metals Manufacturing Company
didn’t have quite the same foreign ring to it! The details provided by MMM are given in
question 1.3 on tutorial sheet 1.

Your eventual aim is to produce a report addressed to the MMM management, advising
how much of each of the raw materials to buy, in order to maximise profits. You should also
discuss the effects of changes in market conditions. You may in addition offer other advice
based on your calculations. At this stage, you should show that the problem of deciding
which, if any, of the alloys to manufacture, and from which raw materials, can be expressed
as a Linear Programming Problem. Overall, the production of the report is divided into
three parts:

• formulating the problem;

• obtaining a solution of the problem in Maple; and

• obtaining a useful collection of solutions, and on the basis of your results, writing the
report.

There should be no mathematics in the body of the report. The mathematical formu-
lation, and a brief statement of the solution, should go into Appendices, together with any
sensitivity results you have calculated. Do not go into details of the simplex calculation,
which should be done using Maple, and not by hand. The entire report will be assessed


