INTEGER

PROGRAMMING

=
==
11
(@)
[Tl
-
o
-
o
P
=)
I=
=
=
=
P

LAURENGCE A. WOLSEY

A practical, accessible guide to optimization
problems with discrete or integer variables

Integer Programming stands out from other textbooks by axplain
ing In clear and simple terms how to construct custoem-made
algorithms or use existing commercial software to obtain optimal
or near-optimal solutions for a variety of real-world problams,
such as airline timetables, production line schedules, or electricity
production on a regional or national scale.

Incorporating recent developments that have made it possible to
solve difficult optimization problems with greater accuracy, author
Laurence A. Wolsey presents a number of state-of-the-art topics not
covered in any other textbook. These include improved modeling,
cutting plane theory and algorithms, heuristic methods, and branch
and-cut and integer programming decomposition algorithms. This
self-contained text:

Distinguishes between good and bad formulations in integer
programming problems

Applies lessons learned from easy integer programs to more
difficult problems

Demaonstrates with applications theoretical and practical aspects
of problem solving

Includes useful notes and end-of-chapter exercises

Offers tremendous flexibility for tailoring material to different needs

Integer Programming is an ideal text for courses in integer/mathe-
matical programming—whether in operations research, mathematics,
angineering, or computer science departments. [t is also a valuable
reference for industrial users of integer programming and
researchers who would like to keep up with advances in the field.

is Professor of Applied Mathematics
at the Center for Operations Research and Econometrics (CORE)
at |I'Université Catholigue de Louvain at Louvain-la-Neuve,
Belgium. He is the author, with George Nemhauser, of Integer and
Combinatorial Optimization {(Wiley).

=
)
m
op
11
—e
>
me
o
P
I
-
=
=
=
P

ISBN OD-4?7L-283kLk

| *mnnh
I|| I" Ul rade Group
q'|“ W|| Ipl" Y. 10158-0012
II|!Il I| | 17 &0

1! ||| |
A6001 5I-':IE;=|”

Integer Programming

o !
E i
S Oou

< ws3 |

5| -

E b 5 ~F e |

:

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

¢ Toronto

Now York « Chichestor + Welnhelm « Belsbane « Singapore

Thie text is printed on acid-free paper, ©&
Copyright @ 1998 by John Wiley & Sons, Ine. All rights reserved.
Fuhlished simultansously in Canada.

Mo part of thiz publication may be reproduced, stored in a retrieval
gyetem or tranemitted in any form or by ony meoans, elecironie,
mechanical, photoeopying, recording, scanning or otherwise, excepl
as pecmilted under Secbions 107 or 108 of the 1976 United States
Copyright Act, withouwt either the prior writien permission of the
Publisher, or anthorization throweh paymentl of Lhe appropriate
per-copy fee to the Copyright Clearance Center, 222 Hosewood
Dirive, Danvers, WA 01923, (978) T50-8400, fax (BTH) TH0-4744,
Hequests to the Publisher for permission should be addressed to
the Permissione Department, John Wiley & Sons, loe., 605 Third
Avenue, Mew York, NY 10158-0012, (212) 850-6011, fax (21 2)
B60-6008, E-Mail: PERMBEQEWILEY (0D,

Library of Congress Cofeloging-in-Publication fhata:

Wolzey, Lanrence A
Inteper propgramming f Laorence A Woleey
P. CIo. {Wilev-Interscicnes series in diserele mathemsatics
and optimization)
“Wiley-Interecien ce publication,”
Ineludes biblisgraphices] references and indexes,
ISEN 0-471-25366-5 {alk. paper)
1. Integer programming. L Title, LI Series.
T5T.TAWET 1995
5197 T—dcZ] 98-7206

Printed in the United States of Ammerion

IO BTE8A 48|

o4 BRANCH AND BOUND

Example 7.3 In Figure 7.5 we again decompose S into two sets 5 and S,
with different upper and lower bounds.

A 40

& &
13

Fig. 7.5 No pruning possible

We note first that Z = max, ¥ = max{24,37} = 37 and z = max; zF =

max{13, —} = 13. Here no other conclusion can be drawn and we need to
explore both sets 87 and 55 further. "

Based on these examples, we can list at least three reasons that allow us
to prune the tree and thus enumerate a larpe number of solutions implicitly.

(i) Pruning by optimality: z; = {maxcr: © € S;} has been solved.
(ii) Pruning by bound: 3 < z.
(iii} Pruning by infcasiblity: 5; = ¢.

If we now ask how the bounds are Lo be oblained, the reply is no differ-
ent from in Chapter 2. The primal (lower) bounds are provided by feasible
solulions and the dual (upper) bounds by relaxation or duality.

Building an implicit cnumeration algorithm based on the above ideas is now
in principle a fairly straightforward task. There are, however, many questions
that must be addressed before such an algorithim is well-defined. Some of the
most important questions arc:

What relaxation or dual problem should be used to provide upper bounda?
How should one choose between a fairly weak bound that can be caleulated
very rapidly and a stronger bound whose caleulation takes a considerable
timec?

How should the feasible region be separated into smaller regions § = 5; U
oo U SE? Should one separate into two or more parts? Should one use a
fixed a priori rule for dividing up the set, or should the divisions evolve as a
function of the bounds and solutions obtained en route?

In what order should the subproblems be examined? T'ypically there is »
list of active problems that have not yet been pruned. Should the next one
be chosen on o the basis of last-ln first-out, of best/largest upper bound first,

ar.of samma totally diderent crlbarion?

BRANCH AND BOUND: AN EXAMPLE o5

These and other questions will be discussed further once we have seen an
example.

7.3 BRANCH AND BOUND: AN EXAMPLE

The most common way to solve integer programs is to use implicit enumera-
tion, or branch and bound, in which linear programming relaxations provide
the bounds. We first demonstrate the approach by an example:

= maxdz; — g {7.1)
T3 —2x9 = 14 {7.2)

Tz = (7.3)

2r)— 2w <3 {7.4)

e Zi. (7.5)

Bounding. To oblain a first upper bound, we add slack variables x4, 24, 25 and
solve the linear programming relaxation in which the integrality constraints
are dropped. The resulting optimal basis representation is:

Z = max & —3zg —imy
1, 2 _. 50
Xy -I—?.J':_q -I-?:I':gi = %
Io 4+ = o
P 10, _ 2
—?Ig +?Iq +I5 = =
Ty Tz, ¥a, Xy, ry: =

Thus we obtain an upper bound 2 = B and a nonintegral solution (7, %2) =
(%2,3). Is there any straightforward way to find a feasible solution? Appar-
ently not. By convention, as no feasible solution is yet available, we take as
lower bound z = —oo.

Branching. Now because z < Z, we need to divide or branch. How should we
split up the feasible rogion? One simple idea is to chooss an inteser variable
that is basic and fractional in the linear programming solution, and split the
problem into two about this fractional value. If x; = T; ¢ Z*, one can Lake:

$r=8n{z:z; < 7]
82 = 8n{xr:z; = [75]}.

It is clear that § = S5, U S; and 5§ N S; = ¢. Another reason for this
choice is that the solution of LP(S) is not feasible in either LP(5;) or
LEP(Sg). This implies that if there Is no degenerncy (i.e,, multiple optimal LP
solutiona), then mmx{¥3, %) < 7, so the upper bound will strictly decromso,

o5 EBRANCH AND BOUND

Fig. 7.6 Partial branch-and-bound tres |

Following this idea, as &) = 20/7T ¢ Z', we take §; = S\ {2 : 2, = 2}
and Sa — Sndr:a = 3}, We now have the tree shown in Figure 7.6. The
subproblems (nodes) that must still be examined are called aclive.

Choosing a Node. The list of active problems (nodes) to be examined now
cootaing 5y, 5o, We arbilrarily choose 5y,

Reoptimizing. How should we solve the new modified linear programs LIP{S;)
for i = 1,2 without starting again from seratch?

As we have just added one single upper or lower bound constraint Lo the
linear program, our previous optimal basis remains dual feasible, and it is
therefore natural to rcoptimize from this basizs using the dual simplex al-
vorithm. Uypically, only a few pivots will be peeded (o nd the new optimal
lincar programming solution.

Applying this to the linear program LP(S)), we can write the new con-
straint) < 2 asz; + 8 = 2,5 > 0, which can be rewritten in torms of the
nonhasic variables as

1 3 i
—=d3 — ?Iq &= T
Thus we have the dual [easible representation:
= a4 4 1
T = max = —2%3. —ady
1 2 — 20
T FeXa 5% = %
i | &g = 3
2 10 5 _
—#hy Tl hs = :
L. o2 ol
—=T3 5Ty “+5 = =
Ty, Xa, ¥i, Ta s, & = 0O

After two simplex pivots, the linear program is reoptimized, giving:

A - 15 n- L =
Z1 = MA&X 5 S5 45
T +8 =2
. s |
L3 —3Es =) "B
“:l.l - l‘rh .nllj e I

2y +hey 400 = |
Wie il Eas Bae ENs . 20

BRANCH AND BOUND: AN EXAMPLE a7

. ™ [T T ;

with 1 = lT" and (T}, 73) = (2, 1)

Dyanching. 53 cannot be pruned, so using the same branching rule as hefore,
we create two new nodes Sy = 81Nz 2 <0} and Sz =51 N{x x> 1},

and add them to the node list. The tree is now as shown in Figure 7.7.

Fig. 7.7 Partial branch-and-bound tree 2

Choosing a Node. 'The active node list now containg Ss, 511, S12. Arbitrar-
ily choosing 52, we remove it from the node list and examine it in more detail.

Reoptimizing. To solve LP(S3), we use the dual simplex algorithm in the
same way as above. The constraint x; = 3 is first written as o —£ = 3, > 0,
which expressed in terms of the nonhasic variables becomes:

i 4 -1
?1:3-| -;I-i+t— 7

From inspection of this constraint, we see that the resulting linear program

Ta = Max 1r_';r_g. —%Ig —%I.i
r + 1.|-...T3 —]—%.Ld = %
€ +Ti = 3
= %E;; +1TI..Q:E4 25 = %
oy +3imy = -2
Iy, Iz, X3, H . 8 b i £ = 0
I8 infeasible, Z; = —oe, and hence node 53 is pruned by infeastbility.

Choosing a Node. The node list now contains Sy;, S14. Arbitrarily choosing
Sy, we remove it from the list.

Reoptimizing. Sy = Sni{e: @ € 2,23 2 1}, The resulting linear program
haa optimal solution ' = (2, 1) with value 7. As ¥'? s integer, ' = 7,

a8 BRANCH AND BOUND

Fig. 7.8 Complete branch and bound tree

UUpdating the Incumbent As the solution of LP(5;z) is integer, we update
the value of the best feasible solution found z +— max{z, 7}, and store the
corresponding solution (2,1). 51z is now pruned by optimality.

Choosing a Node. The node list now contains only 54;.

Reoptimizing. S = SN{z: =3 < 2,72 < 0}. The resulting linear program
has optimal solution F'! = (3,0} with value 6. As z = 7 > Z;; = 6, the node
iz pruned by bound

Choosing a Node. As the node list is empty, the algorithm terminates. The |
incumbent solution = = (2, 1) with value z = 7 is optimal.

The complete branch-and-bound tree is shown in Figure 7.8. In Figure 7.9
we show graphically the feasible node sets 5;, the branching, the relaxations
LP(5;), and the solutions encountered in the example,

7.4 LP-BASED BRANCH AND BOUND

In Figure 7.10 we present a flowchart of a simple branch and bound algorithm,
and then discuss in more detail some of the practical aspects of developing
and using such an algorithm.

Storing the Tree. In practice one does not store a tree, but just the list of
active nodes or subproblems that have not been pruned and that still need to
be explored further. Here the question arises of how much information one
should keep, Should one keep o minlmum of information and be prepared to
repoat cortaln oaleulntions, or should one keap all the information available?

At odnbmum, the best known dusl bound snd the varlable lower and upper |

LP-BASED BRANCH AND BOUND 99

X =2 ¥ 23
*24 i 1 « Feasible Points

|

} I

| : First Bound Constraints
|

|

f

| Second Bound Conslrainis
|

o ——— g ——

x =1
2

%50 w20 : X,

Fig. 7.9 Division of the feasible region

bounds needed to restore the subproblem are stored. Usually one also keeps
an optimal or pear-optimal basis, so that the linear programming relaxation
can be reoptimized rapidly.

Returning Lo the questions raised earlier, there is no single answer that
is best for all instances. One needs to use rules based on a combination of
theory, comumon sense, and practical experimentation. In our example, the
question of how to bound was solved by using an LP relaxation; how to
branch was solved by choosing an integer variable that is fractional in the
LP solution. However, as there is Lypically a choice of a set € of several can-
didates, we need a rule to choose between them. One common choice is the
most fractional variable:

arg max;ec min[f;, 1 — f;]

where f; = 2§ — |z}], s0 that a variable with fractional value f; = % is best.
Other rules are based on the idea of estimating the cost of forcing the varinble
x4 to become integer,

How to choose a node was avoided by making an arbitrary choice. In
practice there are several contradictory arguments that can be invoked:

(1) It is only possible to prune the tree significantly with a (primal) feasible
wolution, giving & hopefully good lower bound. Therefore one should descend
as quickly as possible in the enumeration tree to find o first fensible solution,

WL

100 BRANCH AND BOUND

Tnitialions s
Disitial Problem 5 wilh
Formulation P om Tise

£ = =Lnflnit
et r* wd

Lt
B y?
l P cwsbesd * Oplimal
P

Choose Proldem 5 with
Fremnilation ™

v

Salve LI" pefacations vner ™
[hiaal Pewmed =7 = LF wahoe
| LP) = LF solatson

v

W P cenpey, prome by inSoosilsility

= X iF 2%« 5, prvme by bosimed
i.*.'

¥ Bt x| L") bsdeger, update prinss)

. eoiaid 3 — 3%, #nd imeument 5= = (L}
Prusee by apbimality

l}r
Fetum ten eabproblems 57 and 53
-+ witl hemmalalious F sl 5

Fig. 7.10 Branch-and-bound How chart

such a strategy is the observation that it is always easy to resolve the linear
programming relaxation when a simple constraiot 15 added, and the optimal
basis is available. Therefore passing from a node to one of its immediate
descendants is to be encouraged. In the example this would imply that after
treating node Sy, the next node treated would be Sy or Spz rather than Ss.

(ii) To minimize the total number of nodes evaluated in the tree, the optimal
strategy is to always choose the active node with the best (largest upper)
bound (i.e., choose node s where 2, = max, ¥;). With such a rule, one will
never divide any node whose upper bound ¥, is less than the optimal value
2. This leads to o Beat-Node First stratogy. In the examplo of the previous
 section. this would moly that after treatiog node S5, the next node chosen

USING A BRANCH-AND-BOUND SYSTEM 101

wonld be 55 with bound ='.jf' from its predecessor, rather than Sy, or 8y, with
bound .

In practice a compromise between these ideas is often adopted, involving an
initial depth-first strategy until at lcast one feasible solution has been found,
followed by a strategy mixing best node amd depth frst so as to try to prove
optimality and also find better feasible solutions.

7.5 USING A BRANCH-AND-BOUND SYSTEM

Commercial branch-and-bound systems for integer and mixed integer pro-
gramming are ¢ssentially as described in the previous section, and the default
strategies have been chosen by tuning over hundreds of diferent problem iu-
stances. The basic philosophy is to solve and resolve the linear programming
relaxations as rapidly as possible, and if possible to braoch intelligently. Given
this philesophy, all recent systems contain, or offer,

1. A powerful (automatic) preprocessor, which simplifies the model by redu-
cing the number of constraints and variables, so that the linear programs are
easior

2. "The simplex algorithm with a choice of pivoting strategies, and an interior
point option for solving the linear programs

J. Limited choice of branching and node sclection options

4. Use of priorities

and some offer

5. GUB/SOS branching
6. Strong branching

7. Reduced cost fixing
8. Primal hcuristics

In this section we briefly discuss those topics requiring user intervention.
Preprocessing, which is very important, but automatic, is presented in the
(optional) next section. Reduced cost fixing is treated in Exercise 7.7, and
primal heuristics are discussed in Chaptor 12.

Priorities. Priorities allow the user Lo tell the system the relative importance
of the integer variables. The user provides a file specifying a value (Import-
mnce) of each integer variable. When it has to decide on a branching variable,
the system will choose the highest priority integer variable whose current lin-
onr programming value is fractional, At the same time the user can specify a
preferved branching direction telling the system which of the two branches to

- — NP -

