Chapter 6: Branch and Bound Methods 211

210 Part I: Integer Programming
modern branch and bound techniques, no more than two branches emanate from fathoming has occurred, and then backtrack until the first node is encountered
each of the nodes, as distinct from the original approach of Land and Doig (1960). which can be further pursued. This strategy will bring us to high levels (deep in tiu:

. if we continue the process by pursuing the left branch... tree) early in the search. By contrast, a breadth-first search strategy explores all

noninteger variable with the smallest subscript. .. 1= & 2= 3, nodes at one level before proceeding to the next. If in our example a breadth first
we obtain... Figure 127. 1 x;= 0, z, = 40%, sear-ch strategy had been used with the same branching strategy (branch on the
% f/él/ \2 5 noninteger Varia?yle with the smallest index and pursue the left branch first), we
! would have obtained the branch and bound tree displayed in Figure I1.28.
poi | X174 2= 2% pe| M= 5m=3 '
x3=0,22=31)C3=0,211=38 pe _45/ » _34/
== Ty A2 T 7

’”f/ &23 M| x =0, 2= 40%,
p =4, x,=2 - No feasible if/ \>5

xy =Y,z =300 solution
= dx =4 x=2 = =
<0 xy 2 1 np =0 2_31/2 ny: xX1=5x=3
X=Wz= x3=0,z=38
At x1=4,x2=2 ne x]=4,.)C2=1/1 i
4 %= 0,2,=28 5 3.2 po=29 Figure 1.28
1
—_— <0 NZl ‘ 1.2%7 .
In Figure 1.41, node #, is fathomed due to the z-value of 38 obtained at node ..
| 07 4, X2 = 0 1 o No feasible We conclude that in this particular example, the breadth-first search strategy was
Xy = 1Y%, z4 = 28% solution much better than _the depth-first s.earch strategy in the sense that the tree is much
%<1 \2 7 smaller. In practice, however, it appears that depth-first strategies are morc
advantageous th.an breadth-first. One reason for this is that the number of nodes
ng) 17 4,x,=0 - No feasible Brows e;xponentmlly as the level increases, and since feasible (integer) solutions
x3=1,2,=26 | solution are typgcally found deeper into the tree, depth-first search tends to find inteper
Figure 127 solut;ops sooner than breadth-‘ﬁrst Sfearch. Another appealing feature of depth-firsi
search is related to the way in which the linear programming problems at cacl

node are solved. Assuming that the simplex method is used for solving the
problems, an immediate successor of a node has the same set of constraints 1\ is
predecessor, plus the one additional constraint generated in the branching. The
fiual simplex method is therefore ideally suited for this situation and we will now
illustrate how the solution at node n, in our example is obtained once the solution
at the top node », has been found. The linear programming relaxation of the
problem in Example 2 is

6.2 Search strategies

Since each node of the solution tree represents a linear programming problem that
must be solved in the process, it is obviously important to keep the size of the tree
as small as possible. As demonstrated in the previous section, this is accomplished
by stopping at a node whose associated problem has an integral solution, is
infeasible, or is fathomed (value dominated). A good branch and bound method
will bring about such fqvorable gimations as early as possible ip the seargh. In §f. A
example 2 in the previous section we pursued each path until integrality or :
infeasibility was reached. This is called a depth-first search strategy. The depth (or
level) of a node is the length of the path leading to it from the top node; in our) »)
example, node n, is at depth 4 whereas node o is at depth 2. Similarly, the B d R0
solution tree has grown 1o a depth of 5. In general, a depth first strategy will

pursuc cach node, using some branching strategy, until integrality, infeasibility, o1

X, X%, Mo

PLp: Max z =z, = 4x, + 6x, + 10x;

I —2xp —4x3 27

Part I: Integer Programming

X X2 X3 S Ez SI* S; S: 1
0 1 0 0 0 0 1 0 2
| 0 0 0 0 1 0 0 4
0 0 0 | 0 —2 -1 —2 3
0 0 1 0 0 0 0 I 0
0 0 0 0 1 3 —2 —4 1
0 0 0 0 0 4 6 10 28

leau Ty corresponds to the solution at node ny, which is all-integer so that no
her branching is necessary. To illustrate the branching leading to a node with
‘casible solution, consider again the tableau T, and pursue the branch x; = 3
g to node ny, of Figure 1.40. Expressed in terms of nonbasic variables, x, = 3

writlen as 2% — 2xy — BE, — 5 8, 23 or 2x; + YE; + %, S, <—%. Adding a

I variable .\‘_T‘ to the left-hand side of this constraint, the tableau is

X X2 X3 Sl E2 Sl* S;* 1
0 1 2 0 v s 0 2%
| 0 0 0 0 1 0 4
0 0 0 1 - = 0 2%
0 0 2 0 Y 4, 1 4
0 0 2 0 3 13 0 31

fourth row in Iy with a negative right-hand side of —¥ is the only eligible

i row. However, all coefficients on the left-hand side in this row are
nepative, so that no dual simplex pivot step is possible. We conclude that no
ible solution exists for node #4.

cneral, with the optimal simplex tableau available for a node, the solutions for
mmedinte successor nodes are obtained by first adding a row to the tableau that
caponds to the branching cut (the additional constraint), and then employing
dunl simplex method to determine an optimal solution for the next node. In our
nple, only one dual simplex step was needed for each successor node, and in
tal only a few iterations are required to find the optimal solution of the next
¢ It is worth noting that although developing a branch and bound tree involves
i o linear programming problem at each node of the tree, each problem
pt for the top node can start the optimization from the optimal solution of the
wihinte predecessor node, whose solution was made infeasible by the addition

Chapter 6: Branch and Bound Methods 215

of the new constraint (a so-called “hot start”). We observe that every branching cut
will be binding immediately after it has been applied, if the next solution is
feasible. The reason is that if the branching cut were not binding, it could be
deleted, resulting in the same solution as previously, which contradicts the fact that
both branching cuts cut off the previous solution. However, further down the tree,
branching cuts may become again non-binding. As an example, consider the node
ny in Figure 1.40. The constraint x3 = | on the right branch out of 75 is no longer
binding at node ng, where x3 = 1'4. In general, suppose that at a node we branch on
the same variable that has already been branched on at some predecessor node.
The new branching constraint must then be tighter than the previous one on the
same variable, which could therefore be deleted. In the dual simplex tableau, the
new row would therefore simply replace the row that corresponds to the previous
branching on the same variable. Since branching cuts are < or > constraints, it
follows that the number of additional rows in the tableau never exceeds twice the
number of integer restricted variables in the problem.

Back to the construction of a branch and bound tree, there are two decisions to be
made each time a branching is to be done, viz.:

e which node to pursue next (node selection strategy), and
e which variable to branch on (branch selection strategy).

We will discuss these two types of strategies in the next two sections.

6.2.1 Node Selection

A number of strategies exist for selecting the next node to branch from. For
simplicity of the exposition, assume again that the original problem has a
maximization objective. If so far in the search one or more nodes have been
encountered for which the solution is integer, we choose the one with the highest
objective function value (ties are broken arbitrarily) and call it the incumbent node
or solution. The collection of nodes that have no branches leading out of them
forms the set S. Initially, only the top node is in S.

The nodes in the set S fall into four categories.

(1) The solution at a node »n; € § is integer, in which case we will not branch
further from this node. If the solution is better than that of the existing
incumbent(s) #y, then n; replaces ny; if it is as good as », it becomes another
incumbent.

(2) The node n; § represents a problem that has no feasible solution, making
branching on it pointless, since any successor problem will also lack feasible

216 Part I Integer Programming

(3) solutions.

(4) The node n; is fathomed, i.e., its noninteger solution is no better than the
incumbent solution. Again, its potential successors have poorer solutions than
the incumbent and are therefore not of interest.

(5) The node »; has a noninteger solution with an objective function value that is
better than that of the incumbent, so that branching from this node might lead
to an integer optimal solution. Such a node is called live or active.

In summary, out of the four possible node types—integer, infeasible, fathomed,
and live—we only branch from live nodes. Defining L < S as the set of live nodes,
the node selection problem addresses the choice of a node »; € L.

We have already described two node selection strategies: the breadth-first strategy
where all live nodes at a given level are considered before nodes on lower levels
are examined, and the depth-first strategy where the next node to be considered is
a live snccessor of the latest node that was explored. Since backtracking is needed
if the node that was explored last is not live, the strategy is better described as
“depth-first with backtracking™; or last in, first out (LIFO), borrowing a concept
from inventory management. Although a depth-first strategy can be expected to
perform better than a breadth-first strategy on average, both of these strategies
would be outperformed, again on average, by strategies that make better use of the
information gathered during the construction of the tree. One such strategy is the
besi-bound-first strategy that selects the live node with the largest z-value.
Formally, the best-bound-first strategy selects the node #; such that z; = max{z,: n,

e L}.

Another node selection strategy involves the estimate z, of the integer optimal

solution corresponding to node n,. Such an estimate can be computed based on the
expected degradation expressing the deterioration of z, by requiring the solution
point at node 7, to be integral. More specifically, let the solution at node »; include
%; =L%; 1+ f with f; # 0. Using some user-selected coefficients p; and p;, we

estimate the decrease in the objective function of p; f; for branching left at node n;

and of pj (1 —f) if branching right. The coefficients p; and p; can either be

user-specified or estimated, e.g., by using dual information at node r; or
information from previous branchings on x;. A best-estimate search strategy selects
the node #y such that 2, =max{Zz,:n, € L}. Denoting by z,, the objective

function value of the incumbent solution, the quick-improvement strategy attempts

Chapter 6: Branch and Bound Methods 217

to quickly improve on the incumbent solution by selecting the node », such that
= arg max{(z, — z,,} / (z, — Z,)}. For further discussion and details on node
selection, the reader is referred to Nemhauser and Wolsey (1988).

6.2.2 Branch Selection

Once a node n; € L has been selected for further exploration, the next decision
concerns the choice of variable to be branched on. Clearly, this variable, while
required to be integer, must currently have a noninteger value. In the example
above we used the simple strategy of branching on the noninteger variable witl
lowest index, an obviously arbitrary rule. Another strategy is to branch on (he
ngnirfluteger variable x; with the “most fractional” value. Formally, let X

[%1, %3, ..., ¥,] be the solution at the chosen live node, and let ¥; = |x ,-J + £}, 50

that f; denotes the fractional part of x ;- The most fractional strategy would branch

on the variable whose present value is farthest from the nearest integer or,

equivalently, has the value closest to %, i.e., a variable x;, with k& = arg min {|/,
i=l,..n

¥|}. Unfortunately, experience has failed to identify robust methods for branch
selection, and in practice user-specified priorities are employed. Other methods
involve degradation measures similar to those in Subsection 6.2.1. More involved
methods that employ penalties and use more elaborate computations regarding the

penalty coefficients p; and p; have not turned out to improve the overall

efficiency of the search if the additional computational effort it takes to apply then
is taken into account.

6.3 A General Branch and Bound Procedure

We are now able to formulate a general branch and bound algorithm. The problem
to be solved is an all-integer or mixed-integer programming problem Py, with a
maximization objective; its linear programming relaxation is called P,,. It is
assumed that specific node and branch selection strategies have been chosen. The
algorithm is initialized with node », that includes the optimal linear programming,
relaxation X, , with objective value Z; ;. Given that X, does not satisfy all of the

integrality conditions (otherwise X,, = Xpis optimal for the (mixed) integer

programming problem as well), set S:= [= {n,},r:= 1, and z := — o0,

218 Part I Integer Programming

| A General Branch and Bound Algorithm |

Step 1: 1s L = &7 If yes: If z > —oo, then the solution Xyp = x with objective value
7 p = z is optimal, otherwise the integer programming

problem has no feasible solution.

If no: Go to Step 2.

Step 2: Choose some node »; e L (according to some prescribed criterion) with
solution x' and objective value z;.

Step 3. Branch on some variable x; (according to some prescribed criterion) to

the nodes n,4y (with x; < [xj-J) and #,p (with x; = I_xﬂ Y.set L =L\ {m},
and S:= S {n4, naa} \ {1} Solve the linear programming problems at
1 and npy. The results are solutions x*' and x™** with objective values
7,41 and z,.5, respectively.

Step 4. Ts x"' feasible? If yes: Go to Step 5.
If no: Go to Step 7.
Step 5: Does x'*' satisfy the integrality requirements of the original problem?
If yes: Go to Step 6.

If no: Set L :== L U {n;+} and go to Step 7.

1

Step 6: Is zy > z? If yes: Set x:=x"", z := 2,41, and go to Step 7.

If no: Go to Step 7.

Step 7: Repeat Steps 4-6 with ¢ + 2 instead of ¢ + 1; then set £ := ¢ + 2 and go to
Step 1.

The key to the algorithm is the updating procedure of the sets S and L. In each step
when the procedure branches from some node #; to two nodes n,,; and n,., the set
of end nodes S is updated to include the new nodes #, ., and #, 4, and to exclude
n,. From the set of live nodes L, the node from which the branching takes place is
deleted in Step 3, and node . (or #,4) is added to the set in Step 5 only if its
solution is feasible (Step 4) but not yet integer (Step 5).

Example: As an illustration of the above algorithm, consider again the problem of

Fxample 2 of Section 6.1. Here, we choose the node with the best objective value
to be branched on next, and we select the “most fractional” variable for the
branching. The resulting branch and bound tree is shown in Figure 1.29.

Chapter 6: Branch and Bound Methods 219

. X|:45/7,)C2:34/7
B |y = 02y = 40%,

x;f3/ \24

A xi =4 x=3 No feasible
ol '
xy =213, 2 = 39°/, e solution
% i/ \z s
ny: X]=4,JC2=2%7 ns: X|=5,JC2:3
X3:O,Z3:31 .)C3=0,25=38
Figure 1.29

No further branching is possible due to infeasibility at node r5, fathoming for node
ny and integrality for node ns. The set of L of live nodes during the algorithm is
{m1}, {n2}, {ns}, and &. The solution tree contains only five nodes, whercas
eleven nodes were required for the same problem with a depth-first node stratepy
If a best-bound-first node and a lowest-index variable strategy had been selected,
only three nodes would have been required, obtaining the same tree as in igure
L.28. This may demonstrate the difficulty in finding the best strategies to use when
a particular problem is being solved.

There is an interesting analogy between cutting plane algorithms and branch and
bound methods. We may view the branching constraints as vertical or horizontal
cutting planes designed to cut off areas of the feasible region that do not contain
any integer points. It is also possible to mix in regular cutting planes with (he
branching at the nodes of a branch and bound tree. This approach is called branch
and cut, and is typically used for zero-one problems as well as problems wilh
special structures. The idea is to find valid inequalities for the original problem,
which are violated at some nodes in a branch and bound tree. These valid
inequalities are then added at these nodes in a cutting plane fashion, thus
generating new nodes from which branching can be done as usual. This could be
accomplished by introducing an additional step between the existing Steps 2 and 3
in the general branch and bound algorithm above. For details, the reader is referred
to Hoffman and Padberg (1985) and Rardin (1998).

6.4 Difficult Problems

When addressing the issue of computational complexity, it is well known that

