

This page intentionally left blank

APPLIED INTEGER
PROGRAMMING

This page intentionally left blank

APPLIED INTEGER
PROGRAMMING

Modeling and Solution

DER-SAN CHEN
The University of Alabama

ROBERT G. BATSON
The University of Alabama

YU DANG
Quickparts.com, Inc.

WILEY
AJOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2010 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, exckpt as permitted
under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization though payment of the appropriate per-copy fee to the
Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 kver Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chen, Der-San, 1940-
Applied integer programming : modeling and simulation / Der-San Chen, Robert

G. Batson, Yu Dang,
p. cm.

Includes bibliographical references and index.
ISBN 978-0-470-37306-4 (cloth)

1. Integer programming. I. Batson, Robert G., 1950- II. Dang, Yu., 1977-
III. Title.

T57.74.C454 2010
519.7'7-dc22

2009025987
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

Der-San dedicates this book to his blessed family,
Hannah, Suzy, and Benjamin

Bob dedicates this book to his wife Jane
and to his parents

Yu dedicates this book to her husband Qiu Fang
and to her parents

This page intentionally left blank

CONTENTS

PREFACE

PART I MODELING

1 Introduction

1.1 Integer Programming, 3
1.2 Standard Versus Nonstandard Forms, 5
1.3 Combinatorial Optimization Problems, 7
1.4 Successful Integer Programming Applications, 8
1.5 Text Organization and Chapter Preview, 8
1.6 Notes, 17
1.7 Exercises, 18

2 Modeling and Models

2.1 Assumptions on Mixed Integer Programs, 22
2.2 Modeling Process, 28
2.3 Project Selection Problems, 30

2.3.1 Knapsack Problem, 30
2.3.2 Capital Budgeting Problem, 31

2.4 Production Planning Problems, 32
2.4.1 Uncapacitated Lot Sizing, 33
2.4.2 Capacitated Lot Sizing, 34
2.4.3 Just-in-Time Production Planning, 34

xvii

1

3

21

vii

2.5 Workforce/Staff Scheduling Problems, 36
2.5.1 Scheduling Full-Time Workers, 36
2.5.2 Scheduling Full-Time and Part-Time Workers, 37

2.6 Fixed-Charge Transportation and Distribution Problems, 38
2.6.1 Fixed-Charge Transportation, 38
2.6.2 Uncapacitated Facility Location, 40
2.6.3 Capacitated Facility Location, 41

2.7 Multicommodity Network Flow Problem, 41
2.8 Network Optimization Problems with Side Constraints, 43
2.9 Supply Chain Planning Problems, 44

2.10 Notes, 47
2.11 Exercises, 48

Transformation Using 0-1 Variables

3.1 Transform Logical (Boolean) Expressions, 55
3.1.1 Truth Table of Boolean Operations, 55
3.1.2 Basic Logical (Boolean) Operations on Variables, 56
3.1.3 Multiple Boolean Operations on Variables, 58

3.2 Transform Nonbinary to 0-1 Variable, 58
3.2.1 Transform Integer Variable, 58
3.2.2 Transform Discrete Variable, 60

3.3 Transform Piecewise Linear Functions, 60
3.3.1 Arbitrary Piecewise Linear Functions, 60
3.3.2 Concave Piecewise Linear Cost Functions:

Economy of Scale, 63
3.4 Transform 0-1 Polynomial Functions, 64
3.5 Transform Functions with Products of Binary and Continuous

Variables: Bundle Pricing Problem, 66
3.6 Transform Nonsimultaneous Constraints, 69

3.6.1 Either/Or Constraints, 69
3.6.2 p Out of m Constraints Must Hold, 70
3.6.3 Disjunctive Constraint Sets, 71
3.6.4 Negation of a Constraint, 71
3.6.5 If/Then Constraints, 71

3.7 Notes, 72
3.8 Exercises, 73

Better Formulation by Preprocessing

4.1 Better Formulation, 79
4.2 Automatic Problem Preprocessing, 86
4.3 Tightening Bounds on Variables, 87

4.3.1 Bounds on Continuous Variables, 87
4.3.2 Bounds on General Integer Variables, 88
4.3.3 Bounds on 0-1 Variables, 90

CONTENTS

54

79

viii

CONTENTS ix

4.3.4 Variable Fixing, Redundant Constraints,
and Infeasibility, 91

4.4 Preprocessing Pure 0-1 Integer Programs, 93
4.4.1 Fixing 0-1 Variables, 93
4.4.2 Detecting Redundant Constraints And Infeasibility, 95
4.4.3 Tightening Constraints (or Coefficients Reduction), 96
4.4.4 Generating Cutting Planes from Minimum Cover, 97
4.4.5 Rounding by Division with GCD, 98

4.5 Decomposing a Problem into Independent Subproblems, 99
4.6 Scaling the Coefficient Matrix, 100
4.7 Notes, 101
4.8 Exercises, 101

5 Modeling Combinatorial Optimization Problems I 105

5.1 Introduction, 105
5.2 Set Covering and Set Partitioning, 106

5.2.1 Set Covering Problem, 107
5.2.2 Set Partitioning and Set Packing, 111
5.2.3 Set Covering in Networks, 111
5.2.4 Applications of Set Covering Problem, 113

5.3 Matching Problem, 115
5.3.1 Matching Problems in Network, 115
5.3.2 Integer Programming Formulation, 116

5.4 Cutting Stock Problem, 117
5.4.1 One-Dimensional Case, 117
5.4.2 Two-Dimensional Case, 120

5.5 Comparisons for Above Problems, 121
5.6 Computational Complexity of COP, 121

5.6.1 Problem Versus Problem Instance, 123
5.6.2 Computational Complexity of an Algorithm, 123
5.6.3 Polynomial Versus Nonpolynomial Function, 124

5.7 Notes, 125
5.8 Exercises, 126

6 Modeling Combinatorial Optimization Problems II 130

6.1 Importance of Traveling Salesman Problem, 130
6.2 Transformations to Traveling Salesman Problem, 133

6.2.1 Shortest Hamiltonian Paths, 133
6.2.2 TSP with Repeated City Visits, 134
6.2.3 Multiple Traveling Salesmen Problem, 135
6.2.4 Clustered TSP, 137
6.2.5 Generalized TSP, 137
6.2.6 Maximum TSP, 139

6.3 Applications of TSP, 139
6.3.1 Machine Sequencing Problems in Various

Manufacturing Systems, 140
6.3.2 Sequencing Problems in Electronic Industry, 140
6.3.3 Vehicle Routing for Delivery/Dispatching, 141
6.3.4 Genome Sequencing for Genetic Study, 142

6.4 Formulating Asymmetric TSP, 142
6.4.1 Subtour Elimination by Dantzig-Fulkerson-

Johnson Constraints, 143
6.4.2 Subtour Elimination by Miller-Tucker-Zemlin

(MTZ) Constraints, 144
6.5 Formulating Symmetric TSP, 146
6.6 Notes, 148
6.7 Exercises, 149

PART II REVIEW OF LINEAR PROGRAMMING
AND NETWORK FLOWS

7 Linear Programming—Fundamentals

7.1 Review of Basic Linear Algebra, 155
7.1.1 Euclidean Space, 155
7.1.2 Linear and Convex Combinations, 156
7.1.3 Linear Independence, 156
7.1.4 Rank of a Matrix, 156
7.1.5 Basis, 157
7.1.6 Matrix Inversion, 157
7.1.7 Determinant of a Matrix, 157
7.1.8 Upper and Lower Triangular Matrices, 158

7.2 Uses of Elementary Row Operations, 159
7.2.1 Finding the Rank of a Matrix, 159
7.2.2 Calculating the Inverse of a Matrix, 160
7.2.3 Converting to a Triangular Matrix, 161
7.2.4 Calculating the Determinant of a Matrix, 162
7.2.5 Solving a System of Linear Equations, 162

7.3 The Dual Linear Program, 165
7.3.1 The Linear Program in Standard Form, 166
7.3.2 Formulating the Dual Problem, 167
7.3.3 Economic Interpretation of the Dual, 170
7.3.4 Importance of the Dual, 171

7.4 Relationships Between Primal and Dual Solutions, 171
7.4.1 Relationships Between All Primal and All

Dual Feasible Solutions, 171
7.4.2 Relationship Between Primal and Dual

Optimum Solutions, 172

CONTENTS

153

155

x

CONTENTS xi

7.4.3 Relationships Between Each Complementary Pair
of Variables at Optimum, 173

7.5 Notes, 175
7.6 Exercises, 176

8 Linear Programming: Geometric Concepts 180

8.1 Geometric Solution, 180
8.1.1 Objective Function, 181
8.1.2 Solution Space, 181
8.1.3 Requirement Space, 183

8.2 Convex Sets, 188
8.2.1 Convex Sets and Polyhedra, 188
8.2.2 Directions of Unbounded Convex Sets, 191
8.2.3 Convex and Polyhedral Cones, 191
8.2.4 Convex and Concave Functions, 192

8.3 Describing a Bounded Polyhedron, 194
8.3.1 Representation by Extreme Points, 194
8.3.2 Example Application of Representation Theorem, 194

8.4 Describing Unbounded Polyhedron, 195
8.4.1 Finding Extreme Direction Algebraically, 195
8.4.2 Representing by Extreme Points and Extreme Directions, 199
8.4.3 Example of Representation Theorem, 199

8.5 Faces, Facets, and Dimension of a Polyhedron, 199
8.6 Describing a Polyhedron by Facets, 201
8.7 Correspondence Between Algebraic and Geometric Terms, 202
8.8 Notes, 203
8.9 Exercises, 203

9 Linear Programming: Solution Methods 207

9.1 Linear Programs in Canonical Form, 207
9.2 Basic Feasible Solutions and Reduced Costs, 209

9.2.1 Basic Feasible Solution, 209
9.2.2 Adjacent Basic Feasible Solution, 211
9.2.3 Reduced Costs, 212

9.3 The Simplex Method, 213
9.3.1 Better and Feasible Solution, 213
9.3.2 Updating Simplex Tableau by Pivoting, 215
9.3.3 Optimality Test, 216
9.3.4 Initial Basic Feasible Solution, 216

9.4 Interpreting the Simplex Tableau, 218
9.4.1 Entire Simplex Tableau, 218
9.4.2 Rows of Simplex Tableau, 218
9.4.3 Columns of Simplex Tableau, 219
9.4.4 Pivot Column and Pivot Row, 219

xii CONTENTS

9.4.5 Predicting the New Objective Value Before Updating, 219
9.5 Geometric Interpretation of the Simplex Method, 220

9.5.1 Basic Feasible Solution Versus Extreme Point, 220
9.5.2 Explanation of "Simplex Method" Nomenclature, 222
9.5.3 Identifying an Extreme Ray in a Simplex Tableau, 223

9.6 The Simplex Method for Upper Bounded Variables, 227
9.7 The Dual Simplex Method, 231
9.8 The Revised Simplex Method, 233
9.9 Notes, 239

9.10 Exercises, 240

10 Network Optimization Problems and Solutions 246

10.1 Network Fundamentals, 247
10.2 A Class of Easy Network Problems, 248

10.2.1 The Minimum Cost Network Flow Problem, 249
10.2.2 Formulating the Transportation-Assignment Problem

as an MCNF Problem, 249
10.2.3 Formulating the Transshipment Problem

as an MCNF Problem, 251
10.2.4 Formulating the Maximum Flow Problem

as an MCNF Problem, 251
10.2.5 Formulating the Shortest Path Problem

as an MCNF Problem, 251
10.3 Totally Unimodular Matrices, 252

10.3.1 Definition, 252
10.3.2 Sufficient Condition for a Totally Unimodular Matrix, 252
10.3.3 Some Properties of Totally Unimodular Matrices, 254
10.3.4 Matrix Structure of the MCNF Problem, 254
10.3.5 Lower Triangular Matrix and Forward Substitution, 255
10.3.6 Naturally Integer Solution for the MCNF Problem, 255

10.4 The Network Simplex Method, 256
10.4.1 Feasible Spanning Trees Versus Basic Feasible Solutions, 256
10.4.2 The Network Algorithm, 257
10.4.3 Numerical Example, 258

10.5 Solution via LINGO, 264
10.6 Notes, 264
10.7 Exercises, 265

PART III SOLUTIONS 269

11 Classical Solution Approaches 271

11.1 Branch-and-Bound Approach, 272
11.1.1 Basic Concepts, 272
11.1.2 Branch-and-Bound Algorithm, 278

CONTENTS xiü

11.2 Cutting Plane Approach, 280
11.2.1 Dual Cutting Plane Approach, 280
11.2.2 Fractional Cutting Plane Method, 281
11.2.3 Mixed Integer Cutting Plane Method, 285

11.3 Group Theoretic Approach, 286
11.3.1 Group Theory Terminology, 287
11.3.2 Deriving the Group (Minimization) Problem, 288
11.3.3 Formulating a Group Problem, 290
11.3.4 Solving Group Problem as a Shortest

Route Problem, 291
11.3.5 Solving the Original Integer Program, 293

11.4 Geometric Concepts, 294
11.4.1 Various Polyhedrons in Original Space, 295
11.4.2 Corner Polyhedron in Solution Space

of Nonbasic Variables, 297
11.5 Notes, 299
11.6 Exercises, 300

12 Branch-and-Cut Approach 305

12.1 Introduction, 306
12.1.1 Basic Concept, 306
12.1.2 Branch-and-Cut Algorithm, 306
12.1.3 Generating Valid Cuts and Preprocessing, 307

12.2 Valid Inequalities, 308
12.2.1 Valid Inequalities for Linear Programs, 308
12.2.2 Valid Inequalities for Integer Programs, 308
12.2.3 Types of Valid Inequalities, 308

12.3 Cut Generating Techniques, 309
12.3.1 Rounding Technique, 310
12.3.2 Disjunction Technique, 310
12.3.3 Lifting Technique, 312

12.4 Cuts Generated from Sets Involving Pure Integer Variables, 313
12.4.1 Gomory Fractional Cut, 313
12.4.2 Chvátal-Gomory Cut, 313
12.4.3 Pure Integer Rounding Cut, 314
12.4.4 Objective Integrality Cut, 315

12.5 Cuts Generated from Sets Involving Mixed Integer Variables, 315
12.5.1 Gomory Mixed Integer Cut, 315
12.5.2 Mixed Integer Rounding Cut, 319

12.6 Cuts Generated from 0-1 Knapsack Sets, 320
12.6.1 Knapsack Cover, 320
12.6.2 Lifted Knapsack Cover, 321
12.6.3 GUB Cover, 323

12.7 Cuts Generated from Sets Containing 0-1 Coefficients
and 0-1 Variables, 324

CONTENTS

12.8 Cuts Generated from Sets with Special Structures, 326
12.8.1 Flow Cover from Fixed-Charge Flow Network, 326
12.8.2 Plant/Facility Location (Fixed-Charge Transportation), 327

12.9 Notes, 329
12.10 Exercises, 330

Branch-and-Price Approach 334

13.1 Concepts of Branch-and-Price, 334
13.2 Dantzig-Wolfe Decomposition, 335
13.3 Generalized Assignment Problem, 344

13.3.1 Conventional Formulation, 345
13.3.2 Column Generation Formulation, 345
13.3.3 Initial Solution, 348

13.4 GAP Example, 348
13.4.1 GAP Branching Scheme, 353
13.4.2 Tailing-Off Effect of Column Generation, 353
13.4.3 Treatment of Identical Machines, 354
13.4.4 Branch-and-Price Algorithm, 356

13.5 Other Application Areas, 356
13.6 Notes, 357
13.7 Exercises, 358

Solution via Heuristics, Relaxations, and Partitioning 359

14.1 Introduction, 359
14.2 Overall Solution Strategy, 359

14.2.1 Better Formulation by Preprocessing, 360
14.2.2 LP-Based Branch-and-Bound Framework, 361
14.2.3 Heuristics for Tightening Lower Bounds, 361
14.2.4 Relaxations for Tightening Upper Bounds, 362
14.2.5 Strong Cuts for Tightening Solution Polyhedron, 362

14.3 Primal Solution via Heuristics, 363
14.3.1 Local Search Approaches, 364
14.3.2 Artificial Intelligence Approaches, 366

14.4 Dual Solution via Relaxation, 373
14.4.1 Linear Programming Relaxation, 373
14.4.2 Combinatorial Relaxation, 374
14.4.3 Lagrangian Relaxation, 376

14.5 Lagrangian Dual, 377
14.5.1 Lagrangian Dual in LP, 378
14.5.2 Lagrangian Dual in IP, 378
14.5.3 Properties of the Lagrangian Dual, 379

14.6 Primal-Dual Solution via Benders' Partitioning, 380
14.7 Notes, 383
14.8 Exercises, 383

CONTENTS XV

15 Solutions with Commercial Software 386

15.1 Introduction, 387
15.2 Typical IP Software Components, 388

15.2.1 Solvers, 388
15.2.2 Presolvers, 389
15.2.3 Modeling Languages, 389
15.2.4 User's Options/Intervention, 390
15.2.5 Data and Application Interfaces, 391

15.3 The AMPL Modeling Language, 392
15.3.1 Components of the AMPL Modeling Language, 392
15.3.2 An AMPL Example: the Diet Problem, 393
15.3.3 Enhanced AMPL Modeling Techniques, 397
15.3.4 AMPL Compatible MIP Solvers, 400

15.4 LINGO Modeling Language, 400
15.4.1 Prescription of Tolerances, 401
15.4.2 Presolver—Automatic Problem Reduction, 402
15.4.3 Solvers for Linear/Integer Programming, 402
15.4.4 Interfacing with the User, 403
15.4.5 LINGO Modeling Conventions, 403
15.4.6 LINGO Model for the Diet Problem, 404

15.5 MPL Modeling Language, 405
15.5.1 MPL Modeling Conventions, 406
15.5.2 MPL Model for the Diet Problem, 408
15.5.3 MPL Compatible MIP Solvers, 409

REFERENCES 411

APPENDIX: ANSWERS TO SELECTED EXERCISES 423

INDEX 459

This page intentionally left blank

PREFACE

Integer programming (IP) is a class of constrained optimization problems in which
some or all variables are integers and all mathematical functions in the objective and
constraints are conventionally linear. In the professional community, the acronym
MIP (mixed integer programming) is more often used, because many real-world
problems involve a mix of continuous and integer-valued decision variables.

PURPOSE, SCOPE, AND AUDIENCE

We set out to write an easy-to-read, applied textbook for students enrolled in multiple
academic disciplines and for professionals. In academia, the textbook is intended for
graduate- and senior-level students of industrial engineering, operations research,
management science, computer science, and applied mathematics. Other disciplines
(such as operations management, supply chain management, logistics management,
transportation engineering) that need a course in applied optimization would find this
text a relevant option. Because of its application emphasis, this textbook can also be
used as a reference book by practitioners whose jobs require modeling and solving
real-world optimization problems using commercial integer programming software,
as well as MIP software developers and analysts.

Instructors who are preparing students for careers in the practice of operations
research and management science will find this book appealing. However, because of
its application emphasis rather than mathematical rigor, this book is not suitable for
instructors who are looking for theoretical underpinnings, such as mathematicians
who are selecting a text for a course in discrete or combinatorial optimization.

xvii

xviii PREFACE

Instructors of operations research and management science will find this text a
natural continuation of and complement to well-known introductory textbooks in
operations research and management science. As the subtitle indicates, the major
approach of this book is modeling and solution. Modeling is emphasized because
the insertion of integer variables in a linear program (LP) enables much more rich
and realistic representations of decision situations. Both in the examples and
exercises, students develop advanced modeling skills. Integer and linear program-
ming terminology commonly referenced in commercial MIP solution software is
covered in the text. This text provides extensive coverage of modeling techniques
and solution methods with algorithms that are implemented in today's commercial
software.

TOPIC COVERAGE, LEVEL OF PRESENTATION,
AND IMPORTANT FEATURES

This text is organized into three parts—Part I: Modeling, Part II: Review of Linear
Programming and Network Flows, and Part III: Solutions. Part I (Chapters 1-6)
includes areas of successful integer programming applications, systematic modeling
procedure, types of integer programming models, transformation of non-IP models,
automatic preprocessing for better formulation, and an introduction to combinatorial
optimization. Part II (Chapters 7-10) reviews algebraic-geometric concepts and
solution methods related to LP and network flows that are needed for understanding
IP. Part III (Chapters 11-15) describes various solution approaches for large-scale IP
and combinatorial optimization problems in addition to fundamentals of typical
software systems. Solution approaches include classical, branch-and-cut, branch-
and-price, primal heuristic, and Lagrangian relaxation. In Chapter 15, three popular
modeling languages and one solver are introduced. Answers to selected problems
from each chapter appear in an appendix. A more detailed preview of the text may be
found in Section 1.5.

As an application-oriented text, we aim to teach students about the art and science
of mathematical modeling for the collection of problems that fit the MIP framework
and about the algorithms and associated practices that enable those models to be
solved most efficiently. To make algorithms easier to comprehend, this book places
unique emphasis not only on how the algorithms work but also on why they work. To
achieve these goals, reasoning and interpretation are exercised more often than
rigorous mathematical proofs of theorems, which may be located in referenced
articles. The authors have been very thorough in searching out and synthesizing
various modeling and solution approaches that have appeared in disparate publica-
tions over the past 40 years. We want the student, who we envision will become a
practitioner, to have a well-organized and comprehensive reference that eases the
learning hurdles in integer programming and provides suggestions/guidelines for
practice, once on the job.

The book makes liberal use of examples and flowcharts. Each new concept or
algorithm mentioned is illustrated by a numerical example. The book contains over

PREFACE xix

100 figures, either flowcharts or simple geometric drawings, to illustrate the concepts
in the text. A unique feature is that where possible, we use graphics to draw together
diverse problems or approaches into a well-structured whole. Chapters typically have
between 10 and 20 exercises; some are simple applications similar to examples, and
some are more comprehensive and challenging, such as choosing the appropriate
methods from several presented, and applying them collectively to a problem. This
again simulates the authors' experiences as practitioners. There are a few problems
that require the reader to investigate a topic further or to attempt to prove an assertion
or provide a counterexample. In summary, we attempted to write an applied integer
programming text that emphasizes modeling and solution, with due attention to
fundamentals of theory and algorithms. We believe it meets an unfulfilled need for an
IP text that links together problem solving, theory, algorithms, and commercial
software.

SUGGESTIONS FOR COURSE USE

This book is self-contained, requiring only a background in linear or matrix algebra.
The book offers a great deal of flexibility to university course instructors. The entire
book can be used for a two-semester sequence in linear and integer programming, at
the level of seniors or masters students in engineering, computer science, or business
schools. For students already completing a full course in linear programming, Parts I
and III can be used as a masters-level course entitled Integer Programming or Integer
and Combinatorial Programming. For students with a partial knowledge of linear
programming obtained in an undergraduate survey of operations research, a com-
promise is to cover sections of Part I, II, and III. For instance, one coauthor taught a
masters-level course Integer Programming using Chapters \-4, 7-10,11,12, and 15.

ACKNOWLEDGMENTS

Der-San Chen would like to express his gratitude to Dr. Stanley Zionts, SUNY at
Buffalo, for leading him to the field of integer programming through dissertation
guidance. Similarly, Robert Batson recognizes Dr. Wei-Shen Hsia, The University of
Alabama (UA), for introducing him to optimization theory while supervising his
dissertation research. Drs Chen and Batson are affiliated with the College of
Engineering at UA; Dr. Yu Dang received her Ph.D. in Operations Management
from UA, and is affiliated with Quickparts.com, Inc. Former UA graduate student
Sriram Venkataraman assisted Dr. Batson with preparation of the appendix. The
authors would like to recognize Dr. Tao Huang of the SAS Institute who graciously
contributed Section 15.3 to the text and suggested improvements to the organization
and contents of the rest of the text. Also, many thanks to our Wiley Editor, Susanne
Steitz-Filler, who offered encouragement when the going got tough.

This page intentionally left blank

PARTI

MODELING

This page intentionally left blank

1
INTRODUCTION

1.1 INTEGER PROGRAMMING

A linear programming problem (LP) is a class of the mathematical programming
problem, a constrained optimization problem, in which we seek to find a set of values
for continuous variables (xi, x2, ■ ■ ■ , x„) that maximizes or minimizes a linear
objective function z, while satisfying a set of linear constraints (a system of
simultaneous linear equations and/or inequalities). Mathematically, an LP is
expressed as follows:

(LP) Maximize z = YJ c¡x¡
i

subject to y ^ a¡jXj <b¡ (i = 1,2,..., m)
j

xj>0 (j=l,2,...,n)

An integer (linear) programming problem (IP) is a linear programming problem in
which at least one of the variables is restricted to integer values. In the past two
decades, there has been an increasing use of an alternate term—mixed integer
programming problem (MIP)—for LPs with integer restrictions on some or all of
the variables. In this text, the terms IP and MIP may be used interchangeably unless
there is a chance of confusion. For clarity, we shall use the term pure integer

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

3

4 INTRODUCTION

programming problem (or pure IP) to emphasize an IP whose variables are all
restricted to be integer valued.

The term "programming" in this context means planning activities that consume
resources and/or meet requirements, as expressed in the m constraints, not the other
meaning—coding computer programs. The resources may include raw materials,
machines, equipments, facilities, workforce, money, management, information tech-
nology, and so on. In the real world, these resources are usually limited and must
be shared with several competing activities. Requirements may be implicitly or
explicitly imposed. The objective of the LP/IP is to allocate the shared resources, and
responsibility to meet requirements, to all competing activities in an optimal (best
possible) manner.

The term "programming problem" is sometimes replaced by program, for short.
Thus, an integer programming problem is also called an integer program, and so are
mixed integer program, pure integer program, and so on. Mathematically, an MIP is
defined as

(MIP) Maximize z = S~\ cjxj + T^ ^Wk
j k

subject to ^2 a'JxJ + 5Z 8ikyk -b' (' = 1 ' 2 ' • • • ' m)
j k

xj>o (y = 1,2,...,«)

y* = 0 , 1 , 2 , . . . (k=l,2,...,p)

Note that all input parameters (Cj, ¿4> <*y, givb b¡) may be positive, negative, or zero.
Using matrix notation, a mixed integer program may be expressed as

(MIP) Maximize z = cTx + dTy

subject to Ax + Gy < b

x > 0

y > 0 integer

number of constraints
number of continuous variables
number of integer variables
(Cj) is a row vector of n elements
(dk) is a row vector of p elements
(a¡j) is an m x n matrix
(g,*) is an mxp matrix
(bj) is a column vector of m constants (or right-hand-side column, rhs)
(Xf) is a column vector of n continuous variables

(v/t) is a column vector of p integer variables

where m =

n =

cT-

dT =
A =
G =
b =
x =

y =

STANDARD VERSUS NONSTANDARD FORMS 5

All variables integer

Mixed
integer

program
(MIP)

and n = 0

All variables

Pure
integer

pro gram

All integer
variables 0-1

continuous
and/> = 0

Relax all integer

Linear
program

(LP)

requirements
LP

Relaxation

Binary
(0-1)

integer
program

Single constraint and

all parameters positive

Single
constraint and
all parameters
positive

>

Knapsack
problem

Integer
knapsack

All integer
variables 0-1

FIGURE 1.1 A simple classification of integer programs.

When n = 0, no continuous variables x are present and the MIP reduces to depure
IP. When p = 0, no integer-restricted variables y are present and the MIP reduces to a
linear program. An LP is also obtained by relaxing (or ignoring) the integer
requirements in a given MIR Thus, the resulting LP is called the LP relaxation
(of a given IP). Unlike the above-mentioned LP that contains only variables x, the LP
relaxation contains both x and y variables and treats y as a vector of continuous
variables.

An integer program in which the integer variables are restricted to be 0 or 1 is called
a 0-1 (binary) integer program, or binary IP (BIP). A binary IP with a single < linear
constraint, whose objective function and constraint coefficients are all positive, is
called a knapsack (or backpack) problem. An IP with a single constraint and all
positive constraint coefficients is called an integer knapsack program, in which the
values of an integer variable are not restricted to 0-1. In particular, an integer
knapsack program is a knapsack program if all integer variables are restricted to be 0
or 1. Figure 1.1 depicts the relationships between various classes of MIPs under
certain conditions. A box represents an IP class and an arrow represents the imposed
condition(s) leading to a subclass from a class. There are many more subclasses than
shown in this simple diagram, but the details of Figure 1.1 are adequate for this
introductory chapter.

1.2 STANDARD VERSUS NONSTANDARD FORMS

Throughout this text, a mixed integer program will be said to be in standardform if (1)
the objective function is maximized, (2) all the constraints are of < form, (3) each
integer variable is defined over consecutive integer numbers whose lower bound is 0
and upper bound infinity, and (4) each continuous variable is nonnegative with no
finite upper bound.

Any MIP that does not conform to the conditions (l)-(4) is considered to be in
nonstandard form, but may be converted to a standard one through simple mathe-
matical manipulations. For ease of presentation, we shall use the standard form for the

6 INTRODUCTION

remainder of the text, except for special purposes. The following are various
nonstandard forms that need to be converted:

• Minimization problem
• Inequality of > form

• Equation (equality constraint)
• Unrestricted variable (continuous or integer)
• Variable with a positive or a negative lower bound
• Variable with a finite upper bound

If a given problem is a minimization problem, then it may be converted to an
"equivalent" maximization problem. Two problems are considered equivalent if their
optimal solutions are the same. Consider the given problem,

Minimize z' = Y^ cjXj + ¿2 ^kyk
j k

To convert to a standard form, we multiply the given objective function by — 1 and
change the minimization to the maximization as follows:

Maximize —z' = — Y^ cjxj— /_, ¿4%
j k

For example, we convert min z' = 3x\ — 2x2 + 4x3 to max z = — 3xi + 2x2 — 4x3,
and the new objective value becomes z = —z'.

If a given inequality is in > form, we then convert it to the standard < form
by multiplying the inequality by — 1 and reversing the direction of the inequality
sign. For example, the inequality 6x\ — 5x2 + 3x3 > 10 may be converted to
—6x\ + 5x2 — 3x3 < —10.

Converting an equation to the standard < form requires two steps: (1) replace the
equation by a pair of inequalities of opposite sense, and as before, (2) convert the
inequality of > form to the standard < form. For example, we first convert
—2xj + 5x2 — 3x3 = 15 to the following two inequalities: — 2x\ + 5x2 — 3x3 < 15
and —2x\ + 5x2 - 3x3 > 15. We then convert the nonstandard inequality by multi-
plying it by — 1 and reversing the sign of the inequality to get the second standard
inequality: 2xx —5x2 + 3x3 < —15.

If a continuous or an integer variable is unrestricted in sign (i.e., it can be negative,
positive, or zero), then we may replace an unrestricted variable by the difference of
two new variables, xf and xj, as follows:

Xj = Xj ~Xj , Xj , Xj = U

where xf = x¡ if x¡ > 0
= 0, otherwise

xj — —Xj if Xj < 0

= 0, otherwise

COMBINATORIAL OPTIMIZATION PROBLEMS 7

Note that the same variable t may be used for other unrestricted variables. Thus,
only one variable is increased regardless of the number of unrestricted variables.

If a continuous or an integer variable, respectively, has a positive or negative lower
bound, say, /, or 4, respectively, then it can be transformed to a new variable (say, x' or
y'k) by substituting

x'j = xrh o r y'k =yk-k

The transformed problem is equivalent to the original problem with a set of new
variables. After solving the transformed problem, the optimum solution in terms of
the original variables is recoverable from the above equations.

Recall that the upper bound of a continuous or an integer variable in the standard
form of IP is infinite. Thus, a continuous or an integer variable having a. finite (value
of) upper bound needs to be transformed. However, the above substituting equation
cannot be used to get a standard (an infinite) upper bound because the new transformed
variable will still have a finite upper bound (why?). In this case, an upper bound
constraint, Xj < Uj or yk < uk, must be adjoined to the program. Basically, we treat a
lower or an upper bound as a simple constraint consisting of a single variable.

1.3 COMBINATORIAL OPTIMIZATION PROBLEMS

A combinatorial optimization problem {COP) is a discrete optimization problem in
which we seek to find a solution in a finite set of solutions that maximizes or minimizes
an objective function. This type of problem usually arises in the selection of a finite set
of mutually exclusive alternatives. These qualitative alternatives may be quantified by
the use of discrete variables. Usually, the set of all possible solutions can be
enumerated and their associated objective values can be evaluated to determine an
optimum solution. But unfortunately, the number of solutions by complete enumera-
tion is usually too huge even for a moderate-sized problem.

The COP is closely related to the IP in that most, if not all, COPs can be formulated
as 0-1 integer programs. Well-known examples of COP include the classical assign-
ment problem and traveling salesman problem (TSP). The assignment problem may
be applied, for example, to assign «jobs to n workers in a most efficient manner so that
each job is assigned to one and only one worker, and vice versa. The TSP originates
from a salesman who starts from a home city to visit n — 1 cities so that each city is
visited once and only once and then returns to the home city with a minimum travel
distance. The assignment problem is "well solved" because any optimum solution to
its LP relaxation is naturally integer. Moreover, there are special assignment algo-
rithms such as Hungarian algorithm that are available to solve the problem much
faster than the standard simplex method. This class of "well-solved (easy)" integer
programs will be discussed in more detail in Chapter 10.

It is "hard" to find an exact optimum solution to a traveling salesman problem
because of its combinatorial nature. Although there are many algorithms available for
finding an approximate solution, the state of the art for finding an exact solution is to

8 INTRODUCTION

formulate and solve it as a 0-1 (binary) integer program. Unfortunately, the
formulated model requires an enormous number of binary variables and constraints
even for a moderate-sized problem. Modeling combinatorial optimization problems
will be discussed in Chapters 5 and 6, and the solution methods to these problems will
be a main theme of Chapters 11-13.

1.4 SUCCESSFUL INTEGER PROGRAMMING APPLICATIONS

The authors believe that integer programming plays a key role in operations research,
an observation supported by analysis below. This textbook is grounded in theoretical
developments in IP over the past five decades, but is written in hope of bridging the gap
between academic developments in IP and modern OR practice.

Interfaces, a bimonthly journal publication of INFORMS, had published over 500
OR/MS application articles from 1979 to 2006, when we started writing this book. We
reviewed all these articles and surprisingly found that about 23% of them used integer
programming and that many of them were finalists of the annual Franz Edelman
Award competitions over the years.

We further identified 44 IP application articles in Interfaces that claimed enormous
savings in cost or increase in profit. Financial benefits cited were of a magnitude of
tens or hundreds of million dollars per year. In Table 1.1, these 44 applications are
classified by industry sector. They are transportation and distribution, manufacturing,
communication, military and government, finance, energy, and others. In this count,
the sectors of manufacturing and transportation and distribution tie for first place in
terms of most IP application papers (13 each), followed by the communication,
military and government, and finance sectors (4 articles each of three sectors). Within
the sectors, the airline industry had the most application papers (9 articles).

These 44 articles also are classified in Table 1.1 by problem/model type:
workforce/staff scheduling, transportation and distribution, supply chain manage-
ment, production planning, government services, financial services, project man-
agement, and others. In this count, workforce/staff scheduling problem has the most
papers (11 articles), followed by the transportation and distribution (10 articles), and
the supply chain management (5 articles).

1.5 TEXT ORGANIZATION AND CHAPTER PREVIEW

This text is organized into three parts: Part I Modeling, Part II Review of Linear
Programming and Network Flows, and Part III Solutions. Part I (Chapters 1-6)
includes areas of successful integer programming applications, systematic modeling
procedure, types of integer programming models, transformation of non-IP models,
automatic preprocessing for better formulation, and an introduction to combinatorial
optimization. Part II (Chapters 7-10) reviews algebraic-geometric concepts and
solution methods relating to LP and network flows that are needed for understanding
IP. Part III (Chapters 11-15) describes various solution approaches for large-scale IP

TABLE 1.1 Classification of IP Application Papers in Interfaces by Industry

Industry
Category Subcategory

Company Name
(Year Published) IP/LP

Nature of Primary
Applications

Savings/Benefits
(Projected/Actual)

Transportation and
distribution

Airline

Airline

Airline

Airline

Airline

Airline

Airline

Airline

Airline

Airline

American Airlines
(1981)

American Airlines
(1991°)

American Airlines
(1991*)

Air New Zealand
(2001°)

American Airlines
(1989)

Continental
Airlines (2004)

Continental
Airlines (2003*)

Delta Airlines
(2003 c)

Qantas Airways
Limited (1979)

United Airlines
(1986a)

IP

IP

IP and LP

IP

IP

IP

IP

IP

IP and LP

IP and LP

Used an IP model to determine the
least-cost crew schedule

Crew pairing optimization

Implemented a network optimiza-
tion-based system to help reduce
delays caused by air traffic control

Developed computer systems to
solve the planning and rostering
processes (IP problem)

Used IP algorithm to build flight crew
schedules

Solved large-scale IP-formulated
pilot staffing and training
problems to save costs

Developed IP-based system to
generate optimal crew recovery
solutions

Developed an automated optimiza-
tion system to minimize operating
costs and maximize training
assignments

Used ILP model for planning annual
manpower requirement for
telephone reservation

Used IP/LP-based system to control
the entire manpower scheduling
process

$0.25 million

$20 million per year

$5.2 million

$15.655 million per
year

$ 18 million per year

$10 million per year

$40 million

$7.5 million

$0.235 million

$6 million per year

{continued)

TABLE 1.1 (Continued)

Industry
Category Subcategory

Company Name
(Year Published) IP/LP

Public
transportation

Railway

Railway

Shipping

Shipping

Container port

lication Telephone

Telephone

Telephone

The Société de
transport de la
communauté
urbaine de
Montréal (1990°)

The Canadian
Pacifie Railway
(2004*)

NS Reizigers
(Dutch Railway)
(2005 e)

Menlo Worldwide
Forwarding
(2004 a)

UPS (2004")

Hong Kong Inter-
national Term-
inais (2005 a)

AT&T (1990a)

GTE (1992")

Bellcore (1995 a)

IP

IP and LP

IP

IP

IP

IP

IP

IP

IP

Nature of Primary Savings/Benefits
Applications (Projected/Actual)

Employs network flow methods (an
IP formulation) to generate
optimal vehicle schedules

$4 million per year

Used IP/network algorithms for
planning locomotive use and
distributing empty cars

Applied a set covering model to
support the development of an
alternative set of scheduling rules

Developed a network routing
optimization model to optimize its
transportation network in North
America

Created an IP-based system to
optimize the design of package
delivering networks

Developed a decision support system
to generate various decisions,
including scheduling, storage, and

CN$510 million

$4.8 million per year

$80 million

$87 million

$100 million per year

Developed an MIP-based system to
minimize cost

Developed an IP-based optimization
tool to improve productivity

Built an IP-based decision support
software to design robust fiber-
optic networks

$1 million

$30 million per year

$50-225 million

Telephone

Television

Manufacturing Automobile

Automobile

Automobile

Automobile

Chemical

Chemical

Chemical

Computer

Motorola (2005*)

NBC (2002")

Ford Motor
Company
(2001")

General Motors
(1987°)

General Motors
(2004 d)

Volkswagen of
America (2000)

Air Products and
Chemicals
(1983*)

Proctor & Gamble
(2006")

Trumbull Asphalt
(1985)

Digital Equipment
Corporation
(1995")

IP

IP

IP

IP/LP

COP

IP

IP

IP

IP

IP

Used Emptoris's end-to-end Internet
negotiations platform to identify
the best procurement strategy

Used MIP-based sales systems to
improve its revenues and
productivity

Developed an IP model to shorten the
planning process and establish
global procedures

Used network tools to reduce
logistics cost

Developed a heuristic-based decision
support tool to schedule vehicle
road tests

Used a combination of simulation
and MIP models to analyze supply
chain

Developed a decision support system
for vehicle scheduling

$600 million

$200 million

$250 million

$2.9 million per year

Millions of dollars of
savings; 100% in-
crease in throughput

35% reduction in cost

$1.54-1.72 million

Built a sourcing network that
optimizes sourcing problem with
suppliers

Used MIP to assist planning of
sourcing, distribution, blending,
and facility configuration

Used a large-scale MIP model to
minimize supply chain cost

$294.8 million

$1 million per year

$100 million

(continued)

TABLE 1.1 (Continued)

Industry
Category Subcategory

Company Name
(Year Published) IP/LP

Nature of Primary
Applications

Savings/Benefits
(Projected/Actual)

Energy

Food Golden Vale Coop- IP and LP
erative Cream-
eries Ltd (1983)

Food Irish Milk Coop- IP and LP
erative (1986)

Lumber The Chilean Forest IP
Sector (1999 a)

Machinery Schindler Elevator IP
Corporation
(2003 a)

Pharmacy P&G (1997 a) IP and LP

Photography Kodak Australasia IP
(1991a)

Steel The Bethlehem IP
Plant (1989 a)

Electricity Southern Company IP
(1991a)

Gas Exxon Corporation IP
(1982a)

Developed large-scale IP/LP pro-
gram to analyze the problem of
milk collecting and transporting

Used large-scale network (graphic)
method to solve the transshipment
and lot sizing problem

Implemented MIP models to support
decisions on truck scheduling,
harvesting, and so on

Provided an IP-based application to
optimize preventive maintenance
operations

Developed MIP and network models
to improve work processes

Developed a two-phase IP-based
system for the problem of cutting
photographic color papers

Developed a two-phase, IP-based
procedure to determine new mold
dimensions

Installed an optimization software
based on IP algorithm to reduce
fuel cost

Developed an MIP model to evaluate
projects and determine utility
distribution

$4 million

IR £1.5 million per year

$20 million per year

$1 million per year

$200 million

$2 million

$8 million per year

$140 million

$100 million

Military and
government

Finance

Water

Military

Military
Police

Tax

Bank

Bank

Insurance

Hidroeléctrica
Española (1990a)

South African
Defense Force
(1997*)

U.S. Army (1998°)
The San Francisco

Police Depart-
ment (1989*)

Office of Tax
Analysis, U.S.
Treasury Depart-
ment (1980)

The Maryland
National Bank
(1983)

The World Bank,
Chinese State
Planning Com-
mission (1995 a)

PSI Insurance
(1992°)

IP

IP

IP
IP

IP

IP

IP

LP and IP

Insurance The Variable An-
nuity Life Insur-
ance Company
(1984)

IP

Developed and implemented a
hierarchy of models, including IP
and network models, to manage its
system of reservoirs

Used MIP model to analyze the size
and shape of defense force when
no threat exists

Used MIP model to allocate budget
Implemented an IP-based support

system for deploying patrol
officers

Used an IP model to minimize the
loss of information by using a
subset of the database instead of
the whole file

Implemented a computerized IP
model for transit check clearing

$2 million per year

$32-78 million

$360 million
$14 million per year

3-13% improvement in
accuracy

$0.1 million

Developed a coal transporting study
system with MIP as an important
element

$6.4 billion

Developed a series of optimization-
based models, including LP/IP, to
value and trade mortgage-backed
securities

Used branch-and-bound method to
solve an IP model to find out the
best number of sales regions

Over $10 billion
increase in trading
volume; rank in-
creased from below
No. 10 to No. 3

$8.8 million

(continued)

TABLE 1.1 (Continued)

Industry
Category

Others

Subcategory

Construction

Retail

Retail, alcohol

Restaurant

Waste collection

Education

Company Name
(Year Published)

Homart
Development
Company
(1987")

Fingerhut
Companies, Inc.
(2001a)

Société des alcools
du Québec
(2005 e)

Taco Bell (1998 a)

Waste Management
(2005 a)

Nanzan Gakuen
(Nanzan
Educational
Complex (2006a)

IP/LP
Nature of Primary

Applications
Savings/Benefits

(Projected/Actual)

IP

IP

IP

IP

COP

COP

Designed an IP model to schedule the
divestiture of shopping malls

Developed IP-based system to select
the most profitable sequence of
catalogs mailing stream

Developed a solution engine that
implements an IP model to reduce
the costs of producing worker
schedules

Used IP model to schedule and
allocate crew members to mini-
mize payroll

Developed a comprehensive route
management system to solve its
vehicle routing problems

Solved school bus problems, school
time problems, and the problem of
assigning supervisors for entrance
examinations

$40 million

$3.5 million per year

CN$1 million per year

$53 million

$18 million

$2 million

" Franz Edelman Award finalist of the previous year.
* Franz Edelman Award winner of the previous year.
c Daniel H. Wagner Prize finalist of the previous year.
d Daniel H. Wagner Prize winner of the previous year.

TEXT ORGANIZATION AND CHAPTER PREVIEW 15

and combinatorial optimization problems in addition to fundamentals of typical
software systems. Solution approaches include classical, branch-and-cut, branch-
and-price, primal heuristics, and Lagrangian relaxation. In Chapter 15, three popular
modeling languages and one solver are introduced. Answers to selected exercises
from each chapter appear in an appendix.

This chapter (a) defines the IP model and associated notation to be used in the text,
(b) classifies IP models and describes their relationships to linear and combinatorial
optimization models, (c) previews the contents of each chapter, and (d) categorizes
numerous successful IP applications arising in diverse industry/business sectors,
based on survey data collected from the articles published in Interfaces (a bimonthly
journal by INFORMS) 1979-2006, when we started writing this book.

Chapter 2 (a) explores the assumptions underlying the MIP mathematical model
and explains their physical interpretations, (b) provides a step-by-step procedure for
building a model from a given real-world problem, and (c) introduces fundamental
formulations for the most utilized types of MIP models that are identified from the
survey of successful applications described in this chapter. Seven assumptions
underlying the MIP problem are fully uncovered through a careful examination of
its mathematical anatomy. Some of these assumptions do not appear explicitly in
other texts of operations research and integer programming.

In Chapter 3, beyond the simple use of 0-1 variables discussed in Chapter 2, the
formulation power of 0-1 variables extends their ability to transform a variety of
optimization models into integer programs. Transformable optimization models are
identified and grouped together according to the types of decision variables, math-
ematical functions, and constraints. This chapter also describes the relation between
logical (Boolean) expressions and 0-1 formulations, in addition to modeling the
bundle pricing problem, which is a common business practice. These features appear
for the first time in any integer programming text.

Chapter 4 (a) defines and explains what is meant by better formulation of an IP
problem, (b) introduces several basic preprocessing techniques, for both general and
special problems, that can automatically transform a user-supplied formulation into a
better one, and (c) identifies primary preprocessing functions/areas that are covered
by most preprocessors of current IP software.

Chapter 5 begins with defining the class of COPs and ends with a discussion of the
computational complexity of a problem or an algorithm. Three classes of COPs are
discussed: set covering, partitioning, and packing; matching problems; and cutting
stock problems.

Chapter 6 is devoted to the best-known combinatorial optimization problem, the
TSP, and its many variations. More details on TSP applications are given, expanding
the discussion in this chapter. Solution approaches, which generally involve creating
constraints that prevent inclusion of subtours in the IP search for the optimal tour,
depend on whether the arcs connecting the nodes are one-way (asymmetric TSP) or
bidirectional (symmetric TSP).

Chapter 7 reviews the fundamentals of linear programming theory and network
flows that are essential to the understanding of the solution space and solution
methods to be discussed in Chapters 11-13.

16 INTRODUCTION

Chapter 8 reviews/introduces basic geometric concepts and terminology that are
essential to the understanding of the properties of the solution spaces and cutting
planes for both general and special IP problems. These concepts are prerequisites for
full understanding of the branch-and-cut method to be discussed in Chapter 12.

The modern methods for solving a large-scale integer program require the
optimization and reoptimization of a usually long sequence of LP relaxation
problems that in turn are often solved by a variety of simplex-based methods
(and/or an interior point method). Chapter 9 reviews four simplex-based methods
that serve as building blocks for solving integer programs. The simplex method
provides the foundation for optimizing a long sequence of LP relaxations. The
simplex method for upper-bounded variables is used for reducing the problem size by
implicitly handling the upper and lower bounds on variables (equivalent to single-
variable constraints). The dual simplex methodic most effective for reoptimizing the
current optimum, after addition of constraints, without resolving the augmented LP
problem from scratch. The revised simplex method produces the same sequence of
bases as the simplex method, but depends on updating the basis inverse (m columns)
rather than the entire simplex tableau (n columns) in each iteration.

Chapter 10 (a) identifies a class of easy network optimization problems whose IP
formulations are solvable as LPs by simply ignoring the integer requirements, (b)
describes the sufficient conditions (or model structure) that characterize this class of
problems, and (c) introduces a more efficient algorithm than the ordinary simplex for
solving this class of network optimization problem.

Chapter 11 introduces three classical approaches for solving integer programs:
branch-and-bound, cutting plane, and group theoretic. Currently, these approaches are
not implemented in practice as stand-alone solvers. However, they are integrated parts
of a modern solution approach such as the branch-and-cut to be described in Chapter 12.

The recent advances in solving large-scale integer programs have been made
possible by great improvements in modeling, preprocessing, solution algorithms, LP
software, and computer hardware. We have already discussed modeling and pre-
processing. Chapter 12 addresses a modern solution approach known as the branch-
and-cut, in which a substantial portion of the discussion centers on the generation of
cuts that are useful for solving general and special integer programs.

In the previous chapter, branch-and-bound is generalized to include generation of
cuts or rows, hence the name branch-and-cut. In Chapter 13, branch-and-bound is first
generalized to include generation of columns by solving pricing problems, hence the
name branch-and-price, and then generalized to include columns and rows, hence the
name branch-and-price-and-cut. Basically, all these generalizations solve a sequence
of LP relaxations of a given IP. Branch-and-cut tightens the LP relaxations (or
polyhedra) by adding cuts or constraints (rows). Branch-and-price tightens the LP
relaxations by generating a subset of profitable columns associated with variables to
join the current basis. These columns are generated iteratively by solving subpro-
blems or pricing problems.

Chapter 14 introduces a variety of primal heuristic algorithms that can be used to
obtain a good solution or an approximate solution for an integer program or a
combinatorial optimization problem. Both classical and artificial intelligence (AI)

NOTES 17

heuristic algorithms are provided. The traveling salesman problem is used for the
purpose of illustration. This chapter also (a) describes various relaxation methods for
solving IP problems, (b) lists examples of IP model types to which the Lagrangian
relaxation approach is applied, (c) derives the associated Lagrangian dual problems
for both linear and integer programs, (d) provides efficient methods for solving the
Lagrangian dual, and (e) develops Benders' decomposition algorithm for integer
programming.

Chapter 15 (a) provides some practical considerations when algorithms are
implemented in software, (b) describes the key components and features of a typical
software system, (c) introduces three commonly used modeling languages (AMPL®,
LINGO®, and MPL®) in more depth than earlier chapters, and (d) briefly describes
other modeling languages and systems.

1.6 NOTES

Section 1.1

General IP textbooks that are referenced in this text include Hu (1969), Garfinkel and
Nemhauser (1972), Zionts (1974), Taha (1975), Nemhauser and Wolsey (1988),
Parker and Rardin (1988), Salkin and Mathur (1989), and Wolsey (1998).

Introductory OR/MS textbooks that are referenced in this text include Wagner
(1975), Winston (1994), Hillier and Lieberman (2005), and Taha (2007).

Journals that are referenced include Interfaces, Operations Research, Manage-
ment Science, European Journal of Operational Research, HE Transactions, Trans-
portation Science, Naval Research Logistics Quarterly, Journal of the Association
for Computing Machinery, Mathematical Programming, Discrete Applied Mathe-
matics, and SIAM Journal on Algebraic and Discrete Methods.

Many textbooks, like this one, use a maximization problem as a standard MIP,
while others use a minimization problem. In a minimization MIP, the standard
inequality constraint is of > form.

Section 1.2

Conversion from a nonstandard MIP to standard form is similar to that for linear
programs. For references of conversion techniques, see any introductory OR/MS
textbooks such as Winston (1994) and Hillier and Lieberman (2005).

Section 1.3

Some authors, for example, Parker and Rardin (1988), view discrete optimization
problems as a combination of integer programming and combinatorial
optimization problems. Literally speaking, a discrete optimization problem is an
optimization problem defined over discrete variables. However, a discrete variable is
different from an integer variable in that an integer variable may take on any
consecutive integral values, while a discrete variable may take on specified discrete

18 INTRODUCTION

values, consecutive or not, integer number or not—essentially what mathematicians
call a countable set. Thus, an integer variable is a discrete variable, but a discrete
variable may or may not be an integer variable. For example, both solution sets of ;y5

and ^3, defined by Z5 = {3,4,5,6,7} andZ3 = {4,6,7,10}, respectively, are discrete
variables. But y3 is not an integer variable, while variable y5 is both an integer and a
discrete variable. In Chapter 2, we shall show how a discrete variable can be converted
to a set of binary (0-1) variables.

Section 1.4

INFORMS is a professional society that was founded through the merger of two
older societies: the former Operations Research Society of America (ORSA) and
The Institute of Management Science (TIMS).

Interfaces, a bimonthly journal publication of INFORMS, has published over 500
OR/MS application articles since 1971. All articles are available in both electronic
form and hard copy.

The Franz Edelman Award was founded in 1972 (initially under the name of "the
Annual International Management Science Achievement Award"). From 1975 to
1984 (the year in which the award name was changed to Franz Edelman Award), the
papers of the finalist and the winners were published in Interfaces in the last issue of
that year. From 1985 up to today, the first issue each year is dedicated to the finalist and
the winner(s) of the previous year. "The Edelman Award recognizes outstanding
implemented operations research that has had a significant, positive impact on the
performance of a client organization. The top finalist receives a $10,000 first prize"
(OR/MS Today).

The Daniel H. Wagner prize was founded in 1998. It "emphasizes the quality and
coherence of the analysis used in practice. Dr. Wagner strove for strong mathematics
applied to practical problems, supported by clear and intelligible writing. This prize
recognizes those principles by emphasizing good writing, strong analytical content,
and verifiable practice successes. The competition is held each year in the fall at the
INFORMS Annual Meeting" (see http://www2.informs.org/PrizesAVagnerPrize.
html for details). Papers of each year's finalists are published in the fifth issue of
Interfaces of the following year.

1.7 EXERCISES

1.1 Read one of the successful application articles from the category of transporta-
tion and distribution published by INFORMS in Interfaces as shown in
Table 1.1. Do the following:

(a) Verify the entries described in the row associated with the company.
(b) Use your own words to describe the objective, sets of constraints,

decision variables, and types of variables (continuous or integer, binary
or general).

EXERCISES 19

1.2-1.7 Do the same for each of the remaining categories: (1.2) communications,
(1.3) manufacturing, (1.4) energy, (1.5) military and government, (1.6)
finance, and (1.7) others.

1.8-1.14 Read one of the application articles from each of the following problem
types published in Interfaces, as given in Table 1.1 : (1.8) project manage-
ment, (1.9) production planning, (1.10) workforce scheduling, (1.11)
transportation and distribution, (1.12) supply chain management, (1.13)
cutting stock, and (1.14) machine scheduling and sequencing. Do the
following:

(a) Verify the entries described in the row associated with the company.

(b) Use your own words to describe the objective, sets of constraints,
decision variables, and types of variables (continuous or integer, binary
or general).

1.15-1.19 Transform each of the following nonstandard integer programs into a
standard form of IP defined in this text.

1.15 Minimize 3xi — 11x2 + 5x3 + X4

subject to x\ + 5x2—3x3 + 6x4 < 7

—xi +X2+X3—2x4 > 3

X] , X2, X3, X4 > 0

—X] +5X2 + 2X3 —7X4—X5

X2 +X3 +X4 > 13

*i — *2 + 2x4 + 2x5 < 4

X\ unrestricted in sign

> 0

x3 > - 2

1.17 Maximize 7xi + 2x2 + x3 —4x4

subject to 2xj—X2 + X3<10

X] + X4 = 12

X], X2, X4 >0

x3 > 0

1.16 Maximize

subject to

20 INTRODUCTION

1.18 Minimize - l l j q + 13x2-15x3

subject to x2 + x-i = 1

xi -x3 < 3

x\ unrestricted in sign

x2>5

* 3 > 0

1.19 Maximize x\ +x2 + x3

subject to -x\ + x2 > 8

X\ —X2 + X3 < 2

x\, x3 > 0

x2 < 15

2
MODELING AND MODELS

In Chapter 1, we mathematically defined a mixed integer program (MIP). A
mathematical definition in general has the advantages of being precise, concise, and
capable of data manipulation. But to most managers and even some practitioners, it
may be too abstract to comprehend and difficult to relate to reality. To alleviate this
difficulty, we begin this chapter with an explanation of the real-world meanings of the
MIP assumptions (or conditions). Section 2.1 describes these assumptions and their
physical implications. Having this background, we then introduce a three-step
procedure for modeling real-world problems in Section 2.2. This procedure system-
atically leads the practitioner toward an MIP model. In case the constructed model is
not an MIP, the transformation techniques introduced in the next chapter may be used
to obtain an equivalent MIR

Recall in Chapter 1 we tabulated many successful IP application papers published
in Interfaces and classified them by problem type. Each problem type will be given
one to three examples in Sections 2.3-2.9. These examples may appear to be simpler
than the real-world problems described in the application articles. Nevertheless, they
do provide primary characteristics of the model types.

Applied integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

21

22 MODELING AND MODELS

2.1 ASSUMPTIONS ON MIXED INTEGER PROGRAMS

Recall the following mixed integer program defined in Chapter 1 :

(MIP) Maximize z = VJ c¡x¡ + 2~] dkyk

j k

subject to Y^, a'Jxj + ^2 gikyk - b i (' = 1.2, • • •, w)
1 k

xj>0 (7 = 1 , 2 , . . . , «)

Vk= 0 ,1 ,2 , . . . (k=l,2,...,p)

The mixed IP comprises two fundamental building blocks: variables (including
continuous Xj and integer yk) and input parameters (including Cj, dk, a¡j, gik, b¡, m,
n, p). The objective function is a summation of several functions, each containing a
single variable. Likewise, each constraint function (the left-hand side of an inequality)
is also a summation of several functions of single variables. Both the objective and the
constraint functions in the mixed IP are separable and linear. Figure 2.1 gives an
anatomy of all assumptions imposed on a mixed integer program.

The above mathematical definition of an MIP implies the following assumptions:

• Divisibility assumption for each continuous variable (xj > 0)
• Integrality assumption for each integer variable 0^ = 0, 1, 2, ...)
• Certainty (constant) assumption for each input parameter (c7, dk, <%, g¡k, b¡)

• Proportionality assumption for each term in the constraint and objective
function (cjXj, dkyk, a^Xj, gikyk)

• Additivity and separability assumption for each combined function in the
objective and constraints ÇEJCJXJ, Y.kdky^ Hjavxj' Eftft^k)

• Single-objective assumption(max or min z = ^flXj + Ylk^kïk)
• Simultaneousness (conjunction) assumption for the system of all constraint

equations and inequalities

Now we interpret each of the above assumptions in detail.
The divisibility assumption implies that each continuous variable in a solution is

allowed to be any real value, which may carry an arbitrary number of decimal places.
For example, a production level of 2534.397 cars per week is an acceptable computed
solution because in practice it may be rounded up to 2535 or rounded down to 2534
without making any difference in a practical sense. Continuous commodities such as
the quantity of water flowing through a segment of a pipeline obviously satisfy
divisibility.

The integrality assumption implies that each integer variable is restricted to be one
of the integral values {0, 1, 2, . . .} or binary values {0 or 1}. A solution carrying a
fractional value is unacceptable under this assumption. For example, we are to
determine whether plant A or plant B should be built and a computed solution of linear

Divisibility
assumption on

continuous
variables:

x,>0

Constant
assumption on

input parameters:

Combined
Proportionality

assumption:
cft<aift

Integrality
assumption on I

integer variables
yk = 0,1,2,. . .

Constant
assumption on input

parameters:
dh 8ik

Combined Proportionality
assumption:

Combined.

Additivity assumption
on objective function:

Additivity assumption
on constraint

functions:

Constant
assumption on

right-hand side:
b,

Max/min
objective function
z = l£jXj + YA0k

Simultaneous
assumption of all

constraints

Equality/inequality
form of constraints

Combined
MIP

FIGURE 2.1 Anatomy of MIP assumptions.

24 MODELING AND MODELS

program results in building 0.57 plant A and 0.43 plant B. Obviously, this fractional
solution does not make sense in decision making. Even if sometimes a sensible
solution were obtained after rounding, chances are this solution might not be
optimal.

The certainty assumption implies that the values of all input parameters can be
estimated or predicted with almost certainty, if not certainty. In other words, under this
assumption, each input parameter (data point) is constant or fixed, and any variation
about this fixed value is negligible. Consider a counterexample. Suppose a profit of a
certain product per unit is $ 1.2 if the economy is good, a profit of $0.3 if the economy
is mediocre, and a loss of $1.1 if the economy is bad. There are three possible values
regarding the unit profit or loss depending on the economic conditions.

There is another class of mathematical program in which the unit profit is a random
variable following a certain probability distribution. The integer program with
random parameter(s) is called a stochastic integer program. Another class of
mathematical program in which the unit price is a mathematical function of a certain
parameter is called a parametric integer program.

The proportionality (linearity) assumption implies that the total contribution to a
function value is proportional to the values of a variable. In other words, the marginal
contribution to the function value by each unit of a variable is constant. Figures 2.2
and 2.3 depict, respectively, the proportionality assumption of a continuous variable x
and an integer variable v. Note that both increasing and decreasing functions are
linear, and each linear function has a constant slope over the domain defined by the
variable(s).

Recall that the slope of a continuous function at any continuous point x is
defined as

d/W_ ,. f(x + A)-f(x)

where A is arbitrarily small and approaches to 0. For the function of continuous
variable xx defined in Figure 2.2, the slope = 1ÍITIA^O(2(.X:I +A)— X\)/A = 2, a
constant for every value of X\. For a function of continuous variable x2, the slope =
limA ̂ o(—3(*2 + A) — (—3^2))/A = —3, a constant for every value of x2-

The slope of a discrete function at any discrete point y is defined as

4T(y) = / (y + A)-/(y)
Ay A

where A is a positive increment (equal to 1 in this case). Applying this slope definition
to the two functions given in Figure 2.3, we obtain the following constant slopes,
respectively:

/(yi + i)-/(yi) = 2 _ 2

ASSUMPTIONS ON MIXED INTEGER PROGRAMS

(a)

4+2A

25

+ *\

+ *2

FIGURE 2.2 Proportionality of continuous variables: (a) Increasing linear function;
(b) decreasing linear function.

26 MODELING AND MODELS

(a) /I
i

6 '

i

4 '

i

2 '

<

0*

i

► —

i

i /

•
/O-,)

—».

• /

' < 2

• /
= 2y\/

'*/ —

•Í 2

• |

2

4
! 2

- - « j

•

•j

3

(b) f(y2)

0'

-3 (

-6

-9

k 1

\ 1
\ 1
\ 1
\ 1

» \ «j

\ i "3
1 \ • \ i

\ i
\ i

' * \

•

i «

/(J2) =
•

•

2

4

•

• ¡-3

y •

-3yi\
• \

•

3

i

•

•

•

--•

<
1 - 3

\"i

FIGURE 2.3 Proportionality of integer variables: (a) Increasing linear function; (b) decreasing
linear function.

ASSUMPTIONS ON MIXED INTEGER PROGRAMS 27

FIGURE 2.4 Counterexamples for the proportionality assumption.

and

Z(y2 + i)-/(y2) = - 3
()>2 + l)-y2 1

- 3

Counterexamples to the proportionality assumption of continuous variables are
2x2 and 8 — x2. They are nonlinear functions, as shown in Figure 2.4. Any math
programming problem containing any nonlinear function in the objective or a
constraint function is called a nonlinear programming problem {nonlinear program).

The additivity/separability assumption implies that every function (in the objec-
tive or in each of the constraints) can be expressed as a sum of several functions, each
containing a single variable. Note that the function 2>X\ — 5x2 is equivalent to the sum
of two single-variable functions: 3xt + (—5x2), with a negative coefficient in the
second function. Also note that a function is separable if it is an algebraic sum of
functions of single variables.

Mathematically, a separable function is defined as f{x\, x2, . ■ ■, x„) =
f\ C*i) +/a(x2) + • • • +f„(x„). Counterexamples of additivity/separability include
functions that contain product terms such as xxx2 and x
functions are nonseparable and nonlinear.

-2x\x2-\-x2. These

28 MODELING AND MODELS

Precaution: When formulating an objective function or a constraint equation/
inequality, make sure that the units or dimensions of all terms in the same function are
identical.

The single-objective assumption implies that an optimization problem satisfying
the above assumptions, but with multiple objectives, is not a mixed integer program.
However, there are cases where a multiobjective problem may be converted into a
single-objective problem. The multiobjective problem is beyond the scope of this
book. For further information, read the references given in Section 2.10.

The simultaneousness assumption implies that a feasible solution must simulta-
neously satisfy all the constraint equations and inequalities. That is, any feasible
solution must not violate any constraint in a given mixed IP. If a problem requires only
a subset of constraints to be satisfied, then it must be transformed into an equivalent
problem in which all constraints must be satisfied simultaneously. Chapter 3 will
discuss how to perform this transformation.

2.2 MODELING PROCESS

Many definitions of operations research (OR) have been published over the five-decade
history of ORS A/INFORMS. INFORMS recently defined OR to be "the discipline of
applying advanced analytical methods to help make better decisions." One way to
understand how such methods apply to a decision situation (a real system to be optimized
or problem to be solved) is to consider the three phases of an OR study in Figure 2.5:

i. Construction of the model
ii. Solution of the model

iii. Validation of the model results and interpretation back to the decision
situation

Two other phases in the OR approach to problem solving are important, but are not
shown in Figure 2.5. There is a premodel phase "Definition of the problem." This

Real world Model world

Real system or problem

''
Real-world conclusion

(optimal policy)

I. Model
construction

III. Model validation

and interpretation

Math model
of reality

'

II. Model
solution

Model
conclusion (optimal

solution)

FIGURE 2.5 Three phases of an OR study.

MODELING PROCESS 29

phase establishes objectives and scope of the model and is carried out by the OR
analyst in conjunction with the client and his staff, or by the appointed "OR team."
There is also a postmodel phase "Implementation of the optimal policy" in the
organizational environment. The policy is translated into action by managers and
workers under authority of the client.

Modeling is therefore central to any application of OR, and the construction of an
OR model is in part both art and science. There are many cases where practitioners
who follow the following three-step "model construction process" naturally arrive at a
model formulation:

Step 1. Verbally identify and define decision variables, input data or parameters,
constraints, state variables (if any), and the objective from the given problem
description. Then assign appropriate symbols to decision variables, input para-
meters (or data), and state variables (if any).

Step 2. Translate the verbal description of the objective and constraints into
functions, equations, and inequalities. Check whether each of the seven MIP
assumptions is satisfied. If all are satisfied, then an MIP is obtained; otherwise, go
to Step 3.

Step 3. Check whether the non-MIP factors such as a discrete (but not integer)
variable, a nonlinear function, or nonsimultaneous constraints can be transformed
into equivalent mathematical expressions that satisfy all MIP assumptions. If yes,
we obtain an MIP; otherwise, the problem is not an MIP.

Decision variables are variables under the control of the decision authority.
Appropriate symbols for the decision variables are selected, and data needed to
express objective and constraint functions are organized into tables. In large-scale
applications, these tables are more appropriately called "decision databases."

In Step 1, the objective to be achieved by the decision should be expressed verbally.
Constraints that often relate to resources, requirements, and regulations should also be
verbally described. Sometimes, these symbols, data, and verbal descriptions may be
augmented by graphical (or iconic) or analog models, for example, an input-output
diagram or a network flow diagram with appropriate labels.

Step 2 translates the verbal and/or graphical description into a mathematical model
using the selected symbols for the decision variables, and using functions of these
variables to represent objectives (to be maximized or minimized), and other functions
of the variables combined with a constant to create equation or inequality constraints.
These constraints express the nature of resource limitations or requirements, and how
the values of the variables are converted into resource demands (performance versus
requirement). It is desirable, of course, if the functions created in the mathematical
expression of objectives and constraints are linear. In that case, the tables from Step 1
become matrices in MIP model.

Check the formulated math model to see if it satisfies each of the seven assumptions
pertaining to an integer program. If any assumption is violated, the math program is
not an MIP, but it may be possible to transform it into an MIP. Step 3 performs the
transformation using techniques to be introduced in Chapter 3.

30 MODELING AND MODELS

Now we are ready, in Sections 2.3-2.9, to apply this modeling process to the
following problem types selected from the IP applications from Interfaces:

• Project selection

• Production planning
• Workforce/staff scheduling

• Fixed-charge transportation and distribution
• Multicommodity network flow
• Side-constrained network optimization
• Supply chain planning

2.3 PROJECT SELECTION PROBLEMS

Two types of project selection (or capital budgeting) problems will be discussed here.
One type covers a single time period and the other multiple time periods. In fact, the
single-period project problem may be viewed as a knapsack problem. We begin this
section with the knapsack problem and then proceed to more complicated, and more
realistic, problems.

2.3.1 Knapsack Problem

The simplest form of integer program is the knapsack problem (or 0-1 knapsack
problem) that contains a single constraint with 0-1 variables. The name is taken from
a decision problem faced by a hiker who is to select items of a given set to be included
in his backpack (or knapsack) within the limit of a specified weight. Each item
selected contributes a (relative) value to the hiking trip and the objective of this
decision problem is to maximize the total value of all the items selected. Following the
modeling procedure described above, we now formulate this problem in two steps.

Step 1

Input parameters: number of items («), weight of each item (aj),
value of each item (cj), total weight limit (b)

Decision variables: whether or not to select item j (yj = 1 or 0)
Constraint: total weight of selected items cannot exceed

weight limit (b)
State variables: none
Objective: maximize total value of selected items

Step 2. The knapsack problem can be formulated as follows: Find values of y7

(j= 1, 2, ..., n) so as to

PROJECT SELECTION PROBLEMS 31

Maximize z = \ cjyj
j

subject to 2_]a¡yj — °
j

y ; = 0 o r l j = 1 , 2 , . . . , «

where a,, cy, and ¿> are assumed nonnegative.

Sometimes, a} and b are further assumed integer, while other times they are
assumed rational (integer or fractional). The integrality assumption does not affect
the generality of the problem definition because any constraint containing fractional
coefficients can be made integer by multiplying through by an appropriate number.
For example, the fractional constraint, 2Ax\ + x2 < 5.6, can be converted to an
integer constraint by multiplying it by 5 on both sides.

Depending on its application area, the knapsack problem carries many different
names. In project management, for example, a project manager is faced with the
problem of selecting a subset of n projects to be undertaken because of budget
limitation that prohibits funding them all. Each project/ will cost a, dollars if selected,
and benefits to the firm in the future have a present value of Cj dollars. The manager has
a budget of b dollars to be allocated to the selected projects. Thus, the knapsack
problem can be viewed as a single-period project selection problem (based on its
decision variables) or a single-period capital budgeting problem (based on its
constraint).

Furthermore, the knapsack problem sometimes is also referred to as the cargo
loading problem when cargos of various weights are being selected for loading onto a
vessel having a limited weight capacity. Similarly, the knapsack problem is some-
times called the flyaway kit problem when a number of valuable items are being
considered for loading on an airplane.

Obviously, volume can be the deciding factor and can replace weight as the
criterion of the constraint. Volume can also be "another" constraint criterion if volume
of each item and total volume capacity limit are also specified. This two-constraint
problem is known as the two-dimensional knapsack problem. There are obvious
extensions to multiple criteria (multidimensional knapsack problem).

In reality, there may be other conditions or requirements about the selection
of projects. Examples are the following: (l)the number of projects selected in each
period may not exceed a certain number, (2) project 3 may not be selected unless
both projects 1 and 2 have been undertaken in the previous periods, (3) either project
4 or project 6, but not both, may be selected in the same time period, and others.
These additional conditions may be formulated as linear constraints and will be
discussed in detail in Chapter 3.

2.3.2 Capital Budgeting Problem

The capital budgeting problem often arises over a planning horizon of multiple time
periods. The time period may be quarterly, semiannually, or annually. The multiperiod

32 MODELING AND MODELS

problem may be described as follows. A project manager has n projects that he would
like to undertake but not all can be selected because of budget limitation in each time
period over a prescribed planning horizon. Assume project y has a present value of c7

dollars and requires an investment of atj dollars in time period t (t = 1, . . . , T). The
capital available in time period t is b, dollars. The objective of this problem is to
maximize the total present value subject to the budgetary constraint in each time
period over a prescribed planning horizon T. The problem may be mathematically
modeled as follows: Find a set of values for yj so as to

Maximize z = YJ c¡y¡
i

subject to 2_.a'jyj — bt t = l,...,T
j

y, = 0o r l y = 1 , 2 , . . . , «

where input parameters n and b, are positive, atJ- nonnegative, and c¡ unrestricted in
sign. Again, the negative coefficient can be made positive by changing the associated
variable to its complement. In a real application, a model may have additional
constraints such as requiring contingency and/or mutual exclusion among projects.
Chapter 3 will discuss how to handle these types of constraints.

2.4 PRODUCTION PLANNING PROBLEMS

Production planning problems often arise in multiple periods. As shown in Figure 2.6,
there is a demand in each time period. The demand can be met by two sources:
production in the same time period and the inventory carried over from the previous
period (assuming no backorder is allowed). A production run incurs a fixed setup cost
(per run) and a variable production cost (function of production quantity). The
inventory carried over from the previous period incurs a variable "carrying" or
holding cost (function of carryover quantity). The planning objective is to minimize

Produce or not? yr_, y,

Production quantity? xt-\ xi

Inventory j r _ 2

d,_\ d,

O
1 De

FIGURE 2.6 Uncapacitated lot sizing.

PRODUCTION PLANNING PROBLEMS 33

the sum of these three costs. In what follows, we shall discuss three examples of
production planning.

2.4.1 Uncapacitated Lot Sizing

A lot sizing problem in production planning is to find an optimal lot size (or quantity of
a production run) for each time period, so that the total cost of production and
inventory is minimized while the demand in each period is satisfied. The uncapa-
citated lot sizing problem assumes unlimited production capacity (lot size) in each
period. This implies one lot size (production run) per time period. For the following
problem formulation, we further assume that (1) the production cost is proportional to
the production quantity and (2) the carrying cost is proportional to the ending
inventory level of the previous period.

Step 1

Input parameters:

Decision variables:

Constraints:
State variables:

Objective:

number of periods (7), demand in each period
(d,), setup cost for each period (/",), unit
production cost (c¡), unit holding cost {ht)

whether or not to produce in each time period
(y, = 1 or 0) and how much if the decision is to
produce (x,)

satisfy the demand in each period t
inventory level at the end of each period (s,),

assuming the beginning inventory level So = 0
minimize the total production and inventory

costs

Step2. LetAfbea"sufficiently"largenumber(say,M=^tc/r).Notethaty,= 1 if and
only if x, > 0. The problem can be formulated as follows: Find values of xt and yt

(t= 1, 2, ..., T) so as to

Minimize \~](ctxt +ftyt + htst)

subject to S(_i +x,—s, = d, for all t

xt < My, for all t

xt>0 for all t

s,>0 f = 0,1,

y i = 0 or 1 for all t

34 MODELING AND MODELS

Note that if backorder is allowed, we simply change the constraint from
Í,_I + x,~s, = d, to jr_i +x,—s,—b,-i +bt = dt, to include a backorder amount
in the inventory balancing equation, where b, is the backorder amount cumulated at
the end of time period t.

2.4.2 Capacitated Lot Sizing

In the event that the production quantity in a given time period cannot exceed a certain
amount, for instance, due to plant capacity, then the problem becomes a capacitated
lot sizing problem. When the given capacity is constant over periods, we simply
replace the big "AÍ" in the uncapacitated lot sizing model with a capacity upper limit u
(i.e., replace x, < Myt with x, < uy,).

The capacity may also vary from period to period with an upper limit u, in period t,
which is reflected in the model by using x, < uty¡ to replace xt < My,; the complete
model becomes

Minimize 2~\{c,x, +fty, + h,st)
t

subject to st-\ + x, + s, = d¡ for all t

Xt < u¡y, for all t

xt > 0 for all t

s, > 0 for all t

y, = 0 or 1 for all t

2.4.3 Just-in-Time Production Planning

Now we present a multiproduct, multiperiod production planning problem under the
just-in-time environment. This type of production planning seeks to determine a
production level for each product in each time period with the right quantity at the
right time. The ideal for just-in-time manufacturing is to maintain a zero inventory
level (i.e., to prevent any surplus or shortage of inventory for each product at each
time). However, in practice, there may occur a small surplus of inventory that can be
temporarily stored on the plant floor in buffer area(s) or there may occur a temporary
shortage of inventory. In either case, a penalty is imposed on each unit of excess or
shortage of inventory. If no amount of shortage is allowed, a very large penalty should
be imposed. Note that any excessive inventory implies production "too soon" and any
shortage of inventory implies tardy production.

Thus, the primary objective of the just-in-time production problem may be
modeled as to minimize the total penalties caused by the earliness/tardiness for all
products over the planning horizon. The unit penalty of earliness and of tardiness,
which may or may not be the same, may be assessed by the management. The model
formulation follows.

PRODUCTION PLANNING PROBLEMS 35

Step 1

Input parameters:

Decision variables:

Constraints:

State variables:

Objective:

number of product types («), number of periods (7),
demand of product y in each period (dp),
prescribed production lot size for each product
(/,,), unit penalty of earliness (pß, unit penalty of
lateness (qß

production level of each product in each period
(Xj, > 0), number of production runs in each
period t for each product (jjt)

satisfy demand of each product/ in each period and
constraints relating to prescribed lot size,
number of
production runs per period, and production level

surplus and shortage inventory levels for each
product in
each time period (dt and djt), ending inventory
level of each product (sp)

minimize total penalty cost of all products due to
earliness and lateness over all periods

Step 2. Recall the inventory balancing equation that relates the beginning inventory
level, production level, demand level, and the ending level given below:

ùJ,>- ! + Xjt-djt = sj, for all j , t

or sJ,t-i

\j, Up

- x i,—Su — dj

Let dp and djt, respectively, be a nonnegative amount of surplus and shortage for each
period t and each product/. Let sp = dt —djt. Note that variable Sp may be positive,
negative, or zero; all Xp, dp , and djt are nonnegative variables.

To model the relationships between the production level (a continuous variable),
prescribed production lot size (an integer constant), and number of production runs
(an integer variable), caution must be exercised because the production level may not
be divisible by the prescribed lot size, which may result in a fractional number of
production runs. To overcome this modeling difficulty, we introduce the following
pair of inequality constraints. For example, assume the prescribed lot size in period
t {ljt)= 150 units and the production level in period t (x/i) = 700 units. Then the
number of lots in period t is 700/150 = 4.67 or 5 after rounding up. Thus, the fifth
(the last) lot contains only 100 units instead of 150. To resolve this problem, we
introduce the following pair of inequality constraints:

to for all j and t

and xp = lp(yp—l) for all jandt

where yp > 0 and integer for all / and /.

36 MODELING AND MODELS

Thus, the objective is to

Minimizez = Yl\PjJ2dt+ + %Hdt)

2.5 WORKFORCE/STAFF SCHEDULING PROBLEMS

2.5.1 Scheduling Full-Time Workers

Many companies or institutions, especially those operating 24 h daily, usually divide
the daily schedule into discrete (say, T) time windows. Examples include hospitals,
restaurants, call centers, and police departments. The number of staff required
typically varies among time windows. Staff members are scheduled to n different
(work) shifts, each covering m(m < T) consecutive time windows. Staff members
assigned to different shifts may be paid differently, depending on which shift they
work. For example, those working overnight are usually paid at a higher rate. The
scheduling problem is to determine the number of workers to be assigned to each shift
so that the company meets the demand in each time window.

Following is an example of a 24 h fast food restaurant. The daily operation is
divided into eight consecutive time windows, each of 3 h duration. A shift covers three
consecutive time windows (i.e., 9h), as shown in Table 2.1. Information about the
number of workers required within each time window as well as the wage level for
each shift is also listed in the table.

Step 1

Input parameters:

Decision variables:
Constraints:
State variables:
Objective:

number of shifts (n), number of time windows (7), number
of workers required per time window (d,), wage rate per
shift (H 'j*

number of workers needed per work shift (yß
demand within each time window t must be satisfied
none
minimize the total wages paid to all workers

TABLE 2.1 Time Windows for Shift Workers

Time Window

6 a.m.-9 a.m.
9 a.m.-12 noon
12 noon-3 p.m.
3 p.m.-6 p.m.
6 p.m.-9 p.m.
9 p.m.-12 a.m.
12 a.m.-3 a.m.
3 a.m.-6 a.m.
Wage rate per 9 h shift

1

X
X
X

$135

Shift

2

X
X
X

$140

3 4 Workers Required

X 55
46
59
23

X 60
X 38
X X 20

X 30
$190 $188

WORKFORCE/STAFF SCHEDULING PROBLEMS 37

Step 2. Leiaj,— 1 if shifty covers time window t(j= 1,. . . ,«;<= 1,.. .,7) and 0,7 = 0
otherwise. Then the model formulation is

Minimize \] wjyj
j

subject to 2_, ajtyj >-dt t = 1 , . . . , T
j

y i > 0 and integer t = 1 , . . . , T

where the matrix (a,,) is of the following form:

■1

1

1

0

0

0

0

.0

0

0

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1-

0

0

0

0

0

1

1.

Note that in the previous model if the integer requirement is relaxed, the problem
might generate fractional solutions. In reality, a fractional staff member can be
interpreted as a part-time worker. For example, a solution with 4.2 workers in shift
2 means that we have 4 full-time shift-2 workers, and a part-time worker who
works 20% of the time and is paid 20% of a full-time workers. Hence, if it is
allowed for some shifts to have part-time staff, then the problem becomes a mixed
integer program. However, this is not the only way to handle the part-time
situation. In Section 2.5.2, we will discuss another way to formulate the personnel
scheduling problem when both full-time and part-time staffs are necessary in the
model.

2.5.2 Scheduling Full-Time and Part-Time Workers

We still consider the problem described in Section 2.5.1. Now assume that part-time
workers may be hired per time window. That is, during time window t, if a part-time
worker is used, then he/she is paid c,. However, at least one full-time worker has to
be present when part-time workers are hired. The problem is to determine how
many full-time and part-time workers need to be hired to minimize the total
workforce cost.

38 MODELING AND MODELS

Step 1

Input parameters:

Decision variables:

Constraints:

State variables:
Objective:

number of shifts («), number of time windows (7),
number of workers required during each time
window (d„ t= 1, 2, . . . , T), wage rate per 12 h
shift for a full-time worker (wj), wage rate per 6 h
time window per part-time worker (c,)

number of full-time workers needed for each work
shift (yß, number of part-time workers needed for
each time window (x¡)

demand within each time window t must be satis-
fied, restriction on using part-time workers (can
be used only if one or more full-time workers are
available in the same time window)

none
minimize the total wages paid to all workers

Step 2. Let aJt = 1 if shift j covers time window t, 0 otherwise. Let M be a
"sufficiently" large number (say, M = ^tdt). Then the model formulation is

Minimize ^ J w¡y¡ + 2_] ctxt
j '

subject to y^a¡ty¡ + x, > d, t=l,...,T
j

Mj2aj,yj-x,>0 t=l,...,T
J

Xt,yj > 0 and integer j = 1 , . . . , n; t = 1 , . . . , T

2.6 FIXED-CHARGE TRANSPORTATION AND DISTRIBUTION
PROBLEMS

2.6.1 Fixed-Charge Transportation

Units of a product (single commodity) are to be shipped from m source nodes to
supply the demands at n destinations (as shown in Figure 2.7). Shipping cost from
source / to destination^' includes a unit shipping charge Cy in addition to a fixed charge
fy if arc (/,/) is used in the solution, regardless of the shipping quantity (as long as a
positive amount, of course). Find a minimum cost shipping plan so that the demand at
each destination is met. Assume that each source node can supply all the demands at
destinations.

FIXED-CHARGE TRANSPORTATION AND DISTRIBUTION PROBLEMS

Source Destination

39

FIGURE 2.7 Transportation problem.

Step 1

Decision variables: whether or not source /' will supply destination

Input parameters:

Constraints:

State variables:
Objective:

j(y¡j — 1 or 0). If yes, how much (xy)
unit shipping cost (cy), fixed cost (fy) from source i

to destination j , demand at destination j(dj)
demand at each destination must be satisfied

(assuming unlimited product availability at each
source node)

none
minimize sum of fixed and variable costs

Step 2. Let M be a "sufficiently" large number (we can let M = Y^jdj)- Note that
y y = 1 if and only if xy > 0. The transportation model can be formulated as

Minimize ^ ^ (c y X ^ + ^ y)
' j

subject to 2_.xü = dj

xy < My y

Xy > 0

y y = 0 or 1

= 1,.

= 1,-

= 1,-

.,m;j= 1,.

.,m;j=l,.

.,m;j= 1,.

. , 7 2

. ,«

. ,«

40 MODELING AND MODELS

2.6.2 Uncapacitated Facility Location

A company needs to build several distribution centers to supply its retail stores located
at n different cities, each with different demand. There are m candidate locations for
the distribution centers. There is a unit transportation cost for shipping from
distribution center / to retail storey, and a fixed cost for opening distribution center
i. Decide on which distribution centers to open so that total cost (including opening
cost and transportation cost) is minimized, while the demand at each retail store is
satisfied.

Step 1

Decision variables: whether or not distribution center i should be opened
(y, = 1 or 0). If opened, how much should be shipped
from distribution center to retail store (x¡¡)

Input parameters: unit shipping cost from center i to retaily (c¡¡), fixed cost
for opening distribution center (f¡)

Constraints: all demands are to be met at all retail stores
State variables: none
Objective: minimize total cost of opening and transportation cost

Step 2. Let M be a "sufficiently" large number (we can let M = J2jdj)- Note that
y i = 1 if and only if Yl\xü > 0- The uncapacitated facility location problem can be
formulated as

Minimize ^ ^ cyXy + ^fm
i j i

subject to 2_]xü = dj j = 1 , . . . ,n
i

y^x¡j <My¡ i=l,...,m
j

Xy > 0 and integer i = 1 , . . . , m; j = 1 , . . . , n

Substituting x¡¡ = Xy/dj or xy = djX¡¡ into the above model, an alternate formulation
is obtained:

Minimize ^ ^ c'yXy + Y^fyi
i j i

subject to ^2x'y = l j=l,...,n
i

Y^x'y<ny¡ i=\,...,m
j

x'y>0 i=l,...,m;j=l,...,n

v, = 0 or 1 i=\,...,m

MULTICOMMODITY NETWORK FLOW PROBLEM 41

where d¡j = cy/dj. Note that x1^ can be interpreted as the fraction (between 0 and 1
inclusive) of demand, rather than the quantity supplied, at store j satisfied by
distribution center i. Also note that the "big Af ' is replaced by "«", which is the
total number of retail stores. This replacement is valid because the demand at each
store location, after the transformation, is equal to 1. Thus, the total demand at n store
locations is n.

A third formulation can also be obtained by using a set of m constraints,
x'ij < y,(j = 1,2,...«), to replace each /' of J2¡ x'¡j ̂ ny¡- Although this replacement
multiplies the number of constraints, this alternative does give a better formulation.
We will justify this claim later in Chapter 4.

2.6.3 Capacitated Facility Location

When each distribution center has limited supply uk the uncapacitated facility
location problem becomes a capacitated facility location problem.

Let u¡ be the supply amount at distribution center /, then the first model
formulation is

Minimize ^ ^ cyxy + ^ / ¡ y ,

subject to 2_^xu = 4

"Yl Xij < u¡yi
j

Xij > 0 and integer

y, = 0 or 1

; = ! , ■ ■

/ = i , . .

i = i , . .

/ = i , . .

. . ,«

. ,m

. ,m:

.. ,m

2.7 MULTICOMMODITY NETWORK FLOW PROBLEM

A set of p commodities is to be shipped from m sources to n sinks. A source / can
supply up to J* units of commodity k. A sink j has demand d: on commodity k. A
transshipment node t is used as a connecting point between sources and sinks, but does
not have its own supply or demand. The shipping amount between any pair of nodes is
subject to a capacity limit, and for each unit of commodity k shipped from node / to t,
or t toy, a cost is incurred. The problem requires finding a shipping plan that minimizes
the total shipping cost as well as meets the demand for each commodity at each sink.
Assume the nodes have been numbered consecutively and grouped into the three
classes of source, transshipment, and sink nodes with indices i, t, andy, respectively.
Also, assume no "backflow" is permitted from sink to transshipment or source, nor
from transshipment to source.

42 MODELING AND MODELS

Step 1

Decision variables:

Input parameters:

Constraints:

State variables:
Objective:

units of commodity k to be shipped from source / to
sinkytó), from source i to transshipment t(x^),
and from transshipment t to sinky'(x^)

supply jf of each commodity k at each source i,
demand d, for each commodity k at each sinky;
maximum combined shipping capacity for all
commodities from source / to sinky'(w,y), from
source i to transshipment node t(uit), from
transshipment t to sinkyXw,,); unit transportation
cost for commodity k that can be transported from
source i to sinky'(eí), from source i to trans-
shipment i(c£), from transshipment t to sinky'(c^)

supply constraints for all sources, demand con-
straints for all sinks, flow conservation constraints
for each transshipment node (total outflow equals
total inflow for each commodity), maximum
combined flow capacity for all commodities
between any two nodes

none
minimize total transportation cost

Step 2. The problem can be mathematically modeled as

Minimize * = E E 4 4 + E E 4 4 + E E 4 4
k (ij) k (,-,,) k (,j)

subject to / _ X 4 + x^lt) = 4 f°r e a c n '"> ^ (n°de /supplies commodity k)
tj

2_.■X/r- ¿2*// = 0 f°r e a c n U k (node t is a transshipment node)
i j

Y~](4 + rfj) = d* for eachy, k (sink/ demands commodity k)

E 4 «̂fr-it

E4<««-r
k

2~24<u'j
k

xfy:, x*¡„ x^j > 0 and integer

NETWORK OPTIMIZATION PROBLEMS WITH SIDE CONSTRAINTS 43

2.8 NETWORK OPTIMIZATION PROBLEMS
WITH SIDE CONSTRAINTS

All the network problems we have discussed so far have common constraints: (1) each
arc has some capacity limit, (2) flow on an arc is subject to unit cost, and (3) each node
satisfies a flow conservation constraint. Sometimes, additional or side constraints are
required. One of the most frequently seen side constraints are proportional con-
straints and blending constraints.

Proportional constraints are usually seen in production where raw materials are
refined into different semiproducts, in which the amount of each semiproduct is
specified as a proportion of raw materials. Figure 2.8 shows an example of such a
production scenario. Requirements like this can be expressed by a set of side
constraints in the following way.

Suppose the nodes are labeled with numbers, that is, the nodes associated with raw
materials 1 and 2 are labeled nodes 1 and 2, respectively. The processor is node 3,
semiproducts made from raw material 1 are nodes 4-6, and semiproducts made from
raw material 2 are nodes 7-9. Let *ybe the flow to be determined from node /to node/
Then the mathematical expressions for the proportional constraints are

*34 = 0.3X13, *35 = 0.5*13, *36 = 0.2*13

Xyl = 0.4*23, *38 = 0.1*23, *39 = 0.5*23

Blending constraints are used to reflect a mixing or blending process. Several
ingredients are mixed according to different ratios to get different products. Figure 2.9
shows such a blending process. With the raw material nodes labeled 1 and 2, as before,
the processor node 3, and semiproduct nodes 4-6, such requirements can then be
reflected by the following equality constraints: *34 = 0.4*i3 + 0.3*23, *35 — 0.2*i3 +
0.6*23, *36 - 0.4*13+0.1*23-

Side constraints can take other forms too, either of special structure or of some
arbitrary structure. Side constraints can be adjoined to many network optimization
problems, such as multicommodity flow, facility location, and production lot sizing.

Raw material 1

Raw material 2

<?]

<?2

» / , \ "/ processor \

*\ ^ J

\J.JHX

0.5?,

0.2?,

u.^t/2

0-192

0 .5^

Semiproduct 1A

Semiproduct IB

Semiproduct 1C

Semiproduct 2A

Semiproduct 2B

Semiproduct 2C

4

5

6

7

8

9

FIGURE 2.8 Proportional constraints.

44 MODELING AND MODELS

Raw material 1

Raw material 2

1\

<?2

b /

* \

Blending \

3)

0.4qt+03g2

0.2q] + 0.6<?2

0.4?,+0.1?2

Product 3A 4

Product 3B 5

Product 3C 6

FIGURE 2.9 Blending constraints.

When embedded in a problem, side constraints might dramatically increase the
difficulty in solving the problem, and new efficient algorithms must be developed to
handle these constraints.

2.9 SUPPLY CHAIN PLANNING PROBLEMS

Two broad classes of operations research models are used to support supply chain
management: normative models in the form of MIPs, which provide insight into
pending decisions about supply chain structure, and descriptive models in the form of
simulation models, which capture the dynamics of a proposed or existing supply chain
after the structure is decided. Shapiro (2001) states that "optimization models provide
templates for integration of concepts and constructs from multiple disciplines," which
make up supply chain planning (SCP). According to Shapiro, "a company's supply
chain is comprised of geographically dispersed facilities where products are acquired,
transformed, stored, or sold, and transportation links connecting facilities along
which products flow."

If product demand is assumed fixed, the SCP optimization problem is to minimize the
total supply chain cost of satisfying demand, which may involve a simple transportation
model (which distribution centers supply which products) or a complex, sequential
decision involving multiple suppliers, multiple plants, and multiple distribution cen-
ters—and the transportation links among them. Furthermore, the time frame may vary
from an operational planning model run weekly (for production or logistics planning) to
strategic network models run once per year, with a planning horizon of 1-5 years. See
Table 2.2 for time frames and horizons of typical MIP modeling situations in SCP.

Obviously, many supply chain problems have one of the network structures
previously discussed, hence may be modeled as MIPs:

Transportation model
Assignment model
Transshipment model
Multicommodity flow model
Single- and multicommodity capacitated flow model
Multiple choices of mode of transport on the same arcs, each with costs and
capacities

SUPPLY CHAIN PLANNING PROBLEMS 45

TABLE 2.2 Typical MIP Modeling Situations in Supply Chain Planning

Model Type and
Objective Function Planning Horizon Model Structure Use Frequency

Strategic network opti- 1-5 years
mization (maximize
net revenues or if
demand is fixed,
minimize the cost)

Tactical optimization 12 months
model (minimize to-
tal cost of meeting
forecasted demands)

Production planning 13 weeks
optimization model
(minimize avoidable
production and in-
ventory costs)

Logistics optimization 13 weeks
model (minimize
avoidable logistics
costs)

Yearly, or multiple
linked years

Next 3 months and
3 quarters beyond

Next 4 weeks and
2 months beyond

Next 4 weeks and
2 months beyond

Once/year

Once/month

Once/week

Once/week

The last item listed hints only at the broad applicability of 0-1 variables in supply
chain modeling. Other well-recognized applications are to capture

• Fixed and investment costs

• Economies and diseconomies of scale

• Sole sourcing of markets

• A wide range of logical (if-then) conditions

Although it is recognized that integer variables should be used sparingly (only
when necessary) in SCP models, their use in conjunction with MIP provides the
company with powerful insights into decision situations that can literally convert a
marginally profitable product line or supply chain into a profit maker. For a simple
introduction to the use of MIP modeling constructs in SCP, see Shapiro (2001),
Chapter 4.

As an example of a supply chain model, consider the following strategic distribu-
tion network model (Karabakal et al., 2000) implemented at Volkswagen of America. '
Sources and markets were fixed, as was the variety of vehicle types and which sources
would provide which vehicle type. The processing centers (which receive vehicles

1 Reprinted with permission of authors (see Bibliography). Copyright 2000, the Institute for Operations
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA.

46 MODELING AND MODELS

from sources) and the distribution centers (which receive vehicles from processing
centers and provide them to markets) had to be located, the type of facility at the
distribution centers had to be decided, and shipping quantities on each node of
the network had to be determined. The objective was to minimize the total
combined cost of transportation and fixed-facility installation. Therefore, the follow-
ing model is a multicommodity, transshipment model with fixed and variable
transportation costs between nodes and investment costs for the centers that are
included in the network.

Step 1

Decision variables:

Input parameters:

Constraints:

Objective:

annual shipment of type k vehicles from source i to
processing center pirf), annual shipment of type k
vehicles from processing center p to distribution
center j(xk:), annual shipment of type k vehicles from
distribution center j to market i(x|r), yes-no variable
on whether to install type/(/"= 1, 2) facility at
distribution center j(yjf— 1 or 0), yes-no variable on
whether to install processing center p(zp = 1 or 0)

annual demand for type k vehicles in market t(dt),
mileage between distribution center y and market
t(mjt), cost of shipping one vehicle from source i to
processing center p(cip), cost of shipping one vehicle
from processing center p to distribution center j(spj),
number of vehicles shipped to market t each load (L¡),
fixed shipment cost per load of truck (Q, shipment
cost per mile traveled by each truck (v), fixed cost for
installing a type/facility in distribution center j(gjf),
fixed cost for operating processing center p{hp), an-
nual shipment capacity of a type 1 facility at distri-
bution center j{ uj)

demand at each market area for each vehicle type must
be met; vehicle flows from sources to processing
centers and from processing centers to distribution
centers must be balanced; total vehicle flow to each
distribution center must satisfy the capacity limitation
of the facility installed; no shipment to a distribution
center (processing center) is possible if no facility
installed there; facility type 2 (large) is installed only if
facility type 1 (total capacity Uj at DC,) does not have
enough capacity to meet the shipment requirement to
distribution center j , for each j

minimize total cost, including shipping cost, facility
installation cost, and processing centers operation cost

NOTES 47

Step 2. Let M be a "sufficiently" large number, say, M = ^2,J2kd^, then the SCP
problem can be mathematically formulated as

Minimize E E E (-r) (c+v^')+E Es» E 4 + E E c<> E 4
j I k \U'J p i k i p k

7 / P

subjectto E 4 = í í * f = l , . . . , r ; A:= 1 , . . . ,* :
y

E 4 = E 4 y=l,...,/;*=!,...,*
p <

E 4 = E 4 i = 1 , . . . , # ! ;*= 1,...,AT
' J

Ujyji < E E 4 - "J»'1 + M '̂2 ./ =!,••• ,J
p k

EE4^A / z / ' p = i,...,/'
) k

X £ , X * . , J C £ > 0 i = l , . . . , « ; y = l , . . . , / ; / > = l , . . . , P

í = i r ; A: = i A-

3 # = l o r 0 j= l,...,J;f= 1,2
zp = 1 or 0 /J = 1,..., P

2.10 NOTES

Section 2.1

The seven MIP assumptions described in this section are extended from the four well-
known LP assumptions described in introductory OR/MS textbooks such as Hillier and
Lieberman (2005) and Winston (1994). The three additional assumptions are simul-
taneousness (conjunction), single objective, and integrality. Figure 2.1 is our original
contribution intended to help practitioners understand and exploit these assumptions.

Section 2.2

The three-phase process of an OR study discussed in this section is similar to the three-
phase modeling process given in Ravindran et al. (1987) and the five-phase process
given in Taha (2007).

Section 2.3

Traditionally, "the knapsack problem" refers to the problem involving only one item
of each type, each represented by a 0-1 variable. A problem that allows multiple items

48 MODELING AND MODELS

of each type is called integer, general, or multi-item knapsack problem. The
knapsack problem received considerable attention in the literature during the early
development of OR algorithms (1950-1970) mainly because it can be used as a
subproblem in developing a decomposition algorithm for the well-known cutting
stock (or trim loss) problem and because a general integer linear problem can be
converted to a knapsack problem. Dozens of specialized algorithms for knapsack
problems have been developed, encompassing dynamic programming, enumeration,
Lagrangian multiplier, and network approaches.

Section 2.4

The just-in-time production planning model discussed in this section is based on a
recent article by Li et al. (2006).

Section 2.8

SAS/OR User' s Guide: Mathematical Programming (retrieved online at http://www.
csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/ormp/chap4/sect4.htm).

Section 2.9

For those interested in using MIPs in modeling supply chain planning problems at all
levels (strategic, tactical, and operational), Shapiro (2001) is recommended.

2.11 EXERCISES

2.1 Consider the case of a quantity discount to a buyer, that is, the unit cost is lower
when quantity purchased reaches a certain level. How would you express the
quantity discount in the objective function of the lot sizing problem? Does the
revised model still satisfy the assumptions of integer programming?
(Assumption)

2.2 Give a situation (with side constraints) in which a project selection problem
cannot be modeled as an MIR (Hint: Include some special structure in the
specification of the objective function or the constraint function.)
(Assumption)

2.3 (A Diet Problem) Mrs. Bradley is on diet according to the instruction from her
family doctor. Every day she can eat only several specific types of food and
drink several specific beverages. There is even a limitation on how many
ounces of each type of food she can eat at maximum. And she cannot take more
than two types of beverages each day. Suppose if every day she eats W ounces
of food and drinks L ounces of beverages, then she feels full. Given that each

EXERCISES 49

TABLE 2.3 Stock Selection Options

Expected Annual
Stock Return in Present Value

A 90
B 120
C 100
D 80
E 130
Money available

Year 1

10
15
12
9

13
45

Budget Requirement

Year 2

20
15
25
15
10
60

Year 3

15
20
20
15
10
50

type of food or drink has a different unit price, how should she plan her diet to
minimize the total daily cost? (Modeling Process)
(a) Follow the modeling process strictly and try to formulate the problem.

(b) Does the problem belong to any of the model types discussed in this
chapter?

(c) What feature (variables or constraints) is unique about this problem?

2.4 Jimmy plans to invest in several stocks in the coming 3 years, each with a
different expected return for each dollar invested and a specific amount of
investment, as shown in Table 2.3 (all in thousands of dollars). Given that the
amount Jimmy can invest in stock purchases is limited each year, help Jimmy
to decide which stocks to invest in each year so as to maximize the total returns.
(Project Selection)

2.5 (The Cutting Stock Problem) A standard fabric is usually L yards long. Based on
customer need, it will be cut into small pieces of different lengths, say, l\, l2,. ■.,
/„. Any cutting combination will typically result in some unusable "leftover"
material, of length less than min{/,}. Suppose the daily demand for the
respective pieces is d\, d2, ■ ■., d„. Find a cutting pattern so that the leftover
is minimized. (Modeling Process)
(a) Identify the parameters provided in this problem.
(b) Identify decision variables, objective, and constraints.
(c) What information is important for formulating this model but is not

included in the problem description?
(d) If the information needed in part (c) is given, construct a model to solve the

problem.

2.6 Nurses in large hospitals usually work 3 days a week. Daily demand for nurses
is summarized in Table 2.4. Determine the number of nurses required per
schedule type so that the total wage cost is minimized.
(a) What is the coefficient matrix A = (a,,)?
(b) Use the numbers (not symbols) in the table to model this problem instance.

MODELING AND MODELS

TABLE 2.4

Day

Weekly Scheduling of Nurses

Schedule Type

1 2 3 4 5
Nurses

Required

Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday
Weekly wage

X
X

X
525

X
X
X

47(

X

X
X

X

X
X

20
25
26
26
30
30
35 X

550 500 425

In Exercise 2.6, if part-time nurses are hired at the rate of $150/day, formulate
the problem to minimize the total cost. If part-time nurses must be accompanied
by at least four full-time nurses, how would you formulate this constraint?

XYZ University is planning on the construction of parking lots to solve the
parking problem. There are m possible locations for parking lots, each with a
specific amount of maintenance cost f¡, and a projected number of parking
positions Sj. Students go to classes located at n different blocks. Distance from
parking lot /' to block j is ay. Forecast shows that the number of students
attending classes at block j each day is around dj. Assuming that one unit
distance of walking costs $ 1, help the university to decide which parking lots to
construct, and the most ideal parking situation, so that the total cost including
walking and maintenance is minimized. (Facility Location)

Is the problem in Exercise 2.8 capacitated or uncapacitated? Under what
situation(s) will it convert to the other? Do you believe such situation is
realistic? Why? What if the maintenance cost of a lot is comprised of a fixed
cost plus a variable cost that is proportional to the number of parking positions
it contains? How does the model change?

(A Modified Caterer Problem) A caterer to "The Ritz" motel collects the dirty
napkins and sends them to laundry every day. Due to different room occupation
levels during a week, the number of dirty napkins on day i is d, (i = 1, . . . , 7).
The caterer can wash and dry at most u napkins every day. If a dirty napkin is
not cleaned on the same day, a new one is purchased at the price of c. If the
laundry room is used on day i, a fixed cost of/} is incurred. Assume that at the
beginning of a week (Sunday), there are no dirty napkins left. That is, all dirty
napkins are discarded at the end of the week, and Sunday's napkins are all new
or clean. Find the best laundry plan for the caterer so that the entire week's cost
is minimized. (Lot Sizing)

Cool Summer is a beverage company. It has 20 distribution centers located in
different states to supply its 500 retail partners. Each retail partner j has a

EXERCISES 51

weekly demand level of d¡. Shipping cost per bottle of beverage from
distribution center i to retail store j is c,y. Once it is decided to ship from
distribution center /' to retail storey, a labor cost of f¡ is incurred. Find the
minimum cost shipping plan so that demand from each retail partner is
satisfied. (Fixed Charge Transportation)

2.12 In Exercise 2.11, what changes will happen to the problem if distribution center
i can only supply w, bottles of beverages?

2.13 Consider Exercise 2.11 again. Now assume that Cool Summer produces four
types of beverages. Each retail partner has different demand for each type of
beverage. Shipping cost per bottle is the same for all four types and labor cost
remains the same. The fixed cost is incurred once, if any quantity of any type of
beverage is shipped from / toy. Formulate the problem to minimize the total
cost. (Multicommodity Flow)

2.14 Formulate the following multicommodity flow problem as an IP: The Farmer's
Orchard is a large fruit supplier in Georgia. It has three branch stores supplying
five types of fruits to the distributors in six different cities. Due to the long
distance and the fruit freshness requirements, some cities cannot be directly
reached. Instead, the trucks have to stop at some other connecting cities, repack
the fruit, and deliver from that city to the destination. The shipping network is
shown in Figure 2.10. Demand for fruit type t in city i is shown in Table 2.5.
Supply of fruit type t(t = 1,.. . , 5) from each branch store is shown in Table 2.6.
Shipping cost for fruit t from city i toy is labeled below the arc (i,j) as a vector.
Shipping capacity (regardless of fruit type) from city i toy is labeled above the
associated arc. Develop a shipping policy to minimize the total shipping cost,
while satisfying the demand from each retailer. (Multicommodity Flow)

FIGURE 2.10 Multicommodity flow network.

52 MODELING AND MODELS

TABLE 2.5 Multicommodity Demand

City

1
2
3
4
5
6
7
8
9

TABLE 2.6

Branch Store

1
2
3

A

0
0

250
100

0
50

200
0

150

B

0
0

150
300

0
50

100
300
100

Multicommodity Supply

A

400
100
250

B

350
500
150

Fruit Type

C

0
0

300
0
0

100
200
300
250

Fruit Type

C

350
300
500

D

0
0

100
250

0
50
0

200
300

D

0
700
200

E

0
0
0

400
0

100
100
50

100

E

150
0

600

2.15 Consider the following lot sizing problem with side constraints: The produc-
tion plan for some product A is to be determined for the next 7* time periods. At
the end of each period, 60% of the products unsold will go back to the assembly
line and be renewed (assuming that this does not take up the capacity of the
assembly line). The other 40% will be carried to the next time period as
inventory. Demand at period / is dt. Production and reassembling cost per unit
is c, for time period t. Inventory holding cost per unit is /,. No backorders are
allowed. Formulate the problem of finding the minimum cost production plan
as an IP model. (Network with Side Constraints)

2.16 Consider the following multicommodity production-distribution problem
with side constraints: Happy Bakery is a company making breads, cakes,
muffins, and so on. It supplies 10 retailers in the city, including supermarkets,
gas stations, and bakery thrift stores. Happy Bakery receives raw materials
(flour, sugar, and butter) from two suppliers. Supplier A can provide up to
300 lb of flour, 500 lb of sugar, and 100 lb of butter. Supplier B can provide up
to 700 lb of flour, 200 lb of sugar, and 150 lb of butter. Shipping cost for each
raw material from each supplier is listed in Table 2.7. The ratios of the raw

TABLE 2.7 Raw Material Shipping Costs

Supplier Flour Sugar Butter

A 0.2 0.05 0.8
B 0.3 0.04 0.7

EXERCISES 53

TABLE 2.8 Travel Times from Depots to Neighborhoods

Depots

1

15
10
5
7
14
18
11
24

2

17
12
6
6
12
17
10
22

3

27
24
17
8
6
10
5
22

4

5
4
9
15
23
28
21
33

5

25
22
21
13
6
9
10
6

6

22
20
17
10
8
5
9
16

Population

12
8
11
14
22
18
16
20

materials in bread, cake, and muffin are 5:2:1, 4:4:1, and 3:2:1, respectively
(assuming that the weight of water can be omitted). If the demand for bread is
400 lb, for cake is 300 lb, and for muffin is 200 lb, develop the minimum cost
shipping plan. (Network with Side Constraints)

2.17 Read Chapter 4 of Shapiro (2001). Consider the example of "strategic planning
at Ajax" in Section 4.3. Study the strategic model carefully. The model is a
combination of which models discussed in this chapter (regardless of the
objective function)? Identify them. Try to list the complete mathematical
formulation of the problem using your own symbols.

2.18 (Shapiro, 2001, Exercise 4.3, p. 1652) Home Grocery is a new company that
makes same-day deliveries of groceries to people's homes. The company is
launching its business in Metropolis, a large urban area. The marketing
department has identified eight neighborhoods in Metropolis where the
company should concentrate its business. The logistics manager has identified
six locations where the company may locate grocery depots. Table 2.8 shows
the average time (in minutes) required to travel from each of the six potential
depot locations to the center of each of the eight neighborhoods. It also shows
the target population (in thousands) for the company's service in each
neighborhood.

The company wishes to locate two depots so that they maximize the population
served within 12 min of average travel time. Formulate the problem as an IP
model.

2 From Shapiro, Modeling the Supply Chain, 1 st edition. Copyright 2001, South-Western, a part of Centage
Learning, Inc. Reproduced with permission, www.centage.com/permissions.

3
TRANSFORMATION USING 0-1
VARIABLES

The ability to use 0-1 (binary) variables to formulate a wide variety of optimization
problems expands the applicability of MIP and adds precision to modeling the real-
world concerns of managers. In Chapter 2, many types of optimization problems are
formulated by linear functions containing 0-1 variables. For example, in project
selection, a 0-1 variable is used to represent whether or not a certain project is included
in the project portfolio. In production planning, a 0-1 variable is used to represent
whether or not a certain lot size is produced. In fixed-charge transportation and
distribution problems, a 0-1 variable is used to represent whether or not an existing
facility is utilized (or a new facility is built). All these examples share a common
feature—any yes-no decision can be naturally formulated by using a 0-1 variable.

In this chapter, we move beyond the simple use of 0-1 variables to represent yes-no
or on-off decisions. Though not obvious, 0-1 variables can also be used to transform a
variety of optimization models into integer programs that model real-world con-
siderations as follows:

1. Logical (Boolean) expressions

2. Nonbinary variables (discrete, integer)
3. Piecewise linear functions (arbitrary, concave—economic of scale)
4. Functions with products of 0-1 variables
5. Functions with products of binary and continuous variables (the bundle pricing

problem)

6. Nonsimultaneous constraints (either/or, if/then, p out of m, negation)

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

54

TRANSFORM LOGICAL (BOOLEAN) EXPRESSIONS 55

Clearly, a logical expression does not conform to the MIP format, but its true/
false outputs correspond naturally to the values of a binary variable (1 for true, 0 for
false). But, complications arise in almost any real-world MIP modeling effort. For
example, the presence of a discrete variable (with nonconsecutive integer values)
does not conform to the MIP format, the presence of a piecewise linear function
violates the assumption of linear function, the presence of product terms of variables
violates the MIP linearity assumption, and the presence of nonsimultaneous
constraints violates the assumption of simultaneousness imposed on an integer
program. Each of these violations must be resolved before the problem can be
modeled and solved as an MIP. Such problem features will be addressed, one by one,
in each of the following sections.

3.1 TRANSFORM LOGICAL (BOOLEAN) EXPRESSIONS

In some applications, using logical expressions may be easier, and even a more natural
way, to describe problem requirements than mathematical expressions. That is, during
the modeling process, the first model constructed may be in the form of logical
expressions rather than mathematical expressions that conform to the MIP assump-
tions. The purpose of this section is to use 0-1 variables to transform logical relations
into linear equations/inequalities that conform to the MIP assumptions.

3.1.1 Truth Table of Boolean Operations

Binary variables can be used to represent a variety of go/no-go or on/off decisions in
the analysis of networks, such as transportation, electrical, and others. Binary
variables are sometimes called Boolean variables in honor of the logician George
Boole, who developed the rules of Boolean algebra for manipulating variables that
can take on only two values. Originally these values were "true" and "false." However,
a natural extension represents "true" by the value 1 and "false" by the value 0.

A basic logical relation deals with putting two statements A and B together to
form a new combined (compound) statement, or to form a complement of a statement.
In the context of Boolean algebra, a statement may represent a single Boolean variable
or a Boolean expression. In the context of MIP, a statement may represent a
binary variable, a linear constraint, or even a set of linear constraints. In this section,
we shall focus on the operations of Boolean variables, leaving logical operations on
linear constraints to the section of nonsimultaneous constraints. The following are the
basic logical relations/operations of statements:

• Conjunction (A and B,AnB)

• Disjunction (A or B,AUB)
• Simple implication (If A then B, A —> B)
• Double implication (A if and only if B, A — B)
• Negation (not A, ~A)

56 TRANSFORMATION USING 0-1 VARIABLES

TABLE 3.1 Truth Table

(1)
Statement
A

m
m
FIO
F/0

(2)
Statement

B

r/i
F/0
771
F/0

(3)
A andÄ

AC\B

m
F/0
F/0
F/0

(4)
AorB
A U S

771
r/i
771
F/0

(5)
If A thenß

A^B

771
F/0

m
771

(6)
A if and only B

iíA-^B

r/i
F/0
F/0
771

(7)
Negation
Not A ~A

F/0
F/0
771
771

Each statement has two possible values (true or false), and four possible values for
combining any two statements, as shown in columns 1 and 2 of Table 3.1. Five
logical relations are listed as columns 3-7. Note that the negation of any statement has
only two possible values.

3.1.2 Basic Logical (Boolean) Operations on Variables

We shall use the project selection problem described in Section 2.3 to illustrate various
logical operations on 0-1 variables. Recall that the problem is to select a subset of n
projects in a manner that maximizes the total present value while satisfying the budget
limitation. To formulate it, we let y¡ = 1 if project j is selected, and 0 otherwise.
Translating to the logical expression, we have

Statement A: project A is selected (yA = 1) or not selected (yA — 0)
Statement B: project B is selected (yB = 1) or not selected (yB — 0)

To obtain a correct MIP model, keep in mind that (1) only linear equation(s)/
inequalities are allowed, (2) if more than one linear constraint is required, these
must be satisfied simultaneously, and (3) only the true value is of interest in the final
logical output (i.e., the final value must be 1).

3.1.2.1 Conjunction (A and B,ACiB) The conjunction of two statements, A and
B, implies that both projects A and B are selected, or symbolically

yA = landos = 1

Note that these two equations already satisfy the "simultaneousness" assumption.We
can also use column 3 of Table 3.1 to verify the result. Note that the only true (T) value
of four possible cases is when statement A is true (yA = 1) and B is true (y^ = 1). An
alternate formulation is yA + yB — 2.

3.1.2.2 Disjunction (A or B, Al)B) The disjunction relation of two statements,
A or B, implies that either A or B or both are true. In other words, at least one of the
projects A or B must be selected. Clearly, the corresponding linear constraint is
yA + ;VB>I .

TRANSFORM LOGICAL (BOOLEAN) EXPRESSIONS 57

This constraint can be verified by column 4 of Table 3.1, where three possible cases
are shown to be "true":

1. Project A is selected but not B (yA=\ and yB = 0)
2. Project B is selected but not A (yA = 0 and yB = 1)

3. Both projects A and B are selected (yA = 1 and yB = 1)

Observethatincasesland2,)>J4 + yB= \,b\AyA + yB = 2incase3.Tosatisfyallthe
three cases, we have yA + yB> 1. Instead, if the problem requires that exactly one of the
projects A and B can be selected, then the constraint must be an equality, yA + yB = 1.

3.1.2.3 Simple Implication (If A Then B,A —> B) "If statement A then statement
B" (or "statement A implies statement B") means that if statement A is true, then
statement B must be true; and if statement A is false, then statement B can be either
true or false. Substituting statement A for project A and statement B for project B, we
have the following three possible true cases:

1. Project A is selected (yA — 1) and project B is selected (yB = 1)
2. Project A is not selected (yA — 0) and project B is selected (yB = 1)
3. Project A is not selected (yA = 0) and project B is not selected (yB — 0)

Comparing the values of yA and yB in each case, we find that the following
inequality captures all the three cases:

y A < y s

3.1.2.4 Negation (Not A, ~Aj The negation of statement A is called "not A" or
"~A" symbolically. The statement simply reverses "true to false," or "false to true," as
shown in Column 7 of Table 3.1. That is, if yA = 1, then ~yA = 0; or if yA = 0, then
~yA=\.

3.1.2.5 Relation Between Either/Or and If/Then Statements There is an
important relation between "either/or," "if/then," and "not A." That is, the
following two statements are equivalent:

If A then B

~A US
We may verify this by examining the values of all four possible cases in columns 3

and 5 of Table 3.2.

TABLE 3.2 Simple Implication and Negation

A B If A then B ~A ~Al~l£

1 1 1 0 1
1 0 0 0 0
0 1 1 1 1
0 0 1 1 1

58 TRANSFORMATION USING 0-1 VARIABLES

TABLE 3.3 Linear Expressions for Boolean Relations

Logical Relation Linear Inequality/Equation

yc=yA^yB yc<yA
yc<yB
yc>yA + ^ - 1

yc=yAUyB yc>yA
yc>yB
yc < y A + yn

yA^yc yA<yc
yc = ~yA yc=i-yA

3.1.2.6 Double Implication or Biconditional (A If and Only If B) Double
implication means A implies B, and B also implies A. Applying this relation to
the project selection problem, it means that project A is selected if and only if project B
is selected. There are only two true cases for this compound statement, as shown in
column 6 of Table 3.1:

(1) Project A is selected (yA = 1) and project B is selected (yB = 1)

(2) Project A is not selected (yA = 0) and project B is not selected (yB = 0)

To satisfy both cases, we must have yA = yB.

3.1.3 Multiple Boolean Operations on Variables

If there are two Boolean operations performed on three binary variables, for instance,
yAr\yBUyc, then two steps are required: (1) perform yADyB and output a new
variable (say, yD), and (2) perform yoUyc and evaluate the true value.Table 3.3
summarizes the logical operations and their corresponding 0-1 linear equations or
inequalities. Table 3.3 illustrates the use of appropriate constraint combinations to
represent compound operations.

3.2 TRANSFORM NONBINARY TO 0-1 VARIABLE

There are two types of nonbinary variables to be considered. In this context, we define
a general integer variable that can take on consecutive integer values between 0 and
infinity. If the smallest value of the variable is nonzero, then we add a simple lower
bound constraint to the model. If the largest value is bounded, then we add a simple
upper bound. All these cases, except for binary, are considered general integer
variables. In this section, we refer to a discrete variable as one that takes on
nonconsecutive integer values. For example, z € Z = { 2 , 5, 9, 21}. Both general
integer variables and discrete variables are called nonbinary integer variables.

3.2.1 Transform Integer Variable

Some algorithms apply only to problems with pure 0-1 variables. Conceptually, this
places no limitation on their solution ability as any general integer variable x > 0 with

TRANSFORM NONBINARY TO 0-1 VARIABLE 59

a finite upper bound can be converted to a set of 0-1 variables. To illustrate how this is
done, consider the integers restricted to 21 values x = 0, 1, ..., 20, which may be
represented by a string of binary digits (bits):

x = 2 % + 2lyi + 22y2 + 23y3 + 24y4

= lyo + 2y, + Ay2 + 8y3 + 16>M

where yj = 0 or 1 fory'=0, 1, 2, 3, 4. Note that possible combinations of binary
variables yj yield a range of 0-31, which can cover the integer values of x ranging from
0 to 20. Also note that the sum of coefficients that associate with x in all preceding
terms is always 1 less than the coefficient of any term. In this example, 1=2— 1,
1 + 2 = 4 - 1 , 1 + 2 + 4 = 8 - 1 , and 1 + 2 + 4 + 8 = 1 6 - 1 . Based on these
observations, we are able to calculate (or predetermine) the number of binary
variables that are required for representing a given general integer variable x > 0.

Assume the upper bound of x is u. Then the required minimum number of binary
variables, k + 1, must satisfy

2* <u<2k+l

Taking log2 on the formula, we have

k < log2 u < k + 1

where k and k + 1, respectively, are integers obtained by rounding down and
rounding up the value of log2 u. In this example, u = 20 giving log2 (20) = 4.34 or
k + 1=5 . For this problem, the proper binary representation of x can be obtained by
substituting k = A into

x = 2 % + 2 1 y 1+2 2 y 2+ ••• + 2 V

Note that the required number of binary variables is k + 1 or 5 because the set of
binary variables begins with y0.

Transformation of a bounded (but not necessarily positive) integer variable x,
where b<x<u, is analogous to that described above for nonnegative integer
variables. This is because 0<x-b<u-b, or 0<x/<u', where x' — x — b and
u' = u — b may be substituted into the expressions above for nonnegative integer
variables bounded above.

Substituting this binary representation for each integer variable in the given IP
problem will reduce the problem to a binary integer program but will increase the
number of variables in the model. The increase may be large if the upper bound u of x
is large. But the increase is not as fast as one might think. See Table 3.4 to get a
feeling about the magnitude of the increase on the number of binary variables as u
increases.

Therefore, the conditions that could make the conversion to binary variables useful
are (1) a small number of general integer variables, each having a low upper bound,
and (2) the proposed 0-1 algorithm is much more efficient than the existing
general integer algorithms. The choice of using 0-1 transformation is more or less
problem dependent. The practitioner should weigh the trade-off before using the
transformation.

60 TRANSFORMATION USING 0-1 VARIABLES

TABLE 3.4 Representing Integer Variable Using Binary Variables
~u ÏÔ ÏÔÔ ÏÔÔÔ 10,000
log2w 3.32 6.64 9.96 13.29
k + 1 4 7 10 14

3.2.2 Transform Discrete Variable

When a discrete variable is limited to take only one value in a given list, then the
discrete variable can be expressed by a set of binary variables. For example, the
discrete variable z may take on only one value in the set Z = {1,5,7,9,23}. To do this,
we let a new 0-1 variable y¡= 1 (/= 1,.. .,5) to represent the choice ofthefth element
in the set and then add the following set of constraints to the problem:

z=\yi+ 5y2 + 7y3 + 9y4 + 23y5

yy+yi+yi+yA+ys — l
y i = 0 or 1 for all i

The above constraint equation, which is the sum of all of the binary variables equal
to 1, is called a multiple choice constraint.

3.3 TRANSFORM PIECEWISE LINEAR FUNCTIONS

3.3.1 Arbitrary Piecewise Linear Functions

Consider the following price structure offered by a seller for a certain commodity. The
price is $ 10 per unit for the first 100 units, $9 per unit for the next 200 units, and $6 per
unit for the next 200 units. Suppose at most 500 units may be purchased. Let x denote
the number of units purchased and letf[x) represent the total cost associated with the
purchase of x units.

To represent the cost function/(x) for this example, we first write a mathematical
expression for f(x). For the interval 0 < x < 100, clearly fix)= lOx. For the next
interval 100 < x < 300, then/(x) = 10(100) + 9(x - 100). For the interval 300 < x
500, then^x) = 10(100) + 9(200) + 6(x - 100 - 200). Simplifying, we obtain the
following mathematical function:

f{x) = l0x i f 0 < x < 1 0 0 (3.1)

f{x) = 100 + 9x if 100 < x < 300 (3.2)

f(x) = 1000 + 6x if 300 < x < 500 (3.3)

Note that the function/^) within each interval of x represents a line segment, bounded
by two end points. Plotting this function graphically, we obtain Figure 3.1. Extending
each line segment to reach the vertical axis, we obtain the intercept of that line. This

TRANSFORM PIECEWISE LINEAR FUNCTIONS 61

¿4 4000

fc3 2800

b2 1000

b, 100
0

0 100 300 500
a, a2 a3 a4

FIGURE 3.1 Representing a piecewise linear function.

intercept corresponds to the constant term of /(x), and the slope of a line
segment corresponds to the coefficient of x in/(x). Specifically, the intercept of line
segment 1 is 0 and the slope is 10, the intercept of line 2 is 100 and the slope is 9,
and the intercept of line 3 is 1000 and the slope is 6. The collection of these
three individual line segments form a "piecewise linear function" with four break-
points located at ax=0, a2=100, a3 = 300, and a4 = 500. Note that the entire
function is still considered nonlinear even though all individual segments are linear.
Therefore, the piecewise linear function must be converted to an equivalent formula-
tion involving only linear functions so that the resulting model can be solved by an
MIP algorithm.

The piecewise linear cost function in this example is a concave function with a
special property of having decreasing slopes of line segments (10 > 9 > 6). By taking
advantage of this special property, there is a better formulation than the one for
an arbitrary piecewise linear function. In this section, we first present an MIP
formulation for the arbitrary piecewise linear function. Using the same example,
we then introduce a better formulation for the "concave" piecewise linear cost
function in Section 3.3.2.

Toward this end, consider two consecutive breakpoints, ak and ak +1, and the line
segment between them. If x is any point lying on the line segment with end points, ak

and ak+\, then x c a n be expressed by

x = Xkak + {\-Xk)ak+\

where 0 < Xk < 1. Since/(x) is also a line segment between f(ak) and f(ak+1), it also
follows that

f(x)=Xkf(ak) + (l-Xk)f(ak+l)

1—► x

62 TRANSFORMATION USING 0-1 VARIABLES

Generalizing this idea to include all breakpoints, we can write

x = Aiai + X2a2 + ■ ■■ +Àr+lar+i

f{x) = Xxf{ax) + l2f{a2) + ■■■ + Xr+lf(ar+l)

where X\ + X2 + ■ ■ ■ + XT +1 + 1 = 1, X\¡ > 0 for all k, and at most two adjacent Xk

can be positive.
The condition that "at most two adjacent Xk can be positive" is a nonmathematical

expression, which must be replaced by a mathematical expression. To do this, we
introduce a binary variable yk for each line segment of the piecewise linear function
and add the following set of linear constraints:

X\ <y\

X2 <yi+y2

X-i <y2+y3

Xr <yr-[+yr

Xr+\ < yr

k=\

Xk>0 for all k

yk = 0 or 1 for all k

Note that each yk controls the value of Xk and Xk+\. That is, if yk = Q, the above
constraints force Xk and Xk +1 to be 0. Likewise, if yk = 1, then Xk and Xk +1 are in the
range [0,1]. Since the constraint ^k= i Yk = 1 restricts all yk so that exactly one yk will
have the value 1, exactly two adjacent Xk are allowed to be nonzero in any solution. In
fact, the yk that assumes the value of 1 corresponds precisely to the line segment that is
being used.

TRANSFORM PIECEWISE LINEAR FUNCTIONS 63

Applying this conversion to the example problem, the piecewise linear function of
Figure 3.1 can be written as

x = OAi + 100A2 + 300/13 + 500A4

f{x) = /(0)A, +/(100)A2 +/(300)A3 +/(500)A4

= OAi + 1000A2 + 2800A3 + 4000/U

h < y\

h < yi+yi

h < yi+y?,

A4 < ?3

y\ +j2+3'3 = 1

A1+A2 + A3 + A4 = 1

kk > 0 for all k

yk = 0 or 1 for all k

To utilize this technique in the context of integer programming, all occurrences of x
and function f(x) in the original objective and constraints should be replaced by
continuous variables A* and binary variables yk defined by the first two equations. The
resulting new problem contains only A* and yk variables. After adding the above
remaining constraints to this problem, the augmented problem is equivalent to the
original problem. After solving this equivalent problem, the solution in original
variables x could be recovered by using the first equation.

3.3.2 Concave Piecewise Linear Cost Functions: Economy of Scale

"Economy of scale" is a common business practice. For example, suppliers offer
various discounted unit prices for various scales of purchase quantities. Likewise,
shippers offer various unit freight charge "breaks" for various scales of weights, and
so on. The common property of these two is that the unit costs decrease as the quantity
scales increase.

Consider the piecewise linear function defined in (3.1)—(3.3). There are three line
segments with slopes S\ = 10, s2 = 9, and s3 = 6, respectively. Because these slopes
are in the decreasing order (si > s2 > S3), the piecewise linear function is concave. The
line segment can be expressed by

f(x) = b¡ + s,x for / = 1,2,3

64 TRANSFORMATION USING 0-1 VARIABLES

The intercepts of the three line segments are determined by

t¡ = Oat ai = 0

í2 = íi +sia2-s2a2 = 0 + 10(100)-9(100) = 100

h = t2+s2a3-s3a3 = 100+ 9(300)-6(300) = 1000

To formulate the objective function, we define

y i = 1 if a,-_i < x < a,, 0 otherwise

x¡ = x if a,_i < x < a¡, 0 otherwise

In the objective function to be minimized, the formulation should include the
following terms:

tiyi + s\xl + t2y2 + s2x2 + t3y3 + s3x3

and replace everywhere x appears by X\ + x2 + x3. The required constraints similar
to that of the fixed-charge problem are

*/ < a¡+ \y¡ a nd cuy i < Xi for i = 1,2,3

y\ +yi+y3 < l

y i = 0or 1 for i = 1,2, 3

This formulation, by taking advantage of special concave property, is simpler than
the one in Section 3.3.1.

Note that the above formulation considers a piecewise linear function for just a
certain variable x. The extension to formulating a problem with multiple piecewise
linear functions is straightforward as long as these functions are separable.

3.4 TRANSFORM 0-1 POLYNOMIAL FUNCTIONS

Consider a simple quadratic function in which the variables must be 0 or 1,

f(yi,y2,---,y„) = ^y]+ ^y¡yk
j i*k

Obviously, each y? can be replaced by y¡ without affecting the value of the function.
Also, a new variable y^ is needed to replace a product of yjyk such that its values
correspond to the values of yj and y^ in Table 3.5.

Two linear constraints are added to give lower and upper bounds of yj + y^ for
every pairy, k:

tyjk < yj + yk < yjk +1

yj,yk,yjk = 0 o r i

TRANSFORM 0-1 POLYNOMIAL FUNCTIONS 65

TABLE 3.5 Linearization of a Quadratic Function in Two Binary Variables

C o m b i n a t i o n

yj yk

0 0
0 1
1 0
1 1

yjk =yjyk

0
0
0
1

2yjk

0
0
0
2

yj + yk

0
i
i
2

yjk + i

i
i
i
2

Functions with product terms of three binary variables can be transformed in a similar
manner. A new binary variable y^ is introduced to replace a product of y¡, y7-, and y*
such that its values correspond to the values of y„ yj, and y^ in Table 3.6.

Two linear constraints are required to give lower and upper bounds of y, + y, + y¿,
for every triple /', j , and k:

3y,;vt < y i + yj + y* < yyk + 2

yi,yj,yk,yijk = 0 o r i

Higher degree functions can be generalized in a similar manner. In general, given a
set, g, composed of q 0-1 variables, the product fT.egyP, for any positive integer value
of p, can be replaced by a single variable y ô and imposing the additional constraints

& < yQ + (? - i) (3-4)

^yj>qyQ
m (3.5)
yj,yQ = 0 or 1

Note that if any y, = 0, then constraint (3.4) is nonrestrictive, constraint (3.5) becomes
y e < 0, and therefore y e = 0. If all y, = 1, then constraint (3.4) becomes y e > 1, the
equality holds, and the desired relation is obtained.

TABLE 3.6 Linearization of a Cubic Function in Three Binary Variables

y¡

0
0
0
0
1
1
1
1

C o m b i n a t i o n

yj

0
0
i
i
0
0
1
1

yk

0
i
0
1
0
1
0
1

yyk

0
0
0
0
0
0
0
1

3VyA

0
0
0
0
0
0
0
3

y,- + yj +

0
1
1
2
1
2
2
3

yk y¡jk + 2

2

2
2
2
2
2
2
3

66 TRANSFORMATION USING 0-1 VARIABLES

Example 3.1 Consider the following 0-1 polynomial programming problem:

Maximize 2y i y2y\ + y\y2

subject to 12yi + ly\y3 —3yij3 < 16

yi,)>2,y3 = 0 o r l

The conversion procedure is as follows:

1. Drop all positive exponents from the problem.
Since y" = y for any binary y and n > 0, we can drop all positive exponents.

2. Replace each product term with a new binary variable.

Let yi23=yiyiy3, y\2 = y\y2> yi3=yiy3, and yn=y\y3- To ensure that the new
variables correctly relate to the original variables, we must add a pair of linear
inequalities for each new variable.

yi+y2 + y3 > 3ym (3.6)

y\ +yi+y3 <yi23 + 2 (3.7)

y\+yi>'2yn (3.8)

yi+yi<yii + i (3.9)

yi+y3 > 2y23 (3.10)

y2+y3<y23 + i (3.n)

y\ +y3 > 2>>i3 (3.12)

yi+y3<yi3 + i (3.13)

The new formulation becomes

Maximize 2yi23 +J12

subject to 12yi +7^23 -3yn < 16

and(3.6)-(3.13)

3.5 TRANSFORM FUNCTIONS WITH PRODUCTS OF BINARY AND
CONTINUOUS VARIABLES: BUNDLE PRICING PROBLEM

Bundling products or services is a widespread marketing strategy. This strategy arises
naturally when the products or services being offered are comprised of components. A
firm must decide on prices for individual components and for bundled components so

TRANSFORM FUNCTIONS WITH PRODUCTS OF BINARY 67

that its total revenue or profit is maximized. Examples of bundling products are ample
across various industries:

1. A software firm has a product line composed of multiple software modules.
Each module provides a unique set of features, ranging from statistics to
graphics to database management to optimization.

2. A computer distributor has components such as basic computer, monitor,
printer, hard disk, and memory board.

3. An insurance company has components such as auto, home, and life insurance
policies; each component may also have several options.

4. A fast food restaurant has components of a hamburger, fries, and soft drink.

5. A travel agency offers products of airfare, rental car, and hotel.

All of the above components may be purchased individually or by bundling two or
more components. If all n individual components can be bundled in any combination
(including individually), then there are totally 2" — 1 possible component bundles. In
practice, only a small subset of these will be considered for bundling. The main
concern here is setting the prices for all product options, both individual and bundled
components, so that the seller's total revenue is maximized. Toward this end,
construction of a constrained optimization model has been attempted (Schräge,
2000), which turns out to be a nonlinear program in which the objective function
contains products of binary and continuous variables. To fit into MIP format, the
product term must be transformed to a set of linear functions. To describe the model,
we give the following example.

Office Barn sells computers and accessories to its customers using the following
strategy. Customers may choose from buying a computer only, a monitor only, or a
bundle of computer and monitor. Its potential customers are categorized into four
segments: home users, government and educational institutions, small firms, and
medium and large firms. Assume that the size of each customer segment can be forecast
accurately as can the maximum price each customer segment is willing to pay for
each purchase option. Table 3.7 tabulates the data for a certain type of desktop computer
and LCD monitor. If each customer buys exactly one option or buys nothing, how
should Office Barn set the price for each option to maximize its total revenue?

TABLE 3.7 Office Barn Bundle Pricing Problem

Maximum Price Customer is Willing
to Pay

Customer Segment
Expected Size

(in 10,000)
Computer

Only
LCD Monitor

Only Both

Home
Government and educational
Small firms
Medium/large firms

5
15
8

12

600
700
650
700

350
350
300
300

850
1000
900
900

68 TRANSFORMATION USING 0-1 VARIABLES

Stigler's (1963) economic model for consumer behavior suggests that the relevant
customer demand information is captured by a vector of reservation prices for the
products. The reservation price is defined as the maximum price a customer is willing
to pay. A customer will choose the product that maximizes consumer surplus, which is
defined as the difference between the reservation price and the product price. For
example, if the product prices for the three options, namely, computer only, monitor
only, and both together, were set respectively at 550, 320, and 750, then for the home
users the consumer surplus is respectively 50 (=600 — 550), 30 (=350 — 320), and
100 (=850 — 750). Then the home segment will buy both because the consumer
surplus is the largest.

To develop a general model of this problem, we define

Input parameters: n¡ = size of customer segments (number of indivi-
dual customers in segment i), r¡j = reservation
price of customer / for bundle j

Decision variable: Xj = price of bundle j to be determined
State variables: yy = 1 if customer segment i purchase bundle j , 0

otherwise; s¡ = consumer surplus preservation
price — selling price) achieved by customer seg-
ment i

The seller would like to determine Xj, the selling price of bundle/ to

Maximize \] I n¡ /"_, yyxj I

subject to constraint sets:

(1) Every customer buys exactly one bundle:

2_\yy — 1 f°r e a c n i
j

(2) Customer i will buy bundle y only when consumer surplus is maximum:

Si > Tij-Xj

where s¡ = ^2(ry-xj)yy

(3) Restrictions on variables:

Vy = 0 for all ij

Xj > 0

Note that there is a product term of yyXj in the objective function and in constraint
set (2).

TRANSFORM NONSIMULTANEOUS CONSTRAINTS 69

To linearize it, we replace yyXj by Zy everywhere it appears in the model, giving the
following modifications on the objective function and constraint set (2):

Maximize Y^ n, Y j zy

(2)' 'Y^rvyg-zn)+xj>rij
j

in addition to Zy > 0. Also add the following constraint sets to enforce the correct
representation:

(4) Zy<Xj

(5) Zy < Tyyy

(6) z,j > Xj-(l-yy)Mj

where Mj is an upper bound on Xj. Constraint set (4) ensures that zy {—yyxj) cannot
exceed the market price of bundley. Constraint set (5) ensures that zy cannot exceed
the maximum price that customer i is willing to pay for bundley when it is purchased,
and Zy is 0 when bundley is not purchased. If y y = 1, then zy = x¡ due to constraint (4).
If y y — 0, then constraint (6) is satisfied due to redundancy.

3.6 TRANSFORM NONSIMULTANEOUS CONSTRAINTS

Recall that MIP assumes that all constraints must be satisfied simultaneously. In this
section, we examine various types of nonsimultaneous constraints and show how to
convert them to simultaneous constraints. Many of them are related to the following
logical operations on constraints as they perform on binary variables:

• Either/or constraints
• Negation of a constraint
• If/then constraints

3.6.1 Either/Or Constraints

A decision variable may be defined by two disjunctive regions. For instance, variable x
is defined outside the interval (3, 10). That is, either x < 3 or x > 10. To satisfy the
simultaneousness assumption of MIP, they must be transformed.

To do this, rewrite the pair to x - 3 < 0 and — x + 10 < 0, and let M be a very big
number such that M > max{x - 3, —x + 10}. Let y be a binary variable. Then the
disjunctive constraints can be replaced by two simultaneous constraints:

x-3 < My

and -x+l0<M{l-y)

70 TRANSFORMATION USING 0-1 VARIABLES

Note that if y = 1, the constraint x — 3 < M is redundant (and evidently satisfied)
and one of the given constraints, 10 — x < 0, is also satisfied. If y = 0, the other given
constraint, x — 3 < 0, is satisfied, and the constraint — x + 10 < M is also satisfied
because it is redundant.

Consider the problem of scheduling jobs on a single machine. Let x¡ and Xj
respectively denote the start time of job i and job/to be scheduled. The start times may
be continuous variables. Also, let t¡ and t¡ respectively represent the known machine
time of job / and j o b / Then the completion times of job i and job / are x¡ + t¡ and
x, + tj, respectively. Assume that a job once commenced must be processed until it
completes. Since only one machine is available, it is impossible for two jobs to be
scheduled during the same time interval. Thus, for any two jobs i andy", it must be true
that

Either x, + t¡ < x¡

or Xj + tj < x,

The either-constraint enforces that job/ cannot start before the completion of job /, and
the or-constraint ensures that job /' cannot start before the completion of job /
Obviously, both constraints cannot be satisfied simultaneously. Rewriting the con-
straints, we have

Either x,—x¡ + t¡ < 0

or Xj—x¡ + tj < 0

Again introducing a binary variable y and a big M value, the either/or constraints
can be converted to two simultaneous inequalities:

Xj—Xj + tj < My

and Xj—Xj + tj < M{\ — y)

Rewriting in MIP standard form, we have

Xj—Xj < tj+My

and Xj—Xj < tj + M(1 —y)

3.6.2 p Out of m Constraints Must Hold

Consider the case where the model has a set of m constraints but in addition requires
only some p out of m (assuming p<m) constraints to hold. The problem allows
selection of any combination ofp constraints, and wants to select which p constraints
so as to optimize the specified objective function. The m—p constraints that are not
selected are in effect dropped from the problem, although feasible solutions might

TRANSFORM NONSIMULTANEOUS CONSTRAINTS 71

coincidently satisfy some of them. This case is a direct generalization of the either/or
case in which m = 2 and p = 1.

The formulation is similar to that of the either/or case. We let y¡ = 1 if constraint i is
selected, and 0 otherwise. In effect,/? such constraints must have the following form of
the constraint enforced for feasible x, that is,/}(x)— b¡ < 0. In addition, the remaining
p — m constraints are dropped from consideration, which can be accomplished by
imposing the redundant constraints,/Xx) — b¡ < M. To satisfy these two conditions, we
thus use the constraints below:

fi(x)-bi < My¡ for / = 1 , 2 , . . . , m

Y^yi = m-p
i

and y i is binary for all /.

3.6.3 Disjunctive Constraint Sets

Now we consider a more generalized case where either one subset of constraints or
another subset of constraints must be satisfied, but not both. These two subsets are
disjunctive. We can convert them to form a set of simultaneous constraints. Let the two
subsets be defined as follows:

Either subset 1 : {aTx-b¡ < 0, i = 1,2,..., mi}

or subset 2: {c^x-dj < 0, i = 1,2,... ,m2}

Again, let y be a binary variable and Mbe a big number such that it is greater than or
equal to all constraints involved. Then the corresponding simultaneous constraints
can be expressed as

sifx-bj < My / = 1,2,..., mi

cfx-di < M{l-y) i=l,2,...,m2

3.6.4 Negation of a Constraint

Suppose the given constraint is/(xi)-b<0 or fix) - b < 0, where b is the
right-hand side constant. Then the negation of this constraint must be/(x) — b > 0 or
-f[x) + b<0.

3.6.5 If/Then Constraints

Previously we have shown that the logical statement

If A then B

72 TRANSFORMATION USING 0-1 VARIABLES

is equivalent to the logical statement

~ AuB

In the context of MIP, we view a constraint as a statement. Specifically, constraints
f\ (x) — b i < 0 and/2(x) — b2 < 0 are viewed as statements A and B, respectively. Then
the negation of/i(x) — bx < 0 must be/,(x) — b\ > 0 or —/i(x) + bx < 0. Therefore,
the simple implication constraint:

If/i(x)-6i < 0 then f2(x)-b2 < 0

is equivalent to

Either - / , (x) + b, < 0 or f2{x)-b2<0

Applying the same transformation rule to either/or constraints, we obtain two
simultaneous constraints:

- / i (x) + * i <My

f2{x)-b2 < M{\-y)

where M is a big number such that M > max {—fx (x) + b x ,f2(x) — b2} and y is a binary
variable.

3.7 NOTES

Except for Sections 3.1 and 3.4, the materials of the remaining sections are based on
the following OR, IP, and LP textbooks: Dantzig (1963), Garfinkel and Nemhauser
(1972), Hillier and Lieberman (2005), LINDO Systems Inc. (2004), Nemhauser and
Wolsey (1988), Salkin and Mathur (1989), Schräge (2003), Schriver (1986), Taha
(1975, 2007), Wagner (1975), and Winston (1994).

Section 3.1

The truth table of logical relations can be found in an introductory textbook on finite or
discrete mathematics, for example, Kemeny et al. (1959). This section describes
basics about how Boolean operations (or computational problems of logic) can be
formulated as 0-1 integer programs. For details about the connections between the
methods of computational logic (or constraint logic programming) and integer
programming, see Williams (1993,1999), Williams and Wilson (1998), and Williams
and Brailsford (1999).

Section 3.3

A function/(x) is a convex function if for any two points, xt and x2,
fUxi + (1 - A)x2] > AflxO + (1 - X)flx2) holds for all A, 0 < X < 1.

EXERCISES 73

Section 3.4

The transformation of a 0-1 polynomial function to a pair of 0-1 linear functions was
introduced by Watters (1967). The transformation has been applied to a high-risk
investment problem in which a quadratic 0-1 function is maximized. Glover and
Woolsey (1974) developed an improved transformation in which product terms are
replaced by a continuous variable rather than integer variable and three new
constraints, instead of two, are added. Other references include Glover and Woolsey
(1973) and Hansen et al. (1993).

Section 3.5

Hanson and Martin (1990) first formulated the optimal bundle pricing problem as an
MIP model. The model in the text is a simplified version, as given in Schräge (2003).

3.8 EXERCISES

3.1 E-Shop is an e-commerce company. For each transaction (can include multiple
items) you make with it, a $9.50 transaction fee is charged. For every item you
sell, E-Shop takes a commission that depends on the selling price. The
commission rate is 5% for $(0, 45], 8% for $(45, 80], 12% for $(80, 100],
15% for $(100, 120], and 20% for sales above $120. Lee has three books to
sell. If the acceptable price ranges for the three books are [40,65], [75,90], and
[90,110], respectively, formulate an IP problem to help Lee decide on the exact
price for each book?

3.2 Give the final result of the following logical expressions, and verify your result
using a truth table:

A, B, C, and D are four different events, where A = T, B = F, C = F, D = T

(a) Cn [(AUB) -+D]U~ A
(b) (A n D) u [C » (B U D) U F]
(c) D u {A-> [(c n A) u B]U ~ D} n (c n B)

3.3 Express the following statements using a linear integer formulation:

(a) A nurse can choose from a shift starting either before 11:00 a.m. or after
5:00 p.m.

(b) A task must be finished no earlier than 8:00 p.m., but no later than 6:00 p.m.
(c) If the completion time of a job is larger than its due date, it is counted as a late job.

3.4 Change the following functions to a linear integer formulation:

(a) X\X2 = 0 , X\,X2 > 0
, , . _ J 2x + 3, 0 < x < a, a>0
{ ' y ~~ 1 3JC-5, a<x<b, b>a

74 TRANSFORMATION USING 0-1 VARIABLES

3.5 A cell phone carrier provides several different plans for customers to
choose. Plan A charges $0.10 per minute of usage, and has no monthly
fee. Plan B has a monthly fee of $30, and an extra charge of $0.40 per
minute if the usage exceeds 400 min. Plan C has a monthly fee of $40, and
an extra charge of $0.60 per minute if the usage exceeds 600 min. Find the
minimum cost plan for Donna if her monthly usage is at least 410 min.
Formulate as an IP.

3.6 John is buying stocks. His broker suggests six different stocks, namely, 1, . . . ,
6. Formulate the stock selection problem subject to the following constraints,
using 0-1 variables as needed:

(a) To lower the risk of losing money, John should buy at least two stocks.
(b) Due to John's budget limit, he cannot buy more than four stocks.
(c) Since stocks 3 and 5 belong to the same company, the broker recommends

purchase of at most one of these.
(d) John's broker suggests the following two combinations: either choose two

from stocks 1, 2, 3, and 4, or at least two from stocks 3, 4, 5, and 6.
(e) Stock 4 can only be purchased if stock 1 is bought.

3.7 Consider a system that uses binary digits to represent any possible value of all
variables. For example, a decision of "yes" is represented by 1 and "no" is
represented by 0. A die with six sides can be represented using three digits of
binary values: 001 is 1,010 is 2,011 is 3,100 is 4, 101 is 5, and 110 is 6. How
many digits will be required to represent the alphabets, the states in the United
States, and the days in a year?

3.8 Formulate the following scheduling problem as an IP problem. A set of n jobs
are to be processed on m machines (n>m). Each job visits one and only one
machine. Each job y has a release time (earliest time when the job is ready to be
processed) r¡ and a processing time p¡¡ on machine i, and no two jobs can be
processed on the same machine simultaneously. But during the same time
interval, different jobs can be processed on different machines. Schedule the
processing order of the jobs so that the makespan z (the completion time of the
last job) is minimized. {Hint: z > x¡j + py, the completion time of job j on
machine /.) Consider the following two cases:

(a) The m machines are identical, that is, Py=Pj for each y

(b) The m machines are different

3.9 Consider the following single machine scheduling problem. A set of eight jobs,
each with weight wj and processing time pj, are to be processed on a single
machine. The precedence limitations of the jobs are depicted in Figure 3.2. No
two jobs can be processed simultaneously. Schedule the processing order of the
jobs so that the sum of the weighted completion times (the product of the
completion time and weight) of all jobs is minimized.

EXERCISES 75

FIGURE 3.2 Job precedence.

Let Xj be the completion time of job /

(a) Express the objective function using Xj.
(b) Express the constraints that job 1 must precede job 3, and job 4 must

precede job 6.
(c) Express that no two jobs can be processed simultaneously. {Hint: For each

pair of independent jobs, the schedule must be either / preceding y or y
preceding i. Let ytj = 1 if job / precedes joby, 0 otherwise.) Formulate the
problem using jy's.

3.10 A set of «jobs, each with processing time/Ty and due date d¡, are to be processed
on a single machine. If the completion time of a job exceeds its due date, then
the job is said to be a "tardy" job. Otherwise, the job is not tardy. Formulate the
scheduling problem to minimize the total number of tardy jobs as an IP.

3.11 The volume of a certain solid object changes with temperature. Let t be the
temperature and/(?) be its expansion index in percentage. The expansion index
changes with temperature as follows:

/(')

f 0.002/ 0 < / < 40°C

-0.0011 + 0.12 40°C < t < 100°C

0.003/-0.28 100°C < t < 200°C

Transform this function into linear integer function(s).
3.12 Big Burger is a fast food restaurant with many chain stores all over the states.

Customers to Big Burger can be divided into three types: kids, drivers drawn
from highways, and workers nearby. Each type has different purchasing
preference. The most popular food in Big Burger includes burgers, fries, and
soft drinks. They can be purchased individually or as a combo meal, which
includes all three items. The maximum price each customer group is willing to
pay for each item or the combo, as well as monthly estimated number
of customers from each group, is listed in Table 3.8. Determine the price to
charge for individual and combo purchases so as to maximize revenue from
sales.

76 TRANSFORMATION USING 0-1 VARIABLES

TABLE 3.8 Big Burger Customers

Customer Type Expected Monthly Customers

Kids 300
Drivers 240
Workers 600

Maximum Price Customer is Willing to Pay

Burger Fries Soft Drink Combo Meal

2.69 1.39 1.09 4.29
2.99 0.99 1.29 4.89
2.59 0.99 1.19 4.19

3.13 Study the electrical circuit shown in Figure 3.3, where A, B, C, and D are four
light bulbs.

(a) Let the event "electrical current is through" be denoted by E, show the
logic relationships between E and A, B, C, D.

(b) Since each light bulb is either working or not working, we can define the
possible value by 0-1 variable. If we want to maximize the probability of
electrical current getting through, how would you formulate the objective
function?

(c) If we know the following constraints are enforced, formulate the problem
as binary IP and transform it into linear IP:

• A and C have the same performance.
• The probability of both B and C are working is greater than the

probability of two A's working.
• The probability of D working is no larger than the probability of either A

or C working.

(d) Verify your work in part (3) using truth table.

3.14 The ABC University selects students out of a large population of applicants. To
ease the selection process, the university makes a checklist of the students'
qualifications. If a student satisfies at least four items in the list, then he/she is
admitted. Formulate this as IP.

(a) SAT score higher than 600

(b) More than 10 A's in high school
(c) GPA over 3.0

FIGURE 3.3 Electrical circuit schematic.

EXERCISES 77

(d) Participated in at least one national subject competition
(e) Won at least one presidential prize
(f) Is considered talented in art
(g) Has been in gifted program for at least 5 years
(h) Is recommended by his/her high school counselor

3.15 Mandy is ordering a set of football tickets for the coming season. She plans to
sell the tickets to make some money. There are two types of tickets: tickets for
road games and tickets for home games. For each road game ticket, she could
make a profit of $150, and for each home game ticket, the profit is $50 on
average. The ticket office offers two price options:

(a) $5/home ticket, and no more than $50 purchase per person; $50/road
ticket, and no more than $300 purchase per person.

(b) $7.5/home ticket, and no more than $100 purchase per person; $45/road
ticket, and no more than $250 purchase per person.

How many tickets of each type should Mandy purchase so as to maximize the
total profit she can make?

3.16 HomeMax offers the following promotion offer to customers: if a
customer makes a purchase between $200 and $300, then he/she gets $25
off, and if the purchase if $300 or more, then he/she gets $40 off. Jimmy is
buying some furniture at HomeMax. He can choose from the following items
(not necessarily all): a gazebo, four chairs, one dining table, two long tables,
one coffee table, and two TV stands. Price for each item is listed in Table 3.9.
Help Jimmy decide which items to buy so as to achieve maximum saving,
defined as the difference between the original price and the amount actually
paid.

3.17 Step function (Taha, 1975. Used with permission). Show how the following
step function can be represented as a 0-1 expression:

f(x) — b¡ a¡-\ < x < a¡, i = 1,2,..., n

where b¡ > b¡_ i for all i = 1,2,..., n. In particular, show how the 0-1 variables
relate to the variable x by specifying the appropriate constraints.

3.18 Conditional constraints (Taha, 1975. Used with permission). Consider the
constraints a¡ <f,{x)¡ < b¡, i= 1, 2, 3 and a¡ and b¡ are given constants for all

TABLE 3.9 HomeMax Prices
Item Gazebo Chair Dining Table Long Table Coffee Table TV Stand
Price ($) 119 69 199 29 49 69

78 TRANSFORMATION USING 0-1 VARIABLES

i. Show how the following conditional constraints can be expressed as
manageable forms by using 0-1 variables:

(i) / , (x) > 0 ^ / 2 (x) > 0

(ii) / , (*) > 0 =>/2(JC) > 0 and / , (*) < 0 =>f3(x) > 0

3.19 Absolute Value Constraint (Taha, 1975. Used with permission). Convert the
following constraint into a manageable form by simulating the effect of the
absolute value using 0-1 variables:

^Lj=iaVxJ ~ b >

4
BETTER FORMULATION
BY PREPROCESSING

For any given integer programming problem, there always exist many, possibly
infinite, alternative formulations. Intuitively, a better formulation means that it is
easier to solve. In this chapter, we make precise what is meant by a formulation,
examine alternative formulations, and explain why some formulations might be better
than others. Then we present some basic preprocessing techniques that can be used
for transforming a given formulation to a better formulation for a general MIP
program as well as for a special pure 0-1 program. Problem preprocessing has made a
great contribution to the success of the modern branch-and-cut algorithms for solving
combinatorial optimization problems and large-scale 0-1 integer programming
problems.

4.1 BETTER FORMULATION

For a linear programming (LP) problem, the size of the problem matrix is commonly
used for measuring the quality of a formulation, where problem size is a function of
the number of constraints (or rows), number of variables (or columns), and number of
nonzero elements in the problem matrix. In the absence of a sparse matrix, LP problem
size can be approximated by the product of the number of variables and constraints.
Thus, for an LP problem, a smaller problem matrix generally means a better
formulation. But for an IP/MIP problem, the simple use of the problem matrix is
no longer accurate for measuring its formulation quality for several reasons.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

79

80 BETTER FORMULATION BY PREPROCESSING

First, integer and continuous variables should not be weighted equally in measur-
ing IP formulation quality because a problem with integer variables is much more
difficult to solve than that with continuous variables. Moreover, the degree of
difficulty increases exponentially as the number of integer variables increases.

Second, an IP formulation with more constraints may be easier to solve (not harder
to solve, contrary to an LP formulation) because extra constraints may often help
"tighten" a continuous feasible region. The cutting plane methods (see Chapter 11)
provide good evidence for this phenomenon, in which the latter iteration has
more cutting constraints and a smaller feasible region. Another example arises in
the alternative formulations for the uncapacitated facility location problem
(Section 2.6.2), which will be detailed later in this section.

Therefore, measuring the quality of an IP formulation needs a different criterion
than the one associated with an LP problem matrix. This criterion is based on the quality
of the polyhedron (feasible region) of the linear programming relaxation of the given
integer program. The key idea of preprocessing is to reformulate problems so as to
make the difference in the objective function values between the solutions to the linear
programming relaxation and the respective integer program as small as possible.

There is another important reason why the LP relaxation is commonly used for
measuring the quality of IP formulations. This is due to the fact that the state-of-the-art
methods used for solving general integer programs are based on linear programming,
or the so-called LP-based methods. In fact, as can be seen in later chapters, all existing
general IP methods (including branch-and-bound, cutting plane, and branch-and-cut)
require solving a large number of LP relaxation problems, numbering in the thousands
or even millions for a moderate or large-scale combinatorial optimization problem.

Before rigorously defining the terms such as polyhedron, formulation, and better
formulation, let us consider three expository examples of pure IP constraints:

IP1: 2y¡ + 2y2 < 3
y uy2 integer

IP2: 3 î + 2y2 < 3
yi,y2 integer

IP3: yi +y2 < 1
yi,y2 integer

Plotting them in Figure 4.1, we see that each IP constraint set contains exactly the
same set of feasible integer points, S= {(0, 0), (0, 1), (1, 0)}.

Relaxing the integer requirements of y\ and y2 from the given programs, we obtain
the following LP relaxations:

LP1: 2yl+2y2<3

yi,yi > 0

LP2: 3y¡ + 2y2 < 3

y\,y2>0

LP3: y, +y2 < 1

yi,yi > 0

BETTER FORMULATION

n

A

0
f

N ^ C

1 ^

\ ^ E

, , \

FIGURE 4.1 Integer feasible points.

Plotting LP1, LP2, and LP3, respectively, in Figure 4.1, we obtain three (continuous)
feasible regions enclosed by triangles ADE, ADC, and ABC. Geometrically, each of
these regions is called a polyhedron. Since each of these polyhedra contains the same
set S— {(0, 0), (0, 1), (1, 0)}, they are alternative formulations for set S.

Now we rigorously define the terms "polyhedron," "formulation," and "better
formulation." Let E" and Zp, respectively, denote «-dimensional real space and
/»-dimensional integer space. Thus, x G E", y € Zp, and the set of mixed integer
feasible solutions SCE"x Zp.

Definition 4.1 The set of all points (or solutions) that satisfy a set of linear
constraints, denoted by P = {x: Ax<b, x continuous}, is a polyhedron.

Recall that Ax < b represents the standard linear constraint set and those non-
standard linear constraints in <, >, and = forms as well as nonnegativity restrictions
x > 0 can be converted to the standard form. For example, x > 0 can be converted to
—x < 0, which in turn is a simple form of Ax < b. This definition states that any
feasible region formed by a linear program is a polyhedron.

For a pure integer program, a formulation for a pure integer feasible region Sy is
defined below.

Definition 4.2 Given Sy = {y GZp: Gy < b, y integer}. A polyhedron PÇEp is a
formulation for Sy if and only if Sy = P n Sy, which is the same as Sy Ç P.

Note that a formulation for a set of pure integer feasible solutions must satisfy two
conditions: (1) It must be a polyhedron defined in the samep-dimensional real space.
(2) It must contain exactly the same set of integer feasible points Sy (i.e., the
polyhedron contains no more integer points than in Sy and no less integer points
than in Sy). For example, polyhedron ABFC in Figure 4.2 is not a formulation for
Sy— {(0,0),(0,1),(1,0)} because it contains an extra integer point (1,1).Polyhedron
AGC is not a formulation for Sy because point (0, 1) is not in Sy.

For a mixed integer program, a formulation for a mixed feasible region Sxy is
defined below.

82 BETTER FORMULATION BY PREPROCESSING

y\
0 0.5 1

FIGURE 4.2 Formulations.

Definition 4.3 Given Sxy = {(x, y): Ax + Gy < b, x e E", y G Zp}. A polyhedron
P Ç E" +p is a formulation for Sxy if and only if Sxy = PD Sxy.

For example, consider the constraint set of a mixed integer program

x + y< 1
J C > 0

y integer

Plotting in Figure 4.3, we see that the set of mixed integer feasible points Sxy contains
point (0, 1) and a line segment AC defined by (x, 0), 0 < x < 1. Relaxing the integer
requirement on y, we obtain formulations ABC and ADC for S^.

We now define a better formulation for a pure integer program below. Definition of
a better formulation for a mixed integer program is similar.

Definition 4.4 Given two formulations P\ and P2 for Sy. P\ is a better formulation
than P2 if Pi C P2, that is, Pi is a proper subset of P2.

In Figure 4.1, since formulation LP3 c LP2, LP3 is a better formulation than LP2.
Similarly, LP2 is a better formulation than LP1. However, given any two formulations,
we may not know whether one is better than the other. For example in Figure 4.4, we
cannot tell whether P3 is better than P2 even though P3 looks smaller in area than P2.
Note that just the size alone of a feasible region does not necessarily determine the
quality of formulation.

Definition 4.5 Given S — {y: Gy < b, y integer}. A formulation S is ideal if all
extreme points of the polyhedron are integer.

In linear programming theory, if there exists a finite optimum solution (maximum
or minimum) and if all the extreme points (or basic feasible solutions) of the

BETTER FORMULATION

*■ x

0 1

FIGURE 4.3 Better formulation.

polyhedron are integer, then one of the extreme points must be an integer optimum to a
pure integer program. Therefore, in this special case, solving the relaxed LP problem
will automatically solve the original integer program. It is instructive to draw several
linear objective functions of various slopes on Figure 4.4. We can see that no matter
what the coefficients (gradient vector) of the objective functions is, a maximum or
minimum must always fall on one of the extreme points.

1

5-

4 •

3-

2 •

—

1

! ' i

\ T *
\ p> !

\ 1 ' \l '
1 \ \ !

1 V * - ^ ^ "

\ \%J
1 '

'

/ 1 1

v— '
1

I

1

1

1

1

0 1 2 3 4 5

FIGURE 4.4 Formulations with same integer solutions.

84 BETTER FORMULATION BY PREPROCESSING

Considering Figure 4.1, many other formulations are also possible for the set S,
and readers are encouraged to draw some of them. You can see that there is a smallest
formulation whose extreme points are integer. Geometrically, it is called the convex
hull of the set S, denoted by Conv(S). This is an ideal formulation. Special classes of
combinatorial optimization problems, such as the assignment, transportation, trans-
shipment, maximum flow, and linear minimum cost flow, have the property that their
LP relaxation is the convex hull of basic feasible integer solutions. We refer to this
class as "easy integer programs" to be discussed in Chapter 10. However, the ideal
formulation for a general integer program is very difficult to find.

In what follows, we give two real-world examples to show how one formulation is
better than the other. One example is a knapsack problem for a pure 0-1 integer
program and another is an uncapacitated facility location problem for a mixed integer
program.

Example 4.1 (The Knapsack Problem) The following two polyhedra, P] and P2,
are formulations for S because they satisfy P C E5 and S = P n S, where S = { (0,0,0,
0,0),(1,0,0,0,0),(0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1),(1,1,0,0,0),
(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(0,1,1,0,0), (0,1,0,1,0), (0,1,0,0,1),(0,0,
1,1,0), (0,0,1,0,1), (0,0,0,1,1),(1,1,1,0,0),(1,1,0,0,1),(1,0,1,1,0),(1,0,1,0,
1), (1,0,0,1,1), (0,1,1,1,0), (0,1,1,0,1), (0,1,0,1,1,), (0,0,1,1,1), (1,1,1,0,1),
(1,0, 1, 1, 1), (0, 1,1, 1, 1)}:

P, = {y e E5 : 13y, + 21y2 + 4y3 + 17y4 + 4y5 < 47,0 < y < 1}

P2 = {y £ E5 : 3y{+3y2 + y3 + 3y4 + y5 < 8,0 < y < 1}

To show that formulation P2 is better than Pl 5 we must show that P2CP\, which is
equivalent to show that P2 Ç P i and P2 ^ P i. If we can show that all the points in P2 are
also in Pi, then P2 Ç Px. In addition, if we can also show there exists a point in P\ but
not inP2, thcnP2cPl.

First, we show that all the points in P2 are also in Pi. Multiplying by 4 on both sides
of the constraint in P2, we obtain an equivalent constraint

12y, + 12y2 +4y3 + 12y4 +4y5 < 32

The constraint in Pi can be rewritten as

13yi+21y2+4y3 + 17y4+4y5 < 47

or (12y, + 12y2 +4y3 + 12y4 +4y5) + (y, +9y2 + 5y4) < 47

If we can show that y ! + 9y2 + 5y4 < 47—32, then it implies that P2QP\. The
claim is true because 0 < y < 1.

Next, to show that there exists a point in Px but not in P2, consider the point
y* = (0.02, 1, 1, 1, 1). We have y* G P{ since 13(0.02) + 21(1) + 4(1) + 17(1) +
4(1) = 46.26 < 47, but y*£P2 since 3(0.02) + 3(1)+ 1(1) + 3(1) + 1(1) = 8.06 >
8. Hence, we conclude that P2CP\.

BETTER FORMULATION 85

Example 4.2 (The Uncapacitated Facility Location Problem) There are m
machines available to meet the production requirement from n workshops, each
with a demand 1. Once a machine is set up, a fixed cost of f¡ is incurred. Unit
transportation cost of products from machine i to workshop/ is c,y. The objective is to
find a production plan with the lowest cost while meeting the demands at all
workshops.

To model this problem, we let x¡j be the fraction of demand from workshop y met
by machine i. Also, let y¡ be 1 if machine / is used, and 0 otherwise. Two alternative
models are obtained.

m n m

(IP,) Minimize ^^CyXy: + ^fyi
(=1 j=\ i=\

/=1

n

y=i

Xij > 0

y i = 0 or 1

7 = 1 , 2 , .

i = 1 , 2 . . .

i = 1 , 2 , . .

1 = 1 ,2 . . .

. , «

. ,m

■, m;j =

. ,m

= 1 ,2 , . .

(4.1)

(4.2)

. , «

(IP2) Minimize Y1^2CiJx'J+ ^2^'yi

i=i j=\

subject to 2_.X'J = * 7 = 1 , 2 , . . . , «
/=i

xij < y i

xij > 0

y i = 0 or 1

= 1 ,2 , . .

= 1,2,.

• = 1 , 2 , .

.,m;j= 1 ,2 , . .

.,m;j= 1,2,.

. ,m

. , «

.,n

(4.3)

Note that the two IP models are similar except for constraint sets (4.2) and (4.3).
Considering the problem size, model IP2 is larger than IP, because the number of
constraints in (4.3) is n times that of (4.2). However, we claim that formulation
P2 is better than P¡ because P2CP\, where these represent the LP relaxation of
the respective integer programs, hence in both models y¡ becomes continuous
on [0, 1].

To show that P2cPi,we simply need to show that any points in P2 also lie in Pu

but not vice versa. Since the only difference in these two formulations is that (4.3)
replacing (4.2) in P2, showing P2cP\ is equivalent to showing that any points
satisfying (4.3) also satisfy (4.2), but not vice versa.

Clearly, if we sum the inequalities in (4.3) over the range of/, then we obtain (4.2).
Hence, every point satisfying (4.3) must also satisfy (4.2). On the other hand, we can
easily find an example that satisfies (4.2) but not (4.3).

86 BETTER FORMULATION BY PREPROCESSING

Consider a special case where m = n. Let y, = (1/«) for all i, then ny¡= 1. The
coefficient matrix of x is a diagonal matrix with all the elements on the diagonal equal
to 1, and others 0:

" 1
0

0
_ 0

0
1 .

0
0 .

. 0
0

1
. 0

0 "
0

0
1

We can see that in this case, ^2,-xy — 1 = ny¡, which satisfies (4.2), but x„ > y¡ for each
i, which violates (4.3). So we can conclude that P2CPi, andP2 is a better formulation.
In fact, the example discussed earlier is not the only case where (4.2) is satisfied
but (4.3) is violated. Readers are encouraged to make up other examples too.

4.2 AUTOMATIC PROBLEM PREPROCESSING

Building good formulations for a given IP problem is both art and science. It often
depends on the creativity of a model builder as well as scientific techniques. Even for
the same model builder, one can often expect that his/her original formulation can be
improved, either artistically or scientifically. In the remaining sections, we will
introduce some logical rules that can be used to automatically improve a given
formulation. These rules routinely process a given problem formulation before it is
actually solved by an MIP algorithm. These rules are bundled together to form the
so-called preprocessor or presolver. The preprocessor has been proven very efficient
in reducing the solution space and speeding up the solution time. In fact, nowadays
most popular IP software has a built-in preprocessor. Most preprocessors cover the
following basic functions:

1. Tightening bounds on variables
2. Fixing variables
3. Eliminating redundant constraints

4. Identifying infeasibility
5. Tightening constraints
6. Decomposing the problem into independent subproblems
7. Scaling the coefficient matrix

There are many preprocessing techniques available in the literature; the interested
reader should refer to the note of this section. In Section 4.3, we introduce a basic
preprocessing technique for tightening bounds, fixing variables, and identifying
redundant constraints and infeasibility for general integer programs. Then in
Section 4.4, we introduce basic techniques for the same functions specially designed

TIGHTENING BOUNDS ON VARIABLES 87

for pure 0-1 integer programs. Methods for decomposing the problem and scaling the
coefficient matrix are given in Sections 4.5 and 4.6, respectively.

4.3 TIGHTENING BOUNDS ON VARIABLES

We introduce a basic technique based on tightening upper and lower bounds on
variables in mixed integer programs. Three types of variables are considered in order:
continuous, general integer, and 0-1 variables. First, we introduce a bounding
technique on continuous variables as a foundation. Then we modify and simplify
this bounding technique for the special treatment of general integer and 0-1 variables.

Basically, a preprocessor is initiated with the inputted IP model. It examines and
computes possible tighter upper and lower bounds on all variables, one at a time, in the
following order: constraint 1, constraint 2, . . . , constraint i, ... , constraint m\ and
within each constraint, variable X\, x2,. ■ ■, xk,..., xn. If a computed upper bound of
a variable is lower than the best upper bound found so far, or a computed lower bound
is higher than the best lower bound found so far, then the computed bound replaces the
current bound.

After an entire constraint set is evaluated, the process is terminated if there are
no bound improvements on any of the variables. If any bound is improved, then a
smaller or better formulation is obtained and another round (pass) of preprocessing is
repeated on the new formulation. The process is repeated until no improvements are
possible on either lower or upper bounds for any variables of an entire formulation.
Alternatively, a termination condition may be set to a maximum number of passes
predetermined by the user.

4.3.1 Bounds on Continuous Variables

The bounded linear programming problem can be stated as

Maximize z = ^ CjXj
j

subject to 2_.a'JxJ — bi (i = 1 ,2,. . . ,m) (4-4)
j

ij<Xj<Uj (y = 1 ,2 , . . . , «)

Separating positive and negative coefficients, the constraints can be rewritten as

y ^ ayXj + ^2 aijxj ^ bj (/ = 1,2,..., m) (4.5)
y:a,j>0 My<0

Isolating variable x^, we have

a¡kXk + ^2 avxJ +] C a'JxJ ~bi (' = 1 > 2> • • • ' m) (4 - 6)
j^k,a0>0 j¿k,a¡j<0

88 BETTER FORMULATION BY PREPROCESSING

where k is the index of the variable to be computed for possible tighter bounds, j is
the index of the remaining variables, u¡ and /,, respectively, denote the tightest upper
and lower bounds found so far on variable/. If they are not specified, we may initially
let Uj = M (a big number) and /, — 0. The upper and lower bounds on variable xk can be
computed based on (4.6).

If aik > 0, then an upper bound on xk can be computed by

«* = — [b¡- J2 avlj- J2 avuj (4-7)

If aik < 0, then a lower bound on xk can be computed by

îk=--[b>- Y. av'j- S a«uA (4-8)

" '* \ jftkAj>0 j¿k,aij<0 J

The basic idea is that any potential tighter bound must not exclude any feasible
solution even under the "worst" conditions. For a positive coefficient aik in (4.7), the
worst possible conditions are /,■ for positive coefficient a¡j and are Uj for negative a¡j.
Similarly, for a negative coefficient aik in (4.8), the possible worst conditions are /,• for
positive coefficient ay and are Uj for negative a¡j.

After calculations, the new best bounds are updated by setting uk — ûk if ûk < uk

and setting lk = lk if lk > lk.

4.3.2 Bounds on General Integer Variables

In the presence of integer variables, upper and lower bounds can be further tightened
by rounding the fractional values. If an integer variable has a computed upper bound
(ûk) that is noninteger, then it can be further tightened by rounding it down to obtain
the largest integer smaller than uk, or symbolically xk < \uk\. For example, if
uk = 2.47, then 2 is a tighter upper bound for integer xk.

If an integer variable has a lower bound (lk) that is noninteger, then it can be
tightened by rounding it up to obtain the smallest integer greater than lk, or symbo-
lically xk > [7*1 • For example, if lk = 0.3, then 1 is a lower bound for integer xk. The
current best bound will then be replaced (updated) if the computed bound is tighter.

Example 4.3 (MIP Problem)

4xl-3x2-2x3+y4 + 2y5 < 13

—3x1 + 2x2— *3 + 2y4 + 3y$ < —9
X[>0
0<x2<3

1 < *3 < 5
2<y4<4
ys > 0 and integer

TIGHTENING BOUNDS ON VARIABLES 89

Initialization:

«i = M, h = 0, u2 - 3, h = 0, w3 = 5, h = 1, "4 = 4, /4 = 2, u5 = M, l5 = 0

Iteration 1

Check constraint 1 :

x, : «i = (13-l(2)-2(0) + 3(3) + 2(5))/4 = 7.5 < Ai, sow, is updated to7.5
x2:l2 = (13-4(0)-1(2)-2(0)+2(5)) / (-3) = - 7 < 0 , so l2 is not updated
x3 : /3 = (13-4(0)- l (2)-2(0) + 3(3))/(-2) = - 1 0 < l , s o / 3 is not updated
yA: «4= L(13—4(0)—2(0) + 3(3) +2(5))/lJ = 32 > 4, so uA is not updated
y5: u5 = L(13—4(0)—2(0) + 3(3) + l(4))/2J = 13 < M, sou5 is updated to 13

Check constraint 2:

xi:l\ = (-9-2(0)-2(2)-3(0) + l(5)) /(-3) = 2.67 > 0, so h is updated to2.67
x2 : u2 = (-9-2(2)-3(0) + 3(7.5) + 1 (5))/2 = 7.25 > 3, sow2 is not updated
x3 : l3 = (-9-2(0)-2(2)-3(0) + 3(7.5))/(-3) = -3.17 < 1, so/3 is not updated
yA: u4= L(-9-2(0)-3(0)+ 3(7.5)+ 1(5))/2J = 9 > 4, so uA is not updated
y5:u5= L(-9-2(0)-2(2)+ 3(7.5)+ 1(5))/3J = 4 < 13, sou5 is updated to4

After the first iteration, we have

2.67 < x\ < 7.5, 0 < x2 < 3, 1 < x3 < 5, 2 < y4 < 4, 0 < y5 < 4

Iteration 2

Check constraint 1 :

x\ : Wi = (13-l(2)-2(0)+3(3) + 2(5))/4 = 7.5, sowi is not updated
x2 : h = (13-4(2.67)-l(2)-2(0) + 2(5))/(-3) = -3.44 < 0, so/2 is not updated
x 3 : /3 = (13-4(2.67)-l(2)-2(0) + 3(3))/(-2) = -3.11 < 1.67, so/3 is not updated
yA: w4=L(13-4(2.67)-2(0)+3(3) + 2(5))/lJ =21 > 4, so u4 is not updated
y5: u5 = [(13—4(2.67)—2(0) + 3(3) + l(4))/2j = 7 > 4, soH5 is not updated

Check constraint 2:

x, : /i = (-9-2(0)-2(2)-3(0) + l (5)) / (- 3)= 2.67, so/i is not updated
x2:u2 = (-9-2(2)-3(0) + 3(7.5) + l(5))/2 = 7.25 > 3, sow2is not updated
x3 : /3 = (-9-2(0)-2(2)-3(0)+3(7 .5)) / (-3) = -3.17 < 1, so/3 is not updated
yA: uA= L(-9-2(0)-3(0)+ 3(7.5)+ 1(5))/2J = 9 > 4, so uA is not updated
y5 : u5 = L(-9-2(0)-2(2)+ 3(7.5)+ 1(5))/3J = 4 , so u5 is not updated

Stop, because no bounds that can be further tightened were found in this iteration.

90 BETTER FORMULATION BY PREPROCESSING

4.3.3 Bounds on 0-1 Variables

Recall that for a 0-1 variable, the worst lower bound is 0 and the worst upper bound is
1. Thus, initially we can set /, = 0 and Uj = 1 for ally. Any fractional upper bound may
be rounded down to 0 and any fractional lower bound may be rounded up to 1. By
rounding, for example, if u x = 0.37, then 0 is a new upper bound for binary variable y i ;
and if l2 = 0.42, then 1 is a new lower bound for binary variable y2.

Example 4.4 (BIP Problem)

Syl + lly2-9y3+4y4 < 0
yi~4y2-6y3+y4 < - 5
all yj — 0 or 1

Iteration 1
Check constraint 1 :

ux = |_(0- l l (0)-4(0)+9(l)) /8j = 1, so«! is not updated

u2= L(0-8(0)-4(0)+9(l)) / l lJ = 0 , soj>2isfixedto0

Substituting y2 = 0 to the given problem, we have a new constraint set

8}'i-9}>3+4}'4<0

y\-6y3+y4 < - 5

Iteration 2
Check constraint 1 :

Ml = [(0-4(0)+ 9(1))/8J = 1, so wi is not updated

h = L(0-8(0)-4(0))/(-9)J = 0, so/3 is not updated

w4= L(0-8(0)+9(l))/4j = 2 > 1, so w4 is not updated

Check constraint 2:

u\ = [(-5-1(0)+6(1)) /1J = 1, sou\ is not updated

/3 = f(—5 — 1(0) —1(0))/(—6)1 = 1, soy3 is fixed at 1

Substituting y3 = 1, we have

8y, + 4 y 4 < 9

y\ +Ï4 < 1

TIGHTENING BOUNDS ON VARIABLES 9 1

Iteration 3
Check constraint 1 :

w, = L(9—4(0))/9j = 1, sowi is not updated

u4 = |_(9-8(0))/4j = 2 > 1, sow4is not updated

Check constraint 2:

u\ = [(I — 1 (0))/lj = 1, so «i is not updated

«4 = L(l — 1(0))/1J = 1, so «4 is not updated

Stop, because no tighter bounds can be obtained in both constraints. The final set of
constraints remains the same as start of Iteration 3.

8yi+4y4 < 9

y\ +y4 < 1
y2=0

4.3.4 Variables Fixing, Redundant Constraints, and Infeasibility

There are a number of variable fixing techniques available. We discuss three of them.
First, for a maximization problem in the form given in (4.4), if a,y > 0 for all / = 1,
2 , . . . ,mandcy<0, then fix x7 at /,. If fly < 0 for all i= 1,2,..., m and Cj> 0, then fix
Xj at Uj. Second, if the best bounds on any variable obtained after applying the bound
tightening routine having /¿ = w¿, then variable xk can be fixed at /^. Third, based on
bounds on the left-hand side of a constraint, we can fix variables under the condition
described below. Once a variable is fixed, it can be removed by substituting its fixed
value into the current formulation (model), resulting in a smaller feasible region.

For the z'th constraint, define the following upper and lower row bounds:

Ui =] T a¡jUj + Y, avlJ
j:a¡¡>0 j:a¡j<0

Li = Y^ aiJlJ + Y a¡JuJ
j:a¡j>0 j':a,)<0

Note that U¡ is an upper bound for the left-hand-side of the ith constraint (or row) and L¡
is a lower bound for the left-hand-side of the ith constraint (or row). Comparing with
the right-hand side b¡, these row bounds can be used to (a) identify a redundant
constraint, (b) identify an infeasible constraint, and (c) fix variables. Normally, we have

U < bj < Ui

92 BETTER FORMULATION BY PREPROCESSING

Consider the following three cases outside the above bounds:

(a) If b¡ > U¡, then the fth constraint is redundant and can be removed from
the problem.

(b) If bj < Lj, then the rth constraint cannot be satisfied and no feasible solution
exists.

(c) If b,: = L¡, then all x¡ with ay > 0 can be fixed at Xj = lj, and all Xj with a¡j < O
can be fixed at x7 = Uj.

Example 4.5 Consider the following constraint set and bounds on variables

x\ + X2 + X?, —2XÍ, < —6

— X\ —3̂ 2 + 2X3 —X4 < 4
—xi +X2+X4 < 0
0 < X] < 2

0 < x2 < 1
1 < x3 < 2
2 < x4 < 3

Compute i/i = 1(2) + 1(1) + 1(2)—2(2) = 1

U = l (0)+ l (0) + l (l) -2(3) = - 5 > - 6

Constraint 1 is infeasible since bx<L\.

Example 4.6 Consider the following constraint set and bounds on variables:

X\ + X2 + X3—2X4 < — 1

—x\ —3x2 + 2x3—X4 < 4
—x\ + X2 + x4 < 0
0 < x, < 2

0 < x2 < 1
1 < x3 < 2

2 < x4 < 3

Compute Ux = 2 + 1 + 2-2(2) = 1
L, = 0 + 0 + 1-2(3) = - 5

No action is taken since — 5 < — 1 < 1.

Compute U2 = - 0 -3 (0) + 2(2)-2 = 2

L2 = - 2 - 3 (l) + 2 (l) - 3 = - 6

Thus, constraint 2 is redundant since b2 > U2. Remove constraint 2 and continue.

Compute U3 = - 0 + 1 + 3 = 4
L3 = - 2 + 0 + 2 = 0

PREPROCESSING PURE 0-1 INTEGER PROGRAMS 93

Since ¿>3 = L3, we can fix variables: xi = ux = 2, x2 = h = 0, and x4 = l4 = 2. Sub-
stituting these fixed values, constraint 3 reduces to

2 + 0 + x3-2(2) < - 1
or X3 < 1

Combined with the given bound x3 > 1, we have x3 = 1. Since all variables are fixed,
the problem is solved.

To illustrate the first-mentioned variable fixing technique, let us assume x3 < 2
instead of x3 < 1, which leads to 1 < x3 < 2. Then we can determine the value of x3

using the given objective function. For the maximization problem, if the associated
c3 > 0, then x3 = w3 = 2. If c3 < 0, then x3 = /3 = 1.

Although the row bounding technique can also be applied even before the variable
bounding routine, the power of this technique depends on the tightness of bounds
on variables.

4.4 PREPROCESSING PURE 0-1 INTEGER PROGRAMS

Problem preprocessing is most effective when a given model is a pure 0-1 integer
program, which arises frequently in combinatorial optimization problems (see
Chapters 5 and 6). Problem preprocessing includes the following functions for pure
0-1 integer programs:

• Fixing 0-1 variables

• Detecting redundant constraints and infeasibility
• Tightening constraints (coefficients reduction)
• Generating cutting planes (from minimum cover)
• Rounding by division with GCD

For distinction within an MIP problem, in this section we shall use j 7 instead of Xj
to denote a 0-1 variable in a pure 0-1 integer program.

4.4.1 Fixing 0-1 Variables

Isolating a variable y¿ and separating positive and negative coefficients of the other
variables, we can rewrite the standard form of the constraint set as

aikyk+] T %y,+ Yl aijyj^bi ('= l,2,...,m) (4.9)

Any constraint of > form can be converted to a corresponding constraint of < form
by multiplying by (-1). Note that the right-hand side constant may be negative.
For fixing a 0-1 variable, the following two rules are applied to each constraint /:

94 BETTER FORMULATION BY PREPROCESSING

Rule 1 : Identify the variable (say yk) with the largest positive coefficient (say aik > 0).
If the sum of aik and all ay < 0 exceeds b¡, then constraint / is violated at yk = 1 and
hence yk should be fixed at 0.

Rule 2: Identify the variable (say yk) with the most negative coefficient (say aik < 0).
If the sum of all ay <0(J^=k) exceeds b¡, then constraint / is violated at yk = 0 and
hence yk should be fixed at 1.

Note that in rule 1, the sum of aik and all ay < 0 is equivalent to setting ^ = 1 , ^ = 1
if its coefficient ay < 0, and y¡ = 0 if ay > 0 for ally / k in (4.9). In rule 2, the sum of all
ay < 0 is equivalent to setting yk = 0, yj — 1 if ay < 0, and yj = 0 if ay > 0 for ally ^ k
in (4.9).

Consider the following example in < form:

6yi+2y2-2y3-y4 < 2

Identify y{ as the variable having the largest positive coefficient and apply rule 1.
Since 6 + (—2) + (—1) = 3 > 2 violates the constraint, y\ must be fixed at 0. Identify
yj as the variable having the most negative coefficient. Rule 2 cannot be applied
because — 1 < 2.

Consider the following constraint in > form:

3̂ 1 +J2—3j3 > 2

Multiplying (—1) through the constraint, we obtain

—3yi -y2 + 3y3 < - 2

Identify y3 as the variable with the largest positive coefficient and apply rule 1. Since
3 + (—3) + (— 1) > —2violates the constraint, y$ must be fixed at 0. Identify j i as the
variable with the most negative coefficient and apply rule 2. Since — 1 > —2, y\ must
be fixed at 0.

Once a variable is fixed at 0 or 1 using a certain constraint, the fixed value can be
substituted into the other constraints, which results in problem reduction.

Example 4.4 (Continued)

8>>1 + 11>>2-9B+4)>4 < 0

y\-4y2-6y3+y4 < - 5
all yj = 0 or 1

By applying rules 1 and 2 to constraint 1, we can fix y2 = 0 and y3 = 1 resulting in the
formulation

8 j i + 4 j 4 < 9

yi+y4 < l

y3 = 1

PREPROCESSING PURE 0-1 INTEGER PROGRAMS 95

which, coincidently, is the same set of reduced constraints as obtained by the bound
tightening technique described in the previous section.

Moreover, fixing a variable from one constraint can sometimes generate a chain
reaction of fixing other variables from other constraints. Example 4.7 presents an
extension of Example 4.4 in which two constraints and three variables are added.

Example 4.7 The set of constraints include two constraints in Example 4.4 plus the
following constraints:

yi+y4+ys < l
V5-V6 > 0

Variable fixing in Example 4.4 yields the reduced constraints

8yi+4y4 < 9
V1+V4 < 1

by fixing y2 — 0 and V3 = 1. Next, continue the fixing process for two additional
constraints.

V3 +y4 + V5 < 1 implies V4 = y¡ = 0 , andys — y6 > 0 implies y6 = 0

Fixing variables can achieve a drastic reduction on the size of a pure 0-1 integer
program. Crowder et al. (1983) reported that a problem of 2756 variables has been
reduced to a problem of 1415 variables.

4.4.2 Detecting Redundant Constraints and Infeasibility

There are many techniques that can be used to detect a redundant constraint. The
technique presented in the previous section is based on row bounding. Here we present
another one that is based on a similar idea for variable fixing as presented in rules 1 and
2 in Section 4.4.1.

Rule 3: For a < constraint, assign a value of 1 to the variables with positive
coefficients and 0 otherwise. If the constraint is still satisfied, then it is redundant
and can be dropped from further consideration.

Again, if a constraint is in > form, convert it to one in < form by multiplying by
(—1). For example,

2xi +X2 + 3x3 < 7

is redundant, since 2(2) + 1(1) + 3(1) = 6 < 7. As another example,

3x\— 2x2—*3 £ 0

is redundant, since 3(1) - 2(0) - 1(0) = 3 < 3.

96 BETTER FORMULATION BY PREPROCESSING

Very often redundant constraints are not detected from the original model, but
are detected from the reduced models after fixing some variables. Note that the two
techniques presented in this and the last sections, as well as other techniques, do not
ensure detecting all redundant constraints. There are many more techniques in the
literature for detecting redundant constraints.

4.4.3 Tightening Constraints (or Coefficients Reduction)

We use a flowchart in Figure 4.5 to demonstrate a constraint tightening procedure.
Suppose we are given a constraint of the form

a\y\+ a2)>2 + • • • + a„y„ < b where yj = 0 or 1 for ally

Example 4.8 Tighten the following constraint

6yi + 3y2-5y3 + 2yA + 7y5-4y6 < 15

Iteration 1

Calculate M = 6 + 3 + 2 + 7 = 18, M-b= 1 8 - 15 = 3.

S={aua3,a5, a6}.

Let M = X a ;
a,>0

S= laf.\aj\>M-b}

* '

'
N

Select ak from S

<"""^ ak~

Y

T
N

Let âk = b - M

Replace a k with âk

Y

Stop, constraint
cannot be tightened

Let âk = M-b,b = M-ak

Replace ak with âh b with b

FIGURE 4.5 Process for coefficient reduction.

PREPROCESSING PURE 0-1 INTEGER PROGRAMS 97

Pick ci\ to begin with. Since ax > 0, calculate à\ = M—b = 3, b = M—a\ = 12.

Thus, the given constraint is tightened as

3yi + 3v2-5y3 + 2y4 + 7y5-4y6 < 12

Iteration 2

M = 3 + 3 + 2 + 7 = 15. M-b=l5-l2 = 3.

S={a3,a5,a6}.

Pick a3 to start with. Since a3 < 0, calculate a3 — b—M = —3.

The tightened constraint becomes

3y, + 3y2-3y3 + 2y4 + 7y5-4y6 < 12

Iteration 3

M = 3 + 3 + 2 + 7=15. M-b=l5-l2 = 3.

S={a5,a6}.

Pick a5 to start with. Since a5 > 0, calculate as = M—b = 3, b — M—a¡ = 8.

The tightened constraint becomes

3yi + 3y2-3y3 + 2y4 + 3y5-4y6 < 8

Iteration 4

Af= 3 + 3 + 2 + 3 = 1 l . A f - è = l l - 8 = 3.

S={a6}.

Since a6 < 0, calculate âf, = b—M = —3.

The tightened constraint becomes

y\ + 3y2-3y3 + 2y4 + 3y5-3y6 < 8

Iteration 5
S = 0. Stop, the constraint cannot be further tightened.

4.4.4 Generating Cutting Planes from Minimum Cover

A cutting plane (or cut) for an IP problem is a derived constraint that reduces the
feasible region for the LP relaxation without eliminating any feasible solution for the
IP problem. Here we will see a particular type of cutting planes for pure 0-1 integer
programs. Such a cut is generated from a constraint in < form with all coefficients and
the right-hand side positive,

aiyi +Ö2V2+ ••■ +a„yn < b

98 BETTER FORMULATION BY PREPROCESSING

where b > 0, a} > 0, and yj — 0 or 1 for al l / Recall that this type of constraint appears
in the knapsack problem. The procedure for generating cutting planes is as follows:

Step 1. Find a group of variables (called a minimum cover of the constraint, or
knapsack cover) such that (a) the constraint is violated if every variable in the
group is set to 1 and all other variables are set to 0, and (b) the constraint becomes
satisfied if the value of every one of these variables is changed from 1 to 0. Let nc
denote the number of variables in the group.

Step 2. The resulting cutting plane has the form J2%{ y i ^ w c ~ 1-

Applying this procedure to the constraint 2y\ + 2>y2 + 5y3 + 6y4< 10, we see
that the group of variables {yi, y2, y4} is a minimum cover because (a) (1, 1,0, 1)
violates the constraint and (b) the constraint becomes satisfied if the value of every one
of these three variables is changed from 1 to 0. Since nc = 3, the resulting cutting
plane is

y\ +yj+yA < 2

This same constraint also has another minimum cut {y3, y4] because (0, 0, 1, 1)
violates the constraint, but both (0,0,1,0) and (0,0,0,1) satisfy the constraint. Thus,
the resulting cutting plane is y3 + y4 < 1.

These cutting planes are very effective in tightening the LP relaxation. For
example, for the Crowder et al. (1983) test problem with 2756 binary variables
considered, 3326 cutting planes were generated. The result narrows the gap between
the optimal objective value for the LP relaxation of the entire 0-1 integer program and
the optimal objective value for this problem by 98%. The integration of this cutting
plane and the branch-and-bound techniques provides a powerful, effective approach
for solving binary integer programs.

4.4.5 Rounding by Division with GCD

Consider a constraint of the form

aiyi + a2y2 + ■ • ■ + a„y„ < b

where y¡ is a 0-1 variable and ay is an integer constant. Denote GCD as the greatest
common divisor of a\,a2,.. .,an. The constraint can be tightened by dividing all terms
by the GCD, then rounding b/GCD down to largest integer < b/GCD:

b
GCD

If coefficients are not all integer, they can be made integer by the following
procedure:

GCD-*'' GCD-*'2 " ' GCD3'" ~

DECOMPOSING A PROBLEM INTO INDEPENDENT SUBPROBLEMS 99

Find k such that k = min{^: a/Kf) are integer for ally'}. Then all coefficients can be
made integer by computing d¡ = a}■ (10*) and b' = b(\Qk) and substituting d¡ for a¡
and b'j for bj, respectively.

To derive a tightening constraint, find GCD — max{¿/ : (dj)/d is integer for ally'},
then divide the transformed constraint by GCD, and round the right-hand side down
to the next largest integer.

Example 4.9 Tighten the following constraint by dividing GCD and rounding

l.05yl+035y2-lAy3+0.63y4 < 6

Make all coefficients integer by multiplying 100,

105yj +35y2-U0y3 +63y4 < 600

Since GCD (105, 35, 140, 63) = 7, the constraint can be tightened as

600
I5yi+5y2-20y3+9y4< 85

If the given constraint is in > form, then reverse the inequality sign by multiplying
by (-1).

4.5 DECOMPOSING A PROBLEM INTO INDEPENDENT
SUBPROBLEMS

A large-scale IP problem contains many variables and/or constraints. However,
sometimes, special structures in the set of constraints enable us to partition the
problem into two or more subproblems that are independent of each other. Combining
solutions to these subproblems will yield a solution to the original problem. In this
way the problem is greatly simplified. Whether a problem can be decomposed can be
determined by looking at the coefficient matrix of the constraints. To be specific, if
the coefficient matrix A for the constraint set Ay < b, after rearrangement, takes the
following form:

y\ \yi\ y?,

Mx

0

0

y, \y$\ >6

0

M2

0

yi y«

0

0

M3

where M j , M2, M3 ^ 0, then the IP problem can be decomposed into three independent
subproblems. Subproblem 1 optimizes over variables yx, y2, and y3. Subproblem 2
optimizes over variables^,y5, andy6. Subproblem 3 optimizes over variables^ andy8.

100 BETTER FORMULATION BY PREPROCESSING

Example 4.10 Consider the IP problem

Minimize 2y\ + 3y2 + y3 —2y4

subject to y\+y-i <1
2y2+y4< 11

-y2 + 5y4 > 3

y\ > 1

y > 0 and integer

Rearranging the coefficient matrix by exchanging columns 2 and 3, we obtain

y i y 2 y 3 y*_

1 1 0 0
1 0 0 0
0 0 2 1
0 0 - 1 5

Obviously, the problem can be decomposed (partitioned) into two independent
subproblems:

Subproblem 1 Subproblem 2

Minimize 2y\ + y^ Minimize 3_y2—2)4
subject to y\ + y¿ < 7 subject to 2y2+y4 < 11

y\ > 1 ~yi + 5y4 > 3

Subproblem 1 only involves variables y\ and y-i, while subproblem 2 only involves
variables y2 and y4.

Note that the decomposing technique discussed in this section is not what is known
as "decomposition approach," which is the topic of Section 14.6.

4.6 SCALING THE COEFFICIENT MATRIX

When a practical problem is modeled, it is important to pay attention to the units in
which quantities are measured. Great disparity in the sizes of the coefficients in an
MIP model could make such a model difficult to solve and yield an inaccurate solution
due to rounding and truncation errors.

If capacity constraints allow quantities in thousands of tons, it would be better to
allow each variable to represent a quantity in thousands of tons rather than tons.
In general, constraints concerning a given resource should share a common measure.
But different sets of constraints may have big difference in measuring units. Ideally,
one should choose units so that each nonzero coefficient in an MIP model is of a
magnitude between 0.1 and 10. In practice, this may not always be possible. However,
most commercial packages have procedures for automatically scaling the coefficients

EXERCISES 101

of a model before it is solved. Even with that, some software guides such as the one
accompanying LINGO® suggest that the user define units of the objective function,
right-hand sides, and decision variables so that no nonzero coefficients have absolute
values of more than 100,000 or less than 0.0001. The solution is then automatically
unsealed before being printed out.

4.7 NOTES

Section 4.1

The quality of an IP formulation defined in this section is primarily based on the
constraint set (polyhedron) of the problem with little or no consideration of the
objective function. Nevertheless, in Section 4.3, one of the three variable fixing
techniques does take advantage of the obj ective function. Prior to solving the problem,
the role of preprocessing is to rapidly reduce the problem dimension with little
computational effort and leave the optimization step for the solution phase.

Section 4.3

Brearley et al. (1975) presented some preprocessing techniques prior to applying
the simplex method and reported implementation of such techniques in the earlier
software systems such as MPSX® of IBM and APEX II® of CDC under system
procedures called REDUCE and ANALYZE, respectively. Earlier, Zionts (1968)
derived upper and lower bounds on variables during the simplex iterations for linear
and integer programs.

Section 4.4

Hoffman and Padberg (1991) presented various techniques for automatically im-
proving the LP-representations of 0-1 linear programs for branch-and-cut.

Savelsbergh (1994) presented various preprocessing and probing techniques for
mixed integer programming problems.

Section 4.6

For scaling the coefficient matrix, see the notes in Williams (1993) and Winston
(1994).

4.8 EXERCISES

4.1 Plot the feasible regions for the following two formulations from the same
problem. Can you tell from the graphs, which is a better formulation? Why or
why not?

BETTER FORMULATION BY PREPROCESSING

Formulation 1 Formulation 2

2yi +y2 < 25 y i < 9
2yi -yi < 5 yi > 1
4>i +y2 > 5 >>2 < 13
y\ -2yi > 2 j2 > 0
y > 0 and integer y > 0 and integer

Does a better formulation imply that it has fewer variables and/or constraints?
Why or why not? If not, give a counterexample.
Examine the following two formulations, Pi and P2, for a single machine
scheduling problem to minimize the total weighted completion time. Which do
you think is a better formulation? Why? Let Wj be the weight of job j , pj be the
integer processing time of joby, M be a large number, and Xj be the completion
time of j o b /

{Pi)

{P\) Minimize 2_\wixi
; '=i

subject to Xj > pj
-Xj+Xi+Pj

-Xi + Xj+Pi

y = 0orl
n 1

Minimize / ^ / ^ (i +Pj)y~jt
j=\ i=0

subject to y j » = 1

n i -1

7=1 k=ma\(t-pj,0)

yjk = 0 or 1

<My

<M{\-y)

for ally

for all t

for ally and k

where / = Ylj=i Pj~l>yjt = 1 if job»y starts at time t {t is integer), 0 otherwise.

Find the best bounds for each variable in the following constraints:

2JM +7y2-3y3 + 6yA-9y5 +)>6 < -12
v1-2>'2+y3+43'4 + 2)'5-3y6 < 13

l <y\ < 4

0 < y2 < 1
4 < y3 < 10

2 < y 4

J 5 < 2
y > 0 and integer

EXERCISES 103

4.5 Show that tightening bounds on 0-1 variables is the same as fixing 0-1
variables.

4.6 Use the variable fixing technique to fix the values of the variables as many as
possible in the following 0-1 constraints:

30xi-20x2 +40JK3 + 17x4-23x5 + 1 lx6 < 70

23xi +15x2 +30x 3 -27x 4 + 13x5-21x6 > 61

4.7 Tighten bounds of the following constraints by using one of the techniques
mentioned in this chapter:

10 25 5 17
Tï X l + - ^ - * 2 - T * 3 + 3 X 4 - X 5 < y

18 5 17 5
— X ! - - X 2 + 77TX3--X4 + X5 > 4
J O 10 /

4.8 Fix the variables in Exercise 4.4 after the bounds are tightened.

4.9 Tighten the constraints in Exercise 4.3.

4.10 Tighten the constraints obtained in Exercise 4.5.

4.11 Consider the following set of constraints for an IP problem. Identify redundant
or infeasible constraints, if any.

5xi +X2 + 3x3-2x4 + x5-3x6 < 9
2xi —2x2 + *3 + X4—2x5 + X(, < 6
X\ +X2— X3— X4 + 2X5— Xf, > 2
2xi + X2-2X3 + 3X4-X5 + Xf, > 8
x 6(0,1)

4.12 Show that the constraints in Example 4.3 can be further processed for
redundancy.

4.13 Consider the set of possible solutions for a set covering problem defined as

S = {y(0,1) : Y,ja»yj > 1. a» = (0,1) for all (ij)}

(a) Under what condition(s) is the set S empty (constraint infeasible)?
(b) Under what condition(s) is each constraint redundant?
(c) Under what condition(s) can variable yk be fixed to 0 and 1 ?

104 BETTER FORMULATION BY PREPROCESSING

4.14 The following two inequalities are simultaneous constraints of some binary IP
problem.

a\y\ + aiyi + am + «4J4 < b
g\y\+ giyi + giy-î + g*y* < d

(a) Under what condition(s) is the second constraint redundant?
(b) Under what condition(s) is the problem infeasible (the two constraints

contradict each other)?

4.15 Generate a cutting plane for the knapsack constraint below. (Hint: Transfor-
mation of the constraint is needed before generating the cutting plane.)

3yi -yi + 2y3 + 4y4-3y5 < 5

4.16 Consider the following set of constraints for a binary IP problem. Preprocess
the model using the techniques from this chapter. Identify the type of
techniques you used.

37xi-68x2 + 78x3 +X4-2IX5 < 141
4xi+7x2+7x3—2x4 + 5x5 < 17

13Xi + 11X2 —17X3+ 6X4—X5 > 10
3 8 27 27 1 7

-X[+ - X 2 - y X 3 + -yX4+ -X5 > -

» 6 (0 , 1)

4.17 How would you rescale the following problem?

Minimize 2xi +0.003x2-x3

subject to 21xi-0.005x2 < 13
- l l x j + x 3 < 9
0.001x2+4x3 > 17

x > 0

4.18 If you are using some software (designed specifically for mathematical
programming) for solving IP problems, read the user's manual and identify
the built-in preprocessing techniques.

5
MODELING COMBINATORIAL
OPTIMIZATION PROBLEMS I

This chapter deals with important classes of combinatorial optimization problem
(COP), introduced in Chapter 1. Other COPs have appeared in Chapter 2, and some
are to appear in Chapters 6 and 10. This chapter will discuss the modeling and
successful real-world applications of the following COPs: set covering, set partition-
ing, node covering, set packing, matching, and cutting stock.

5.1 INTRODUCTION

Recall that the combinatorial optimization problem is a class of optimization problem
whose optimum solution(s) can be identified from a finite set of feasible solutions,
which in principle can be obtained by complete enumeration of all possible combina-
tions. In Chapter 2, we have seen the IP formulations of some COPs:

• The 0-1 knapsack problem (Section 2.3.1)
• The capital budgeting problem (Section 2.3.2)

• The uncapacitated lot sizing problem (Section 2.4.1)
• The workforce/staff scheduling problem (Section 2.5)
• The uncapacitated facility location problem (Section 2.6.2).

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

105

106 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

Another group of COPs, the network optimization problems, can be found in most
introductory OR or LP texts, and also in Chapter 10:

• The minimum cost network flow problem (Section 10.2.1).
• The assignment problem (Section 10.2.2, also Section 6.2)

• The transportation problem (Section 10.2.2)
• The transshipment problem (Section 10.2.3)
• The maximal flow problem (Section 10.2.4)
• The shortest path problem (Section 10.2.5)

The group of network optimization problems can be solved as if they were linear
programs (by ignoring integer requirements) because their constraint matrices are
totally unimodular. The minimum cost network flow problem is a general class of this
group. By specifying appropriate values to the parameters of the minimum cost
network flow problem, the other five problems are seen as special cases.

Furthermore, any pure IP problem with bounded variables, general or binary,
can also be treated as a COP. The reader may verify this in the exercises of this
chapter.

5.2 SET COVERING AND SET PARTITIONING

The set covering problem can be stated in a general way as follows. You are given a set
of requirements or characteristics (say R) that must be satisfied entirely, a set of
activities (say Ax, A2, ■ ■., A„) whose union equals or "cover" the entire set of
requirements, and a cost associated with each activity. Although an activity A¡ may
cover only a subset of R, a combination of some activities A/ s may cover R. The
set covering problem is to determine a combination of activities Ay's that can
collectively cover all the requirements while minimizing a certain objective function.
For example, an airline company has a set of scheduled flights (set of requirements)
to be covered entirely and has a set of crews (set of activities) available for flight
assignments. Assuming each crew (activity) incurs a certain cost, the objective is to
find a subset of crews that cover all flights and minimize the total cost of crew
assignments. For example, using set notation, if

/ ? = {1,2,3,4,5}

and

¿ , = { 1 , 2 , 5 } , A2 = {3,4}, ¿3 = {3,4,5}, A4 = {2,4,5}

the selections {A1;A2} and {Ai,A3} cover/? because/? = A, UA2=A[UA3. But the
selections {A|,A4}, {A2,A3}, and {A3,A4} do not because A, UA4^/?,A2L)A3^/?,
andA3UA4^fl .

SET COVERING AND SET PARTITIONING 107

5.2.1 Set Covering Problem

The set covering problem can be defined as follows:

1. Given set of requirements or characteristics that must be fully satisfied or
covered.

2. Given set of activities (often very large), each of which can satisfy some
requirements and incur a certain cost.

3. A feasible solution is defined as a select subset of activities that as a whole
can satisfy all requirements.

4. An optimal solution is a feasible solution with a minimal total cost.

Many real-world problems have been modeled as the set covering and set
partitioning problems, primarily in industries such as airlines, trucking, communica-
tion, hospitals, and manufacturing. Primary application areas include flight crew
scheduling, facility location, truck/vehicle delivery and routing, and workforce
scheduling. In what follows, we give two examples to show how to formulate a set
covering problem. We begin with the identification of the sets of requirements and
activities.

Example 5.1 (Location of Warehouses) A firm has five distribution centers and it
is to be determined as to which subset of these distribution centers should be selected
as a site for construction of warehouses. Suppose the goal is to build a minimal number
of warehouses that can cover all distribution centers in a manner that every warehouse
is located within 10 miles of each distribution center it services.

To solve this problem as a set covering problem, we first obtain a distance table as
shown in Table 5.1. Each entry represents the distance (in miles) between two
distribution centers. Based on this distance table and the distance limitation of
10 miles or less, we can construct a requirement-activity table as shown in Table 5.2.
A requirement row corresponds to a distribution center. An activity column corre-
sponds to the set of distribution centers that are located within 10 miles from each
given center. The entries of this table are either 1 or 0. A " 1 " indicates that the
corresponding requirement is covered, and a "0" otherwise. Activity column 1
represents that if a warehouse is built in center 1, then both centers 1 and 2 are
covered. Activity column 2 indicates that centers 1, 2, and 5 are covered. Likewise,
other activity columns have similar interpretation.

TABLE 5.1 Distance Between Distribution Centers

Center 1 2 3 4 5

1
2
3
4
5

0
10
15
20
18

10
0
20
15
10

15
20
0
8
17

20
15
8
0
5

18
10
17
5
0

108 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

TABLE 5.2 Requirements and Activities of Warehouse Location Problem

Activity

Requirement (Center) 1 2 3 4 5

At each distribution center, we must decide whether or not to build a warehouse
there. Therefore, we have five activity columns, one for each center. The problem is to
build a minimal number of warehouses that can cover all five distribution centers.

Now we are ready to formulate this problem as a set covering problem, a special
0-1 IP model.

Step 1

Input parameters: number of distribution centers (m), vectors of
activity (Sij,j= 1, 2, . . . ,«) , requirement vector
(b = l)

Decision variables: whether or not to build a warehouse at the rth
distribution center (y¡= 1 or 0, /'= 1, 5)

Constraint: each of the five distribution centers must be covered
Objective: minimize the number of warehouses built

Step 2. Let y¡ = 1 if a warehouse is built at center i and 0 otherwise. To ensure at least
one warehouse is within 10 miles of center 1, we have constraint

y i +yi > 1 (requirement 1 constraint)

Likewise, we obtain constraints for all five distribution centers. Combining these
constraints with the objective function, we obtain the following 0-1 IP model:

5

Minimize z = y . y¡

subject to

;=1

(\ 1 0 0 0\

1 1 0 0 1

0 0 1 1 0

0 0 1 1 1

\ o i o i i /

yi

y-i

y*

W

>

i

i

i

w
Oorl / = 1,2,. ,m

SET COVERING AND SET PARTITIONING 109

Example 5.2 (Flight Crew Scheduling Problem) Flight crew scheduling (i.e.,
assigning crews to a given set of flights) is one of the most important problems faced
by the airline industry. Almost all major airlines solve this problem by formulating
it as an integer program in which the set covering problem is a core component.
For example, American Airlines has over 8000 airplanes and 16,000 flight attendants
to schedule. They estimate that their mathematical programming-based system
(in which the covering problem is a major component) saves about $20 million
per year (see Table 1.1). From this table, we can also see that many MIP applications in
the airline industry involve crew scheduling.

The problem can be formulated as a set covering problem as follows: (1) List the
set of flight legs that are required to be covered; (2) generate a set of flight sequences
or tours that begin and end in the same city, subject to certain regulations and
conditions ; and (3) formulate a 0-1 integer program to find a subset of flight sequences
that cover all flights at a minimal cost. A numerical example is given below.

Budget Airways is required to assign its crews based in New York to cover all the
upcoming scheduled flights. There are many possible sequences of flights that are
feasible for a crew to choose from, assuming one crew can only be assigned to one
sequence. In Table 5.3, 10 flights and 8 feasible sequences of flights are viewed
respectively as requirements and activities of the set covering problem. The asso-
ciated cost of each sequence of flight is also listed in this table. The problem is to find
crew assignment that covers all 10 flights at a minimal total cost.

In Table 5.3, the number in each column indicates the order of flight legs to be
connected in a given sequence of flights. It is permissible to have more than one crew
on a flight where the extra crews would fly as passengers and would get pay as if they
were working.

To formulate this problem, we begin by forming a node-arc incidence matrix A, having
an entry of " 1 " if a sequence of flight covers a certain flight and "0" otherwise. Then
Table 5.3 can be converted to Table 5.4, which is the incidence matrix A used in this
covering problem. We now formulate the flight crewing problem as a set covering problem.

TABLE 5.3 Feasible Sequences of Flights

Activity (Feasible Sequence of Flights)

Requirement (Flight) 1 2 3 4 5 6 7 8

1 New York to Buffalo 1 1 1
2 New York to Cincinnati 1 1
3 New York to Chicago 1 1 1
4 Buffalo to Chicago 2 2
5 Chicago to Cincinnati 2 3 2
6 Cincinnati to Pittsburgh 2 4 3
7 Cincinnati to Buffalo 3 2
8 Buffalo to New York 4 3 2
9 Pittsburgh to New York 3 5 4
10 Chicago to New York 3 2
Cost ($1000) for each sequence 5 4 4 9 7 8 3 3

110 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

TABLE 5.4 Requirements and Activities of Flight Crew Scheduling Problem

Requirement

1
2
3
4
5
6
7
8
9
10

1

1
0
0
1
0
0
0
0
0
1

2

0
1
0
0
0
1
0
0
1
0

3

0
0
1
0
1
0
1
1
0
0

Activity

4

1
0
0
1
1
1
0
0
1
0

5

0
1
0
0
0
0
1
1
0
0

6

0
0
1
0
1
1
0
0
1
0

7

1
0
0
0
0
0
0
1
0
0

8

0
0
1
0
0
0
0
0
0
1

Step 1

Input parameters:

Decision variable:

Constraint:
Objective:

0-1 incidence matrix (A) given in Table 5.4, cost for
each feasible sequence of flight (cj,j= 1,2, ...,
8), requirement vector (b¡= 1, i= 1, 2, ..., 10)

one 0-1 variable for each sequence of flight (y7- = 1
or 0 , ; = 1,2, . . . , 8)

one constraint for each requirement or flight
minimize the total cost of assigning crews to the

selected sequence of flights

Step 2. Let y¡ = 1 if a crew is assigned to they'th sequence of flights and 0 otherwise.
To ensure that at least one crew is assigned to the first flight, we have constraint

y\ +)>4 +yi > 1 (requirement 1 constraint)

Likewise, we obtain constraints for all 10 flights. Combining these constraints with
the objective function, we obtain the following 0-1 IP model:

Minimize z = 5yx + 4y2 + 4y3 + 9y4 + ly5 + Sy6 + 3y7 + 3y&

(\ 0 0 1 0 0 1 0 \

subject to

0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 0 0
0 0 1 1 0 1 0 0
0 1 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 1 0 0

\ i o o o o o o 1/

/ y i \

ys
ye

yi

\yj

>

i
i
i
i
i
i

M/

yj = 0orl 7 = 1,2,...,!

SET COVERING AND SET PARTITIONING 111

In general, the set covering problem is defined as

Minimize z = cTy

subject to Ay > 1

y e (0,1)

where c is a cost vector representing the costs associated with activities, y is a vector
of 0-1 variables indicating whether the corresponding activity is chosen or not, A is
a 0-1 matrix representing relationships between requirements and activities.

5.2.2 Set Partitioning and Set Packing

The set partitioning problem is the same as the set covering problem except that each
requirement must be exactly satisfied. Mathematically, the > constraints are replaced
by = constraints.

Minimize z — cTy

subject to Ay = 1

y e (0,1)

As an example, consider the problem of delivering orders from a warehouse to
n different stores by m trucks. Each store receives its order in exactly one delivery.
A truck can deliver at most k(k<n) orders (stores). Because a store may fall on more
than one route, a truck may pass a store without delivery of that store's order. It is
required that all orders (stores) must be delivered. Here, activity y represents a feasible
delivery sequence of orders satisfying the truck capacity. The collection of feasible
activities forms a matrix A. The constraint set, Ay = 1, ensures that every order is
delivered exactly by one truck. In a busy day, it may be acceptable that some lower
priority orders can be postponed to a later day. To represent this situation, the set of
constraints becomes Ay < 1. This problem is known as a set packing problem.

5.2.3 Set Covering in Networks

In the domain of an undirected network, the set covering problem can be posed as a
node covering problem. The node covering problem is one of the simplest classes of
combinatorial optimization problems. Consider an undirected network G(V, E) of
n = | V\ nodes and m=\E\ arcs, each arc joining a pair of nodes. A cover is a subset of
arcs such that each of the n nodes is incident or connected to at least one arc of the
subset. A simple covering problem is defined as finding a cover with a minimum
number of arcs. Consider the undirected network in Figure 5.1, consisting of 7 nodes
and 12 arcs. The subset of five arcs in Figure 5.2 is a cover because all the seven nodes
are incident to these arcs. But this five-arc cover is not minimal because a cover using
only four arcs can be obtained by dropping arc (4, 5) from the five-arc cover.

112 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

FIGURE 5.1 An example network.

We begin the IP formulation with constructing a node-arc incidence matrix of
the network, in which row i corresponds to node / and column j corresponds to arc

j . Let A denote node-arc incidence matrix, whose entries are a¡j (i=l,2,...,n;j=l,
2, ..., m). Let column vector a, be the jth arc joining nodes p and q such that
aPj = aqj= 1 and fl,y = 0 if i^p, q. Note that each arc column contains exactly two
elements of l's. The network in Figure 5.1 can be represented by the following
node-arc incidence matrix:

1

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

1

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

1

0

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

1

1

Let variable yj be 1 if the y'th arc is selected and 0 otherwise. The node covering
problem can be formulated as

FIGURE 5.2 A node cover.

SET COVERING AND SET PARTITIONING 113

Minimize z = /^yy

subject to yjfly-yy > 1 J = 1 , 2 , . . . , «

>>,=0orl ; ' = 1,2,..., m

Or in matrix notation,

Minimize z = cTy

subject to Ay > 1

y 6 (0,1)

where cT is a row vector containing m elements of l's, y = (yi, y2> ■ ■-, ym)T,
1 = (1, 1, ..., 1)T, and A is an n x m matrix.

For example, the node covering problem of the graph in Figure 5.1 can be
formulated as follows:

Minimize z = (1 ,1 , . . . , 1)

subject to

1 1 ...

1 0 ...

0 1 ...

0 0 ...

0 0 ...

0 0 ...

0 0 ...

y¡ = 0 or 1

yi

\yn)

/ * \

yi

\yu)

>
l

y = 1 , 2 , . . . , 12

Clearly, the node covering problem defined on an undirected network is a special
case of the set covering problem. Note that each column of matrix A in the node
covering problem contains exactly two 1 ' s, while each column of A in the set covering
problem may contain any number of l's.

5.2.4 Applications of Set Covering Problem

Successful real-world applications of the set covering problem are ample, which can
be classified in three major areas: (1) facility location, (2) scheduling or staffing of

114 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

personnel, and (3) dispatching trucks/vehicles to routes/customers. For each area, we
list below a few sample applications published in the literature.

1. Facility location
• Determine the optimal location for a new fire station that can cover a given set

of dispersed subdivisions, taking into account the average response time from
a fire station to a fire in each subdivision.

• Determine where emergency medical vehicles should be located in Austin,
Texas, so that the number of people receiving adequate emergency service
is maximized within a limited budget (Eaton et al., 1985).

• Determine the least number of new supermarkets to be built to cover
a number of geographically dispersed communities, taking into consid-
eration the distance restriction and concentration of populations (Taha,
2007).

• Determine which subset of a given number of potential transmission towers to
be constructed that can cover a given number of contiguous geographical
communities, taking into account their budgeted construction costs and
maximization of potential population to be served (Guéret et al., 2002;
Taha, 2007).

• In an automated meter reading system for an electricity utility where meters
from several customers are linked wirelessly to a single receiver, meters send
monthly signals to designated receivers to report consumption of electricity
and receivers send data to a central computer to general electricity bills.
The problem is to determine the minimum number of receivers needed to
cover a given number of customers (Taha, 2007).

2. Scheduling or staffing of personnel
• Given a set of scheduled flights and a set of "preferred" flight crews, the

staffing problem is to identify a subset of crews to cover all flights at a minimal
cost. The problem has been modeled as a covering problem by most major
airlines; recent references are Anbil et al. (1991), Hoffman and Padberg
(1993), and Kontogiorgis and Acharya (1999). Other references dating back
to 1957 are provided in the section notes.

• For Pan American World Airways, determine optimal staffing levels for
support staff for ticket counters, baggage loading and unloading, mechanical
maintenance, and others, so that all work requirements are covered (Schindler
and Semmel, 1993).

• For a hospital, determine minimal number of nurses at various levels (RN,
LPN, etc.) to cover the hourly requirements of various nursing functions,
taking into account the upper limit on consecutive work hours.

• Determine the minimal number of patrol police officers required to cover a
given set of beats in San Francisco, taking into account response times (Taylor
and Huxley, 1989).

MATCHING PROBLEM 115

3. Dispatching trucks to routes/customers

• Determine emergency medical service vehicle deployment in Austin, Texas
(Eaton et al., 1985).

• Minimize the number of vehicles to meet a fixed periodic schedule (Orlin,
1982).

5.3 MATCHING PROBLEM

The matching problem belongs to another class of combinatorial optimization
problems in which the constraint matrix A has exactly two l's in each column. They
deal with matching, pairing, or grouping objects such as selecting roommates,
matching males to females, and assigning jobs to workers. The primary applications
of this problem are for the development of matching-based algorithms. Examples
include modeling network flow, routing, scheduling, spanning tree, and portfolio
hedging and tracking.

5.3.1 Matching Problems in Network

The matching problem can be better described by the use of an undirected network.
Consider an undirected network G(V, E) of n = | V\ nodes and m = \E\ arcs, each
arc joining a pair of nodes. The number of arcs incident to node i is called the degree
of node i. The matching problem is to find a subset of arcs in the network such that
at least a certain number of degrees, say bk are connected to node /, where b¡ is a
positive integer. This problem is called the h-matching problem, where b¡ is an
element of b.

The simplest matching problem is to find a matching in which each node can
only be connected by at most one arc. This special case is called 1-matching
problem with b¡ equal to 1 for all i. Consider the undirected network in Figure 5.1,
the subset of arcs {(1, 2), (3, 4), and (5, 6)} is a 1-matching, which is shown
in Figure 5.3. A commonly used objective is to maximize the number of arcs
selected.

FIGURE 5.3 1-Matching for Figure 5.1.

116 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

The 1-matching problem can be formulated as a 0-1 integer program:

m

Maximize z = V V
J=i

m

subject to ¿2ayyj — ^ 1 = 1 , 2 , . . . , «

y,- = 0o r l y = 1 , 2 , . . . , m

where ay is an element of a node-arc incidence matrix of the network and y} = 1 if the
/th arc is included in the matching, and 0 otherwise. Mathematically, the 1-matching
problem is different from the node covering problem in two ways: (1) The objective
function is replaced by maximization, and (2) the constraint set is replaced
by < inequalities. In other words, the node covering problem seeks to minimize the
number of arcs used to cover all nodes in the network, while the 1-matching problem
seeks to maximize the number of arcs to connect nodes subject to at most one arc
can be incident to each node. As a result, not all nodes are connected as shown in
Figure 5.3.

5.3.2 Integer Programming Formulation

The b-matching problem is a generalization of the 1-matching problem, which can be
formulated as a 0-1 IP model:

Max/min z = cTy

subject to Ay < b

y e (0,l)

where c = (1, 1, . . . , 1)T, y = (y,, y2, ■ ■ -, ym) T, b = (bu ..., b„), and A is a node-arc
incident matrix with each column containing exactly two elements of l's. The
matching problem can be a maximization or minimization problem. For example,
find a maximum number of matching in the roommate selection problem, or find a
minimum number of arcs forming a closed route in the postman problem.

When c is a vector of weights associated with variables, instead of 1 's, the problem
is called a weighted b-matching. When the constraint set is Ay = 1, as in the set
partitioning problem, the problem is called a weighted perfect matching.

In a weighted perfect matching problem, if the pairing objects are selected from
two disjoint sets, then it becomes the classical assignment problem. Examples
include assigning a set of workers (machines) to a set of jobs, assigning a set of
plants to a set of potential locations, and assigning a set of tasks to a set of time slots.
All of these assignments deal with pairing of objects from two disjoint sets. This
problem can be represented by a bipartite network. In this bipartite network, a node
in one set is connected to nodes in the other set, but the nodes of the same set are not
connected.

CUTTING STOCK PROBLEM 117

5.4 CUTTING STOCK PROBLEM

Production activities in industries such as paper, textiles, plastic food wrap, aluminum
foil, and steel sheet typically involve two stages. In the first stage, products are
manufactured in large standard sizes, usually of a small variety due to economical and
machinery considerations. In the second stage, these large standard sizes are cut into
smaller ordered sizes, usually of a larger variety to satisfy diversified customer orders.
The determination of how to cut the (larger) standard sizes into the (smaller) ordered
sizes at minimum cost is called the cutting stock problem.

The cutting stock problem can be one or two dimensional. If all the ordered sizes
are cut either horizontally or vertically, the problem is one dimensional. For example,
a standard sheet of 72 in. width and 100 ft length can be slit horizontally into three
pieces of 24 in. width and 100 ft length or vertically into four pieces of 72 in. width and
25 ft length. If an ordered size is made by both horizontal and vertical cuts, the
problem is two dimensional.

For a given standard width (or standard length), usually there are many ways of
cutting it into ordered widths (or ordered lengths). Each such way is called a cutting
pattern. Figure 5.4 shows a possible cutting pattern from a roll of width W, which
includes two rolls of width wu one roll of w2, and one roll of trim loss T. Specifically,
if W= 12 ft, W] = 3 ft, and w2 = 5ft, then there are seven possible cutting patterns
as shown in Figure 5.5. However, patterns 4-7 that have trim loss greater than or equal
to the smallest ordered width (i.e., >3 ft in this case) can be discarded. Therefore,
only the first three patterns are effective.

5.4.1 One-Dimensional Case

Assume that there are available a sufficiently large number of rolls of a single standard
width W, all having the same length L, that can be cut into at least b¡ pieces of the
ordered widths H>, (/= 1, 2, . . . , m). A one-dimensional cutting stock problem is to
determine how to cut rolls of the standard width into various ordered widths so that
the required number of rolls (assuming trim pieces are useless) is minimal while
satisfying the ordered quantity (b¡) of each width (w,).

Length L ►

FIGURE 5.4 A cutting pattern from a roll of width.

118 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

12 ft

Cutting
pattern 2 3 4 5

FIGURE 5.5 Another cutting pattern.

Let vector a,- denote the y'th cutting pattern, whose component a¡j denotes the
number of pieces in width w, that can be generated from a standard width W.
Mathematically,

/av\

\amjj

Note that a¡¡ is a nonnegative integer that must satisfy the following condition:

m

Tj = W~Y^ w¡aij ^ °

where 7} < min w¡ is the trim loss associated with they'th cutting pattern. For example,
the first three cutting patterns given in Figure 5.5 can be represented by

a i = o ' " 2 = i ' a 3

0

with T{ = 0, T2 = 1, and T3 = 2, respectively.
Following the modeling procedure described in Chapter 2, we formulate this

problem.

CUTTING STOCK PROBLEM 119

Step 1

Input parameters: standard width (W), ordered widths (w,-, / = 1, 2,
..., ni), required number of rolls of ordered
widths (bj, i = 1, 2 , . . . , m), all cutting patterns
to be used (a^y = 1,2, . . . ,«)

Decision variables: number of standard rolls (jy-, 7}) to be cut
according to the yth pattern

State variables: trim losses (Tj,j= 1,2, . . . ,«)
Constraint: total number of each ordered width w, made must

be at least b¿
Objective: minimize the number of standard rolls needed

Step 2. The given cutting stock problem becomes

n

Minimize / ~ \
7=1

n

subject to ¿Jûi/vy >b¡ i = 1,2,..., m
y=i

yj > 0 and integer j = 1,2,... ,«

If a cost cy is incurred with each cut using pattern a7, then the above objective
function can be changed to minimize the total cost:

n

Minimize Tjc/Vy
7=1

The above formulation can be extended to one-dimensional problem with multiple
standard widths (W*, k = 1, 2 , . . . , K) with a fixed length L. For each standard width
W*, let nk be the number of patterns, y1- be the number of theyth pattern to be cut, and c1-
be the associated cost of cutting each y'th pattern. Then the jth pattern can be
represented by a vector a1-, whose rth component is d¡¡. We have the IP model for
multiple standard widths:

K nk

Minimize y ^ y Y ^ y f
k=\j=l

K nk

subject to y^y^flft-yf >bi i = 1,2,..., m
k=\j=\

yj > Oand integer j = 1,2,... ,nk; k = l,2,...,K

120 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

Note that d\, is a nonnegative integer that must satisfy the following condition:

m

1=1

The difficulty of cutting stock problem is that the number of possible cutting
patterns n is usually too huge to enumerate them all. For example, with a roll of width
20 in. and demand for 40 different widths ranging from 20-80 in., the number of
cutting patterns can exceed 100 million (Gilmore and Gomory, 1961). The number of
cutting patterns is multiplied when there are multiple standard widths to be cut from.

Therefore, the IP model of a cutting stock problem is rarely solved exactly. In
practice, its LP relaxation is solved by using Dantzig-Wolfe decomposition principle
through a column generation technique. The details of such a solution approach will
be discussed in Chapter 13.

5.4.2 Two-Dimensional Case

A two-dimensional cutting stock problem allows both horizontal and vertical cuts to
get the ordered sizes. That is, rolls of standard width W and length L can be cut into b¡
number of rectangular pieces of size w¡ x /,(i = 1, 2 , . . . , m). For example, given an
unlimited number of standard rolls of size 4 ft x 10 ft and a demand of five rectangular
pieces of size 2 ft x 4 ft and three pieces of size 3 ft x 7 ft, the problem is to determine
the minimal number of rolls that satisfies the demand.

Similar to the one-dimensional problem, a set of suitable cutting patterns must be
generated first to model the problem. Figure 5.6 shows two sample cutting patterns
for the above example.

10

FIGURE 5.6 Examples of two-dimensional cutting patterns.

COMPUTATIONAL COMPLEXITY OF COP 121

Let Gybe the number of rectangular pieces of size M>, x /,(/= 1,2,.. .,m) generated
by the y'th cutting pattern. For example, the cutting patterns in Figure 5.6 are,
respectively, represented by

ai = I I and a2 =

Given the cutting patterns, the IP model of the two-dimensional case is the same as
that of the one-dimensional case. However, due to the added dimension, the cutting
pattern generation inequality and the column generating technique mentioned in
the one-dimensional case cannot be used. Heuristics may be used to generate only the
patterns that are likely to appear in the optimum solution.

In reality, the cost function of a cutting stock problem is more complex than the
one described above. Schräge (2000) provides a list of additional cost considerations
that are important in formulating a practical cutting stock model.

5.5 COMPARISONS FOR ABOVE PROBLEMS

The five problem types of the COP described in this chapter (namely, set covering,
set partitioning, node covering, matching, and stock cutting) belong to a broader class
of a pure IP model given below:

Find an integer vector y
such that objective function z = cTy is minimized or maximized

subject to a set of equality or inequality constraints: Ay {> or = or <}b

The individual members of this class are distinguishable by their types of decision
variables y (0-1 or general integer), types of optimization (min or max z), types of
parameters (cT, A, and b), and types of relation (>, =, or <) between the left-hand and
right-hand sides of the constraint set. For clarity, Table 5.5 provides comparisons for
these problems.

To better understand the degree of difficulty for solving COB in particular, and IP
in general, the basic concepts of the computational complexity of a problem and of
an algorithm are explained next.

5.6 COMPUTATIONAL COMPLEXITY OF COP

A few people tend to overestimate the solution power of a computer (hardware) and
underestimate the solution power of an algorithm (software). In fact, the solution
power of an algorithm often exceeds the solution power of a computer. In what
follows, we shall demonstrate how an algorithm affects the size of a problem that can
be solved.

122 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

TABLE 5.5 Comparison of Five Problems

y

z
cT

A

b

Relation

Set Covering

0, 1

Min
Vector of real

values
Any 0-1

matrix

(1 ,1 ,1)T

>

Set
Partitioning

0, 1

Min
Vector of real

values
Any 0-1

matrix

(1 ,1 , . . . ,1) T

=

Node
Covering

0, 1

Min
(1 ,1 , . . . , 1)

0-1 Matrix
with two
Is in each
column

(1 ,1 ,1) T

>

Matching

0, 1

Min or max
Vector of real

values
0-1 Matrix

with two
Is in each
column

Positive inte-
ger vector

> or <

Stock
Cutting

Positive
integer

Min
Vector of real

values
Positive inte-

ger matrix

Positive inte-
ger vector

>

In a practical sense, a combinatorial optimization problem can be viewed as a
decision problem from which an optimum solution can be found among a finite set of
feasible solutions that can be obtained by explicit enumeration of all possible
combinations. Such a solution algorithm is known as complete enumeration.
A grave shortcoming of complete enumeration is that the set of feasible solutions
normally is too huge to handle, even for a small problem. In other words, solving a
combinatorial optimization problem can be algorithmically simple but computa-
tionally intractable.

To show this, consider the knapsack problem discussed in Section 2.2. The
problem deals with the optimal selection of a subset from a given set of items subject
to a given knapsack capacity. The number of all possible feasible solutions is equal to
the sum of combinations of selecting any one item from the given n items, any two
items, and so on, which equals to

Cï + C"2- + C"+C" = 2"-\

Note that the number of all possible solutions increases exponentially in about 2"
as n increases. If n = 20, there are over 1 million (106) possibilities; if n = 30, over
1 billion (109); if « = 40, over 1 trillion (1012); if « = 50, over 1000 trillion (1015);
and if n = 60, over 1 million trillion (1018). Roughly, each additional 10 items will
take nearly 1000-fold of additional computer time. On average, each such possible
solution requires In arithmetic operations and comparisons.

Now suppose we have a computer that could calculate an arithmetic operation at
a speed of light, that is, it can perform 8 trillion arithmetic operations per second.
The complete enumeration algorithm would take over 4 years to solve a 70 item
knapsack problem and would take over 4000 years to solve an 80 item problem.

In this section, we provide a brief, practical view of computational complexity for
the combinatorial optimization problem.

COMPUTATIONAL COMPLEXITY OF COP 123

5.6.1 Problem Versus Problem Instance

The word problem used in the domain of computational complexity is referred to as a
class of problems having a common set of characteristics. For example, the knapsack
problem is defined as a class of problems that is to determine an optimal subset of
items within a prescribed knapsack capacity. The set covering problem is another
class of problems that is to determine an optimal combination of activities covering all
the prescribed requirements. In general, a problem is defined in terms of the types
of its goal (min or max), decision variables, and constraints. To solve a particular COP
problem, parameters such as c, A, b, m, and n must be specified. A problem, after
specification of its parameters, is called a problem instance. The warehouse location
problem in Example 5.1 and the flight crew scheduling problem in Example 5.2 are
problem instances.

5.6.2 Computational Complexity of an Algorithm

For a given algorithm, a mathematical function is often used to describe the growth of
computational effort as problem size increases. Such a function is called computa-
tional complexity of algorithm. For example, the complete enumeration for the
knapsack problem of size n has a computational complexity of 2", an exponential
function.

Clearly, the size of an IP problem is a function of the number of integer variables n,
the number of constraints, and the density of nonzero elements in a coefficient matrix.
Traditionally and practically, however, only the number of integer variables is
considered in the determination of the computational complexity (or complexity,
for short) of an algorithm. Two reasons are behind this. First, an IP problem of more
constraints does not necessarily require more computation time, based on Section 4.1.
In fact, the reverse is often true. Second, the issue of the sparsity of matrix is problem
specific or data specific, which is considered in the implementation of a given
algorithm.

Ideally, an exact function in n is used to represent the computational complexity
of an algorithm, sometimes even to a detailed level of counting the exact number
of elementary operations (+ , —, x, /, comparisons) required to solve a problem
instance. However, an exact function is often unattainable, in which case, an
approximate function is used instead, and only the order of complexity for a large
problem n is considered. For this purpose, the big O notation is commonly used in the
theory of computational complexity to express an approximate upper bound com-
putational effort for a given algorithm to solve a problem instance of size n. The
expression

g(n) = 0(f(n))

means that there exists a constant k > 0 and a small integer n0 such that

g(n)<k-0(f(n))

124 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

for all n > n0. In other words,/(n) gives a functional form of an upper bound on the
value of g(n) for a large n. The computational complexity of the given algorithm is
then said to be 0(f(n)), pronounced "a big-oh function of/(«)." For example, let

g(n) = an + b

Then the complexity is 0(n) for all n > 1 because

g(n) < an + bn = (a + b)n

where k = (a + b) > 0, n0 = 1, and f(n) = n.
Note that the big O notation provides an upper bound on how poor an algorithm

could be. It gives no information about how good an algorithm is.
Although the big O notation gives an approximate upper bound on the computa-

tional effort for a specified problem size, it should not be assumed that all problem
instances of the same size require the same computational effort. Various problem
instances of a given size may take different amounts of effort. Therefore, in practice,
an average of computation times of problem instances is often taken to represent the
performance. In addition, the worst-case and best-case analyses are also used.

5.6.3 Polynomial Versus Nonpolynomial Function

Unlike the complete enumeration algorithm, the computational complexity of most
COP algorithms often cannot be exactly determined. In this case, an approximate
function is estimated for the worst-case or average-case situations.

Based on the type of mathematical function, all algorithms are classified into two
categories: polynomial time and nonpolynomial time. When the function is poly-
nomial, the algorithm is said to be of polynomial complexity (or to be polynomially
bounded) and such a polynomial algorithm is considered to be "easy" or efficient.
Conversely, a nonpolynomial function is considered to be "hard" because the
algorithm is capable of solving only a very small problem.

For example, if g(n) = 6n2 + 15« + 40, then 0(f(n)) = 0(n2). Both g(n) and/fa)
are polynomial functions except that the latter is a simplified form indicated by the
order of the most significant term of the former. We say that the given algorithm has
a polynomial function and the associated algorithm is considered to be easy.

Consider another example. The big O complexity of g(n) — 2"~{ + n2 + 10 is
0(f{n)) = 0(2"~l), or more loosely 0(2"). We say that the algorithm has a non-
polynomial complexity and is considered to be hard.

Other forms of polynomial functions frequently used in the COP include 0(na)
and 0(ne), where n is the problem size (a variable), e is well-known constant
approximately equal to 2.7183, and a is a positive constant. Other forms of
nonpolynomial functions frequently used in the COP include 0(e") and 0(a"), where
e and a are positive constants and n is a variable. The forms of these big O functions
can be further reduced or approximated to 0(n2) for polynomial and 0(2")
for nonpolynomial functions, respectively. The distinction of the two is that a

NOTES 125

TABLE 5.6 Polynomial Versus Nonpolynomial Function

n n2 2"

1
10
100
1000

1
1 x 102

1 x 104

1 x 106

1.02 x 103

1.27 x 1030

1.07 x 1030

nonpolynomial function has a constant base (2 or a) and a variable exponent («), while
a polynomial function has a variable base (n) and constant exponent (2 or a). To help
the reader perceive how great is the difference on the computational complexity
between the two functions, we give Table 5.6 and Figure 5.7. A problem is said to be a
polynomial problem if there exists at least one polynomial-time algorithm. A
problem is said to be a nonpolynomial problem if no polynomial-time algorithms
have been found.

5.7 NOTES

Section 5.2

For the airline crew scheduling problems, see Anbil et al. (1991), Arabeyre et al.
(1969), McCloskey and Hannsmann (1957), Baker and Fisher (1981), Hoffman and
Padberg (1993), Kontogiorgis and Acharya (1999), Miller et al. (1976), Schindler and
Semmel (1993), and Thirez (1968).

10,000-,

8000-

6000-

4000

2000

FIGURE 5.7 Polynomial versus nonpolynomial function.

126 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

For the staffing problem, see Agnihothri and Taylor (1991), Andrews and Parsons
(1993), Aykin (1996), Rothstein (1973), Schindler and Semmel (1993), Taylor and
Huxley (1989), and Warner (1976).

For the vehicle dispatching problems, see Agarwal et al. (1989), Balinski and
Quandt (1964), Brown et al. (1987), Clarke and Wright (1964), Dantzig and Ramser
(1960), Eaton et al. (1985), Lasky (1969), and Orlin (1982).

For assembly line balancing and information retrieval problems, see Salveson
(1955) and Day (1965), respectively.

Section 5.3

For a survey on the matching problem, see Balinski and Quandt (1964) and Balinski
(1965). For developing matching-based algorithms, see Edmonds and Johnson (1973)
and Balletal. (1983).

Section 5.4

For the cutting stock problem, see Dyckhoff (1981), Farley (1990), Gilmore and
Gomory (1961, 1963), and Schräge (2003).

Section 5.6

See Ausiello et al. (1999) for a complete description on the computational complexity
and approximation.

5.8 EXERCISES

5.1 Consider the pure integer program with bounded variables yj<K 0 = 1 ,
2, ..., n), where K\s & positive integer.

(a) Show that the set of all possible solutions can be completely enumerated.
(b) Show that the computational complexity of complete enumeration is

nonpolynomial.

5.2 Given the graph below, (a) identify two different node covers; (b) set up its
node-arc incidence matrix; and (c) formulate an IP model for finding a
minimum cover of the graph (Figure 5.8).

5.3 Give two real-world applications of the set partitioning problem that have not
been mentioned in this text.

5.4 Find a real-world application of cutting stock problem. {Hint: Search on
Internet with appropriate keywords). Is it one dimensional or two dimensional?
Is the problem formulated mathematically? If yes, give the formulation. If no,
how will you formulate it? Can you think of an example of three or more
dimensional problem?

EXERCISES 127

FIGURE 5.8 A simple graph.

5.5 (A Broker Model) A broker is placing m bids on « jobs. Each bidy can generate
a possible profit of Wj, and each job i can only be bid at most once. Each bid
either includes a job or not. The broker is trying to maximize the total profits
generated by the bids.

(a) Formulate the problem as IP.

(b) What type of COP does this one belong to?

5.6 Based on Eaton et al. (1985) Gotham City has been divided into eight districts.
The time (in minutes) that an ambulance takes to travel from one district to
another is shown in Table 5.7. The population of each district (in thousands)
is as follows—district 1: 40, district 2: 30, district 3: 35, district 4: 20, district
5:15, district 6:50, district 7:45, and district 8:60. Suppose Gotham City has n
ambulance locations. Determine the locations of ambulances that maximize
the number of people who live within 2 min of an ambulance. Do this
separately for n — 1, n = 2, n = 3, and n = 4.

5.7 (Schräge, 2003) Suppose you manage your company's strategic planning
department. There are eight analysts in the department. Your department is
about to move into a new suite of offices. There are four offices in the new suite

TABLE 5.7 Travel Distances for Gotham City Problem

To

From

1
2
3
4
5
6

1

0
3
4
6
8
9

2

3
0
5
4
8
6

3

4
5
0
2
2
3

4

6
4
2
0
3
2

5

8
8
2
3
0
2

6

9
6
3
2
2
0

7

8
12
5
5
2
3

8

10
9
7
4
4
2

8 12
10 9

128 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS I

TABLE 5.8 Analysts' Incompatibility Ratings

Analysts 1

5.8

5.9

and you need to match up your analysts into four pairs, so that each pair can be
assigned to one of the new offices. Based on past observations, you know some
of the analysts work better together than they do with others. In the interest of
departmental peace, you would like to come up with a pairing of analysts
that results in minimal potential conflicts. To this goal, you have come up with
a rating system for pairing your analysts. The scale runs from 1 to 10, with a 1
rating for a pair meaning the two get along fantastically, whereas all sharp
objects should be removed from the pair's office in anticipation of mayhem
for a rating of 10. The ratings appear in Table 5.8.

Since the pairing of analyst / with analyst J is indistinguishable from the
pairing of J with /, we have only included the above diagonal elements in the
table. Our problem is to find the pairings of analysts that minimizes the sum
of the incompatibility ratings of the paired analysts.

Find a node cover and a 1-matching for the following network (Figure 5.9).

(Zionts, 1974. Used with permission) A lumber yard stocks 2 in. x 4 in. beams
in three lengths: 8 ft, 14 ft, and 16 ft. The beams are sold by foot and no charge
is made for cuts. The yard has an order for the following lengths:

80

60

200

100

12ft lengths

10ft lengths

8ft lengths

4ft lengths

dy-<¿>^}—0

0
FIGURE 5.9 A simple network.

EXERCISES 129

TABLE 5.9 Transmission Tower Data

Transmission Tower Covered Population Centers Cost ($M)

1 1,2, 3 2.3
2 3,5,7 1.5
3 1,6,9 1.9
4 2,4, 8,9 3.1
5 4,5,7,11,12 2.7
6 10,11,12 2.0

The cost of the 2 x 4's to the lumber yard is $0.30 per 8 ft length, $0.60 per 14 ft
length, and $0.70 per 16 ft length. Cutting costs can be assumed to be zero.
Assuming that the lumber yard has enough of each of the three lengths in stock,
what is the minimum cost method of filling the order?

5.10 Plywood is sold at Walls-are-Us in 48 in. x 96 in. rectangular sheets. A large
job at a local construction site requires the following:

100 36in. x 48in. pieces

200 24in. x 35in. pieces

50 20in. x 48in. pieces

100 16in. x 30in. pieces

How many standard sheets of ply wood should be purchased to minimize the cost
to the contractor, assuming any cutting patterns are feasible and cutting is free of
cost?

5.11 A cellular telephone service provider plans to offer service in a developing
country, with 12 population centers (the rest is uninhabited mountainous
terrain). The company has budgeted 10 million dollars to construct as many as
6 transmission towers to cover as much population as possible in the 12
population centers. The centers covered by each transmitter and the cost of
construction are shown in Table 5.9.

The following table contains the population at each center:

Center 1 2 3 4 5 6 7 8 9 10 11 12
Population 5 4 17 7 8 10 8 3 6 15 9 10
(in thousands)

Which of the proposed transmission towers should be constructed?

6
MODELING COMBINATORIAL
OPTIMIZATION PROBLEMS II

This chapter deals with perhaps the most important class of combinatorial optimiza-
tion problem: the traveling salesman problem (TSP) and its variants. Its purposes
include (1) explain why the TSP is so important, (2) describe how to transform a variety
of problems into a standard TSP, (3) provide a wide range of real-world applications of
TSP, and (4) introduce several popular IP formulations for the TSP.

6.1 IMPORTANCE OF TRAVELING SALESMAN PROBLEM

The traveling salesman problem perhaps has been the most well-studied combinatorial
optimization problem. Since the seminal paper published by Dantzig et al. (1954), the
TSP has been actively and systematically studied by mathematicians, operations
researchers, management scientists, and computer scientists for over five decades.
During this period, thousands of refereed papers have been continuously published in
the literature on TSP theories, formulations, applications, algorithms, and computa-
tions. In the two TSP books published in Gutin and Punnen (2002) and Applegate
et al., (2006), the total number of distinct papers cited already exceeded 1000.

The TSP perhaps plays the most important role in the combinatorial optimization
problem because over the decades it has been regarded as a representative or typical
model of the combinatorial optimization problems whose computational complexity
is of nonpolynomial (i.e., the problem is "hard" to solve). The TSP has been a primary
driving force for the development of novel optimization concepts and solution

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

130

IMPORTANCE OF TRAVELING SALESMAN PROBLEM 131

TABLE 6.1 Milestones of TSP Instances Solved

Year

1954
1971
1975
1977
1980
1987
1987
1987
1994
1998
2001
2004
2004
2006

No. of Cities

49
64
67
120
318
532
666
2392
7397
13,509
15,112
24,978
33,810
85,900

Data Set

dantzig42
random points
random points
grl20
lin318
a«532
gr666
pr2392
pla7397
usai 3509
dl5112
sw24978
pla33810
pla85900

Research Team

Dantzig, Fulkerson, Johnson
Held and Karp
Camerini, Fratta, Maffioli
Grötschel
Crowder and Padberg
Padberg and Rinaldi
Grotschel and Holland
Padberg and Rinaldi
Applegate, Bixby, Chvátal, Cook
Applegate, Bixby, Chvátal, Cook
Applegate, Bixby, Chvátal, Cook
Applegate, Bixby, Chvátal, Cook
Applegate, Bixby, Chvátal, Cook
Applegate, Bixby, Chvátal, Cook

Sources: www.tsp.gatech.edu (Applegate, 2007) and Applegate et al. (2006).

algorithms. For example, many AI algorithms, such as genetic algorithms, simulated
annealing, and Tabu search, and many heuristic schemes, such as Lin-Kernighan's k-
opt and the nearest-neighboring city, were developed at least in part to solve the TSP.

Commonly, the performance of an IP algorithm is measured by how large a TSP
instance can be solved. Table 6.1 displays the milestones of the sizes of TSP instances
that have been solved to optimality. The table marks the year, the problem size, and the
contributor(s) when a particular sized TSP instance was solved to optimality. Many
test data sets of the TSP are true distances on the road maps of the world's continents.
For example, the data set dl5112 is a map of 15,112 cities in Germany, usa 13509 is a
map of 13,509 cities in USA, and sw24978 is a map of 24,978 cities in Sweden.
However, pla33810 and pla85900 are data sets derived from the application of TSP to
integrated circuits (Applegate et al., 2006). These data sets can be found in TSPLIB, a
library of sample instances for the TSP and related problems, maintained by Reinelt
(1991,2007). The largest six TSP instances in Table 6.1 were solved by a TSP solver
called Concorde. The computer code is developed by the research team of Applegate
et al. and written in the ANSI C programming language. "The full source code to the
optimization package, as well as exécutables for various platforms, and a Windows
graphical user interfaces to Concorde's traveling salesman solver are available for
academic research use; for other uses, contact William Cook for licensing options"
(www.tsp.gatech.edu). The user is suggested to download the Concorde package and
try some TSP instances from the data sets of TSPLIB.

It is interesting to note that the ability for solving a large-scale TSP instance
progressed very slowly in the first two and a half decades (1950s to mid-1970s)
and progressed rapidly in the last three decades (mid-1970s to mid-2000s). The giant
leap in computational capability is perhaps due to, among others, the introduction of
novel solution approach called the branch-and-cut, which will be discussed in
Chapter 12.

132 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

Another interesting observation is that prior to 1980s, the areas of TSP applications
were limited, perhaps due to the small size of the TSP that could be solved. Most
applications then were in the areas of machine sequencing in manufacturing and vehicle
routing in transportation. After 1980s, areas of application are expanded to genome
mapping of human and animals in life science, and circuit printing in the electronic
industry. More details about these applications will be provided in the next section.

The statement of the traveling salesman problem is rather simple: A traveling
salesman is to visit a number of cities and the distance connecting two cities are
known; the problem is to find a shortest route that starts from a home city, visits other
cities exactly once, and returns to the home city.

In graph theory, the TSP is commonly represented by a graph or network. A network
is composed of a set of nodes (or vertices), a set of arcs (or edges) connecting nodes, and a
known length (or distance) associated with each arc. An arc may be either undirected or
directed. A directed arc allows travel only in the direction specified, while an undirected
arc allows travel in either direction of the same length. Thus, any undirected or mixed
network can be converted to a directed network by replacing any undirected arc by a pair
of opposite directed arcs of the same length. Cities in a TSP are represented by nodes, and
links between cities are represented by directed arcs. If a TSP is defined over a network
(or digraph) of directed arcs, then it is called an asymmetric TSP. If a TSP is defined over
a network consisting entirely of undirected arcs, it is called a symmetric TSP. Unless
specified otherwise, we shall assume that the network is directed and replace any
undirected arc by a pair of opposite directed arcs of the same length.

A cycle in a directed network is a sequence of nodes of the network such that it is
possible to move from node to node, along directed arcs of the network, so that the
selected nodes are encountered exactly once, except that the ending node is also
the starting node. If a cycle contains all the nodes of the network, it is called a
Hamiltonian cycle. For example, the directed network given in Figure 6.1 has a
Hamiltonian cycle {(1, 2), (2, 5), (5,6), (6,4), (4,3), (3,1)} as depicted by the dotted
lines. The TSP for a directed network with specified arc lengths is the problem of
finding a Hamiltonian cycle of shortest length. A Hamiltonian cycle in the TSP is also
called a tour. Any cycle that contains less than all the nodes in the network is a subtour.

FIGURE 6.1 Hamiltonian cycle.

TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM 133

6.2 TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM

There are many problems that are minor variations of the TSP and can be
easily transformed into the standard TSR As a result, any efficient algorithm for
solving the standard TSP can also be used to solve these variants, which extends the
scope of the algorithmic application. In this section, we briefly describe and show how
to transform the following problems into the standard TSP:

• Shortest Hamiltonian paths
• TSP with repeated city visits
• Multiple traveling salesmen problem
• Clustered TSP
• Generalized TSP
• Maximum TSP

Note that most variants can be formulated directly as integer programming
models without using the transformations. The reader may attempt the models or
see the cited references for formulations. Here, our purpose is to show how to
transform each of these variants to a standard one. Note that the transformation
may be reversed in some variants, for example, transforming a standard TSP to
a shortest Hamiltonian path. Thus, knowing the reverse transformation can
be beneficial if an efficient algorithm is available for finding a shortest Hamiltonian
path.

6.2.1 Shortest Hamiltonian Paths

A path that starts from an arbitrary node, ends at another arbitrary node, and visits all
other nodes exactly once in a given directed network is called a Hamiltonian path
(or H-path). The shortest Hamiltonian path problem is a problem to find a //-path with
the shortest distance.

A shortest //-path problem can be transformed into an equivalent TSP by
constructing a new network G' from the original network G as follows. We add a
new node (say n + 1) and new bidirectional dotted arcs (with distance 0) that,
respectively, connect the new node with every node in the original network, as shown
by the dotted arcs in Figure 6.2a. Now the shortest H-path problem on an n-node
network G is equivalent to an (n + l)-node TSP on network G'. Solving the TSP on
network G', we obtain a shortest //-path, starting from node 5 and ending at node 2, as
shown by the dotted arcs in Figure 6.2b.

Suppose the starting node is specified, say nodel. Then the shortest //-path
problem can be transformed to the TSP by constructing a new network as follows.
We add a directed arc with distance 0 to node 1 from every other node in the network,
as shown by the dotted arcs in Figure 6.2c. Now the shortest //-path problem is
equivalent to an n-node TSP on the new network.

MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

FIGURE 6.2 (a) Transformed TSP from H-path problem, (b) shortest Hamiltonian path, and
(c) shortest H-path from node 1 to any node.

6.2.2 TSP with Repeated City Visits

Suppose that we have a standard TSP, except that it is required to visit each city at least
once instead of exactly once. The challenge is: how to transform this problem to a
standard TSP? We construct a new network with arcs representing the shortest paths
between each pair of nodes. To show this construction, we consider a simpler network
given in Figure 6.3a to obtain a new network in Figure 6.3b. Comparing these two
figures, observe that in Figure 6.3a we have a shortest path from node 1 to node 4, {(1,
2), (2, 4)}, which has a shortest distance 7, shorter than the directed arc (1, 4) of
distance 9. Now the TSP with multiple city visits is equivalent to a standard TSP

TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM 135

(c)

FIGURE 6.2 {Continued)

defined on the new network. In other words, we simply replace the given distance
matrix by a new one whose elements are the distances of shortest paths between all
pairs of nodes. Determination of shortest distances between all pairs of nodes can be
easily computed in polynomial time 0(n3) by a variety of shortest path algorithms.

6.2.3 Multiple Traveling Salesmen Problem

The multiple traveling salesmen problem (MTSP) can be stated as follows: Given a
home city (node 0) and a set of«— 1 customer cities (nodes 1,2,...,«— 1) to visit, the

(a)

FIGURE 6.3 (a) TSP with repeated city visits; (b) transformed TSP from TSP with repeated
city visits.

136 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

(b)

FIGURE 6.3 (Continued)

problem is to determine how many of the m salesmen should be utilized and to
determine their respective routes that starts from and returns to the home city 0, so that
the total distance traveled is minimized, subject to the constraint that each city (except
home city) is visited once by one and only one salesman, where a fixed cost^, (p = 0,
1,..., m — 1) is incurred if salesman/? is activated and a distance cost c(i,j) is incurred if
arc (/,_/) is traversed. Assuming the network is directed, the MTSP can be transformed
to a standard asymmetric TSP by modifying the original network as follows:

1. Arrange the fixed costs of the salesman in ascending order:

/ 0 < / l < / 2 < •■• < / m - l

2. Add dummy nodes, labeled by —1, —2, .. . , —(m — 1), as a home city for
salesman 2, 3, ..., m, respectively.

3. Add a directed arc (-/,/) for each i = 1, 2 , . . . , (m - 1) and each arc (0,/) with
distance c'(-i,j) = c(0,fi + l/2f¡.

4. Add an directed arc (/', —z) for each arc (j, 0) with distance c'(j, —i) = c(j, 0) + 1/
2f,

5. Add a directed arc (—j, —(/— 1)) for every pair of ¡'=1,2, ..., (m — 1) with
distance d{-i, -(i-l))=l/2f¡_i - 111 f¡.

Applying the above procedure, we obtain a new network as shown in Figure 6.4.
Suppose we apply a standard TSP algorithm to solve the new network and obtain the
following optimal tour: {(0, 1), (1,4), (4, -2) , (-2 , -1) (- 1 , 2), (2, 3), (3,0)}. Then
the corresponding optimal solution to the MTSP is interpreted as follows: Salesman 0
visits customer cities 1 and 4; salesman 2 visits no customer city; and salesman 1 visits
customer cities 2 and 3. To obtain the total cost for the MTSP, we simply sum up the
fixed and distance costs for salesmen 0 and 1.

TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM 137

FIGURE 6.4 A multiple traveling salesmen problem.

Note that the transformed network is a directed network and the transformed TSP is
an asymmetric TSP. Other transformation schemes are available (see Section 6.6 for
references).

6.2.4 Clustered TSP

The clustered TSP can be stated as follows. Start with a directed network G = (N,A) in
which the set of nodes N is partitioned into & disjoint clusters of nodes N{,N2, ■ ■ -,A^.
The problem is to find a least cost tour in G subject to the constraints that nodes within
the same cluster must be visited consecutively. This problem can be transformed to the
standard TSP by adding a large cost M to the cost of each intercluster arc.

6.2.5 Generalized TSP

The generalized TSP can be stated as follows. Start with a directed network G = (N,A)
in which the set of nodes N has been partitioned into k disjoint clusters of nodes N\,
N2, ■ ■., Nk, where \N¡\ > 1 for 1 < i < k. Then, the definition of the generalized TSP
varies somewhat in the literature. Here, we define the generalized TSP as a problem,
to find a least cost tour in G that passes through exactly one node from each cluster N¡,
1 < i < k. In particular, if \N,■ | = 1 for 1 < / < k, then the generalized TSP is reduced to
the standard TSP. Now we show how to transform a generalized TSP to a standard TSP
according to Noon and Bean (1993). Basically, a new network is constructed from the
given network by adding some new arcs and adjusting the connection of some old arcs.
The procedure is given below:

138 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

1. For each cluster of |Ni| > 1, we arbitrarily label the nodes as nn, ni2,..., n¡p. and
form a cycle within cluster iV,-, say {(nñ, «¿2). («12, "¿3). • • •> (ni,P¡-\,n¡tP¡), {n¡tP¡,
na)}. For example, the dotted lines in Figure 6.5b shows a cycle within cluster
N4 of the give network in Figure 6.5a.

FIGURE 6.5 (a) Original network for generalized TSP; (b) transformed network for
generalized TSP.

APPLICATIONS OF TSP 139

2. For each added arc {ny, n¡j+l), we associate a cost of zero: c'(nñ, ni2) =
c'(ni2, ni3) = ■■■ = c'(n^p.-u nUp) = c'{n¡iP¡, nn) = 0.

3. For each outgoing arc (ny, rikq) from a cluster, we replace it with arc («,-,_/_i, nkq)
such that «ij-i, n¡j£Ni,nkq£Nk, and k^i. Its associated cost is adjusted as
follows: c'(n,j_i, nkq) - c(ny, nkq) and c'(niU nkq) = c(nUp¡, nkq).

4. For each remaining arc, its connection and cost remain unchanged.

Figure 6.5b depicts the transformed network G created from the given network G
in Figure 6.5a. Step 2 implies that once a TSP tour enters cluster N¡ through ny, it will
visit all other nodes in N¡ following a predetermined cycle without additional cost. But
the TSP tour must leave cluster N¡ from node H/J-I rather than from node ny.

Step 3 ensures that a generalized tour visits exactly one node in each cluster N¡ For
example in Figure 6.5b, there are three arcs leaving from cluster N4. If the entering
node ny is node 6, then its preceding node n¡ ¡_ \ is node 7. Thus, arc (6,1) is replaced
by arc (7, 1) with cost c'(7, 1) = c(6, 1). Similarly, we have c'(8,2) = c(l,2) and d(\,
4) = c(8,4). This step ensure that if a TSP tour in G enters a cluster N, through node ny
it visits nodes of cluster N¡ in the order of ny, nbJ+ \, ■ ■., nijP¡, na,..., «,-,y_i and leaves
the cluster N, from the node n¡j_\. Note that all outgoing arcs from node n¡j.i in G
correspond to the original outgoing arcs from node ny in G. As a result, all other nodes
in the cluster are treated as dummy, and only the entering and leaving arcs of node ny
are counted. For example, suppose there is a TSP tour that enters cluster N4 from
cluster N3 by arc (9,6), visits nodes 6, 8, and 7, and finally leaves cluster N4 by using
arc (7,1) to node 1. This tour in Figure 6.5b corresponds to a tour in Figure 6.5a, which
enters N4 by arc (9, 3), visits node 6, and leaves cluster N4 by arc (6,1) to cluster N\.
Thus, the generalized TSP on G is equivalent to standard TSP on G.

6.2.6 Maximum TSP

The maximum TSP can be stated as follows: Given a network G where the profit
associated with each arc may be either positive or negative, the problem is to find a
tour in G where the total profit of arcs of the tour is maximal. The problem can be
transformed to a standard (minimum) TSP by replacing each arc profit by its negative
value. If some resultant arc values are negative, then add a large constant M to each of
the arc values to ensure that all arc values in G are nonnegative.

6.3 APPLICATIONS OF TSP

Real-world applications of the TSP and its variants are ample. Here, we give examples
of four application areas reported in the literature: (1) machine sequencing problems
in various manufacturing systems, (2) machine sequencing problems in electronic
industry, (3) vehicle routing problems for delivery/dispatching, and (4) genome
sequencing problems for genetic study. There is a wide variety of TSP applications.
The interested reader may refer the survey papers mentioned in Section 6.6.

140 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

6.3.1 Machine Sequencing Problems in Various Manufacturing Systems

Perhaps the largest application area of the TSP is machine sequencing/scheduling
problems arising in various manufacturing systems across multiple industries. In
general, there are two types of sequencing problems that can be solved as a TSP. The
first type of sequencing problem is scheduling n jobs on a single machine or on an
assembly line. The second type is scheduling «jobs on m machines in the same order
with no wait in process. In what follows, we give three systems for the first type and
one system for the second type.

• Job scheduling: There are «jobs with known processing times to be processed
sequentially on a single machine. The jobs can be processed in any order but their
machine setup times are job dependent. That is, the setup time requiring for
processing job y immediately follow job i may vary. The objective is to find a
sequence of jobs so that all jobs are completed in the shortest possible time.

• Assembly line: In an assembly line system, jobs are often grouped together as a
cluster so that the setup time, if any, between jobs within the same cluster is
relatively small compared to the setup time between jobs in different clusters.
This type of manufacturing system can be viewed as a clustered TSP.

• Cellular manufacturing: In a cellular manufacturing system, families of parts
(products) that required similar processing are grouped and processed together
in a specialized machine cell to achieve efficiency and cost reductions. This
production philosophy is known as group technology. Aneja and Kamoun
(1999) showed that the problem of sequencing jobs processed by a robot in a
machine cell can be formulated as a TSP. Its objective is to find an optimal job
sequence such that the robot's total time of movement is minimized.

• Flow shop sequencing: The problem of scheduling n jobs on m machines, with
processing in the same order for each job, with no wait in process is also known as
the flow shop sequencing problem with no wait in process. The sequencing
problem can be described as follows. There are n jobs with known processing
time that require processing by m machines in the same order. Each machine can
work on at most one job at a time and once it begins work on a job it must
continue working on it until completion without interruption. It is assumed that
once a job is completed on a machine j , it must be immediately processed on
machine y + 1 with no wait in process. The objective is to finish the last job as
soon as possible. It can be shown that this sequencing problem can be formulated
as an «-city shortest Hamiltonian path problem, which in turn can be transformed
to an (n + l)-city TSP by adding a dummy city.

6.3.2 Sequencing Problems in Electronic Industry

The electronic industry has utilized the TSP to solve the sequencing problems arising
in design, production, and testing of integrated circuits (IC), also known as computer
chips. In fact, the history of the TSP applications in the electronic industry paces the
history of TSP applications. Such applications began as early as 1973 when Lin and

APPLICATIONS OF TSP 141

Kernighan (1973) introduced their famous heuristic algorithm for solving a 318-city
problem arising in sequencing a numerically controlled drilling machine efficiently
through a set of hole positions of an IC. The problem is called lin318 in the TSPLIB.
As the IC technologies evolved over the decades, the use of the TSP in solving the
sequencing problem still prevailed. The following are examples of the TSP uses in
designing, manufacturing, and testing of ICs.

• Drilling holes on printed IC boards: A large number of holes are needed on
printed IC boards for mounting chips and other hardware, or connecting layers to
attain some specific functionality. Such holes are typically produced by auto-
mated drilling machines that move to drill holes between specified locations. The
TSP is to minimize the total traveling time of the drill, where the cities
correspond to the hole locations. The hole drilling problems arise in production
of both general and customized ICs.

• Testing ICs via scan chain technology: A scan chain is automatically generated
test pattern for an IC in which components (scan points) in the IC are connected
in a chain having input and output connections on the boundary of the chip. As
stated by Applegate et al. (2006), "a scan chain permits test data to be loaded into
the scan points through the input end, and after the chips performs a series of test
operations [in pre-determined sequence] the data can be read and evaluated from
the output end." In creating a scan chain, chip designers have naturally turned to
the TSP in order to determine the minimum distance sequence of the scan points
to save time in the testing phase. Pathways on ICs are only in the vertical and
horizontal directions, so scan chains form paths that run from input to outputs in
the manner of city street layouts, using the so-called "taxicab" or "Manhattan"
metric: d[(xu yi), (x2, y2)] = \xi - x2\ + b i - ^ l -

6.3.3 Vehicle Routing for Delivery and Dispatching

Another common application of the TSP is the vehicle routing for delivery and
dispatching services:

• School bus routing: Scheduling a fleet of school buses to pick up and transport
waiting children to schools can be viewed as a multiple TSP if the constraints of
time windows and bus capacities are of no concerns. Otherwise, the problem is a
vehicle routing problem rather than a TSP.

• Parcel/postal delivery/dispatching: This type of problem is normally considered
as a postman problem where a vehicle visits a given set of streets (or arcs) rather
than a given set of locations (or nodes). However, recently the TSP software has
been modified and adopted for use in these applications with successful reports.

• Meals on wheels: In many urban areas, dispatch a fleet of vehicles with meals to
deliver to elderly and sickly people on a regular basis.

• Clinic on wheels: Dispatch a medical vehicle to service medical needs for a set of
rural communities.

142 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

• Maintenance on wheels: Periodically, a maintenance vehicle with crew and
equipments is dispatched to inspect and maintain the equipments in a number of
bases or stations.

6.3.4 Genome Sequencing for Genetic Study

Mapping the genome of a species of animals is an ordering problem of huge
proportion. For example, human have 23 chromosomes and each has to be mapped.
As stated by Applegate et al. (2006), before finding the genome sequence of a species,
the research team must determine "accurate placement of markers that serve as
landmarks for the genome maps... A genome map has for each chromosome a
sequence of markers with some estimate of the distance between adjacent markers.
The markers in these maps are segments of DNA that appear exactly once in the
genome under study... It is particularly useful to have accurate information on the
order in which the markers appear on the genome, and this is where the TSP comes
into play."

Many genome sequencing research projects that employ the TSP approach have
been reported in the literature in the 2000s. Species under study include human,
macaque, horse, dog, cat, mouse, rat, and cow (see Section 6.6 for references).

6.4 FORMULATING ASYMMETRIC TSP

The asymmetric TSP is defined on a directed network in which travels are allowed
only in the directions specified. The problem is to find a directed tour with a minimal
distance. This section presents the formulation of the asymmetric TSP as a 0-1 integer
program. All of IP formulations in this chapter are based on the assignment problem.
We follow the modeling procedure described in Chapter 2. Although any city can be a
starting city, for simplicity we assume it is city 1.

Step 1

Input parameters: all directed arcs (i,j) and associated distances (c,y)
Decision variables: whether or not each directed arc (i,j) is in the tour

(Vy=lor0)
Constraints: each city y must be entered exactly once, each city i

must be exited exactly once, a tour that starts from
a starting city must travel exactly n — 1 cities and
return to the starting city, and no subtours are
allowed

Objective: total distance traveled on a tour must be minimum

Step 2. The asymmetric TSP can be formulated as

Minimize y . cyyij
('V)eA

(6.1)

FORMULATING ASYMMETRIC TSP 143

subject to 2_, yy = 1 f°r a ^ cities./ = 1 to n
{r.(iJ)sA}

y ^ y¡¡ = 1 for all cities i = 1 to «

yy = 0 or 1 for all arcs (ij) e A

A set of subtour elimination constraints

(6.2)

(6.3)

(6.4)

Constraints (6.2) ensure that each city j must be entered exactly once. Con-
straints (6.3) ensure that each city i must be exited exactly once. Note that con-
straints (6.1)-(6.4) correspond to the classical assignment problem. However, any
solution satisfying (6.2)-(6.4) is not sufficient to define a tour because it may also
define some disjoint subtours, for example, of n = 6 cities as shown in Figure 6.6. The
solution y12 =)'25=)'5i =>'43=3'36 = }'64= 1 (and y,y = 0 for all others) satisfies
constraints (6.2)-(6.4) but forms two disjoint subtours: 1 —> 2 —► 5 —> 1 and
3—> 6 —> 4 —> 3 as shown in Figure 6.7. Thus, the assignment problem is a relaxation
of the TSP, and the TSP is a restriction of the assignment problem.

Many existing IP formulations for the TSP are relaxations of the assignment
problem. Their difference is in the formulation of subtour elimination constraints. In
this text, we present two popular ones for the asymmetric TSP and one for the
symmetric TSP.

6.4.1 Subtour Elimination by Dantzig-Fulkerson-Johnson Constraints

This subtour elimination scheme is based on the fact that for every tour or subtour, the
number of nodes must be equal to the number of arcs. Therefore, to prevent from
forming subtours but allow forming a tour, the number of arcs must be less than the
number of cities for every subset that consists of 2 to n — 1 cities. Mathematically,

i'es jes
\S\-l for all subsets |5| = 2 , 3 , . . . ,n—l (6.5)

FIGURE 6.6 Directed graph.

144 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

FIGURE 6.7 Directed subtours.

where Sisa nonempty proper subset of all nodes V, and | S\ is the number of cities in S.
The total number of constraints in (6.5) is nearly 2" because there are 2" possible
subsets for« cities. For example, the subtour 1 —>2 —»̂5 —>lin Figure 6.7 could not be
satisfied because YliesYljesyy = vi2 + v25 +^51 = 3, |5 | — 1=2 , and thus a corre-
sponding constraint in (6.5) would be violated. Likewise, the subtour 3 —> 6 —» 4 —> 3
in Figure 6.7 would also violate a constraint in (6.5).

6.4.2 Subtour Elimination by Miller-Tucker-Zemlin (MTZ) Constraints

This set of subtour elimination constraints is introduced by Miller et al. (1960). This
set is derived based on the following observation. Consider that a tour is just a
sequence of all cities. If we define Uj as the sequence number of city j in a tour, we
obtain the following set of subtour elimination constraints:

Ui-Uj + ny¡j < n-1 for (ij) € A, i ¿J ¿ IJ ¿ i (6.6)

Consider the first subtour in Figure 6.7, for example. We have V36 = V64 = V43 = 1.
Because city 3 is the first city in the sequence, we have w3 = 1, u6 = 2, and w4 = 3.
From (6.6), we obtain three corresponding constraints:

M3-w6 + 6y36 = 1—2 + 6 = 5 < 5 (satisfied)

U6—U4 + 6yM = 2—3 + 6 = 5 < 5 (satisfied)

un,—us + 6y43 = 3— 1 + 6 = 8 > 5 (violated)

Clearly, this subtour violates the third constraint. Similarly, we can show that every
subtour that does not contain city 1 will violate a constraint in (6.6).

Now if there is a set of y,/s that does not contain a subtour, then we can define a set
of tifs, starting from city 1, that does not violate any constraint in (6.6). Let u¡ = k
indicate that city i is the Ath city visited in the tour, where k — 2 ,3 , . . . , n. If yi}:— 1, we
then have Uj — k+ 1 and the left-hand side of (6.6) is

Uj—Uj + ny¡j = k-(k+\)+n = n—\

FORMULATING ASYMMETRIC TSP 145

which satisfies the right-hand side of (6.6) for every k. If y¡¡ = 0 and u¡ = k! (k1 = 2,
3, ..., n, k1 =¡¿ k + 1), then the left-hand side of (6.6) is

Uj—uj + ny¡j = Uj—Uj = k—k'

Clearly, the largest difference for k — k1 occurs when k = n and k1 = 2, which is
n — 2 < n — 1. We have shown that (6.6) can be satisfied for all cases of y,y = 1 and
y¡j = 0 if no subtours are involved. For example, consider a tour of 1 —> 2 —> 4 —>
5 —> 3 —» 6 —» 1 for the above six-city problem. We have yi2 = y24 = y45=y53 =
>'36 = >'6i = U }'23::::3'25=};43=>'5i=)'64 = 0, and set u{ = 1, u2 = 2, «4 = 3, «5=4,
«3 = 5, and «6 = 6. Check the corresponding constraints in (6.6) for i^ 1 andj^= 1:

)>24=1, U2-U4 + 6y24 = 2-3 + 6 = 5

y45 = 1, M4-W5 + 6y45 = 3 -4 + 6 = 5

y53 = l, M5-W3+6^53 = 4 - 5 + 6 = 5

3̂6 = 1, "3-"6 + 6)>36 = 4 - 5 + 6 = 5

which satisfy all the constraints in (6.6). Next, we consider y2i = 2̂5 = V43 = y ^ = 0

y23 = 0, H2-W3 + 6y23 = 2 -5 = - 3 < 5

y25 = 0, u2—u5 + 6y25 = 2—4 = —2 < 5

y43 = 0, M4-M3 + 6y43 = 3-5 = - 2 < 5

yM = 0, «6-«4 + 6yM = 6 -3 = 3 < 5

which also satisfy all the constraints in (6.6). Now we have shown that every subtour
will violate at least one of the constraints in (6.6) and that no complete tour can be
excluded by (6.6).

The MTZ formulation, when compared with clique packing, adds only n variables
to the model (the H'S), but dramatically decreases the number of constraints to
approximately n2 from nearly 2". At first glance, this huge reduction in the number of
constraints could mean great reduction in time for finding an optimum tour. On the
contrary, the set of type (6.5) constraints is much tighter than the set of type (6.6)
constraints. In fact, the clique packing formulation is better than the MTZ formulation
in the sense that the polyhedron (say P\) of the LP relaxation of the first formulation is
a subset of the polyhedron (say P2) of the second formulation. Nemhauser and Wolsey
(1988) provided the following example to show that P2<tP\. If « > 4 , The point
u2 = «3 = «4 = 0 and y23 = >>34 = y42 = (n — 1)ln > 2/3 satisfies constraint set (6.6) but
not (6.5).

The above two formulations for TSP show that the computability of IP reverses the
rule of the computability of LP—the computational time increases as the number of
constraints increases. Therefore, any attempts to finding compact IP formulations
with a small number of constraints are often counterproductive for efficiently solving
large-scale TSPs.

146 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

6.5 FORMULATING SYMMETRIC TSP

The symmetric traveling salesman problem is defined on an undirected network in
which travel is allowed in either direction of each undirected arc or edge. The problem
is to find an undirected tour with a minimal traveling distance. To formulate the
symmetric TSP, one must note that c¡j = Cß and y y = yyí. Thus, each edge can be
identified by a single index k, each decision variable by yk, and each distance by ck. As
a result, the symmetric problem can be formulated with only one-half the number of
0-1 variables as required in the asymmetric problem. To find a tour in an undirected
network G(E, A), one must select a subset of undirected arcs such that every node y is
connected to exactly two of the undirected arcs selected. As in the asymmetric
problem, the symmetric problem requires additional constraints to eliminate all
subtours, but not any tour.

Again, following the modeling procedure described in Chapter 2, we now
formulate the symmetric TSP as a 0-1 integer program.

Step 1

Input parameters: a list of undirected arcs indexed by k and their
associated distances, ck

Decision variables: whether or not each undirected arc k is in the tour
(y*=l<w0)

Constraints: each city in the tour must have exactly two undir-
ected arcs incident to it, and all subtours must be
eliminated

Objective: total distance traveled in a tour must be minimal

Step 2. Let E be the set of all undirected arcs, Ej be the set of all undirected arcs
connected to cityy, and£ s be the set of all undirected arcs connecting the cities
in any proper subset S. Also let yk = 1 if undirected arc & e £ is in the tour, and
yk = 0 otherwise. Then the symmetric TSP can be formulated as a 0-1 integer
program:

1 "
Minimize ^ X X ^ E / ^ (6-7)

i=\
subject to 2_, yk = 2 for all citiesy = 1 , 2 , . . . , « //- g\

keEj

£ > , = |S | -1 f o r a l l | S | = 2 , 3 , . . . , « - 2
jeEs

(6.9)

y, = l o r 0 for ally e E (6.10)

Constraints (6.8) ensure that every node in the tour must have exactly two
undirected arcs connected to it. As in the asymmetric case, (6.9) is a set of subtour
elimination constraints equivalent to (6.5).

FORMULATING SYMMETRIC TSP 147

FIGURE 6.8 Undirected network.

For example, consider the undirected network given in Figure 6.8 that has 7 cities
and 11 undirected arcs labeled by k = 1, 2, . . . , 11. The solutions yi=y2=ys=y6
y4= y\o = y 1i = I and y3 = y5 — y-, — y9 — 0 satisfy constraints in (6.8) but not in (6.9).
As a result, we obtain two disjoint subtours, 1-2-4-5-1 and 3-6-7-3, as shown in
Figure 6.9.

First, we examine the subtour 1-2^4-5-1 using the constraints in (6.8) and (6.9). In
this subtour, we have

S= {1,2,4,5}, | 5 | = 4

£ , = { 1 , 2 , 7 } , E2 = {2,8,3,9}, E4 = {6,7,8,5}, E5 = {1,6}

The corresponding constraints in (6.8) are

F o r / = i , Y^yk =y\+yi+yi = 2

keE,

For; = 2, ^ yk = y2 + ys + y3 + y9 = 2
k£E2

For; = 4, ^yk = y6+y7+y$ +y5 = 2
keE4

For; = 5, ^ ^ = yi +y6 = 2
keE5

which satisfy all the constraints in (6.8).
Next, we examine the constraints in (6.9). We have

Es = {1,2,6,7,8}

yi=y2=y6=ys = l

y7=0

Thus, the left-hand side of (6.9) is

^2yj = y\+y2+y6 + y7 + ys = 4

jSEs

148 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

y

FIGURE 6.9 Two subtours in undirected network.

But the right-hand side of (6.10) is

|S | -1 = 4 - 1 = 3

Hence, a constraint (6.9) is violated and the subtour 1—2—4—5—1 cannot happen.
Likewise, we can show that the subtour 3-6-7-3 and all other subtours cannot occur
because each subtour would violate a constraint in (6.9).

6.6 NOTES

Much of the material in this chapter is based on the TSP books by Applegate et al.
(2006), Gutin and Punnen (2002), and Lawler et al. (1985). Related material is
available on www.tsp.gatech.edu.

Section 6.1

Much of the data sets of TSP instances given in Table 6.1 can be found in TSPLIB
(Reinelt, 1991), a traveling salesman problem library. Gutin and Punnen (2002) and
Applegate et al. (2006), respectively, have 838 and 581 counts of TSP references.
After removing the duplicated references, the total count exceeds 1000.

Section 6.2

See Lawler et al. (1985) for transforming a TSP to a shortest Hamiltonian path
problem. See Hong and Padberg (1977) and Rao (1980) for transforming a symmetric
multiple traveling salesmen problem to a standard TSR See Jongens and Volgenant
(1985) for transforming the symmetric cluster TSP to the standard TSR See Noon
(1988) and Noon and Bean (1993) for transforming generalized TSP to standard TSR
See Barvinok et al. (2002) for more detail about the maximum TSR

EXERCISES 149

Section 6.3

For scheduling jobs on a machine with sequence-dependent setup times, see Gilmore
and Gomory (1964) and Bianco et al. (1988). For knowledge of scheduling theory and
manufacturing systems, see Pinedo (2002). For more TSP applications, see survey
papers by Garfinkel (1985), Lenstra and Rinnooy Kan (1975), and the book by Reinelt
(1994).

6.7 EXERCISES

6.1 Visit "http://www.tsp.gatech.edu/index.html" or any other Web site containing
information on TSP. Give at least three real-world applications of TSP that are
not mentioned in this book.

6.2 For the asymmetric TSP, show that the following set of constraints is equivalent
to the set of subtour elimination constraints in (6.5):

íes jes
for all subsets \S\ = 2 , 3 , . . . , n— 1

where S = V\S.

6.3 For the symmetric TSP, show that each of the following sets of constraints is
equivalent to the set of subtour elimination constraints in (6.10):

(a) EjeESyj < I M-l-SI-l for *" |S| = 2 , 3 , . . . , « - 2

where S = V\S and Es is the set of all edges in S.

(b) YljeE'syj - 2 for all subsets \S\ = 2 , 3 , . . . , w—2

where S — V\S and Ess is the set of all edges between S and S.

6.4 Consider the directed network given in Figure 6.10:

FIGURE 6.10 A directed network.

150 MODELING COMBINATORIAL OPTIMIZATION PROBLEMS II

(a) Find a Hamiltonian path starting from node 1. Find a Hamiltonian path
starting from node 5.

(b) Find a shortest Hamiltonian path by inspection.
(c) Transform the given network G into a network G' such that a shortest

Hamiltonian path can be found by a TSP algorithm.
(d) Construct the cost matrix corresponding to the network G'.

6.5 Consider the network in Problem 6.5. Suppose nodes are allowed to visit more
than once.

(a) By inspection find the shortest distance between each pair of nodes.
(b) Construct a transformed network that can be solved by a standard TSP

algorithm/software.
(c) Construct the distance matrix for the transformed network.

6.6 There are two trucks available at the warehouse (node 1) to be dispatched for
delivering goods to all the customers (the remaining nodes). Assume each
customer can be delivered by a truck only.

(a) Suppose the costs of trucks and drivers vary: $100 and $120, respectively.
Construct a transformed network that can be solved by a standard TSP
algorithm/software.

(b) In the transformed network, let nodes 1 and — 1 be the starting nodes for
trucks 1 and 2, respectively. Suppose an optimal TSP tour for the
transformed network is found: {(1, 4), (4, 3), (3, 5), (5, 2), (2, -1) ,
(—1,1)}. Determine the number of trucks needed, tours, and the total cost.

6.7 In cellular manufacturing, similar parts (products) are grouped in a same cell to
reduce costs. Consider the network of seven parts grouped in two cells Ni and N2

FIGURE 6.11 Parts assigned to cells.

EXERCISES 151

FIGURE 6.12 Subnetwork in a TSP.

shown in Figure 6.11. Assume that once a cell is entered, all the parts in the cell
must be processed before moving out of the cell. Show how this network can be
transformed into one that can be solved by a standard TSP.

6.8 Consider the generalized TSP discussed in this text. Suppose you are given a
subnetwork for cluster JV¡ (Figure 6.12). There are four outgoing arcs from this
cluster, (1, a), (2, b), (3, c), and (4, d), with respective costs 1,2,3, and 4. Draw a
transformed subnetwork with appropriate links and costs so that the transformed
network can be solved by a standard TSP. Show that if a TSP tour enters cluster
N¡ through node 4, it will leave TV, via a new arc with cost equal to 4.

6.9 Given a complete directed network of 10 nodes.
(a) Determine the number of subtour elimination constraints required by

equation (6.5).
(b) Determine the number of subtour elimination constraints required by

equation (6.6).

6.10 Given a complete undirected network of 10 nodes, determine the number of
subtour elimination constraints required by equation (6.9).

This page intentionally left blank

PART II

REVIEW OF LINEAR PROGRAMMING
AND NETWORK FLOWS

This page intentionally left blank

7
LINEAR PROGRAMMING—
FUNDAMENTALS

This chapter reviews the basic linear algebra and linear programming theory essential
to the understanding of the LP and IP solutions and methods to be discussed in the
remainders of this book.

7.1 REVIEW OF BASIC LINEAR ALGEBRA

An n vector is a column or row array of« numbers. Throughout this text, we shall use a
lowercase boldface letter to denote a column vector such as b or d, and use the
transpose of a column vector to denote a row vector such as bT or dT, where superscript
T stands for transpose.

7.1.1 Euclidean Space

Definition 7.1 An «-dimensional Euclidean space, denoted by E", is the collection
of all vectors of dimension « having the following properties:

• Addition of vectors—for any two vectors a and b in E", vector a + b is in E".
• Scalar multiplication—for any vector a and scalar k in E", vector /ca is in E".

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

155

156 LINEAR PROGRAMMING—FUNDAMENTALS

• Vector multiplication—any two vectors a and b in E" can be multiplied. The
result of this vector multiplication is a real number called inner (dot) product of
the two vectors, defined by aTb = aibi + a2b2 + • • • + a„b„.

• The length (norm) of a vector in the space, denoted by ||a||, is defined

"a" = #

7.1.2 Linear and Convex Combinations

Definition 7.2 Givenp vectors, a1, a2,... , sf in E", and/J scalars kx, k2, ■ ■ -, kp, the
expression Aia1 + k2a

2 + • ■ • + kpaP is called a linear combination. The scalars are
real numbers that can be positive, negative, or zero. The linear combination becomes a
convex combination when k\ +k2 + • • • + kp — 1 and 0 < k\, k2,..., kp < 1.

7.1.3 Linear Independence

Definition7.3 A collection of vectors a1, a2,.. .^ofdimensionwiscalled/Znear/y
dependent if there exist constants ax, a2, ■ ■ -, ap, with at least one aj^O, such that
their linear combination equals to an «-dimensional null vector, or

7=1

and the set of vectors is said to be linearly independent if the only solution is
ai =a2= ■■■ =ap = 0.

Note that in E", any set ofp > n vectors is always linearly dependent, but a set of
p < n vectors may or may not be linearly independent.

7.1.4 Rank of a Matrix

A matrix is a rectangular array of numbers. Thus, the size of a matrix is represented
by the number of rows crossed with the number of columns, denoted bymxn. In this
text, we shall use an uppercase boldface letter to denote a matrix, for example, A or
B.

Definition 7.4 Let A b e a n m x n matrix. The row rank of the matrix is equal to the
maximum number of linearly independent rows of A. The column rank of A is the
maximum number of linearly independent columns of A. It can be shown that the row

REVIEW OF BASIC LINEAR ALGEBRA 157

rank of a matrix is always equal to its column rank, and hence the rank of A,
denoted by rank(A), is equal to the number of linearly independent rows (or
columns) of A.

7.1.5 Basis

A collection of vectors a1, a2,... , 2P in E" is said to span E" if any vector in this space
can be represented as a linear combination of this set of vectors. In other words, given
any vector b in this space, we can always find scalars au a2, ■ ■ -, ap such that

p

7=1

Definition 7.5 A collection of n linearly independent row vectors forms a basis
ofE".

Thus, given a basis of E", say a', a2, ..., a", any vector b in E" is uniquely
represented in terms of this basis. Note that a basis must be an n x n square matrix.

7.1.6 Matrix Inversion

Definition 7.6 Given an m x m matrix A if there exists a n m x m matrix B such that
their product is an identity matrix (i.e., AB = I and BA = I), then B is called the
inverse of A. The inverse matrix is unique and usually denoted by A- 1 . Also, the
inverse of B is A, denoted by B _ 1 .

Note that a square matrix A can have an inverse if and only if the row vectors of A
are linearly independent, or if and only if the column vectors of A are linearly
independent. There is a simple condition to check for existence of A - 1 , called
nonsingularity.

7.1.7 Determinant of a Matrix

Definition 7.7 Every n x n square matrix A has a real number associated with it
called the determinant of the matrix, denoted by detA, which is defined as
follows:

n

detA = y ^ anAn
i=i

where An is the cofactor of an defined as (—1)' + ' times the determinant of the
submatrix of A obtained by deleting the ¡th row and the first column. The matrix A
is singular if det A = 0 and is nonsingular if det A ^ 0.

158 LINEAR PROGRAMMING—FUNDAMENTALS

To illustrate how to calculate the determinant of a matrix, consider the following
example:

(2 1 - 1 \

= 2(-l)1 + ldet(j + l (- l) z + ' d e t l j - 2 (- l) 3 + 1det(

= 2(1)2+1(1)2-2(1)(4)

= - 6

Thus, matrix A is nonsingular.
If a matrix A is nonsingular, then the inverse A - 1 exists and can be calculated by

A _ , _ad jA
detA

where adj A is called the adjoint matrix of A, which is defined as the transpose of the
matrix whose ij element is Ay, the cofactor of ay. However, this method for finding the
inverse of a matrix is not as effective as the method using the elementary row
operations to be given in the following section.

Consider the system Ax = b where A is a n x n nonsingular matrix, b is an n vector,
and x is an « vector of unknowns. Then according to the Cramer's rule, the unique
solution to this system is given by

det A,- r Xj = ——f for j = 1,2,...,n
detA

where A, is obtained from A by replacing the jth column of A by b. However, this
method is not as effective as that of the elementary row operations.

7.1.8 Upper and Lower Triangular Matrices

Definition 7.8 A square matrix A = (ay) is called an upper triangular matrix if
a¡j = 0 for all i >j. Matrix A is called a lower triangular matrix if ay = 0 for all i <j.
A square matrix Dis called a diagonal matrix with diagonal elements du,d22, ■ ■ .,d„„
if all other elements (dy, i ̂ j) are equal to 0. The diagonal matrix is denoted by
D = diag{û?u, d22, ■ ■-, d„„}.

The triangular matrix (either upper or lower) with nonzero diagonal elements has
an inverse. Note that in solving a system of equations, finding an equivalent triangular

USES OF ELEMENTARY ROW OPERATIONS 159

coefficient matrix requires about one-half the computational operations as in finding
the inverse of a basis matrix. Two systems of linear equations are said to be equivalent
if their solution sets (including empty set) are the same.

A diagonal matrix D with diagonal elements d\ \, d22, • ■ •> dnn is a special form of a
triangular matrix (either upper or lower) in which dy = 0 for all i =¿/ Let D be the
diagonal matrix obtained from matrix A by the elementary row operations, it can be
shown that det A = det D and therefore

det A = d\Ud22,... ,d„„

If any diagonal element du = 0, then det A = 0 and hence matrix A is singular.

7.2 USES OF ELEMENTARY ROW OPERATIONS

Given a matrix A (or a collection of row vectors), we can perform some elementary
row operations (or row operations, for short). In the context of this textbook, these
operations have the following uses:

• Finding the rank of A (or the number of linearly independent row vectors)

• Calculating the inverse of A if exists
• Converting to an upper or a lower triangular matrix
• Converting to a diagonal matrix
• Calculating the determinant of a matrix

• Solving a system of linear equations

A row operation on a matrix is one of the following operations:

1. Interchange of any two rows (R,■<-► Ry).
2. Multiply any row R, by a scalar k ^ 0 and use the resultant row £R, to replace R,.
3. Addition to any row R, of a nonzero scalar multiple of another row R„ or use

Rj + kRj to replace Ry.

We can also view a matrix A as a collection of column vectors and can perform
some elementary column operations (or column operations, for short) on a matrix in a
way similar to row operations except that rows are replaced by columns.

7.2.1 Finding the Rank of a Matrix

To find the rank of a given matrix, we either apply row operations to find the row rank
or apply column operations to find the column rank. The following example is to show
an application of row operations.

160 LINEAR PROGRAMMING—FUNDAMENTALS

Example 7.1 Find the rank of A defined by

/ 2 1 2 3 \

1 3 1 9

\l 1 1 3j

We apply row operations 2 and 3 to A, and attempt to make as many columns as
possible to become distinct unit vectors. For this example, we attempt to obtain three
distinct unit vectors in the following order:

To obtain the first unit column vector, we multiply row R] by 0.5 and use 0.5Ri to
replace R]. Then use R2 — 1R1 to replace R2, and use R3 — 1R1 to replace R3. To obtain
the second unit column vector, we multiply R2 by 0.4 and use 0.4R2 to replace R2. We
then use R[— 0.5R2 to replace Rj and use R3 — 0.5R2 to replace R3:

/ l 0.5 1 1.5 \

0 2.5 0 7.5

\ 0 0.5 0 1.5/

/ 1 0 1 0 \

0 1 0 3

\ 0 0 0 Oy

After making two distinct unit columns, we find that the third row becomes a
zero vector. This indicates that row 3 is a linear combination of rows 1 and 2. In
other words, the maximum number of linearly independent vectors is 2, or the rank of
A is 2.

7.2.2 Calculating the Inverse of a Matrix

An m x n matrix A is invertible or nonsingular if it contains m linearly independent
rows. To calculate the inverse of a square matrix, we construct an augmented matrix
(A|I) and perform row operations on it until the augmented matrix becomes (I|B).
ThenB=A _ 1 .

Example 7.2 Find the inverse of matrix A defined by

USES OF ELEMENTARY ROW OPERATIONS 161

Construct the matrix by augmenting an identity matrix of the same size and
perform row operations 2 and 3 repeatedly until an identity matrix is obtained on the
left-hand part of the augmented matrix.

/ 2 1 2

1 3 1

\ 2 1 1

1 0 0 \

0 1 0 -

0 0 1 /

/ 1 0 1

0 1 0

\ 0 0 - 1

Thei -efore, we c >bta

/ 1 1/2 1

0 5/2 0

v 0 0 - 1

1/2 0 0 \

-1/2 1 0 -

- 1 0 1 /

3/5 -1/5 0 \ / 1 0 0

-1/5 2/5 0 -

- 1 0 1 /

in

0 1 0

v 0 0 1

-2/5 -1/5

-1/5 2/5

1 0

1 \

0

-v

and check that AA = I.

7.2.3 Converting to a Triangular Matrix

Example 7.3 Find the upper triangular, lower triangular, and diagonal matrices for

Apply the elementary row operations on A.

For upper triangular matrix

162 LINEAR PROGRAMMING—FUNDAMENTALS

For lower triangular matrix

'2/3 0 (T

- 1 3 0

,2/3 0 1,

From upper triangular to diagonal

1 1 1 \

0 2 2

0 0 1 /
1-1

/ l 0 0

0 2 2

\ 0 0 1

1 0 0N

0 2 0

,0 0 1

From lower triangular to diagonal matrix

7.2.4 Calculating the Determinant of a Matrix

The determinant of a matrix A can be obtained by calculating the product of the
diagonal elements of any one of its equivalent upper triangular, lower triangular, or
diagonal matrix. From Example 6.3, we may compute

2
det A = 1 x 2 x 1 x 3 x 1

7.2.5 Solving a System of Linear Equations

There are two commonly used methods for solving a system of linear equations: (1)
matrix inversion and (2) matrix triangularization. The former method, called
Gauss-Jordan reduction, is well known in introductory operations research texts.
The latter method, called Gaussian reduction, is more efficient and converts a given
augmented matrix to a triangular matrix, either upper or lower triangular.

We shall first use the first method to solve a system of equations. Consider the
system of linear equations Ax = b where A i s m x n , x i s n x 1, and b is m x 1. Such a
system has one of three cases when solved: (1) a unique solution, (2) an infinite
number of solutions, and (3) no solution. To know which case holds for a given
system, we must use the concept of rank and the augmented matrix of the system
denoted (A|b).

1. The system has a unique solution if rank(A) = rank(A|b) = n.

2. The system has an infinite number of solutions if rank(A) = rank(A|b) < n.
3. The system has no solution if rank(A) < rank(A|b).

USES OF ELEMENTARY ROW OPERATIONS 163

Example 7.4 (Unique Solution) Solve the following system:

A =

x\ +X2+X3 = 4

x\ + 3x2 + 3x3 — 2

xi +X2 + 2X3 = 6

rank(A) — 3

A 1 1
1 3 3

yi 1 2

4 \

2 6I
->

A 1 1
0 2 2

yO 0 1

* \
-2 L
2

/l 0 0

0 1 1

yO 0 1

s\
- 1 2I

- ►

A 0 0
0 1 0

yO 0 1

(A|b) =

Because rank(A) = rank(A|b) = 3 = n, the system has a unique solution

x\ = 5 , x2 = - 3 , x3 = 2

5

Example 7.5 (Infinite Number of Solutions) Solve the following system:

x\ + X2 + X3 + X4 = 4

x\ + 3x2 + 3x3 = 2

X\ + X2 + 2X3 —X4 = 6

/ l 0 0 3/2

0 1 1 - 1 / 2

\ 0 0 1 - 2

/ l 0 0 3/2N

0 1 0 3/2

\0 0 1 - 2

(A|b):

/ 1 1 1 1

1 3 3 0

V 1 1 2 -

/ l 0 0 3/2

0 1 0 3/2

^0 0 1 - 2

4 \
2

6y

- 3
2J

^ 1 1 1 1

0 2 2 -

V 0 0 1 - 2 ! 2 y

4 \

- 2

/ 1 0 0 3/2

0 1 0 - 1 / 2

\ 0 0 1 - 2

5 \

- 1

2 /

164 LINEAR PROGRAMMING—FUNDAMENTALS

Because rank(A) = rank(A|b) = 3 < n — 4, the system has an infinite number of
solutions. Note that the final equivalent system of equations reads

xv

, 3
: 5 - - * 4

x2

XT, = 2 + 2x4

3-fx*

Clearly, the system has an infinite number of solutions because an infinite number
of possible values can be assigned to x4.

Example 7.6 (No Solution) Consider the following system:

2x\ +X2 + 2^3 = 6

Xi +3X2 + X 3 = 9

x\ + x 2 + x 3 = 3

Applying the row operations to matrix A, we have

rank(A) = 2

(A|b):

/ 2 1 2

1 3 1

1 1 1

6 \

9

V

/ 1 1/2 1

0 5/2 0

^0 1/2 0

3\

6

V
-

/ 1 0 1

0 1 0

^0 0 0

24/5 \

12/5

-6/5 j

-

/ 1 0 1

0 1 0

^ 0 0 0

o\
0

V
=>rank(A|b) = 3

Because rank(A) < rank(A|b), the system has no solution. Note that the third row
of the last equivalent system gives the equation

Ox, + 0x2 + 0x3 = 1

Clearly, the left-hand side of this equation never equals to the right-hand side.
Hence, the system has no solution.

Now let us use the matrix triangularization method to solve a system of linear
equations. Basically, the procedure performs a sequence of row operations on the
augmented matrix (A|b) until a triangular matrix appears on the left-hand side. Then
for the lower triangular matrix, use forward substitutions to find the solution; or for the
upper triangular matrix, use backward substitutions to find the solution.

THE DUAL LINEAR PROGRAM 165

Example 7.7 Solve the following system by matrix triangularization

x\ + X2+X3 —4

x\ + 3x2 + 3x3 = 2

X\ + X2 + 2X3 = 6

Perform row operations on the augmented matrix until an upper triangular matrix is
obtained:

(A|b)

/ l 1 1

1 3 3

^ 1 1 2

4 \
2
6)

/ 1 1 1

0 2 2

y 0 0 1

4 \

- 2

2)

The equivalent system of equations becomes

X\ + X2 + X3 = 4

2^2 + 2x3 — — 2

X3 = 2

Applying backward substitutions, we have X3 — 2 —► X2 — — 3 —> X1 — 5.
Likewise, we perform row operations on the augmented matrix until a lower

triangular matrix is obtained:

4 ^ / 2/3 0 0

1 3 3

1 1 2 V

10/3 \

2

6)

-*

Í 2/3 0 0

- 1 / 2 3/2 0

y \ 1 2

10/3 \

- 7

6 /

Applying forward substitutions, we have xx — 5 —> x2 = — 3 x3 = 2.

7.3 THE DUAL LINEAR PROGRAM

Every linear program, whether expressed in standard form or not, has another linear
program associated with it called the "dual". In this context, the given or original LP
problem will be referred to as the "primal". The dual problem complements its primal
in many ways. In problem formulation, for example, if the primal (P) problem is a
maximization, then the dual (D) is a minimization, and vice versa. Moreover, both
problems share all the data (parameters) found in A, c, and b.

Knowing the relations between an LP and its dual is vital to understanding
advanced topics in linear and nonlinear programming such as economic interpreta-
tion, sensitivity analysis, and development of dual and primal-dual simplex methods.

166 LINEAR PROGRAMMING—FUNDAMENTALS

After we explain the formulation of the dual problem from the primal, first in
standard form and then in arbitrary form, we will provide an economic interpretation
of the dual problem using an insurance portfolio problem as an example. Then we will
review the duality theory as to the relations between their respective feasible solutions
and their respective optimal solutions in this chapter. Other contributions from duality
theory will be introduced in later chapters when needed.

7.3.1 The Linear Program in Standard Form

First, let us define the linear programming problem in standard form:

(P) maximize z = \ J cjxj
j

subject to 2_,auxj — hi (*' = 1,2,..., m)
j

xj>0 (/ = l , 2 , . . . , i i)

or in matrix form,

(P1) maximize z = cTx

subject to Ax < b

x > 0

Throughout this text, a linear program is said to be in standard form if (1) the
objective function is maximized, (2) all the constraints are of < form, and (3) all
continuous variables are >0 with no finite upper bound. However, all parameters b¡, Cj,
and a¡j may be positive, negative, or zero.

Any LP problem that does not conform to conditions (l)-(3) is in nonstandard
form, which can be converted to standard by simple substitutions. Various non-
standard forms are as follows:

• Minimization problem
• Inequality of > form

• Equation (equality constraint)
• Unrestricted variable (continuous or integer)
• Variable with a lower bound other than 0
• Variable with a finite upper bound

The conversion procedures for an LP problem are identical to those for an MIP
problem described in Section 1.2. For ease of presentation, we shall use the standard
LP form for the remainder of the text unless specified otherwise.

THE DUAL LINEAR PROGRAM 167

The above mathematical definition of an LP problem implies the following
assumptions:

• Divisibility assumption for each continuous variable (xj > 0)
• Certainty (constant) assumption for each input parameter (cy, ay, b¡)
• Proportionality assumption for each term in the constraint and objective

function (ayXj, CjxJ)
• Additivity and separability assumption for each combined function in the

objective and constraints Ç£ljcjxj-> ^2tayxj)
• Single-objective assumption(max or minz = z^fixj)
• Simultaneousness (conjunction) assumption for the system of all constraint

equations and inequalities (¿T,jaijxj < b¡, i = 1, 2,...,m)

Note that these assumptions are the same as those imposed on an MIP
problem except for the absence of the integrality assumption. The implications of
all other assumptions are the same as those described in Section 2.1. We shall not
reiterate here.

7.3.2 Formulating the Dual Problem

To formulate the dual of P, we first detach variables from the coefficients and form the
following augmented matrix by combining A, b, and cT.

Dual variable

X\ X2 Xn <

an

a2\

am\

C\

an

a22

ami

Cl

a\n

a2n

amn

Cn

bA

b2

bm

l)

ui>0

M2 > 0

um > 0

The dual problem is formulated by the following procedure:

1. Assign a nonnegative dual variable to each corresponding constraint, denoted
by Mi, u2, ..., w„ .. . , um > 0, or u > 0.

168 LINEAR PROGRAMMING—FUNDAMENTALS

2. Construct dual constraints with respect to variables x/.

m

a{ju\ + a2Ju2 + ■■■ + amjum = ^ a y u ¡ > c,-, j=l,2,...,n
;=1

or, ATu > c
3. Construct dual objective function

minimize w = b\U\ + b2u2 +

or, minimize w = bTu

The dual problem is recapped as follows:

m

(D) Minimize w = y^jb¡u¡
i=i

m

subject to 2_,a'ju' — CJ J
i=i

M, > 0 /

(D') Minimize w = b r u

subject to ATu > c

u > 0

Basically, the formulation rule state that if a given (primal) problem is a
maximization problem with all constraints of < form and all variables >0, then the
dual problem must be a minimization problem with all dual constraints of > form and
all dual variables >0. Both primal and dual problems share the same set of
coefficient matrix and vectors of objective coefficients and right-hand side
constants, while the dual problem takes on the transpose of the original matrix and
vectors given in the primal problem. That is, in matrix notation, the dual problem uses
AT, c, and bT as the coefficient matrix, right-hand side column, and objective
coefficients, respectively. In other words, the transpose of a matrix implies that
the objective coefficients of the primal become the right-hand sides of the dual, and
vice versa. The number of variables in the primal equals the number of constraints in
the dual, and vice versa. Relative to the dual problem, primal variables and primal
constraints are used for referring the variables and constraints defined in the given
problem.

Clearly, the dual of the dual is the primal because the transpose of the transpose of a
matrix is itself. This implies that we may also refer the minimization problem as the
primal and the maximization problem as the dual. Therefore, the format in problem D
or D' will also be treated as the standard minimization problem.

+ b¡u¡ + ■ ■ ■ + bmum = ^ P b¡Ui
í=i

1,2,...,«

1,2,. . . .m

THE DUAL LINEAR PROGRAM 169

Example 7.8 If the primal problem is

Maximize z = X\ + 2x2—8x3

subject to xi + 3x2 + 5x3 < 8

2xi—5x3 < 7

xi ,x2 ,x3 > 0

then the dual problem is

Minimize w = 8u\ + lu-¿

subject to u\ + 2«2 > 1

3«i > 2

5 M 1 - 5 « 2 > - 8

U\,U2 > 0

What if the given problem is not in standard form? Straightforwardly, we may first
convert the given problem to a standard problem as usual, then formulate the dual from
the converted standard problem, and finally convert this dual problem back to the
original format. It can be shown that the result of this three-step procedure corre-
sponds to the primal-dual formulation rules listed in Table 7.1. The reader is
encouraged to verify these rules in exercises by the three-step procedure.

Example 7.9 Formulate the dual problem of the following LP:

Maximize z = 2x\ —X2 + 5x3 + 3x4

subject to xi + 2x2 + 3x3—X4 > 5

2xj —3x2 + *3 + 2x4 < 12

X2 _ X3 + X4 = —3

Xj,X2,X4 > 0, X3 < 0

TABLE 7.1 Correspondence of Primal-Dual Formulation

Maximization Problem

Constraint i
<
>

Variable j
>0
<0
Unrestricted in sign

Objective row
Right-hand side column

Minimization Problem

Variable /
>0
<0
Unrestricted in sign

Constraint j
>
<

Right-hand side column
Objective row

170 LINEAR PROGRAMMING—FUNDAMENTALS

The dual problem is

Minimize w — 5u\ + 12«2—3«3

subject to u\ + 2«2 > 2

2w1-3H2 + W3 < — 1

3«i +U2—U3 < 5

—u\ +2u2 + U3 > 3

wl < 0, «2 > 0, UT, unrestricted in sign

7.3.3 Economic Interpretation of the Dual

Suppose the primal problem represents a resource allocation problem at a manu-
facturing plant; that is, Xj is the quantity of product^' to produce in a given period (say
one month) and the limited availability of raw material i is represented by
a¡\X\ +aaX2 + ••• +a{„x„ < b¡, for each i= 1, . . . , m. The plant manager wants
to maximize profit in the particular production mix(X[, X2, ■ ■ -, x„) found to represent
optimal utilization of available raw materials b\, b2, ■. -, bm.

Now, consider the company's risk manager, who reports to the VP of finance. He is
interested in insuring the raw materials on hand against loss, but only wants to insure
them (place a per unit valuation on each) up to their value in producing products that
result in sales and profit (represented by C\, c2, ■ ■■, cn for each potential product
manufactured).

If we let w, be the per unit insured value of raw material i, the total valuation of
resource i on-hand would be 6,«,-. We shall assume that w, > 0, and otherwise no cost to
dispose of unused resource i. The objective function for minimizing the cost of
insurance is to minimize w = b\ U\ + Z>2"2 + • • • + bmum.

Furthermore, the combined values of the various raw materials used to make say
one unit of product^ must be at least cy, the profit from producing one unit of producty;
in mathematical notation: a\jU\ -\-a2jU2 + ■ ■ ■ +am¡um > c¡.

Because the above relationship must hold for each producty= 1, . . . , « , the risk
manager's linear program to choose the least cost insurance portfolio is

Minimize bT u

subject to ATu > c

and u > 0

which is recognized as the dual problem to the primal production mix problem.

RELATIONSHIPS BETWEEN PRIMAL AND DUAL SOLUTIONS 171

7.3.4 Importance of the Dual

We have just seen that the duality relationship for the standard form LP explained by the
total insurance valuation of on-hand raw materials (b) should be precisely equal to the
maximum dollar value that can be extracted from them, using the company's current
technology (A) and profit per unit for each of n products (c). There are many more such
insights to be gained from the dual LP, regardless of whether the primal represents the
classic resource allocation model or some other model. Duality plays a central role in
linear programming. The primal-dual relationships presented here and in the following
section help establish the simplex method, and then develop an alternative version
known as the dual simplex algorithm. It turns out that whether one is solving the primal
or dual LP via the simplex (or related) algorithm, one is automatically solving the dual
LP as well. More theory is needed to justify this statement, presented next.

7.4 RELATIONSHIPS BETWEEN PRIMAL AND DUAL SOLUTIONS

There are a series of primal-dual relationships the reader needs to know. Let
x° = (x°],X2, ■ ■ ■ ,x°) represent any feasible solution to the maximizing (primal)
problem, with objective value z° = 5Z/=i ciA = c T x ° - Let u° = (w°, U\, ..., wJJJ be
feasible for the minimizing (dual) problem, with objective function value
w° = E r - = i ^ = bTu°.

7.4.1 Relationships Between All Primal and All Dual Feasible Solutions

Since the primal problem can be either maximization or minimization and the dual
problem can be either maximization or minimization too, we shall simply use the
maximization problem or minimization problem in this section to ease the presenta-
tion of primal-dual relations.

The Weak Duality Theorem If x° is feasible a maximization problem, and u°is
feasible for the associated minimization problem, then the objective value of the
maximization problem is a lower bound of the objective value of the associated
minimization problem, or mathematically z° = Ylj=i f/*? < w° = J2?=i ^í"?-

Proof Since x° is feasible to the maximizing problem, we have

*° = ¿ < ^ (7.1)
7=1

n

subject to y^flyjc? < b¡ (i = 1,2,..., m) (7.2)

x° > 0 (7 = 1 , 2 , . . . , «) (7.3)

172 LINEAR PROGRAMMING—FUNDAMENTALS

Since u° is feasible to the minimizing problem, we have
m

w

subject to E ^ ' " ? -CJ (/' = ! ' 2 ' ■ • • 'M) C7-2')
1=1

M ° > 0 (1=1 ,2 , . . . , / «) (7.3')

Premultiplying (7.2) by (7.3') and summing over /, we obtain

m n m

i;«?2>J? _:$>«? (7.4)
i=l 7=1 1=1

Premultiplying (7.2') by (7.3) and summing over j , we obtain

n m

E*?E%"^E^ (7-4')
7 = 1 i = l 7=1

Rearranging and combining (7.4) and (7.4'), we get

E^<EEf l</^E^ (7-5)
7=1 i'=l 7=1 i'=l

or, by definition, z° < w°. Expressing (7.5) in matrix notation, we have

cTx° < (u°)TAx° < bTu° (7.6)

7.4.2 Relationship Between Primal and Dual Optimum Solutions

The Duality Theorem There are three possible relationships between the primal
and dual problems:

1. Ifone problem has a feasible solution x* with a bounded objective value z*, then
the other problem has a feasible solution u* with a bounded objective value w*.
Furthermore, both problems have a finite optimum solution with the relation
c V = (u*)TAx* = b V .

RELATIONSHIPS BETWEEN PRIMAL AND DUAL SOLUTIONS 173

2. If one problem has a feasible solution with an unbounded objective value, then
the other problem has no feasible solution.

3. If one problem has no feasible solution, then the other problem has either no
feasible solution or an unbounded solution.

Example 7.10 The reader should verify graphically that both primal and dual
problems below are infeasible.

(P) maximize z = x\-\- 2x2 (D) minimize w = -u2

subject to x\—X2 < 0 subject to u\—u2 > 1

—X\ + X2 < — 1 — U\ + «2 > 2

X\, *2 > 0 U\, U2 > 0

7.4.3 Relationships Between Each Complementary Pair of Variables
at Optimum

We now convert problem P to equality constraints by adding slack variables xSl (i = 1,
2, ..., tri).

Maximize z = 2_, cjxj
j

subject to Y^ ayXj + Xs, = b¡ (i=l,2,...,m)
J

* / > 0 (7 = 1 , 2 , . . . , «)

Likewise, convert problem D to dual equality constraints by subtracting surplus
variables us (/= 1, 2,... , ri).

Minimize w = \^b¡u¡

m

subject to ^2ajjUj-uSj = c¡ j=l,2,...,n

u, > 0 y = 1,2,... ,m

Complementary Slackness Theorem Let x j " , x\,..., x„* be an optimum solution
to the primal problem P and x¡¡, x*2,..., x/m be the associated slack variables. Also,
let wj", «j) • • ■ i um be an optimum solution to the dual problem D and MS* , MS* , • • •, «s*„

174 LINEAR PROGRAMMING—FUNDAMENTALS

be the associated surplus variables. Then, the following relation holds for each of the
complementary pairs of variables:

x* u* = 0 for i = 1 ,2, . . . ,m

Usj x* — 0 iorj = 1,2,...,«

Proof From the duality theorem, we have
n m n m

cJxj =2^2^avxj ui = Z^b¡ui
j=\ 1=1 j=\ i=i

Subtracting the middle term from the rightmost term, we have

ÇU-Çûy*;W =°

i = i

But because u* > 0 for all i, this equality implies that x¡¡ u* = 0 for i = 1,2,..., m.
Likewise, subtracting the leftmost term from the middle term, we have

n Im

or

7=1

But because xj > 0 for ally, this equality implies u^x* = 0 fory"= 1, 2, . . . , n,
completing the proof. ■

Example 7.11 Consider the following LP problem (P) and its dual (D) (with slack
variables and surplus variables).

(D) minimize w=10wi+20w2
(P) maximize z — x\— 3x2+ *3

subject to —u\ +3«2—uSl = 1
subjectto —x\ +2x2+x-s+xSl = 10

2u\— 2«2—MS2 = —3
3xi—2x2 + 3x3+xJ2 =20

U\ +3li2 — US3 = 1
x > 0

u > 0

NOTES 175

Suppose we know that the optimal solution to D is u\ = 0, u2 = 1/3, w* = 20/3,
which implies that uS| = 0, uS2 = —7/3, uS3 = 0. By the duality and the complemen-
tary theorems, we can obtain that z* = w* = 20/3,xS2 = 0, andx2 = 0.

Let us look at one more example.

Example 7.12 Consider the following LP problem (P) and its dual (D).

(P) maximize z — lx\ + \\x2 (D) minimize w= llu\+5u2—20«3

subjectto x\ +X2+xSt = 11 subjectto u\ +2ii2—3w3 —USI = 7

2X\— X2+XSl = 5 U\— «2 — 2«3 — USl = 11

-2>x\-2x2-\-xS:s = -20 u > 0

x > 0

Given that the optimal solution to P is xj =0,x2= 11,z*— 121, which implies that
xSi = 0,xS2 = 16, andxi3 = 2. By strong duality and the complementary rule, we
can obtain that w* = z* = 121, «2 = 0, u-¡ = 0, and w.Ç2 = 0, which implies
«i = l l and Ws, = 4. Hence, all information about the dual optimal solution is also
obtained.

7.5 NOTES

Section 7.2

In some discussions of linear programming, the converted LP with each constraint
expressed as an equality is called "standard form," and the version with all <
constraints (maximizing objective) is called "canonical form."

Section 7.4

Duality theory for linear programming was a major focus of applied mathematicians
in the early 1950s. The main duality theorem was originally stated by John von
Neumann, and proof first appeared in an article by Goldman and Tucker (1956). The
interested reader should review the papers by Farkas (1902), the paper by Gale et al.
(1951), and then the paper by Goldman and Tucker (1956).

There is a much broader duality theory for convex programming. The classic
reference is Rockafellar (1970). For a brief introduction to duality for integer
programming, see Section 2.5 of Wolsey (1998). For a comprehensive survey of
duality theory and its relation to the concept of relaxation in integer programming, see
Chapter II.3 in Nemhauser and Wolsey (1988).

176 LINEAR PROGRAMMING—FUNDAMENTALS

7.6 EXERCISES

7.1 Under what conditions the following expressions are (a) affine combinations
and (b) convex combinations?

(1) AV + 2/lx2 - Ax3 + 3/1V
(2) 2 l V + 3Ax2 + ¿ V + 2/lx4

7.2 Calculate the determinant of each of the following matrices using the two
methods introduced in this chapter.

(1) A

0 3 2 1

2 - 1 6 4

1 4 - 1 3

5 2 3 0

(2) B =

- 3 0 2

4 7 3

2 1 - 5

7.3 Generate upper and lower triangular matrices for each of the matrix below.
Show your steps.

(1) A

6 9 5
- 3 7 4
4 0 - 3
8 - 1 7

(2) B

2 5 - 3 0
0 4 6 5

- 1 2 5 3
3 3 7 4

7.4 Apply elementary row operations to the matrices in Exercise 7.3 to generate
new matrices. Show your steps.

7.5 Prove the following two statements:

(1) If A and B are nonsingular « x n matrices, then (AB)-1 =B_ 1A_ 1(« x n).

(2) If A is nonsingular, then AB = AC implies B = C.

7.6 Determine the rank of each of the matrices in Exercises 7.2 and 7.3.

EXERCISES 177

7.7 Determine whether the following linear system is feasible or not by applying
the upper or lower triangular matrix method.

2x\ + xj—3x3 + x4 = 9

—X\ + 2X2 + *3 + 2^4 = 11

X\—X2 +4X3 = 7

2X2 + -^3— 2X4 = 5

Xi, X2, X3, X4 > 0

7.8 Determine if the following linear system has (a) no solution, (b) unique
solution, or (c) multiple solutions.

7xi —3x2 + *3 + 4x4 = 23

3xi + 2 x 2 - 4 x 3 - x 4 — 19

x\ + X2 + X3 + 3x4 — 15

-x\ + 3x2 + 8x3 + 2x4 = 29

Xi,X2,X3,X4 > 0

7.9 Determine the feasibility of the following LP system without solving it. Use at
least two methods in this chapter.

—xi +3x2—2x3 = 7

2xi +X2—X3 = 6

X!,X2,X3 > 0

7.10 Test if the solution (125/92,4/23,91/92) is optimal to the following LP. Why or
why not?

Maximize z = 2xi —3x2 + IOX3

subject to — 3xi + X2 + 9x3 < 5

X] —2X2 + *3 < 2

6x] + 5x2 + 2x3 < 11

x > 0

178 LINEAR PROGRAMMING—FUNDAMENTALS

7.11 Formulate the dual of the following LP problem.

Maximize z = 11 x\ — 13x2 + 7x3 + 9x4

subject to —2xi + X2 +4x3—5x4 < —5

5xi +4x2—X3 < 17

2xi +X3—X4 < 5

x > 0

7.12 Formulate the dual of the following LP problem.

Minimize z = llxi — 13x2 + 7x3— 9x4

subject to 2xi —X2 + 4x3—5x4 < 5

5x, +4x2-X3 < 17

—2xi + X3—X4 = 5

xi, X2 > 0, X3 < 0, X4 unrestricted in sign

7.13 Consider the following LP problem and its unique optimal solution. Formulate
its dual and figure out as much information about the dual optimal solution
from the information given about the primal.

Maximize z = 4xi + 3x2 + xi + 7x4 + 6x5

subject to x\ + 2x2 + 3x3 + X4—3xs < 9

2xi —X2 + 2x3 + 2x4 + X5 < 10

—3xi + 2x2 + X3—X4 + 2x5 < 11

x > 0

optimal solution is (7, 10, 0, 0, 6) withz* = 94

7.14 Consider the following LP problem and its dual. Given the optimal solution to
the dual, figure out as much information about the optimal solution to the
primal.

Primal

maximize z = 25xi— 2x2 + 16x3

subjectto 3xi+X2 + 9x3<5

5xi+2x2—4x3 < 2

— 6X1 +3X2 + 2X3 < 1

2x|-7x2 + - 5x 3 <4

2xi+3x2—X3 <3

x > 0

Dual

minimize H> = 5MI+2H2 + W3+4W4 + 3W5

subjectto 3«i+5«2—6«3+2«4 + 2w5 >25

U\ +2«2 + 3W3 —7«4 + 3«5 > —2

9wi— 4w2 + 2w3 + 5«4—US > 16

u > 0

optimal solution :

(60/19,59/19,0,0,0)withw* =22

EXERCISES 179

7.15 Consider the following LP problem. Formulate its dual. Given that the optimal
solution to the primal problem is (3,4,0,3) with z* = 22, is the optimal solution
to the dual degenerate? Why or why not?

Maximize z = 3x\ + xi + 2x3 + 3x4

subject to —x\ + 3x2 + x-¡—2x4 < 17

lx\ + 3x3 + X4 < 23

X\ + 2X2 < 11

X2 + 3X4 < 13

x\, X4 > 0, X2 unrestricted in sign, X3 < 0

8
LINEAR PROGRAMMING:
GEOMETRIC CONCEPTS

This chapter introduces basic geometric concepts and terminology relevant to various
simplex-based algorithms (Chapter 9) for solving linear programs and helpful to
comprehending the various cutting plane methods embedded in the branch-and-cut
method (Chapter 12) for solving integer programs. The geometry of the LP objective
function, solution space, and requirement space is described. The geometry of convex
sets in general, and polyhedra specifically, must be understood to motivate the linear
algebra-based algorithms and methods to follow in later chapters.

8.1 GEOMETRIC SOLUTION

Recall that the feasible region of any LP is a polyhedron or polyhedral set and a
polyhedron is the set of all points in E" that simultaneously satisfy a set of m linear
constraints:

P= I (xi,x2,...,x„) : Y^ayxj < b¡, i=l,...,m\

In matrix notation, the system of constraints is Ax < b and P = {x: Ax < b}. It is
understood that any lower or upper bound constraints on x, including x > 0, can be
represented as a special form of YL"¡=\ a¡jxj ^ b¡. We now examine the geometry of the
LP problem in detail.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

180

GEOMETRIC SOLUTION 181

8.1.1 Objective Function

Consider the objective function z = cTx subject to the above constraints. Variable z
can take on any real value k. Hence, as k varies, we may consider the set {x: cTx = k}
to be an infinite number of parallel lines in E2, parallel planes in E3, or parallel
hyperplanes in a higher dimension, each corresponding to a different value of k. For
example, if z = x\ + 3x2, we know from calculus that the gradient of z

Vz =
dxi

dz

is the steepest ascent direction and the "equi-profit" contour for say k = 0, 3, 6, as
shown in Figure 8.1. Note that the contours are parallel lines, perpendicular to the
gradient vector c = (1,3)T. Moving x in the cT direction yields the greatest increase per
unit change in the constant k. If the objective function is minimized, then the direction
of steepest descent is —cT.

8.1.2 Solution Space

Consider the solution space for the following problem:

Maximize z = x\ + 3x2
subject to x\ +X2 < 3

x\— *2 > 1
xi,x > 0

FIGURE 8.1 Gradient vector and equi-profit contours.

182 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.2 Bounded feasible region with various objective values.

The geometry of this problem is shown in Figure 8.2, where the shaded area is the
solution space. Note that the contour z — 6 does not touch the feasible region, but z = 5
just does at the point (2, 1). The example illustrates several points:

• An LP with a bounded feasible region always has a finite optimal solution.

• The optimal solution of a bounded LP, if unique, will occur at one and only one
extreme point of P.

• If a bounded LP has two extreme points optimal (hence, alternative optima), then
there are an infinite number of optimal points expressed by the line segment
between them.

By bounded feasible region or set P, we mean there exists a nonnegative
constant e such that P Ç {JC: |x| <s], a spheroid in E" of diameter e. An LP with an
unbounded feasible region may or may not have a finite optimal value, depending
on the objective function. The following objective functions are plotted in
Figure 8.3:

(a) Maximize z = — x\ — x2

(b) Maximize z=— x\ + x2

(c) Maximize z = x\ + x2

(d) Maximize z=—0.5x¡ + 4x2

Note that objective function (a) has a unique, finite optimum at (0, 0), (b) has
alternative optima expressed by a line segment, (c) has an unbounded solution, and (d)
has a finite optimal ray.

GEOMETRIC SOLUTION 183

FIGURE 8.3 Optimal solutions of various objective functions.

8.1.3 Requirements Space

There is another geometric interpretation of the system of constraints in the space of
the requirements and resource vectors, that is, in Em. We shall first discuss case (A), a
system of equality constraints, and then (B), a system of inequalities.

Definition 8.1 A convex cone C is a convex set with the additional property that
Xx€ C for each x e C and X >0.

The origin is always an element of a convex cone, and if x e C, the ray {Ax: X > 0}
belongs to C.

Case A: Equality Constraints (Ax = b, x > 0) Let A = (ai, a2,..., a„), then the LP
is feasible if b is within the convex cone generated by {a1? a2, ..., a„}.

Example 8.1

3X\ + 2^2 + *3 = 1

—Xi +X2+ 2X4 — 3

X\,X2,X$,X4 > 0

As shown in Figure 8.4, the system has a feasible solution because the vector
b = (l, 3)T falls within the convex cone generated by a! =(3 , — 1)T, a2 = (2, 1)T,

184 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.4 Geometric detection for feasibility.

33 = (1,0)T, and 34 = (0,2)T. In fact, b can be generated by (32,34), (33,34), or (3j, s4).
For example,

b = X232 + X434

(0 = X 2 (Î) + X 4 (2) " X 2 4 ' * 4 = Ï
Note that all variables are nonnegative: x2 > 0, x4 > 0, X\ = x3 = 0. Thus, this is

a feasible solution. Likewise, we may verify that b can be generated by (33, 34) or
(3 b 34) by solving a system of equations for their associated variables.

Conversely, if b does not fall within the convex cone of the columns of A, the LP is
infeasible (all basic solutions of Ax = b are infeasible). Consider the following
example.

Example 8.2

2x\ +2.X2 + X3 = — 1

—x\ +X2 + 2x4, = 2

Xl,X2,X3,-X4 > 0

GEOMETRIC SOLUTION 185

FIGURE 8.5 Geometric detection for infeasibility.

As can be seen in Figure 8.5, the vector b = (—1, 2)T falls outside the convex cone
generated by the columns of A. This situation implies that at least one variable takes
on a negative value. For example,

b = X3&3 + X4SI4

2) = *3 (0) + XA (1) ~~* *3 = ~~1 a n d M = 2

Note that x3 < 0, and thus b cannot be generated by vectors a3 and a4. Similarly, we
can verify that b cannot be generated by any other pair of vectors, and hence there is no
feasible solution for this system. The reader should verify that every basic solution of
Ax = b is infeasible (has at least one negative component).

Given a feasible LP, there is a geometric explanation of how a bounded optimal
objective value arises. Let us illustrate this condition with an example.

Example 8.3

Minimize z = — X\ — IXÏ

subject to x\ + 3x2 + 2x3 = 3

186 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.6 Bounded objective in requirement space.

The problem is to choose X\, x2, x3 > 0 such that z is minimized in

In Figure 8.6, we first draw the vectors for the coefficient columns and then draw a
horizontal line for the right-hand side column toward the direction of decreasing
values (for minimization). When the line (dotted) hits the leftmost vector or its
extension, then a minimum is found at z = —3.

To illustrate the geometric condition for an unbounded solution, we use Example
8.4 and Figure 8.7.

Example 8.4

Minimize z = — x\ —2x2

subject to x\ +3x2—2x3 = 3

Xi,X2,X3 > 0

Case B: Inequality Constraints As noted above, the requirement space {Ax:
x > 0} is the convex cone generated by {a!, a2,. • -, a„}. If a feasible solution exists,
this requirement space in Em must overlap the collection of vectors that are less than or
equal to the requirement vector b (another convex cone). Figure 8.8 shows (a) a
feasible system and (b) an infeasible system.

GEOMETRIC SOLUTION 187

FIGURE 8.7 Unbounded objective in requirement space.

Collection of

C=^iajXj\xJ>0

Collection of

" C='£ajXj\Xj>0

Collection of
vectors ? b

(a) "I (b)

FIGURE 8.8 Geometry of (a) feasibility versus (b) infeasibility for an LP.

188 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

8.2 CONVEX SETS

This section introduces concepts and properties of convex sets in E", including
polyhedra, and both convex and concave functions defined for vectors in E".

8.2.1 Convex Sets and Polyhedra

Definition 8.2 A set X in E" is convex if given any two points x1 and x2 in X, and then
ax1 + (1 — a)x2isalsoinATforeacha,0<a < l. Each point along this line segment
from x1 to x2 is called a convex combination of x1 and x2.

It can be shown that the solution of every linear equation or inequality forms a
convex set such as the sets defined below:

A = {x : X\ +2x2 = 5}
B= {x : X\+2x2> 5}
C = {x : X\ +2^2 < 5}

Moreover, the intersection of two or more convex sets forms a convex set. This
implies that the set of feasible solutions of an LP forms a convex set. For example,
Figure 8.9a is a convex set while the set depicted in Figure 8.9b is not convex
because at least one point on the line segment between points xl and x2 falls outside
the set.

(a) (b)

(c) (d)

FIGURE 8.9 Examples of convex versus nonconvex sets.

CONVEX SETS 189

However, a set containing nonlinear constraints may or may not be convex. For
example, D = {x : x\-\-x\< 1} is convex, while U = {x : x2 + x\ = 1} and V
{x integer: xx + 2x2 < 4}are not convex. Figure 8.9c is convex but Figure 8.9d is not

convex.
A hyperplane in E" generalizes the concept of straight line in E2 and plane in E3.

Definition 8.3 A hyperplane in E" is a set of the form X= {x: pTx = A:} where
nonzero p e £ " and ¿Visa constant. Hence, a hyperplane is the solution set to a linear
equation in E". A hyperplane clearly separates E" into two half-spaces, each is a
convex set containing the hyperplane, H\ = {x: pTx < A;} and H2 = {x: pTx > k}.

Example 8.5
be written as

Consider the linear equation 2xi + 3x2 = 6'mE . This equation may

[2 3) = 6 or T
p'x

and as Figure 8.10 illustrates, each x eX is perpendicular to p.

Definition 8.4 A point x in a convex set X is called an extreme point of X if it cannot
be represented as a strict (0 < a < 1) convex combination of two distinct points in X.
In a polyhedron, the line segment formed by all convex combinations of two adjacent
extreme points is called an edge of X.

x2

i

3 ■

2 s

N
x
 N V 1 "

^ - .
v
x

'
-2 -1

1
— I

-2 -

L

f v '

* V . N 1
1

2

v*̂

P

pTx = 6

3 ^ s

pTx = 0

""-

■

4

h -

w

FIGURE 8.10 A hyperplane in E2.

190 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.11 Extreme points of polyhedral and nonlinear convex sets.

A polyhedron P always has a finite number of extreme points and the line segment
connecting two extreme points may include interior points of P. If a convex set
contains any nonlinear constraint, then a convex set may have an infinite number of
extreme points as illustrated in Figure 8.11.

Other examples of convex sets are rays and line segments in E".

Definition 8.5 A ray is aset inE" of the form*= {x: x = x° + Xd, d^O, X>0}.
The point x° is called the vertex of the ray, and the vector d is the direction of the ray.

There is of course a ray in the "opposite direction" by using -d as the direction. A
line segment emanating from x° in a particular direction d and of length / may be
produced by limiting X to 0 < X < u (where u = ll\ |d| |) in the definition above. More
generally, the line segment from x1 to x2 is given by the set of all convex combinations
of x1 and x2

L = {x : x = ax1 + (l - a)x 2 , 0 < a < 1}

A more general concept than line segment is that of convex hull of any set of points.

Definition 8.6 Given a set P Ç E", it is possible to find a "minimal" convex set
containing P. The convex hull ofP is the intersection of all convex sets containing P,
denoted by Conv(F). The convex hull of a finite number of points is called a convex
polytope, a special type of bounded polyhedron.

It is clear that a convex polytope X may be generated by all possible convex
combinations of its n extreme points, say set E:

X = < x : x = Y^ a,x', where x' G E, 0 < a < 1, and \^ ai = ^ \
I i=i /=i I

Thatis,A' = Conv(£:).

CONVEX SETS 191

8.2.2 Directions of Unbounded Convex Sets

The feasible region of a linear program may be unbounded. Unbounded convex sets
have at least one "direction" in which the set recedes to infinity, whereas bounded
convex sets has no such direction. We define and extend this concept formally.

Definition 8.7 Given an unbounded convex set X, a nonzero vector d is called a
direction (of recession) of X if for each x° £X, the ray {x:x = x° + Ad,d^0 ,A>0}
is contained within X.

Note that a convex set may have multiple directions. For example, the first quadrant
in E2, (x: x\ >0 , x2>0}, has any nonzero d = (du d2) with d\ >0 , d2>0 as a
direction. However, we are most interested in the "extreme directions" associated
with the two rays formed by the positive xraxis and positive x2-axis.

Definition 8.8 A direction of an unbounded convex set X is called an extreme
direction if it cannot be represented as a positive combination of two distinct
directions of X. Two directions d1 and d2 are distinct if d1 cannot be expressed as
kd2 for some positive scalar k.

For example, d1 = (1, 0)T and d2 = (2, 1)T are distinct because we cannot find a
scalar k such that d1 = A:d2, since the system of equations, 1 — 2k and 0 = k, has no
solution.

A property of extreme directions of X is that any other direction d of X can
be expressed as a positive combination of extreme directions of X: d = ^ a , d ' ,
a, > 0 and d' extreme direction for every i. Therefore, there is an obvious analogy
between extreme points of a convex set and extreme directions of an unbounded
convex set.

Definition 8.9 An extreme ray of an unbounded convex set is a ray whose direction
is an extreme direction. For example, the positive x raxis and positive x2-axis are
extreme rays of the first quadrant in E2. Obviously, the set of extreme rays of AT has the
form {x: x = x° + Ad, \°£X, d an extreme direction of X, A>0}.

8.2.3 Convex and Polyhedral Cones

Definition 8.10 A convex cone is a convex set C that consists of rays emanating
from the origin, that is, C is a convex set with the additional property that Ax S C for
each x e C and A > 0.

Definition 8.11 A polyhedral cone C is a convex cone of the form, C = {x: Ax < 0}.
That is, C is the intersection of a finite number of half-spaces whose hyperplanes pass
through the origin.

Example 8.6 Figure 8.12 depicts three cases: (a) a polyhedron P that is bounded,
hence not a cone; (b) a polyhedron Q that is a cone; and (c) an unbounded polyhedron
R that is not a cone.

192 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.12 Example polyhedra.

8.2.4 Convex and Concave Functions

The reader probably encountered the concept of convex and concave functions in
calculus. Convexity (concavity) is a strong property that often replaces differentia-
bility as a desirable property in constrained optimization problems.

Definition 8.12 A real-valued function/(x), x € E", is convex on E" if the following
inequality holds for any two points x1 and x2 in E": f[Xxl + (1 - X)x2] < Xfix1) +
(I - À)fix2) for M 0< À < I.

See Figure 8.13a and note the geometric interpretation of convexity of/. Any x
between x1 and x2 has its function value fix) below the correspond point on the line
segment joining (xl,fix1)) and (x2,fix2)).

Definition 8.13 A real-valued function/(x), x £ E", is concave on E" if the following
inequality holds for any two points x1 and x2 in E":f[Axl + (1 - X)x2] > Àfix1) +
(1 -À)fix2) for all 0<X< 1.

CONVEX SETS 193

/(x2)

/[Ax'+(1-A)x2]
/(x1)

/(Ax') + (l-A)/(x2)

Ax' + (1-A)x2

(a) Convex function

/(x)

/(x2)

/[Ax'+(1-A)x2]

/(Ax') + (l-A)/(x2)

/(x1) I-

x1 Ax' + (1-A)x2

(b) Concave function

FIGURE 8.13 Example convex and concave functions on El.

See Figure 8.13b and note the geometric interpretation of concavity off. Also, note
the following obvious properties:

1. A function / is concave (convex) if and only if the function g = —f is convex
(concave).

2. A function f is linear if and only iff is both concave and convex.
3. The definition of convex and concave/can be reduced to a specific subset

X € E"; some functions may be convex on a certain subset(s) of E", but not the
entire space.

An interesting relationship between convex and concave functions on E" and
convex sets in E" +1 exists.

194 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

Definition 8.14 The epigraph of a function/(x), x G E", is the set in E" + x defined by
{(x, y): x G E", y G El, y >fix)}. The hyper graph of/is defined similarly to be the set
in£" + l : {(x,y):x£En,y€El,y<j{x)}.

It can be shown that a function_/(x), x G E", is convex if and only if its epigraph is a
convex set in En + \ Similarly, a function/(x), x£E", is concave if and only if its
hypergraph is a convex set in E"+ '.

The reader can envision the epigraph of the function in Figure 8.13a by shading
in all of E2 on or above the points of the graph of/. Similarly, the hypergraph of
the function / in Figure 8.13b is generated by shading on or below the graph
of/

8.3 DESCRIBING A BOUNDED POLYHEDRON

8.3.1 Representation by Extreme Points

It can be shown that given a nonempty bounded polyhedron (or polytope) P =
{x: Ax<b , x > 0 } with extreme points x1, x2, . . . , xp, any point xGP can be
represented as a convex combination of extreme points; that is, x = X^=i aj^ f°r

some particular values of atj > 0, where Ylj= iaj = 1 • This property is very important
in the simplex method of linear programming, so we elaborate on it here.

8.3.2 Example Application of Representation Theorem

Consider the polytope in E2 depicted in Figure 8.14. The point x* is an interior point
that happens to fall on the line segment connecting x5 and y on the edge between x2

and x3.

FIGURE 8.14 A polytope with five extreme points.

DESCRIBING UNBOUNDED POLYHEDRON 195

To illustrate the representation property, let us show that x* is a convex combina-
tion of the five extreme points:

x* = a5\5 + (\-a5)y
= a5x5 + (l -a 5) [a2 x 2 + (l-a!2)x3]
= a5x5 + (l - a 5) a 2 x 2 + (l - a 5) (l - a 2) x 3

Now since 0 < a 5 < 1 and 0<a2< 1, it follows that 0 < (1 — a5)a2< 1 and
0 < (1 - a 5) (l -a2)< 1. It is clear that a5 + (1 -a5)a2 + (1 - a 5) (l - a 2) = l .
Therefore, x* is a convex combination of the five extreme points, with coefficients
of x1 and x4 set to zero.

8.4 DESCRIBING UNBOUNDED POLYHEDRON

An unbounded polyhedron (or polytope) can be described by the set of all extreme
points and the set of all extreme directions. First, we will show how to find all extreme
directions algebraically. Then we will provide a precise mathematical expression
that describes an unbounded polyhedron by the extreme points and extreme
directions.

8.4.1 Finding Extreme Direction Algebraically

Theorem 8.1 The directions of an unbounded polyhedron X = {x: Ax < b, x > 0}
are nonzero vectors d in the set {d: Ad < 0, d > 0, d ^ 0}, known as the recession cone
of*.

Recall that an extreme direction of AT is a direction that cannot be represented as a
positive combination of two distinct directions of X.

Definition 8.15 The set of recession directions of .Y is obtained from the recession
cone by adjoining a normalization constraint to the recession cone definition:

D = {d: A d < 0 , d > 0 , l T d = 1}

The set D is illustrated in Figure 8.15 for a three-constraint feasible region X, Note
that D is always a bounded polyhedron because it is bounded by lTd = 1.

Theorem 8.2 The vector d is an extreme point of D if and only if d is an extreme
direction of X.

Example 8.7 To illustrate the algebraic process of finding the extreme direction of
an LP feasible region, consider the polyhedral set X given by the inequalities

196 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.15 Recession cone and its normalized set of directions.

—X\ — 2x2 < 1

—5xi +X2 < 6

—X\ + X2 < 4

- X ! +3X 2 < 12

Xi, X2 unrestricted in sign

The set is illustrated in Figure 8.16. Its extreme points are given as

^ (- n - A) ^ 2 = (-^)T-»d«3-(°-4>T

The set D above is given by all {dx, d2) that satisfy

di+d2 = l

-dx -2d2 < 0

-5di +d2<0

-dx + d2 < 0

-dx + 3d2 < 0

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

DESCRIBING UNBOUNDED POLYHEDRON 197

-2 J

FIGURE 8.16 Boundary of feasible region for Example 8.8.

Adjoining slack variables to constraints (8.2)-(8.5) and solving the resulting
system, leads to two extreme points of O (or extreme directions of X):

2
- 1

Figure 8.17 illustrates graphically the determination of the set D. The reader should
also verify that if xx > 0, x2 > 0 are adjoined to the original model, then with d\ > 0,

3/4 d2 > 0 in the solution process, d1 = (Dlj\) as before, and d2 — . _ ..

Example 8.8 Using the normalizing equation, find all extreme directions of the LP
feasible region defined by

x\— X2 + X3 < 10

2JCI -X2 + 2JC3 < 40

X\,X2,X3 > 0

Create the system Ad < 0, d > 0, d ^ 0, Id = 1

d\ -d2 + d3 < 0

2di -d2 +2d3<0

d\ + d2 + d?, = 1

198 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

* ¿.

FIGURE 8.17 Extreme points of set D for Example 8.8.

Adjoin slack variables d4 and d5 yielding the system

d\ —d2 + di + d4 = 0

2di -d2 + 2d3+d5=0

d{+d2 + d3 = l

d\,d2ldT,,d4,d*, > O

This system potentially has I , 1=10 basic solutions. It may be shown that only

three of these are basic feasible solutions:

xB| = (d2,d4,d5) = (1,1,1)

XB2 = (d2,d3,d4) = I 3 '3 '3

XB3 = (d\,d2,d4)
1 2 1

We conclude that there are three extreme directions of X (extreme points of D):

/ 2 1 1 \ T / 1 2 1 ^ T

(o , i ,o , , , i) \ o , - , - , - ,o , 3 , 3 , 0 , 3 , 0

FACES, FACETS, AND DIMENSION OF A POLYHEDRON 199

FIGURE 8.18 Representation of a feasible point using extreme points and directions.

8.4.2 Representing by Extreme Points and Extreme Directions

We now present the representation theorem for an unbounded polyhedron.

Theorem 8.3 (Representation Theorem) Given a nonempty polyhedron X =
{x: Ax < b, x > 0}, its set of extreme points Sp= {x1, x2, . . . , xp], and its set of
extreme directions Sd = {d ', d2,..., d?}, any point x in X can be expressed as the sum
of a convex combination of points in Sp and a positive linear combination of
directions in Sd:

x = ¿a/x
/+¿j3 /d '

where J X i «/ = l .«,->0, / = 1, ...,p;ßj>0,j=l, ■ ■ -, q.

8.4.3 Example of Representation Theorem

As an example of an application in E2 of the above theorem, consider the unbounded
polyhedron X depicted in Figure 8.18. Note that there are three extreme points and two
extreme directions of X. A point along the upper extreme ray would have a unique
representation as x3 + Id2 for a particular A > 0, whereas x* has multiple possible
representations, one (as depicted) being x* = y + j82d2 = ax ' + (1 — a)x3 + /32d

2

for particular values of 0 < a < 1 and ß2 > 0.

8.5 FACES, FACETS, AND DIMENSION OF A POLYHEDRON

In this section, we provide some additional geometrically motivated definitions and
insights into the nature of extreme points and higher dimensional faces of a

200 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.19 Degenerate polyhedron.

polyhedron. We will assume a polyhedron in E" defined by X— {x: Ax < b, x > 0}
where A is m x n matrix, x is n x 1 matrix, and b is m x 1 matrix.

Hence, there are {m + n) inequality constraints, corresponding to (m + ri)
defining half-spaces whose intersection is X. We will call the (m + ri) hyperplanes
formed by the boundary of each of these half-spaces as the defining hyperplanes oïX.
Each hyperplane corresponds to the solution of an equation in E"; a set of n defining
hyperplanes are linearly independent if the coefficient matrix associated with this set
has full row rank (=«). An extreme point x of the polyhedron X in E" is the (unique)
solution of« linearly independent defining hyperplanes of X. If more than n defining
hyperplanes of A'pass through an extreme point x, then such an extreme point is called
a degenerate extreme point (see Figure 8.19). A polyhedron that contains at least one
degenerate extreme point is called a degenerate polyhedron, and the corresponding
LP has degeneracy.

Definition 8.16 A constraint aTx < ß is said to be binding {active) at a point * GX
ifaTx*=ß.

Above, we defined an extreme point x of X to be the unique solution of some n
linearly independent defining hyperplanes binding at x. A more general concept is that
of proper face of X.

Definition 8.17 A proper face F of X is a nonempty set of points in X formed by
the intersection of some set of binding defining hyperplanes of X. The dimension of a
face of X is dim(F) = n — rank(F), where rank(F) = maximum number of linearly
independent defining hyperplanes binding at all points of F. Note: 0 < dim
(F) < n - 1 .

For example, in/?3 a face can have 1,2, or 3 binding hyperplanes, so a face can be of
dimension 2, 1, or 0. Of course, in the case of a degenerate extreme point x, there
would be four or more binding hyperplanes at x. The extreme points of AT are the zero-
dimensional faces; the edges of X are the one-dimensional faces; and the planes,

DESCRIBING A POLYHEDRON BY FACETS

Degenerate extreme point

Edge (one-dimensional face)
Adjacent extreme
points

Nondegenerate extreme point (zero-
dimensional face)

Facet (two-dimensional face)

FIGURE 8.20 Proper faces of a polyhedron of full dimension in E3.

two-dimensional faces are called facets, a term reserved for the highest dimensional
proper face of X. So if X is full dimensional (n), the dimension of a facet is dim
(X) — 1 = n — 1, or 2 in the case of X Ç E3. A face loses one dimension (or degree of
freedom) for every additional linearly independent binding hyperplane associated
with it. In E", a face can have one of 1,2,3,..., n binding defining hyperplanes, except
for degenerate extreme points.

Figure 8.20 shows a full-dimensional polyhedron in E3 with nine defining
hyperplanes. It has nine extreme points, five of which are degenerate, and nine
two-dimensional faces (facets). As shown in Figure 8.20, two extreme points are
adjacent if the line segment joining them is an edge of A". Hence, adjacent extreme
points have (« — 1) binding linearly independent defining hyperplanes in common.

8.6 DESCRIBING A POLYHEDRON BY FACETS

In cutting plane methods and branch-and-cut methods for solving mixed integer
programs, it is necessary to generate a sequence of linear inequalities, each of which is
used to form a new facet of the "updated" LP feasible region, enclosing the MIP
feasible region, by means of intersecting its half-space with a "current" LP feasible
region of interest. Thus, the knowledge of "minimal" hyperplane representation of
polyhedra is useful background for Chapters 11 and 12.

Definition 8.18 A polyhedron PÇE" is called full dimensional if it contains n
linearly independent directions. By this we mean that at any interior point x° of P,
there exists a set of directions {d1, d2,..., d"} and an s0 > 0 such that x° + ed' € P, for
all 0<e<e0. Equivalently, the spheroid {x: | | x ° -x | | <e0] ÇP. Hence, a full-
dimensional polyhedron P has the property that there is no hyperplane H= jxE
En\aTx = ß] such that PÇH.

202 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

Theorem 8.4 Any full-dimensional polyhedron P can be uniquely represented by a
set of inequalities P = {x G R": a,x <b¡,i=\,...,m} where each inequality is unique
within a positive multiple, and each of which defines a facet of P.

The set of m inequalities in Theorem 8.4 is minimal in the sense that if one is
removed, the resulting polyhedron is no longer P.

Definition 8.19 An inequality aTx < b is a valid inequality for X C E" if aTx < b for
all x G X. In other words, X is contained within the half-space defined by aTx < b.

Theorem 8.5 If P is full dimensional, a valid inequality aTx < b is necessary in the
description of P if and only if it defines a facet of P.

Wolsey (1998) provides the following example in E2. Of the seven inequalities
listed, only (8.6) and (8.9)-(8.11) are necessary. Inequalities (8.7), (8.8), and (8.12)
although valid for P are redundant and would not be included among the "minimal"
set of valid inequalities described in Theorems 8.4 and 8.5.

Example 8.9 (Wolsey 1998') The reader is encouraged to verify that inequal-
ities (8.7), (8.8), and (8.12) are not necessary in the minimal (facet) description of P:

xi < 2

JCI + x2 < 4

xi+2x2 < 1°

X] + 2x2 < 6

X\ +*2 < 2

xi > 0

x2 > 0

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

8.7 CORRESPONDENCE BETWEEN ALGEBRAIC
AND GEOMETRIC TERMS

To summarize this chapter, Table 8.1 is provided to show the correspondence between
the algebraic expression of a set related to an LP feasible region and its geometric
concept in E". In this table, we assume that F is a full-dimensional polyhedron
represented (Theorem 8.5) by P = {x : Yll=i aüxj — b¡,i = I, ■ ■ ■ ,m;Xj > 0, j =
1,2, . . . ,«}.

'From Wolsey, Integer Programming. Copyright 1998 John Wiley & Sons, Inc. Reprinted with permission
of John Wiley & Sons.

EXERCISES 203

TABLE 8.1 Correspondence between Algebraic and Geometric Concepts in LP

Algebraic Description Geometric Term

Ax < b and x > 0

Ax<b,x>0,and]C"=

least one /', or x¡ = 0
All feasible x satisfying

for a specific subset
/'= 1, . . . , m

All feasible x satisfyin;
for exactly one /

All feasible x satisfyin;
for exactly n — 1 of
..., m

A feasible x satisfying
the indices ; = 1, . . .

(x : £;=i «y*/= M
among / = 1, ... , m

{x : YTj=x "uXj < M
among i= 1, ... , m

D={d: Ad<0, d>0,
Cone(D) = {Xd:deD,
D = (t>

i ayXj = b¡ for at
for at least one j
I £ " = i OijXj < b¡
of the indices

g E"=i auxJ = b<

? EJLi OijXj = b¡
the indices / = 1,

for exactly n of

for a given /

for a given i

, Id = 1}

Interior point x of P
Boundary point x of P

Face of P

Facet of P (or (n — l)-dimensional face)

Edge of P (or one-dimensional face)

Extreme point x of P (zero-dimensional face)

Defining hyperplane of P

Defining half-space of P

Directions of recession of an unbounded P
Recession cone of unbounded P
P is a bounded polyhedron (polytope)

8.8 NOTES

Sections 8.2 and 8.3

A standard reference on convex sets and functions is Rockafellar (1970). Minkowski
published his "summation" theorem in 1911, the origin of the Representation
Theorem (Theorem 8.3). Stability theory (Batson, 1979) uses this theorem.

Section 8.5

Much more detail on faces and facets of convex polytopes may be found in
Griinbraum (1967).

8.9 EXERCISES

8.1 Consider the polyhedron P shown in the Figure 8.21. Is it possible that it is the
feasible region of some LP problem? Why or why not?

8.2 Sketch the feasible region of the following LP problem. Do you think whether
it has optimal solution or not without solving the problem? If yes, it is finite and
unique?

LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

FIGURE 8.21 A polyhedron.

Maximize z = x\ + 8x2
subject to xi—X2 < 0

X\ + X2 > 2
-5xi +*2 < 5
X\,X2 > 0

Sketch the feasible region of the following LP problem. Try to tell if it has
unbounded solution using the concept of convex cone.

Minimize z = — 2x\ + xi
subject to x\ + 2x2 < 11

x\ +3x2 < 21
Ax\— X2 < 3
x\, x2 unrestricted in sign

Give examples of LP problems in E2 that satisfy

(1) The feasible region is bounded with objective function optimized at a
unique extreme point.

(2) The feasible region is bounded, and objective function is optimized at an
edge.

(3) The feasible region is unbounded, but the objective function is optimized
at a unique extreme point.

(4) The feasible region is unbounded, and the objective function is unbounded.

Consider the following sets: Are they convex? If not, explain why using two
specific points in S.

EXERCISES 205

(1) S = {x continuous: x¡x2 > 4, x¡ < 4, x2 < 4}
(2) S = { x > 0 : x,x2 < 25, x , - x 2 < 10, x 2 < 7 }
(3) S = {x continuous: |xi — x2\ > 4, x, + x2 < 10, xt > 2}

8.6 Decide if each of the following functions is convex, concave, or neither. Justify
your conclusion (by numerical proof, by using the epigraph or hypergraph, or
by providing points in conflict with the definition).

(l) / (x) = -2x 3

(2)/(x) = x - 1 , x / 0
X2 X2

(3) /(x) = 4 + -yi, a, b > 0 and constant
X2 X2

(4) /(x) = ^ - jf, a, b > 0 and constant

8.7 ShowthatConv(xl,x2,...,x") = Conv[x1,x2,...,x',Conv(x'+1,x' + 2 , . . . ,x")].

8.8 Given two distinct sets Si andS2, whereSi C S2, show that Conv(Si) C Conv(S2).

8.9 Show that the convex hull of a convex set is itself.

8.10 Consider the feasible region of an IP problem. If the corresponding LP convex
hull is unbounded, is it possible that the feasible region of the IP is bounded?
Why or why not?

8.11 Prove that (a) a function is linear if and only if it is both concave and convex; (b)
a function f is convex (concave) if and only if the function g = —fis convex
(concave).

8.12 Find all the extreme points of the following polyhedron formed by the feasible
region of an LP problem with three decision variables. List all possible
simplexes.

Xi + X2 + X3 < 1

*1,*2,*3 > 0

8.13 Following the procedure described in Example 8.8, find all extreme directions
(if any) of the feasible region of the LP problem in Exercise 8.1.

8.14 What do you think is the relationship between degeneracy and the necessity of
constraints in defining the facets of the corresponding polyhedron?

8.15 Show another way to represent the point x* in Figure 8.18.

8.16 Find all extreme points and extreme rays of the polyhedron defined as
follows: P= (x>0 : —2>x{ + x 2 < 3 , x^ — x 2 < 5 , -2x i - x 2 < - 7 } . Repre-
sent the point (10, 25) and (5, 5) using the extreme points and extreme rays
you found.

8.17 Plot the feasible region of the polyhedron described in Exercise 8.12. Find all
its faces and facets.

206 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS

8.18 Consider the following set of constraints for an LP problem. Which one(s) is
necessary in the description of the facets? Which not? Why?

—X\ + X2 < 2
x\— 2^2 < 6
X\ +4X2 > 5

3xi +X2 < 18

x2 > 0

8.19 Consider the following constraint set for an LP problem. Sketch a graph in E2

showing 3], 32,33, the cone generated by these three vectors, and then add b to
the graph. Show that Ax = b, x > 0 has no solution but that Ax < b, x > 0 has
feasible solutions:

X2 + 2X3 = 2
3x\ + 2x2 + 2x3 = 1
Xi,X2,X3 > 0

9
LINEAR PROGRAMMING:
SOLUTION METHODS

The modern methods for solving a large-scale integer program require the optimiza-
tion and reoptimization of a usually long sequence of LP relaxation problems, which
in turn are often solved by a variety of simplex-based methods. This chapter reviews
three simplex-based methods that are the building blocks for solving integer
programs. The simplex method provides the foundation for optimizing a long
sequence of LP relaxations. The simplex method for upper bounded variables is
used for reducing the problem size by implicitly handling the upper and lower bounds
on variables (or single-variable constraints, more generally). The dual simplex
method is most effective for reoptimizing the current optimum, after additional
constraints are added, without resolving the augmented LP problem from scratch. The
revised simplex method produces the same sequence of bases as the simplex method,
but depends on updating B~' (m columns) rather than on the entire simplex tableau
(« columns).

9.1 LINEAR PROGRAMS IN CANONICAL FORM

Recall the following LP problem in standard form:

Maximize z = > J c¡x¡ (9.1)
i

Applied Integer Programming: Modeling andSolution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

207

208 LINEAR PROGRAMMING: SOLUTION METHODS

subject to V^ ciijXj <b¡ (i — 1,2,..., m) (9.2)
i

Xj>0 (/ = 1,2 «) (9.3)

where b, (i= 1, 2, . . . , m) can be a positive or negative number.
Because the simplex-based methods work on systems of linear equations rather

than inequalities, the standard LP problem must be first converted to a system of
equations. This can be accomplished by adding a nonnegative slack variable s¡ to each
inequality constraint (9.2) and transferring all the variable terms in the objective
function (9.1) to the left-hand side of an equation and leaving the constant term on the
right-hand side:

Maximize z— 2_, cixi = ^ (9-4)
j

subject to \~) aijxj + s¡ — b¡ (z = 1,2,..., ra) (9.5)
j

xj>0 (.7=1,2, . . . , / i) (9.6)

s / > 0 (i = l , 2 , . . . , / n) (9.7)

Based on this new formulation, therefore, solving a linear program can be viewed
as performing the following three tasks:

1. Find solutions to the augmented system of linear equations in (9.4) and (9.5).
2. Use the nonnegative conditions (9.6) and (9.7) to indicate and maintain the

feasibility of a solution.
3. Maximize the objective function, which is rewritten as equation (9.4).

Note that (9.4) can also be viewed as a combination of two parts:

maximize z

subject to z— £\. CjXj = 0

Also note that the augmented system of equations (9.4)-(9.5) has a particular form of
coefficient matrix called canonicalform. In this form, a solution can be read immediately
from the right-hand side of all equations: all Xj■ = 0, all s¡ = b¡, and z = 0. Clearly, ̂ feasible
solution is readily available if all b¡ > 0. Moreover, this LP canonical form, after
detaching the coefficients from the variables, appears to be the so-called simplex tableau.

If there exists any b¡ < 0, the system has an infeasible solution because it violates at
least one of (9.6) and (9.7). In this case therefore, to obtain a starting basic feasible
solution, a Phase I problem must be constructed and solved. The details of this
procedure will be given in Section 9.3.

BASIC FEASIBLE SOLUTIONS AND REDUCED COSTS 209

9.2 BASIC FEASIBLE SOLUTIONS AND REDUCED COSTS

9.2.1 Basic Feasible Solution

Definition 9.1 Given that a system Ax = b, where the number of solutions are infinite,
and rank (A) — m (m<n), a unique solution can be obtained by setting any n — m
variables to 0 and solving for the remaining system of m variables in m equations. Such a
solution, if it exists, is called a basic solution. The variables that are set to 0 are called
nonbasic variables, denoted by xN. The variables that are solved are called basic
variables, denoted by xB. A basic solution that contains all nonnegative values is called a
basic feasible solution. A basic solution that contains any negative component is called a
basic infeasible solution. The m x m coefficient matrix associated with a given set of
basic variables is called a basis, or basis matrix, and is denoted as B.

Let x = (xB, xN)T, c = (cB, cN)T, and A = (B, N). Then, the LP can be expressed by
the following partitioned form:

Maximize z = c¿xB + C£XN

subject to BxB + NxN = b

xB,xN > 0

Example 9.1 Consider the following system of two equations in four unknowns (or
variables):

X\ + X2 + Xj = 6

¿X\ -\- X2 ~f" X4 = o

A basic solution to this system can be obtained by assigning 0 to any two variables
and solving the remaining system of two equations in two variables. This system has a
maximum of six basic solutions:

C 4 4 ! - 6
2 ~2! (4-2) !

These six basic solutions are listed in Table 9.1. Note that basic solutions 3 and 4
are infeasible because one of their basic variables has a negative value while the
remaining basic solutions are feasible.

, - ■ fl °\ fxi\ f1 l\
For xB = I I, the basis B = and for xB = , the basis B — \

Vo V W V2 V
TABLE 9.1 Basic Solutions in Example 9.1

Basic Solution

1 2 3 4 5 6

Nonbasic x r=0, X!=0, Xj=0, x2 = 0, x2 = 0, x3 = 0,
variables xN x2 = 0 x3 = 0 x4 = 0 x3 = 0 x4 = 0 x4 = 0
isic variables
xB

x3 = 6,
x4 = 8

x2 = 6,
x4 = 2

*2 = 8,
x3 = - 2

X\ =6 ,
x4 = - 4

x , = 4 ,
x3 = 2

Xi=2,
x2 = 4

210 LINEAR PROGRAMMING: SOLUTION METHODS

In general, the number of basic solutions possible in a system of m equations in n
variables is calculated by

n1

Cn = -
m m\{n-m)\

We now formally define a canonical system of linear equations.

Definition 9.2 A system of linear equations is said to be in a canonical form if each
equation contains a basic variable whose coefficient is 1 in that equation and whose
coefficient in all other equations is 0.

Therefore, in a canonical system, every equation contains only one basic variable
in the current basis whose value equals to the right-hand-side constant, and the rest of
the variables are nonbasic with a value of 0. Thus, a basic solution can be obtained by
letting each basic variable equal to the right-hand side of its respective equation and
setting the nonbasic variables equal to zero.

Example 9.2 Consider the following LP in standard form:

Max z = 4xj + 3^2

X[+X2 < 6

2x\ + x2 < 8

x\, xj > 0

After transferring the objective function and adding nonnegative slack variables S\
and s2 to equalize the inequality constraints, we obtain a canonical system:

Max z—Ax\ -3x2 = 0

Xi +X2 +S\ = 6

2xi + x 2 + s2 = 8

xi , x2 > 0

sus2 > 0

Let X! and x2 be nonbasic variables, then the remaining variables s^ and s2 are
basic. A basic solution is X\ = x2 = 0, S\ =6,s2 = 8, and z — 0, which forms a solution
vector (including z-value component) equal to the right-hand side of the equations.
For simplicity, we detach the coefficients from the variables resulting in a simplex
tableau given in Table 9.2.

Note that z can also be viewed as a basic variable for the objective equation (row).
Just like the constraint equations (or rows), this objective row is updated during

BASIC FEASIBLE SOLUTIONS AND REDUCED COSTS 211

TABLE 9.2 Simplex Tableau for Example 9.2

Basic Variable

z

s2

z

1

0
0

Xl

- 4

1
2

x2

- 3

1
1

•Sl

0

1
0

*2

0

0
1

RHS

0

6
8

elementary row operations embedded in a simplex pivot. We shall refer to this
equation as the objective row or row 0 of the simplex tableau. The constraint rows are
rows 1 through m.

9.2.2 Adjacent Basic Feasible Solution

Given a basic feasible solution in Table 9.2, one can generate an adjacent basic
feasible solution by exchanging only one nonbasic variable for a basic variable while
keeping all other variables unchanged (of course, their values typically change). This
can be accomplished by the following steps: (a) determine a current nonbasic variable
to become basic, (b) determine a current basic variable to become nonbasic, and
(c) perform necessary row operations for exchanging the two variables determined in
(a) and (b) and updating the values of the basic variables and z.

Definition 9.3 A nonbasic variable is called an entering variable if it is selected to
become basic in the next basis. Its associated coefficient column is called a pivot
column. A basic variable is called a leaving variable if it is selected to become
nonbasic in the next basis. Its associated coefficient row is called a pivot row. The
element that intersects a pivot column and a pivot row is called a pivot or pivot
element. A pivoting operation is a sequence of elementary row operations that makes
the pivot element " 1 " and all other elements "0" in the pivot column. Two basic
feasible solutions are said to be adjacent if the set of their basic variables differ by only
one basic variable. Geometrically, these two basic feasible solutions will correspond
to two extreme points except in the case of degeneracy, in which case two or more
bases correspond to the same extreme point.

In Table 9.2, suppose we select Xi as the entering variable. This will make either S\
or s2 leave the basis. If s{ is to leave, the coefficient of X\ must be " 1 " in row 1 and"0"
in both rows 2 and 0. To achieve this, we apply the following row operations: multiply
row 1 by —2 and add to row 2, and then multiply row 1 by 4 and add to row 0, resulting
in Table 9.3. Because s2 is negative, the basic solution (6, 0, 0, —4) is infeasible. So,
selecting s\ to exit was an improper choice.

Suppose X\ is still the entering variable. If we let s2, instead of s\, leave the basis,
then the coefficient of Xi must be " 1 " in row 2 and "0" in rows 1 and 0. After pivoting,
Table 9.4 is generated. Because all RHS values are nonnegative, the basic solution
(4, 0, 2, 0) is feasible with z = 16.

Note that the different results in Tables 9.3 and 9.4 indicate that a certain choice of
leaving variable may cause the next basic solution infeasible. The question is how to

212 LINEAR PROGRAMMING: SOLUTION METHODS

TABLE 9.3 Updated Simplex Tableau After Pivot 1

Basic Variable z

z 1

x, 0
J 2 0

TABLE 9.4 Updated Simplex

Basic Variable z

z 1

j , 0

x, 0

X ,

0

1
0

x2

1

1
- 1

Tableau After Pivot 2

Xl

0

0
1

x2

- 1

0.5
0.5

s

■Si

0

1
0

;i

4

1
-2

*2

0

0
1

«2

2

-0.5
0.5

RHS

24

6
- 4

RHS

16

2
4

ensure that the next basic solution will remain feasible if the current basic solution is
feasible. To achieve this, we must choose a leaving variable such that its ratio of the
right-hand side to the corresponding positive component in the pivot column is
minimal. That is, from Table 9.1, we calculate the minimum ratio,

min{6 / l ,8 /2}=4

Because the minimum ratio 4 corresponds to s2
 row> *2 must be the leaving variable

to ensure the next basic solution is feasible.
Because row 0 of Table 9.4 still contains a negative value, which implies the

objective value can be increased further, another simplex iteration is needed.
Choosing x2 as the entering variable and s\ as the leaving variable, we obtain
Table 9.5, which yields a nonnegative objective row and an optimum solution is
found.

9.2.3 Reduced Costs

Examining Tables 9.2-9.5, we see that each row of a simplex tableau represents a
basic variable written in terms of nonbasic variables. In Table 9.5 for instance,
x2 + ls\ + s2 = A or x2 = 4 — 2s\ + s2- In effect, the dimension of the original
solution space is reduced from (n + rri), the number of basic and nonbasic variables,

TABLE 9.5 Optimal Tableau After Pivot 3

Basic Variable

z

z

1

X ,

0

x2

0

S\

2

*2

1

RHS

20

x2 0 0 1 2 - 1 4
x, 0 1 0 - 1 1 2

THE SIMPLEX METHOD 213

to a subspace of dimension n equal to the number of nonbasic variables. Premultiply-
ing B _ 1 on the equation BxB + NxN = b, we obtain

IXB + B lNxN = B 1 b

orxB = B ~ ' b - B _ ' N x N . Substituting it into z = cBxB + cJxN, we have

z = (C B B - ' N - C ^ X N

= cBB_1b— \~](zj—Cj)xj, j nonbasic
j

Definition 9.4 The subspace that contains only the nonbasic variables is referred to
as a reduced space. The components of the objective row in a reduced space are called
reduced costs, denoted by c:

cT = (<$, ¿5) = (0T, C B B - ' N - C S)

Note that the cost vector associated with the set of basic variables is a null
vector 0.

9.3 THE SIMPLEX METHOD

The simplex method is an iterative algorithm consisting of the following steps:

1. Initialization: Find an initial basic solution that is feasible.
2. Iteration: Find a basic solution that is better, adjacent, and feasible.
3. Optimality test: Test if the current solution is optimal. If not, repeat step 2.

First, we shall address the iteration step, the core of the simplex method.

9.3.1 Better and Feasible Solution

The iteration step is aimed at finding a new basic solution that is better, feasible, and
adjacent than a given feasible basic solution. When no better solution can be found,
then an optimum solution has to be obtained. This iteration contains three basic steps:
(1) determining the entering variable, (2) determining the leaving variable, and
(3) pivoting on the pivot element for exchange of variables and updating the data in the
tableau. A new basic solution will be better if an entering variable is properly chosen.
A new basic solution will be. feasible if a leaving variable is properly chosen. A new
basic solution will be adjacent to the current one if only one basic variable from the
old basic solution is exchanged with the old basic solution, which can be accom-
plished by a pivot operation. Consider the given simplex tableau in Table 9.6.

214 LINEAR PROGRAMMING: SOLUTION METHODS

TABLE 9.6 The Simplex Tableau Immediately Before Pivoting

Basic
Variable

z

z xBl .

1 0 .

xB

• • xBr ■ ■

.. 0 ..

• XBm

. 0

xN

. . . Xj . . . Xk . . .

. . . Cj . . . Ck

RHS
Solution

h
xBl 0 1 . . . 0 . . . 0 ... av ... axk ... ¿,

xBr 0 0 . . . 1 . . . 0 ... arj ... ark ... br

xB„ 0 0 . . . 0 . . . 1 ... âmJ... âmk ... bm

The entering variable, denoted by JC*, is chosen among the current nonbasic
variables, denoted by x7 G xN (/= 1, 2, . . . , n), such that it will improve the current
objective value. This can be accomplished by selecting the Xk with the most (or any)
negative reduced cost. Mathematically,

Xk = {XJ G XN : miUjCj, Cj < 0} (9.8)

The coefficients column k associated with the entering variable x^ is the pivot
column. The leaving variable, denoted by Xßr, is chosen among the current basic
variables, denoted by Xßi € XB (/' = 1 ,2 , . . . , m), such that it has a minimum (positive)
ratio 6 defined by

e = h. = miJkiäik>o\ (9.9)
ark ya-ik)

The coefficient row r associated with the leaving variable xBr is the pivot row. The
rationale for selecting the minimum ratio is justified below.

Consider the simplex tableau given in Table 9.6. While holding (n — 1) nonbasic
variables fixed at zero and increasing the nonbasic variable x^ from zero to positive,
we will have the following system of equations for the objective function and
constraints:

z + CkXk = b0 or z — bo-CkXk (9-10)

and xBi + äikXk = b¡ or xB, = h—äikXk (/' = 1 ,2 , . . . , m) (9.11)

Because we want a new solution to remain feasible, meaning that the new xBl must
be > 0 for all /,

XB¡ = bj—äikXk > 0 for / = 1 ,2 , . . . , m (9-12)

THE SIMPLEX METHOD 215

If alk < 0, then XB¡ increases as xk increases and so XB¡ continues to be nonnegative
without bound. If a¡k = 0, then there is no change in XB¡ as xk increases. Clearly, if
a¡k < 0 for all / = 1,2,..., m, then the problem has an unbounded solution. Moreover,
if there exists any nonpositive column j , not necessarily the pivot column, with a
negative component in row 0 (or c¡ < 0), then x¡ can increase to infinity without
making the new XB1 negative.

If a¡k > 0, then XB< decreases as xk increases. To satisfy nonnegativity, xk is
increased until the first basic variable XB¡ drops to zero. Examining the system of
inequalities in (9.12), it is clear that the first basic variable dropping to zero
corresponds to the minimum of b¡¡alk for positive ä,*. Mathematically, we can
increase xk until equal to the amount of 8 determined by (9.9). From (9.10), the new
objective value will be (b0—ckd).

9.3.2 Updating Simplex Tableau by Pivoting

Now we address how to find an adjacent basic feasible solution. Given the entering
variable xk (pivot column k) and the leaving variable XB, (pivot row r), the pivot
element ark can be determined by the intersection of row r and column k. To update the
simplex tableau in Table 9.6, the following pivoting operation is performed.

1. Divide row r by ark.
2. For all / / r , update the rth row by adding to it (-a,*) times the new rth row.
3. Update row 0 by adding to it ck times the new rth row.

After pivoting operation, we obtain Table 9.7. Note that the positions of xBr and xk

are exchanged. That is, XB, appears in the rows of basic variables and xk in the columns
of nonbasic variables.

TABLE 9.7 The Simplex Tableau After Pivoting

Basic X
B

 XN
Variable z xg, . . . xBt . . . xBm . . . xj

br - «17 -
z 1 0 . . . — . . . 0 ••• Cj-^-Ck .

àrk ark

. xk ...

.. 0 . . .

RHS
Solution

Ä ~b'~ b0- — Ck
ürk

0 1 . . . ^ ... 0 ... -av-?Ü-äxk ... 0 ... ¿ , - ^ ä u
ürk ark

 ark

Xk (J O . . . — . . . 0 . . . ^ . . . 1 . . . A .
a,k a,k ark

216 LINEAR PROGRAMMING: SOLUTION METHODS

9.3.3 Optimality Test

An optimum solution is found if there exists no adjacent basic feasible solution that
can improve the objective value. In a maximization problem, the optimality condition
is satisfied if Cj > 0 for all j= 1, 2, ..., m. If at optimality, there exists a nonbasic
variable, say Xp, with cp = 0, then this variable can enter the basis to obtain an alternate
optimum solution with the same objective value.

9.3.4 Initial Basic Feasible Solution

In the preceding section, we assume that an LP problem has all constraints in < form
and all b¡ > 0. In this case, a basic feasible solution is naturally obtained after adding a
nonnegative slack variables J, to each constraint. However, if there is any b¡ < 0 or any
constraint in > or = form, then artificial variables are added to become basic
variables for a starting basis. Unfortunately, this basic solution is infeasible to the
original problem because of the presence of artificial variables with positive values.
To obtain a feasible basic solution to the original problem, a phase I problem of the
two-phase method is constructed to drive all artificial variables out of basis (and hence
equal 0). The construction procedure is given below.

1. Convert each constraint so that the right-hand side is nonnegative. This requires
that any constraint with a negative right-hand side be multiplied by — 1. The
resultant constraint has one of the three forms: <, =, or >. If it is in < form, then
add a nonnegative slack variable; in = form, add a nonnegative artificial
variable; in > form, subtract a nonnegative slack variable and add a nonnegative
artificial variable.

2. Solve a phase I problem whose objective function is minimizing the sum of
artificial variables subject to the same set of constraints. The sum of artificial
variables is obtained by assigning a cost of 1 to each artificial variable and 0 to
each of nonartificial variables.

Example 9.3 This example is extended by adding the following additional con-
straint to Example 9.2.

—2x\ + X2 > 2

Applying step 1, we obtain

—2x\ + X2—S3 + Xa = 2

s3,xa > 0

Applying step 2, we minimize za = xa,

or maximize—za = — x"

or maximize—z° + Xa = 0

THE SIMPLEX METHOD 217

Setting up a tableau format for phase I problem, we have the following tableau:

Basic Variable

-z°

Sl

Í2

x"

-z"

1

0
0
0

X\

0

1
2

- 2

x2

0

1
1
1

■Sl

0

1
0
0

¡¡2

0

0
1
0

■S3

0

0
0

- 1

xa

1

0
0
1

RHS

0

6
8
2

Note that the above tableau is not yet in canonical form because the coefficient of
xa in row 0 is nonzero. To zero it out, we mult iply row Xa by — 1 and add the resultant
row to row 0, resulting in the following tableau. N o w the artificial variable Xa becomes
a basic variable to the transformed p roblem.

Basic Variable

-za

Sl

Si

Xa

-za

1

0
0
0

X\

2

1
2

- 2

x2

- 1

1
1
1

■Sl

0

1
0
0

■S2

0

0
1
0

■S3

1

0
0

- 1

xa

0

0
0
1

RHS

- 2

6
8
2

Let x2 be the entering variable and xa be the leaving variable. After pivoting, we
have the following tableau.

Basic Variable

-za

Sl

•S2

* 2

-za

1

0
0
0

X\

0

3
4

- 2

* 2

0

0
0
1

Sl

0

1
0
0

■S2

0

0
1
0

•S3

0

1
1
- 1

xa

1

- 1
- 1

1

RHS

0

4
6
2

Because the artificial variable is driven out of basis and hence has a value of 0, we
obtain a basic feasible solution for the original problem: x\ = 0 and x2 = 2.

Once a starting basic feasible solution is obtained, we proceed to the phase II
problem to find an op t imum solution using the original objective function and the last
tableau of the phase I problem. To begin with, we must drop the columns associated
with all the artificial variables, drop the objective row of phase I, and replace it with the
original objective row. We obtain the following tableau.

Basic Variable

z

z

1

X\

- 4

x2

- 3

•Sl

0

•S2

0

•S3

0

RHS

0

i , 0 3 0 1 0 1 4
52 0 4 0 0 1 1 6
x2 0 - 2 1 0 0 - 1 2

218 LINEAR PROGRAMMING: SOLUTION METHODS

Note that this tableau is not yet in canonical form because in row 0 the coefficient of
the basic variable x2 is nonzero. To obtain a canonical form, we zero it out by
multiplying row x2 by 3 and adding the resultant row to the objective row.

Basic Variable

z

■îi

S2

x2

Z

1

0
0
0

X\

-10

3
4

- 2

x2

0

0
0
1

¿1

0

1
0
0

S2

0

0
1
0

S3

- 3

1
1

- 1

RHS

6

4
6
2

This tableau has a basic feasible solution (0,2,4,6,0) but it is not optimal because
the objective row contains negative components. Letting the entering variable be X\
and the leaving variable be S\, we have the following tableau.

Basic Variable

z

X\

s2

x2

z

1

0
0
0

X\

0

1
0
0

x2

0

0
0
1

•Sl

10/3

1/3
-4/3

2/3

«2

0

0
1
0

«3

1/3

1/3
-1/3
-1/3

RHS

58/3

4/3
2/3
14/3

Since all the components in the objective row are nonnegative, an optimum
solution is found: (4/3, 14/3, 0, 2/3, 0) with an objective value z = 58/3.

9.4 INTERPRETING THE SIMPLEX TABLEAU

9.4.1 Entire Simplex Tableau

Every simplex tableau provides information about the current basic feasible solution
and its n adjacent basic feasible solutions. Geometrically, a basic feasible solution
corresponds to an extreme point of the feasible region. Recall that a convex hull of
n + 1 points is called a simplex, hence the name of the simplex method.

9.4.2 Rows of Simplex Tableau

Every row of a simplex tableau represents an equation with all variable terms on the
left-hand side and a constant term on the right-hand side of the equality sign.
Moreover, the coefficients of all but one basic variables are zero. Note that the
objective function can also be expressed as an equation, z— ^ CjXj = 0 (where x¡ is

INTERPRETING THE SIMPLEX TABLEAU 219

nonbasic) with a new variable z being treated as a basic variable. This objective row is
also referred to as row 0 and the remaining rows are rows 1 through m. The coefficient
Zj = Zj—Cj is referred to a reduced cost because it is a cost coefficient expressed in the
reduced space of n nonbasic variables.

Note that each equation contains exactly one basic variable with coefficient equal
to 1 and one or more nonbasic variables with coefficients of any values. Moreover,
different equations have distinct basic variables.

9.4.3 Columns of Simplex Tableau

The right-hand side column of a simplex tableau contains the objective value and the
m values of basic variables for the current basic feasible solution. Note that the values
of all nonbasic variables are always 0 and do not appear in the tableau.

The left-hand side column associated with each basic variable always contains a
unit column vector with a " 1 " corresponding to the basic variable and a "0" to each of
the nonbasic variables, including row 0. The left-hand side column associated with
each nonbasic variable provides information about the basic feasible solutions
adjacent to the current one. The objective component of the left-hand side column
predicts the negative rate of the change in objective function value if the correspond-
ing nonbasic variable is increased by one unit. The remaining components of the same
left-hand side column predict the amount of each resource to be consumed if a
nonbasic variable is increased by one. In case of a negative component, the resource is
added rather than consumed. Therefore, in the calculation of minimum ratio, the
negative and zero components are excluded.

9.4.4 Pivot Column and Pivot Row

The negative of row-0 component in the pivot column represents the unit improve-
ment in the objective value if the entering variable is increased by one unit. The ratio of
a right-hand side to a positive component of the pivot column represents the maximum
amount that the corresponding nonbasic variable can be increased without exceeding
the resource availability on the right-hand side of the equation. To satisfy the limits of
all resources, a minimum ratio must be used. Otherwise, the new solution will be
infeasible, indicated by negative values on the right-hand side.

9.4.5 Predicting the New Objective Value Before Updating

Prior to updating a simplex tableau, the new objective value of the next tableau can be
predicted by the following formula:

New z = current z + total improvement in the objective value

= current z+ (unit improvement) (amount of improvement)

or, b0 = b0-ck6

where b0 denotes the new objective value.

220 LINEAR PROGRAMMING: SOLUTION METHODS

9.5 GEOMETRIC INTERPRETATION OF THE SIMPLEX METHOD

9.5.1 Basic Feasible Solution Versus Extreme Point

Recall that in Chapter 8, a point x in a polyhedron P (feasible region) is called an
extreme point of P if it cannot be represented as a strict (0 < a < 1) convex
combination of two distinct points in P. Here we will show that every extreme point
corresponds one-for-one to a basic feasible solution in the absence of degeneracy. To
illustrate this, we compare the extreme points in Figure 9.1 with the basic feasible
solutions in Table 9.1 for Example 9.2. Figure 9.1 shows a feasible region (poly-
hedron) with four extreme points and two infeasible points outside the feasible region:
(6, 0) and (0, 8).

Table 9.1 lists four basic feasible solutions and two basic infeasible solutions.
Comparing Table 9.1 with Figure 9.1, we see that every basic feasible solution
corresponds to an extreme point. Furthermore, every basic infeasible solution
corresponds to a point outside the feasible region. The two-dimensional figure does
not show the values of slack variables s\ and s2> whose values can be obtained by
substituting the values of X\ and x2 into the respective equations. For example,
extreme point (6,0) has si = 0 and s2 = —4 and extreme point (0, 8) has s¡ = —2 and
s2 = 0. Both points are outside the feasible region and correspond to basic infeasible
solutions.

FIGURE 9.1 Six basic solutions to Example 9.2.

TABLE 9.8 Basic Solutions Associated with Figure 9.2

X N

Xß

1

x i = 0 ,
x2 = 0

•Si = 6 ,

52 = 8.
5 3 = 4

2

x, = 0 ,
5 , = 0

x2 = 6,
52 = 2,

5 3 = 4

3

x,=0,
5 2 = 0

x2 = 8,
5, = - 2 ,

5 3 = 4

4

x,=0,
53 = 0

No solution

Basic Solution

5

x2 = 0,
5 , = 0

Xi = 6 ,

52 = - 4 ,

5 3 = - 2

6

x2 = 0,
5 2 = 0

X] = 2 ,

5, = 4 ,

5 3 = —2

7

x2 = 0,
5 3 = 0

X i = 4 ,

51 = 2 ,

5 2 = 0

8

5 l = 0 ,

52 = 0

x , = 2 ,
x2 = 4,
53 = 2

9

5 , = 0 ,

5 3 = 0

x , = 4 ,
x2 = 2,
52 = - 2

10

5 2 = 0,

53 = 0

x , = 4 ,
x2 = 0,
5, = 2

222 LINEAR PROGRAMMING: SOLUTION METHODS

FIGURE 9.2 A degenerate solution created by x¡ <4.

A degenerate solution has more than one basic feasible solution corresponding to an
extreme point. To show this, we add the constraint X\ < 4 to the problem in Example
9.2. Figure 9.2 shows the same feasible region with four extreme points, while Table 9.8
shows the five basic feasible solutions. Note that every basic feasible solution
corresponds to an extreme point, except that the two degenerate solutions 7 and 10
correspond to the same extreme point (4,0). The only difference between the two is that
they belong to different bases. In other words, they have two different sets of basic
variables: the zero- valued variable x2 is basic in solution 10, but nonbasic in solution 7.

9.5.2 Explanation of "Simplex Method" Nomenclature

Corresponding to adjacent basic feasible solutions, adjacent extreme points are
hereby defined.

Definition 9.5 Two extreme points of a polyhedron X are said to be adjacen t if they
are joined by a line segment forming an edge of X.

Consider Figure 9.1. To the extreme point (0, 0), for example, points (4, 0) and
(0,6) are its adjacent extreme points. To the extreme point (4,0), points (2,4) and (0,0)
are its adjacent extreme points.

Recall that in Chapter 8, a specific class of the bounded polyhedron in E", formed
by all convex combinations of n + 1 linear independent vectors, is called a simplex.

GEOMETRIC INTERPRETATION OF THE SIMPLEX METHOD 223

The simplex method searches the feasible region for an optimum extreme point by
sequentially examining a subset of simplexes comprising the boundary of the
polyhedron. Each simplex is formed by the convex combination of the current
extreme point, a basic feasible solution, and n adjacent extreme points. Each simplex
iteration geometrically moves from the current extreme point to an adjacent extreme
point along an edge of one of these simplexes.

Take Figure 9.3a for an example. There are four extreme points and hence four
simplexes. The four extreme points are denoted by x1 = (0, 0), x2 = (0, 6), x3 = (2,4),
and x4 = (4, 0). The four simplexes are Sx = {x1, x2, x4}, S2 = {x2, x \ x3}, S3 = {x3,
x2, x4}, and S4={x4, x3, x1}. Simplex Si is indicated by a shaded triangle in
Figure 9.3a, and simplex S2 by a shaded triangle in Figure 9.3b. Solving the LP
problem in Example 9.2, the simplex method begins with Si and moves to S4, and then
to S3 when x3 is the optimum. The corresponding edges traveled are [x1, x4] and
[x4, x3]. An alternate sequence is Si —► S2 —> S3. Note that each simplex tableau
contains the information about the current extreme point (basic feasible solution) and
its adjacent extreme points. The pivot procedure decides whether to exchange the
current extreme point for an adjacent extreme point and determines the coordinates
(values) of the next extreme point.

9.5.3 Identifying an Extreme Ray in a Simplex Tableau

Recalling from Chapter 8, we know that an unbounded polyhedron P of an LP
problem can be described in terms of extreme points and extreme rays. An extreme
ray of P is defined as x = x0 + àX, À > 0, where Xo is the root or vertex of the extreme
ray, d is the extreme direction, and l i s a nonnegative scalar, unbounded above. Note
that x0 is an extreme point of P. In Chapter 8, we learned how to calculate algebraically
an extreme direction. Here we will show how to identify an extreme ray and extreme
direction from a given simplex tableau. First, we use a simple graphical example and
then derive the algebraic relationship.

Example 9.4 (Extreme Ray) Consider the following LP problem:

Maximize z = 4.x 1 + 3x2

subject to — x\ + X2 < 4

x\ —2x2 < 2

X\, X2 > 0

Solving it by the graphical method, we obtain Figure 9.4 in which the extreme ray is
expressed by

ö+"(')' , = °

224 LINEAR PROGRAMMING: SOLUTION METHODS

FIGURE 9.3 (a) A simplex associated with Example 9.2. (b) Another simplex associated
with Example 9.2.

GEOMETRIC INTERPRETATION OF THE SIMPLEX METHOD 225

FIGURE 9.4 Feasible region for Example 9.4.

Alternatively, solving the problem by the simplex method, we obtain the following
two simplex tableaus:

Basic Variable

z

* 3

X4

z

1

0
0

X\

- 4

- 1
1

x2

- 3

1
- 2

* 3

0

1
0

x4

0

0
1

RHS

0

4
2

Basic Variable

z

X3

X\

z

1

0
0

X\

0

0
1

Xl

-11

- 1
- 2

* 3

0

1
0

x4

4

1
1

RHS

8

6
2

The last simplex tableau indicates that the problem has an unbounded solution
because x2 column contains all nonpositive values. This condition implies
that the variable x2 can increase its value to 00 without making the new RHS
negative (or violating any constraints). This simplex tableau indicates that the

226 LINEAR PROGRAMMING: SOLUTION METHODS

current basic feasible solution is

xB = (x3,xi)T = (6,2)T

and xN = (x2,x4)
T = (0,0)T

Rearranging in order of variables, we have the following root of an extreme ray

x0 = (xux2,x3,x4)
T = (2,0,6,0)T

Also from this simplex tableau, we have the pivot column,

a2

Given that x2 is the entering variable, the following condition must be satisfied to
ensure that the next solution is feasible:

1 1
0

6

\o)

-

/ - 2 \
0

- 1

\o)

Xl >

(°\
0

0

W
where x2 > 0. The extreme direction of this ray is d = (2, 1, 1, 0), as can be seen
in (9.16).

Now we show the general relationship algebraically. Recall that for a maximiza-
tion problem, if we have a basic feasible solution with c¿ < 0 for some nonbasic
variable x^ and a¡k < 0 for all i — 1, 2, . . . , m, then the problem has an unbounded
solution. This has been shown in Section 9.4.1 using the system of equations in (9.13),
which is restated here:

xBl = bj-äikXk (i = 1 ,2 , . . . , m)

or in matrix form, XB = b—ä^x^

Because the coefficient of the entering variable xk is 1, the vector of the next
nonbasic variables must be

/ 0 \

xN e*

w

THE SIMPLEX METHOD FOR UPPER BOUNDED VARIABLES 227

Putting xB and xN together, we obtain

■ - : - r r - : ♦ : > <->
Comparing (9.13) with the definition of extreme ray given below,

x = x0 + /ld, A > 0 (9.14)

with the root, the current extreme point,

H« (915)

the extreme (ray) direction,

-{:) <9i6)

and the unbounded step size

X = xk

9.6 THE SIMPLEX METHOD FOR UPPER BOUNDED VARIABLES

Quite often in practice, a variable has a lower bound other than 0 and has a finite upper
bound other than infinity. Let /, and Uj denote the lower and upper bounds of variable
Xj, respectively. Then, we have the following lower bound and upper bound con-
straints as follows:

xj>lj (9.17)

xj < Uj (9.18)

The lower bound constraint (9.17) can be easily handled by a variable substitution.
Let a new variable x'¡ ~ Xj—lj for any lower bound constraint. We can then obtain a

228 LINEAR PROGRAMMING: SOLUTION METHODS

new problem containing new variables x'¡ for all lower bound constraints, each with
standard lower bound zero.

However, the upper bound constraint (9.18) cannot be handled similarly
because despite substituting new variables x¡ = Uj—Xj, we still require upper
bound constraints for the new variables. Nevertheless, the upper bound con-
straints can be handled implicitly by a modification of the ordinary simplex
method without explicitly treating them as ordinary constraints. As a result, the
number of constraints in an upper bounded linear program can be greatly
reduced.

Now we are ready to describe the simplex method for upper bounded variables,
also known as the upper bound technique. The basic concept is to allow any upper
bound variable Xj to be nonbasic if x¡ = 0 (as usual) or if x¡ = Uj. To attain this, we use
the following rules: For each upper bounded variable with x¡ = u¡, we define a new
variable x¡ by the relationship Xj + Xj = u¡ or Xj = u¡ — Xj. Note that if Xj = 0, then
Xj = Uj, whereas if Xj — u¡, then x}■ = 0. Whenever we want Xj to equal its upper bound
Uj, we simply replace it with Uj — Xj.

Suppose a basic feasible solution is available and we are solving a maximization
problem. At each simplex iteration, we choose the entering variable JC* as in the
ordinary simplex algorithm. There are three possible cases that limit the amount by
which Xk can increase:

Case 1: Xk cannot exceed the minimum ratio 6 as usual. Otherwise, it will cause one
or more current basic variables to become negative.

Case 2: x^ cannot exceed the amount by which it will cause one or more current basic
variables to exceed its upper bound. We shall denote this amount as 6'.

Case 3: x^ cannot exceed its upper bound u^.

Any increase of x¿ must be within these three limits (i.e., the minimum of 6,6', and
u/c). The simplex algorithm for upper bounded variables for a maximization problem
is as follows:

Step 0 (Initialization). Find a starting basic feasible solution as in the ordinary
simplex method. Introduce a new variable x¡ for each upper bound constraint,
xj < Uj, such that x¡ + x¡ — u¡, where Uj is a constant.

Step 1 (Optimality Test). Check if the usual optimality condition is satisfied. If yes,
an optimum solution is found; otherwise, go to next step.

Step 2 (Entering Variable). Select the entering variable xk as in the ordinary simplex
method.

Step 3 (Leaving Variable and Pivoting). Compute 9, 6', and A as follows:

THE SIMPLEX METHOD FOR UPPER BOUNDED VARIABLES 229

, . (uj—bj _ 1
6 = min, < —^—, a¡k < 0 >

l ~a¡k J

A = min{0,0', Uk}

There are three cases of A: (1) If A = 6, then determine the leaving variable xBr and
perform the ordinary pivoting. (2) If A = 6', then replace the leaving variable xBr

with Ußr— Xßr in row r and the "label" for XB, with XB, and perform the ordinary
pivoting. (3) If A = Uk, then replace the entering variable Xk with Uk —Xk in each row of
the tableau, and Xk with x.k in the "label" row. In any case, go to step 1 for an optimality
test.

Example 9.5 (Bounded Variables) Consider the following LP problem

Maximize z = \x\ + 3^2

subject to x\ + X2 < 6

2xi + x2 < 8

X] > 1

1 < x2 < 3

Assuming x\ = x\ — 1, x2 = x2— 1, the problem can be transformed into

Maximize z = Ax\ + 3x'2 + 7

subject to x\ + x2 + s\ = 4

2x', + x'2 + s2 — 5

x'2 < 2

Let x2 + x'2 = 2. The starting basis consists of (sx, s2) with the initial tableau as
follows:

Basic Variable

z

z

1

A
- 4

4
- 3

Sl

0

■Ï2

0

RHS

7

A, 0 1 1 1 0 4
s2 0 2 1 0 1 5

230 LINEAR PROGRAMMING: SOLUTION METHODS

Clearly, the optimality condition is not satisfied. Select x\ as the entering variable.
Then, we have

0 = min{^}=2.5

Note that 6' does not exist in this case since both an and Ö21 are nonnegative and
that x'[has no upper bound. Thus, A = 6 = 2.5, which makes s2 the leaving variable.
After pivoting, we obtain the following updated tableau.

Basic Variable

z

Si

A

z

1

0
0

A
0

0
1

A
- 1

0.5
0.5

S\

0

1
0

Si

2

-0.5
0.5

RHS

17

1.5
2.5

The optimality condition still does not hold, so choose x'2 to be the entering
variable. Compute

• fl-5 2.51 „
ö = m , n{uTö5r 3

Note that 6' does not exist. Since x2 has upper bound 2, A = min{0 =
3, u2 = 2} = 2. Replacing x'2 with 2—x'2, we obtain the following tableau:

Basic Variable

z

S]

A

z

1

0
0

A
0

0
1

x'2

1

-0.5
-0.5

S\

0

1
0

■52

2

-0.5
0.5

RHS

19

0.5
1.5

Now the optimality condition is satisfied; hence, the optimal solution to the
transformed problem is x\ — 1.5, x'2 = 0 (or x2 = 2 - 0 = 2), and z = 19.
Transforming back to the original problem using the relations x', = X] - 1 and
x'2 — X2 —1, we have an optimal solution to the original problem: X\ = 2.5, x2 = 3,
and z= 19.

Handling lower bounded variables by substitution and upper bounded variables
by this method greatly increase the efficiencies for solving LP problems. To

THE DUAL SIMPLEX METHOD 231

illustrate this, suppose we are solving an LP with 100 bounded variables with 10
other constraints. If we use the ordinary simplex method, the size of basis for each
tableau would be 210 x 210 (=44,100). If we use these two handling techniques, the
size would be only 10 x 10 or 100. Moreover, solving an integer program by the
branch-and-bound method (to be covered in Chapter 11) mainly contains two
branches using lower and upper bounded variables. The savings in computation are
evident.

9.7 THE DUAL SIMPLEX METHOD

There are three uses of the dual simplex method: (1) finding a new LP optimum after
one or more constraints are added to the current LP optimum, (2) finding a new LP
optimum after changing the right-hand side of constraints, and (3) solving an ordinary
linear program.

For cases 1 and 2, the addition of constraints or change of the right-hand side
may cause the current basic solution to become infeasible. In other words, the
augmented simplex tableau may contain negative values on the right-hand side
while the objective row remains nonnegative (dual feasible) in a maximization
problem. These are the typical starting conditions for the dual simplex method.
For case 3 where the objective row contains some negative values, we can
augment a big-M artificial constraint to the original simplex tableau and perform
row operations to obtain a canonical form for a starting basis. See note 9.7 for
details.

For solving an integer program, the first use is the most important for efficient
reoptimization because the dual simplex method is applied within the IP algorithms
such as the branch-and-bound, cutting plane, and branch-and-cut. The dual simplex
algorithm for a maximization problem is described below.

Step 0 (Initialization). Obtain a starting dual feasible solution. In the ordinary
simplex tableau, this implies that all components of the objective row are
nonnegative, or the updated values c > 0. Initially, we construct a basic solution
with only slack variables as basic variables (no artificial variables are ever
needed). This may cause some right-hand side values to become negative. In the
initial simplex tableau, b may be equal to b where some components are
negative.

Step 1 (Optimality Test). Check if b > 0. If yes, the current solution is optimal.
Otherwise, go to next step.

Step 2 (Leaving Variable). Determine the leaving variable xr by selecting a pivot
row r with the most negative value on the right-hand side, that is, br = min, {b¡:
bi<0}.

Step 3 (Infeasibility Test). If ar¡ > 0 for all j , the given problem has no feasible
solution. Otherwise, go to next step.

232 LINEAR PROGRAMMING: SOLUTION METHODS

Step 4 (Entering Variable). Determine the entering variable by selecting the pivot
column k based on the minimum ratio test:

Ck
—^— = min
-ark

ij\-^-,arj<0

where c¡ is the y'th component of CN- Note that ties in entering variable are
broken arbitrarily and that if the entering variable rule cannot be applied
(e.g., arj < 0 for all j= 1, . . . , ri), then the dual is unbounded and the primal is
infeasible.

Step 5 (Pivoting). Update the current simplex tableau by pivoting on the pivot
element ark- Return to step 1.

Example 9.6 (Dual Simplex) Consider the following constraint that is added after
an optimum solution is found for Example 9.2: 3xj + 2x2 < 12. We wanted to find a
new optimum using the dual simplex method. Recall the current optimum tableau
(Table 9.5) below:

Basic Variable

z

* 2

X ,

z

1

0
0

X ,

0

0
1

x2

0

1
0

■Si

2

2
- 1

■Ï2

1

- 1
1

RHS

20

4
2

Appending the additional constraint in equation form after introducing a slack
variable s3, we obtain the following tableau:

Basic Variable

z

Xl

X\

•*3

z

1

0
0
0

* i

0

0
1
3

x2

0

1
0
2

•Sl

2

2
- 1

0

«2

1

- 1
1
0

■S3

0

0
0
1

RHS

20

4
2

12

Note that this tableau does not have a canonical form and hence is not a simplex
tableau. To obtain a canonical form, we add to s3 row (—2) multiple of x2 row and (-3)
multiple of Xi row.

Basic Variable

z

x2

X]

¡3

z

1

0
0
0

X ,

0

0
1
0

x2

0

1
0
0

•Sl

2

2
- 1
- 1

■S2

0

- 1
1

- 1

«3

0

0
0
1

RHS

20

4
2

- 2

THE REVISED SIMPLEX METHOD 233

Because c > 0 and b has a negative component, we have a starting condition for the
dual simplex method. Let s3 be the leaving variable. Compute min{2/l , 0/1}, choose
s2 as the entering variable, and perform pivoting.

Basic Variable

z

x2

X\

*2

z

1

0
0
0

X\

0

0
1
0

x2

0

1
0
0

Si

2

3
- 2

1

Í 2

0

0
0
1

■S3

0

0
0
1

RHS

20

6
0
2

Because all b¡ > 0, we obtain an optimum solution (0, 6, 0, 2) with z = 20.

9.8 T H E REVISED S I M P L E X M E T H O D

Recall the LP problem in partitioned form

Maximize z = CßXß + C£XN

subject to BXB + NXN = b

x B , x N > 0

where xB and xN, respectively, denote vectors of basic and nonbasic variables; c B and
cN, respectively, are associated objective coefficients; and B and N, respectively, are
coefficient matrices associated with the constraints.

Multiplying the equality constraints by B _ 1 , we obtain

I X B + B 1 N x N = B 1 b

Writing the objective function in terms of xN, we obtain

Maximize z = (- C B B ~ 1 N + C T
4) X N + CgB_ 1b

Transferring the variable term to the left-hand side of the objective row and
combining it with the constraints, we obtain the following "ordinary" simplex
tableau:

z xB xN RHS

1 0T c^B 'N-c£ c£B-'b
0 I B ' N B ' b

234 LINEAR PROGRAMMING: SOLUTION METHODS

From the foregoing ordinary simplex tableau, we observe the following
notes:

1. Once the set of basic variables xB is specified, the corresponding simplex
tableau can be calculated directly from the original data.

2. There is no need to update and store the coefficient matrix associated with the
basic variables because that matrix is always identity I, and the reduced cost
associated with each basic variables is always zero.

3. All other entries of the ordinary simplex tableau are characterized by pre-
multiplying the original data by B~ . Therefore, only B - 1 is required to be
updated.

4. The reduced cost vector c j associated with the nonbasic variables is calcu-
lated by cjj = CgB_1N — cj,, whosey'th entry c, = CgB^'a, - cj, where column
a ,eN.

5. The dual solution uTis updated by uT ~ CgB"1, which requires to be computed
only once for each simplex iteration.

6. The updated coefficient columns associated with nonbasic variables are B_1N,
whose y'th column is ay = B-1ay.

7. The primal solution is computed by xB = B - 1 b = b, xN = 0, and z =
c j j ß - ' b ^ B b .

Based on the foregoing results, the ordinary simplex tableau can be further
simplified to the revised simplex tableau as shown below.

C B B - ' = uT

B '

c¡B_1b = z

B_1b = b

Using the above revised simplex tableau, the revised simplex algorithm for the
maximization problem may now be described as follows:

Step 0 (Initialization). Find an initial revised simplex tableau using slack vari-
ables (and/or artificial variables, if needed). In the presence of artificial
variables, the two-phase method is applied as usual to obtain a starting basic
feasible solution. Initially, B = B _ 1 = I , uT = c£B_1 =<:£, B 'b = b, and
z = clB1b = clb.

Step 1 (Pivot Column). For all nonbasic y and a, e N = A\B, compute

a) = B ' a ,

cj = uTäy-c;

THE REVISED SIMPLEX METHOD 235

Determine the entering variable xk by

k={j : minj(cj : c¡ < 0)}

and the pivot column

0
Step 2 (Optimality). A finite maximum solution has been found if c^ > 0 and at least

one entry of âk is positive. An unbounded maximum exists if ëk > 0 and ä^ < 0.
Otherwise, go to step 3.

Step 3 (Pivot Row). Append pivot column k and determine the leaving variable xBr or
pivot row r by

r = {i : min,[^-, a¡k> 0
{ \a¡k

Go to step 4.

Step 4 (Pivoting). Update the revised simplex tableau by pivoting at ark. Go to
step 1.

The revised simplex method is actually the version of the simplex algorithm most
implemented in software. It is also particularly useful in the branch-and-price
algorithm for solving MIPs (Chapter 13). In the standard simplex, the most computa-
tion time would be due to updating every column in the simplex tableau with each
iteration. Even though this assures the availability of all the data needed for the next
pivot (pivot position not yet determined), we actually end up using only one column to
make the decision on which variable will exit the basis. An example will illustrate the
efficiency of this approach.

Example 9.7 Solve the following problem by the revised simplex method.

Maximize Ax\ + 3^2 + x3 + 7 M + 6x5

subject to x\ + 2x2 + 3x3 + x 4-3x 5 < 9

2xi —X2 + 2x3 + 2x4 + X5 < 10

-3xj + 2x2 + X3-X4 + 2x5 < 11

x > 0

236 LINEAR PROGRAMMING: SOLUTION METHODS

Adding slack variables, we have

Maximize z = 4x\ + 3x2 + x3 + 7x4 + 6x5

subject to x\ + 2x2 + 3x3 + X4—3x5 +s\ =9

2x\ —X2 + 2x3 + 2x4 + X5 + *2 = 10

-3xi + 2x2 + X3— X4 + 2x5 + 53 = 11

x > 0 , s > 0

Step 0 (Initialization)

XB = (íl,Í2,Í3)T,XN = (x1,X2,X3,X4,X5)
T,c5 = (0,0,0),cJf = (4,3,l,7,6),

b=(9,10, l l) T ,B=B^1 =I ,uT = cSB-1 = (0,0,0),

b = B- 'b = (9,10,ll)T,z=0

Iteration 1

Compute cj, =CgB_1N - c j = (-4, - 3 , —1, - 7 , -6) . We select x4 as the entering
variable. Then the pivoting column 4 is calculated by

B 'a4 =

1 0 0"

0 1 0

0 0 1.

" r
2

. - 1 .

=
" r

2

. - 1 .

, C4 = u 84—C4

Add the pivot column to the right of the revised simplex tableau, and s2 becomes the
leaving variable (why?).

z

S3

0 0 0

1 0 0

0 1 0

0 0 1

0

9

10

11

- 7

After pivoting, the new tableau becomes

z

S\

■S3

0

1

0

0

3.5

-0.5

0.5

0.5

0

0

0

1

35

4

5

16

THE REVISED SIMPLEX METHOD 237

Iteration 2

uT === (0,3.5,0). Therefore, c j === cjB_1N - c j = (3, -6.5,6,0, -2.5,0,3.5,0). Then,
x2 is selected as the entering variable.

B 1 a 2

1

0

0

-0.5 0"

0.5 0

0.5 1

' 2"

- 1

2

=

" 2.5

-0.5

1.5
, c2

uTa2—c2 -6.5

Add the pivot column to the right of the revised simplex tableau and S\ becomes the
leaving variable.

z

S\

X4

S3

0

1

0

0

3.5 0

-0.5 0

0.5 0

0.5 1

35

4

5

16

-6.5

2.5

-0.5

1.5

After pivoting, the new tableau becomes

z

x2

X4

S3

2.6

0.4

0.2

-0.6

2.2 0

-0 .2 0

0.4 0

0.8 1

45.4

1.6

5.8

13.6

Iteration 3

= (2.6, 2.2, 0). Therefore, cl -clB 'N-
Then x5 is selected as the entering variable.

= (3,0, 11.2,0,-11.6,2.6,2.2,0).

B ' a 5 =

0.4

0.2

-0.6

-0 .2 0"

0.4 0

0.8 1.

" - 3 "

1

. 2 .

=

"-1.4"

-0 .2

. 4.6 .

, cj = -11.6

Add the column to the right of the revised simplex tableau and s3 becomes the leaving
variable.

z

x2

X4

S3

2.6

0.4

0.2

-0.6

2.2 0

-0 .2 0

0.4 0

0.8 1

45.4

1.6

5.8

13.6

-11.6

-1.4

-0 .2

4.6

238 LINEAR PROGRAMMING: SOLUTION METHODS

After pivoting, the new tableau becomes

z

x2

Xi,

x5

1.09

0.22

0.17

-0.13

4.22

-0.04

0.43

0.17

2.52

0.30

0.04

0.22

79.70

5.74

6.39

2.96

Iteration 4

uT = (1.09, 4.22, 2.52). Therefore, cJJ = c j B - ' N - c J) = (-2.04, 0, 13.22, 0, 0,
1.09, 4.22, 2.52). Then x\ is selected as the entering variable.

B 'a.

0.22 -0.04 0.30

0.17 0.43 0.04

-0.13 0.17 0.22

■ 1 ■

2

. - 3 .

=

■-0.61-

0.913

. - 0 . 4 3 .

, c, = -2.04

Add the column to the right of the revised simplex tableau and x4 becomes the leaving
variable.

*2

X4

*5

1.09

0.22

0.17

-0.13

4.22 2.52

-0.4 0.30

0.43 0.04

0.17 0.22

79.70

5.74

6.39

2.96

-2.04

-0.61

0.913

-0.43

After pivoting, the new tableau becomes

x2

Xi

*5

1.48

0.33

0.19

-0.05

5.19

0.33

0.48

0.38

2.62

0.33

0.05

0.24

94

10

7

6

Iteration 5

uT = (1.48, 5.19, 2.62). Therefore, c£ = c ¡ B _ 1 N - c £ = (0, 0, 16.42, 2.23, 0, 1.48,
5.19,2.62). Since all reduced costs are nonnegative, an optimum has been found and
the algorithm terminates.

NOTES 239

9.9 NOTES

Section 9.2

Many LP solvers provide several options for the user to select the entering variable.
The options may include random selection, the first index, the most unit improvement,
and the most total improvement.

Section 9.3

For finding the starting basic feasible solution, the big M method seems easier to
comprehend and to compute manually, but it is not implementable in practice
because we cannot give an appropriate value precisely for the big M. No matter
what value you choose, for some problems it could be either too large or too small.
In either case, it could cause great truncation and/or rounding errors that would
mislead the solution. The two-phase procedure is the only method utilized in
practice.

Theoretically, the degeneracy can cause a cycling problem for simplex iterations
(see the example given by Beale, 1955). But in practice the cycling problem is highly
unlikely. Although there are cycling prevention rules available (e.g., Bland's rule
(Bland, 1977)) that guarantee finite convergence of the simplex algorithm, usually
they are not implemented in commercial software because of substantial extra
computational efforts.

Section 9.7

The starting dual feasible solution corresponds to the condition when a cutting
constraint is introduced after an LP optimum is obtained. To reoptimize the aug-
mented LP problem, the dual simplex method is much efficient than solving a new LP
problem from scratch.

In case the dual simplex method is used as an independent algorithm for solving an
LP problem from scratch and if the dual solution is infeasible, then make it feasible by
adding the following redundant constraint (also called artificial constraint) obtained
by summing over all nonbasic variables:

y'6N

or ^2xj + x"+i = M

where M is a big value that can be set equal to the sum of finite upper bounds of
all nonbasic variables and xn+i is the associated slack variable. Perform the
elementary row operations such that a standard form of the simplex tableau is
obtained.

240 LINEAR PROGRAMMING: SOLUTION METHODS

9.10 EXERCISES

9.1 Transform the following LP problem to canonical form.

Minimize z = 3xj + 5x2

subject to 2xi + X2 > 13

-X!+X 2 < 10

Xi, X2 > 0

9.2 Consider the LP problem in Exercise 9.1 again. List all its extreme points and
determine if each pair of points are adjacent.

9.3 Consider the following LP problem. Plot the feasible region and identify all the
extreme points. Find the optimal solution by evaluating the objective function
at each extreme point.

Maximize z = 5xi + 3x2

subject to x\ +X2 < 12

-2xi +X2 < 7

x\—xi > 3

JCI < 5

x\, x2 > 0

9.4 The point (1/3,1/3,1/3) is feasible for the following problem. Is it also a basic
solution? Why or why not?

Minimize z = 2xi +3x2—2x3

subject to xi + X2 + X3 < 1

xi—2x2 +2x3 < 2

xi ,x 2,x3 > 0

9.5 Consider the following LP problem. Verify that x = (0,2.5,0)T is optimal and
that the dual price of binding constraint 3 is 1.5.

Minimize z = 2xi + 3x2 + X3

*1 + *2 + *3 < 3

2xi +2x3 < 3

xi + 2x2 + 3x3 > 5

x > 0

EXERCISES 241

9.6 Consider the following LP problem:

Minimize z = xi—2x2—2x3

subject to 2x\ + 2x2 + X3 < 11

x\ + x 2 - x 3 > 4

XUX2,X3 > 0

(i) Rewrite the problem in canonical form.
(ii) Find an initial tableau using two-phase method (without solving the whole

problem).

9.7 Go through the phase I of the following LP problem and stop at the phase I
optimum. Is the original problem feasible? Why?

Minimize z = 2xi + 3x2

subject to 2xi + X2 < 8

x\ + 3x2 > 29

x\,x2 > 0

9.8 Consider the following LP problem:

Maximize z = x\+ 2x2

subject to 2xi+5x2 = 21

Xi—x2 < 10

x\,x2 > 0

(¡) Rewrite the problem in canonical form,
(ii) Solve the problem using two-phase method.

9.9 Solve the following LP problem using the primal simplex method.

Maximize z = 2xi + 3x2

subject to xi —3x2 < 4

—X\ +x2 <2

3x!+x 2 < 10

X], X2 > 0

9.10 Suppose variable x, leaves the basis at some iteration p. Is it possible that Xj
enters the basis at the end of iteration p + 1 ? Why or why not?

242 LINEAR PROGRAMMING: SOLUTION METHODS

9.11 Solve the following LP problem using the primal simplex method. Note that
some variables are unrestricted in sign.

Maximize z = — 3x\ + X2—X3 +X4

subject to 2x]—X2—xi +X4 < 8

-2*i + 2x2 + 2x3 + 3x4 < 10

—x\ + x 2 -3x 3 + x4 < 3

X2,X4 > 0

9.12 Consider LP problem in Exercise 9.11. Suppose at some iteration the basis
consists of x2, Si, and s3, where S[and s3 are the slack variables corresponding
to the first and third constraints, respectively.

(i) Decide the right-hand side values at this iteration without actually solving
the problem,

(ii) Decide the objective value at this iteration.

9.13 Consider the following LP problem:

Minimize z = 13xi -7^2 + *3 + 3xt-5x5 + X(,

subject to —xi + 2x2 + X3 + X4 < 10

2xi - x 3 + x4 + x5 < 13

X2 + 3x3 — X4 — X(, < 7

X¡,X2,X3,X4,X5,X(, > 0

(i) Solve the problem to optimum using the primal simplex method. At each
iteration, apply the rule of "least index" when picking the entering
variable. That is, among all the candidates of entering variable, always
choose the one with least index.

(ii) At optimum, adjoin to the model the constraint x2 < 4. Reoptimize the
problem using the dual simplex method.

Solve the LP problem in Exercise 9.4 using the dual simplex method.

The shaded area of the Figure 9.5 shows the feasible region of an LP problem.

(i) Show the inequalities of the constraints.

(ii) Start the primal simplex iteration with the basic feasible solution
(X], x2) — (3, 0) and iterate until an optimal solution is obtained.

9.14

9.15

EXERCISES 243

FIGURE 9.5 LP feasible region.

9.16 Consider the following LP problem:

Minimize x\— 2X2 + 2X3 + X4—5x5 + 3xg

subject to x\ + *2 + x3 + *5 < 7

2JC2 -2X3 + 2x5 +JC6 < 13

x2 < 3

X 1 ,X2 ,X 3 ,X 4 ,X 5 ,X 6 > 0

Solve it using the upper bound technique.
9.17 Consider the problem in Exercise 9.13. Now add two constraints: x{ < 5 ,

x 2 < 8 .

(i) Start from the optimal tableau you obtained in Exercise 9.15 and
reoptimize by adding one constraint at a time,

(ii) What new extreme points are introduced into the problem, and which ones
are gone?

(iii) Solve the whole problem from beginning by using upper bound
technique.

9.18 Ben has three dogs, Uno, Dos, and Tres. Every day Ben feeds them with five
types of food: beef, dog food, bread, bones, and chicken. Each type of food

244 LINEAR PROGRAMMING: SOLUTION METHODS

TABLE 9.10 Food Prices

Food

$/lb

Beef

$2.50

Dog Food

$1.00

Bread

$0.80

Bones

$1.20

Chicken

$1.60

is bought in pounds. The price for each type of food is as follows
(Table 9.10):

Ben's wife wants him to find the most cost-effective plan for feeding dogs,
subject to the dogs' preferences. Table 9.11 shows the minimum amount of
food consumed by each dog each day.

Despite this, Dos eats no less than 2.5 lb of chicken plus bread. Uno
eats no less than 2.71b of meats (including dog food, chicken, and
bones). The total amount of bread and beef fed to Tres cannot be less than
2.61b.

(i) Formulate the problem as an LP.
(ii) Solve the problem using LINGO®. Declare the variables and parameters

by sets. Apply the domain defining functions as necessary. Show your
output and interpret the solution.

(iii) When solving the model, manipulate the "linear solver options" by
selecting primal simplex, dual simplex, and barrier, respectively. Com-
pare the number of steps it took for LINGO® to solve the problem under
each option.

9.19 Solve the following LP problem using revised simplex method.

Maximize — 3x¡ +X2—X3 + X4

subject to 2x\— X2— X3 +X4 < 8

-2xi + 2x2 + 2x3 + 3x4 < 10

—Xi + X2~3X3 + X4 < 3

x > 0

TABLE 9.11 Minimum Daily Food Consumption

Beef Dog Food Bread Bones Chicken

Uno 0 0 0.5 1.7 1.9
Dos 0 1.5 0.3 0.9 0.1
Tres 1.5 0.9 0.8 0.6 0.2

EXERCISES 245

9.20 Solve the following LP problem using revised simplex method.

Minimize x\— 2x2— 2x3

subject to 2xi + 2x2 + *3 < 11

xi +X2— X3 > 4

xi ,x2 ,x3 > 0

10
NETWORK OPTIMIZATION
PROBLEMS AND SOLUTIONS

There are certain classes of integer programming problems whose special structures
make them particularly easy to solve. Among them, the most noteworthy class is the
network-structured problems whose LP solutions under certain conditions are
naturally integer. This class includes the well-known transportation, assignment,
transshipment, maximum flow, and shortest path problems, appearing in most
introductory OR texts. These network and related models are widely formulated in
real-world problems, as estimated (Taha, 2007) that "70% of real-world mathematical
programming problems use network-related models."

The purposes of this chapter are (a) to formulate each of these problems as a special
case of a larger class of problem called the minimum cost network flow problem, (b) to
introduce a unifying solution algorithm (called the network simplex) that is much
more efficient than the ordinary simplex algorithm, and (c) to provide the sufficient
conditions (or model structures) that characterize such "easy" integer programs.

As a generalization of the transportation algorithm, the network simplex method
performs the simplex operations directly on the network itself. Moreover, these
simplex operations involve only additions and subtractions, unlike the ordinary
simplex that requires multiplications/divisions. The empirical experience shows that
this method enables one "to solve problems 200-300 times faster than a standard
simplex method that ignores any inherent special structures other than sparsity"
(Bazaraa et al., 2005) of the constraint matrix.

Before we define the class of minimum cost network flow problem and its
individual problems, we need some basic knowledge of network (or graph) concepts.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

246

NETWORK FUNDAMENTALS 247

10.1 NETWORK FUNDAMENTALS

Definition 10.1 A network (or graph) G is a collection of nodes (or vertices)
and a collection of arcs (or edges) joining pairs of nodes, denoted by G = (V, E),
V={1,2 , ...,m), and E=[(i, /) : iJeV}.

An arc in G may be either directed or undirected. A directed arc is an ordered pair
of nodes (/, j) that allows the flow only going from node i to j . Nodes /' and j ,
respectively, are called initial and terminal nodes of arc (/,/). An undirected arc allows
the flow in either direction and may be replaced by two opposite directed arcs of the
same capacity. In the context of this chapter, we will deal with directed networks (or
digraphs) in which all arcs are directed.

Definition 10.2 Apath (from node /0 to ip) is a sequence of arcs [(i0, ¿i), (i\, ¿2), ■ ■ -,
(ip-1. ip)} in which the initial node of each arc is the same as the terminal node of the
preceding node in the sequence and all nodes /0, i\, ..., ip are distinct. A chain is a
sequence of arcs similar to a path, except that not all arcs are necessarily directed
toward node ip. Thus, every path is a chain but a chain may not be a path.

Consider, for example, Figure 10.1 in which the sequences {(1, 2), (2, 4)} and
{(1,3), (3,4)} are paths from node 1 to node 4. These paths are also chains from node
1 to node 4. The sequences {(1,2), (3,2), (3,4)} is a chain from node 1 to 4, but not a
path because arc (3, 2) is not directed to node 4.

Definition 10.3 Given a network G (V, E) and a distance (cost) cy associated with
each directed arc (i, j), the problem to determine a path from a specified node to
another specified node with a minimal total distance is called a shortest path {route)
problem.

Definition 10.4 A circuit is a path from some node i0 to ip plus the return arc (ip, ¡o).
Thus, a circuit is a closed path. Similarly, a cycle is a closed chain and every circuit is a
cycle but a cycle may not be a circuit.

Consider Figure 10.1, adding arc (4,1) to either of the above two paths will yield a
circuit. Similarly, adding arc (4, 1) to chain {(1,2), (3, 2), (3, 4)} will yield a cycle.

FIGURE 10.1 A directed network.

248 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

(b)

FIGURE 10.2 Trees and spanning trees.

Definition 10.5 Given a network with m nodes, a tree with k(2<k<m) nodes is a
subnetwork that connects all k nodes with no cycles. A spanning tree is a tree that
connects all m nodes in the given network with no cycles.

By definition, every arc (k = 2) in a network is a tree (with two nodes). Examples of
trees with k = 3 and k~4 nodes are given in Figure 10.2a and b, respectively. The
trees in Figure 10.2b are spanning trees of the network in Figure 10.1, but the trees in
Figure 10.2a are not.

The following are some important properties of a tree:

1. Every tree (including spanning tree) with k nodes has exactly (k — 1) arcs.
2. Adding any new arc from the original network to a spanning tree results in a

unique cycle.
3. Every pair of nodes in a tree can be connected by a unique chain.

10.2 A CLASS OF EASY NETWORK PROBLEMS

In this section, we define the minimum cost network flow (MCNF) problem and then
show how the transportation, assignment, transshipment, maximal flow, and shortest
path problems can be viewed as special cases of an MCNF problem.

A CLASS OF EASY NETWORK PROBLEMS 249

10.2.1 The Minimum Cost Network Flow Problem

The minimum cost network flow problem is defined as follows: Given a directed
network G consisting of m nodes and n arcs joining pairs of nodes, let b¡ be the net
supply amount (^outflow — inflow) at node i. There are three types of nodes: the
supply or source node (if b¡ > 0), demand or destination node (if b¡ < 0), and
transshipment or intermediate node (if b¡ — 0). Associated with each arc (i, j) is a
lower bound Ly on flow through arc, a upper bound i/y on flow through arc, and a cost
Cij of transporting a unit flow through arc. The problem is to determine the amount of
flow Xjj through each arc (i, f) so that the total shipping cost is minimum.

We assume that the total supply (sum of all b¡ > 0) equals the total demand (sum of
all b¡ < 0) in the network, that is, £] è, = 0, / = 1,2,..., m. If Y¿ °i < 0 . t h e n t h e

total supply cannot meet the total demand, and hence there is no feasible solution. If
J2 b¡ > 0, then we can make it equal to 0 by adding a dummy demand node, say
m + l ,withèm + 1 = — X]Z>¿, and adding arcs with zero cost from each supply node to
the dummy demand node.

In order to obtain a "uniform" flow balance equation for all nodes, the original
network may be modified so that every node has both outgoing and incoming arc flows.
To accomplish this, a "dummy" return arc is usually added. For example, if source node
1 has no incoming arc and sink node m has no outgoing arc, then a return arc (ra, 1)
joining m and 1 with 0 cost is created. After modification, the MCNF problem becomes

Minimize z = ^2^2
CyXy

• J

m m

subject to 2_]xij—¿_\Xkl' = b¡ for each node/ (10.1)

j=\ k=\

xy < Uij for each arc (j, j) (10-2)

xy > Ly for each arc (i, j) (10.3)
Constraints (10.1) stipulates that the net flow into and out of node / must equal b¡.

These equations ensure that the flow may not be created or destroyed in the network.
They are referred to as the flow conservation equations or flow balance equations.
Constraints (10.2) and (10.3) ensure that the flow through each arc satisfies the upper
and lower limits. For ease of representation, we will assume Ly = 0. If any lower
bound is other than 0, we can convert it to 0 by a simple variable substitution as
described in Section 9.6.

10.2.2 Formulating the Transportation-Assignment Problem
as an MCNF Problem

The "classical" transportation problem may be stated as follows. Given n\\ source
nodes (i=l,2,...,ml), each with s¡ units of supply, and m2 destination nodes (j = 1,2,

250 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

..., m2), each with dj; units of demand. Let Cy be the unit flow cost from node i toy, and
Xij be the amount of arc flow to be determined. The problem is to determine the amount
of commodity to be shipped from each source i to each destination y so that the total
transportation cost is minimized. Mathematically, the transportation problem be-

comes

Minimize z = Y^^c
'jX'j i=l 7=1

Subject to yj*i / = s¡ i = 1,2,..., m\
y=i

^Xij = dj y = l , 2 , . . . , m2
f=i

Xij > 0 a l l i j

(10.4)

(10.5)

(10.6)

Reformulate the transportation model as a special MCNFP using the following
procedure and Figure 10.3.

1. Renumber m\ source and m2 destination nodes using a common index ¿=1,2,
..., mi, mi + 1, m, + 2 , . . . , m, where m = m\ + m2. The unit transportation
costs Cjj are also renumbered accordingly.

2. Set bi = Si for /' = 1,2,..., m { and set bmi +J = —dj for/ = 1 , 2 , . . . , m2. Note that
5 > = £ , 4 implies Er='i */ + YZx bmt+i = J2T=i b, = 0.

3. Create a dummy source node (say node 0) with bo = J2T=\ b¡ a nd connect arcs
(0, 0 for /'= 1, 2, ..., m, with unit cost c0i = 0.

i > 0 Vn< 0

bo=Zb,
b2>0 , < 0

bm+í = ¿ b¡
Í=ml + \ ;;0

v
x

^

-A.

bm > o / /

m\ j

\ . \ bm < 0

► [m

, ' i

, ' ' i

V '

FIGURE 10.3 Formulating transportation problem as an MCNF problem.

A CLASS OF EASY NETWORK PROBLEMS 251

4. Create a dummy sink node (say node m + 1) with bm+ \ = YlT=m +i ^' anc^
connect arcs (m\ + i, m + 1) for / = 1, 2, . . . , m2 with unit cost ci%m+\ = 0.

5. Add a return arc (m + 1, 0) with cm+ifi — 0.
6. Ignore the upper bound constraints (10.2).

The "classical" assignment problem can be viewed as a special case of the
transportation problem, in which the number of source nodes is equal to the number
of destination nodes (i.e., m, =m2). Demand dj at each destination node is 1, and
supply Sj at each source node is also 1. The objective is to "assign" each source to a
unique destination so that the total cost associated with an assignment plan is
minimized. Clearly, we can formulate the assignment problem as an MCNF problem
as we did for the transportation problem with special values of s¡ = dj = 1 for all / , /

10.2.3 Formulating the Transshipment Problem as an MCNF Problem

The transshipment problem is a generalization of transportation problem in which
there are transshipment nodes in the network in addition to the sources and
destinations. The transshipment node does not supply nor demand commodity
(i.e., b,= 0). This problem is a special MCNF problem in which there is no upper
limit on each arc flow as stipulated in constraints (10.2).

10.2.4 Formulating the Maximum Flow Problem as an MCNF Problem

Given a directed network with a single source node 1 and a single sink node m. A
commodity supplied at node 1 is to be shipped to node m using one or more paths from
1 to m. At each intermediate node, the sum of inflows must equal the sum of outflows.
An arc (i,J) connecting nodes i andy is subject to a flow capacity Uy. The maximum flow
problem is to determine the maximum amount of flow that can be shipped from node 1
to node m. After adding a return arc (m, 1), the problem can be formulated as follows:

Minimize —z = Y j —xy
j

subject to 2_. xij~ / J xki' — 0 for i = 1,2,..., m
J k

xy < U¡j for all i,j

xy > 0 for all i,j

The upper limit of the return arc (m, 1) may be set to Um\ = min{ ^¡Uy, J2j^mj}-
Converting this problem to an MCNF problem, we set all b¡ = 0, and let the objective
coefficient Cy — — 1 for / = 1 and all j , and Cy — 0 for i'^ 1 and all j .

10.2.5 Formulating the Shortest Path Problem as an MCNF Problem

Given a directed network with distance or cost Cy on each arc (/, j). The shortest
(longest) path problem is to find a path from the source node 1 to the sink node m at

252 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

minimum (maximum) cost. It can be viewed as sending a unit of flow from a
node to another. Converting to a MCNF problem, we set U¡¡ = 1 for all /', j , and
¿,- = 0 for all/.

10.3 TOTALLY UNIMODULAR MATRICES

An important property possessed by the MCNF problem is that every basic feasible
solution is naturally integer provided that all b¡ and Uy are integer. In this section, we
shall present a sufficient condition, called total unimodularity, that ensures this
happens.

10.3.1 Definition

Definition 10.6 A square matrix whose determinant is 0, 1, or —1 is called
unimodular. A matrix M is totally unimodular (TU) if the determinant of every
square submatrix of M has value 0, 1, or — 1.

Clearly, this definition implies that if matrix M is TU, then all of its elements must
be 0, 1, or — 1. This is because every element of a matrix is a 1 x 1 submatrix.

Example 10.1 Check each of the following matrices to see if it is totally unimodular.
Checking all nine possible square submatrices for matrix 1, we see that the

determinant of every submatrix is 0, 1, or —1, and hence matrix 1 is TU. Matrix 2 is
5 x 6 and has numerous square submatrices. For instance, there are 75 4 x 4
submatrices and 200 3 x 3 submatrices (verify!). Therefore, the process of checking
the determinant of each of these submatrices is arduous. It will turn out that the
structure of matrix 2 guarantee that it is TU. Matrix 3 is clearly not TU because the
matrix contains elements of value 2. Matrix 4 is not TU because its submatrix formed
by the first three columns and three rows has the determinant —2.

Matrix 1 Matrix 2 Matrix 3

- 1
1
0

0 0 \
1 0

- 1 - 1 /
'

/ l 0 0 1 1 1 \
1 1 0 0 1 1
1 1 1 0 0 1
0 1 1 1 0 0

\0 0 1 1 1 0/

/ l 1 0 1 0 \
1 2 0 1 0
0 0 0 1 1
0 0 2 1 1

\l 0 1 0 Oj

/ 1

ft 1

0

Matrix 4

- ! \ 1
0 - 1

- 1 0
1 0 /

10.3.2 Sufficient Condition for a Totally Unimodular Matrix

Theorem 10.1 (Sufficient Condition) Anmxn matrix M is totally unimodular if
the following conditions hold:

1. Every element of M is 0, 1, or — 1.
2. Each column of M contains at most two nonzero elements.

TOTALLY UNIMODULAR MATRICES 253

3. The m rows of M can be partitioned into two mutually exclusive subsets Mi and
M2 such that

(a) If any column contains two nonzero elements of the same sign, one element
can be placed in Mi and the other in M2.

(b) If any column contains two nonzero elements of opposite signs, both elements
can be placed in the same subset.

Example 10.2 Check if the following matrix satisfies the sufficient condition
for TU.

0

0

1

- 1

0

1

- 1

0

0

0

0

- 1

- 1

0

0

0

0

1

0

1

1. Every element is 0, 1, or —1.
2. Each column contains two nonzero elements.
3. Begin the partitioning procedure with column 1. The two nonzero elements are

of opposite sign, so both rows should be placed in the same subset, say,
M, = {R„R4}.

Scanning column 2, again the two nonzero elements are of opposite sign, and
because R4 is already in M), we have Mi = {R],R4,R3}. From column 3, rows 1 and2
must be in the same set, and hence Mi = {Ri, R4, R3, R2}. Column 5 has nonzero
elements of the same sign, and so R2 and R3 should be in opposite sets. But, we already
have R2 and R3 in the same set M1. This contradiction implies that this matrix does not
satisfy condition 3 of Theorem 10.1.

Note that if one of two sets created in verification of condition 3 is empty, then M is
TU. This means that any matrix satisfying 1 and 2, and having nonzero elements of
opposite sign in every column, is automatically TU. Matrix 1 in Example 10.1 is an
example of such a matrix. The sufficient condition for a matrix to be TU is not
necessary—meaning that we cannot claim that a matrix is not a TU just because it
does not satisfy this sufficient condition.

Definition 10.7 A network G(V, E) is called bipartite if there exists two subsets of
nodes (vertices), V\ and V2, such that Vl U V2 = V and V\ n V2 = <£, and every arc
(edge) of G is incident to exactly one node of Vi and one node of V2.

The transportation and the assignment problems are examples of bipartite net-
works (graphs). The incidence matrix (matrix A in Ax = b) of a bipartite graph is
totally unimodular.

254 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

10.3.3 Some Properties of Totally Unimodular Matrices

The following are some important properties of totally unimodular matrices:

1. The matrix obtained by adding (deleting) an identify matrix to (from) a TU
matrix is also TU.

2. The transpose of a TU matrix is also TU.
3. The matrix obtained by pivoting on a TU matrix is also TU.
4. The matrix obtained by multiplying any row (column) of a TU matrix by — 1 is

also TU.
5. The matrix obtained by interchanging any two rows (columns) of a TU matrix is

also TU.
6. The matrix obtained by deleting (adding) a unit row (column) of a TU matrix is

also TU.

Definition 10.8 A 0-1 matrix is called an interval matrix if in each column (or row)
the l's appear consecutively (allowing wrapping around).

For example, the following matrix is an interval matrix with three consecutive l's.
In column 4, the third " 1 " wraps around in row 1. In column 5, the second and third " 1 "
appear in rows 1 and 2, respectively.

/ 1 0 0 1 1 \
1 1 0 0 1
1 1 1 0 0
0 1 1 1 0

\ 0 0 1 1 1 /

It can be shown that an interval matrix is TU. Recall that the IP formulation of the
workforce/staff scheduling problem in Section 10.2.5 has an interval coefficient
matrix. Hence, the solution to the workforce scheduling problem is always integer
provided that all b¡ are integer.

10.3.4 Matrix Structure of the MCNF Problem

To give an idea about the structure of the coefficient matrix associated with a system of
flow conservation equations given in constraints (10.1), we illustrate an example for
the transportation problem with two sources and three destinations. After renumber-
ing and adding an artificial source node 0 and artificial sink node 6, we obtain the
coefficient matrix and right-hand side in Table 10.1.

Note that each column contains exactly one " 1 " and one "— 1". We can easily show
that this matrix satisfies the sufficient condition of totally unimodularity. Likewise, it
can be shown that the coefficient matrix of any MCNF problem is totally unimodular.
The reader is encouraged to construct an example matrix for each network problem.

TOTALLY UNIMODULAR MATRICES 255

TABLE 10.1

Node i

0
1
2
3
4
5
6

*01

1
- 1

Coefficient Matrix for a Transportation

XQ2

1

- 1

* 1 3

1

- 1

X i 4

1

- 1

-«15

1

- 1

* 2 3

1
- 1

X 2 4

1

- 1

* 2 5

1

- 1

Problem

* 3 6

1

- 1

* 4 6

1

- 1

x56

1
- 1

•*60

- 1

1

RHS

bo
b\
h
h
b4

b5

be

Each column (vector) of the coefficient matrix, denoted by a,y, may be represented
by the difference of two unit vectors, e, — e7.

/ o \

1

- 1

V o)

(o\
i

0

W

(°\
0

1

w
where / is the initial node and j is the terminal node of arc (/', j).

Note that the coefficient matrix corresponding to the upper bounded con-
straints (10.2) is an identity matrix. Thus, by property 1, the matrix obtained by
combining (10.1) and (10.2) together is also TU.

10.3.5 Lower Triangular Matrix and Forward Substitution

Another important property about the coefficient matrix of the flow conservation
equations is that it has a rank of m — 1 for an w-node network. After deleting any row,
the remaining (m — 1) x (m — 1) submatrix will be nonsingular. From Section 7.2, we
know that an equivalent lower (upper) triangular matrix with nonzero diagonal
elements can be constructed and that a unique solution can be found by the forward
(backward) substitution method. This property is utilized in the network simplex
method to find efficiently the primal solution xB for the system BXB = b and the dual
solution u for the system uTN = c.

10.3.6 Naturally Integer Solution for the MCNF Problem

Now let us observe the structure of the coefficient matrix corresponding to the system
of m flow conservation equations in (10.1). Because of the condition J^è, = 0, the
system has at most m — 1 linearly independent equations, and in fact every equation is
a linear combination of the remaining m — 1 equations. Therefore, any equation can
be dropped from the system without affecting the feasible solution space.

256 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

Partitioning the set of variables into basic and nonbasic variables, we have x = (xB,
xN)Tand A = (B, N). Thus, we may obtain a basic solution with m — 1 basic variables
or less, depending on the degree of degeneracy. Assume that B is a (m — 1) x (m — 1)
nonsingular matrix (or d e t B / 0) in the system BxB = b. To determine a basic
solution, we let xN = 0 and compute the values of basic variables Xj (j=l,2, ...,
m — 1) by Cramer's rule:

_detBy
* y "deTB"

where By is obtained from B by replacing they'th column of B by b. Because det B = 1
or — 1, we have Xj = ±det By. Also, because By is a matrix containing all integer
elements, the determinant of By must be integer, which in turn results in integer values
for all Xj. We have just proved the following result.

Theorem 10.2 Every basic feasible (including basic optimal) solution to an LP
problem P = {max cTx: Ax < b, x > 0} is always an integer solution if A is TU, b is
integer, and P has a finite optimal solution. In addition, the statement is also true if
Ix < u is adjoined to the constraint set of P, provided u is integer.

Corollary 10.1 The MCNF problem has integer basic feasible solution and optimal
solution if b and u are integer-valued vectors.

10.4 THE NETWORK SIMPLEX METHOD

The network simplex method is based on the simplex method for upper bounded
variables while taking advantage of the special network structure of the MCNF
problem. Without using the simplex tableaux, the method performs simplex iterations
directly on the network itself and only additions and subtractions are required for
calculations.

10.4.1 Feasible Spanning Trees Versus Basic Feasible Solutions

Suppose we are solving an MCNF problem with m nodes by the simplex method for
bounded variables. The method in effect requires only carrying a (w—l)x(w—1)
basis matrix obtained from constraints (10.1), while implicitly handling a maximum
of In bounded constraints (10.2)—(10.3). To accomplish this, the variables in a basic
feasible solution are classified into three types of variables:

1. Nonbasic variables at lower bounds (x¡j = 0).
2. Nonbasic variables at upper bounds (xy = U¡j).
3. Basic variables: In the absence of degeneracy, each variable Xy will satisfy

0 < Xjj < Ujj and in degeneracy, some Xy may be 0 or Uy.

THE NETWORK SIMPLEX METHOD 257

Recall that in the simplex tableau, the row-0 coefficients of all basic variables must
beO or Cy — 0, where

Cy = CBB ^ij~cij ~ (M l , ■ ■ ■ , U,, . . . , Uj, . . . , Um)&y — Cy

But ay = e, —e7. Hence, cy = u,> — u¡ — ci}■. = 0, or «,- — Uj=Cy, for every basic
variable Xy. The dual variables ti\, ..., um that corresponds to each of m nodes are
also called simplex multipliers. Because there are only m — 1 linearly independent
equations, we may set any w, to 0 and solve for the remaining ones because cy is
known, for all i, j .

After obtaining the dual solutions, we can calculate the reduced costs for all
nonbasic variables by cy = Ui—Uj—cy. From these reduced costs, we can determine
whether the current solution is optimal.

Previously, we know that there are m — 1 linearly independent flow conservation
equations in an MCNF model. This means that the rank of basis matrix is m — 1, and
each basic feasible solution to an m-node MCNF problem will have m — 1 basic
variables. Recall that, by definition, a spanning tree in an w-node network is a
connected network containing exactly m — 1 arcs with no cycles. Therefore, a set of
m — 1 variables will yield a basic feasible solution if and only if the arcs correspond-
ing to the basic variables form a spanning tree for the network. These arcs are called
basic arcs, and the remaining arcs in the given network are called nonbasic arcs. By
property 2 of a tree, we know that adding a nonbasic arc to a spanning tree will form a
unique cycle. This implies that a nonbasic arc/variable can be represented by the basic
arcs/variables that form a spanning tree. Therefore, a feasible basic solution to an
MCNF problem is a spanning tree that satisfies the bounds constraints on each arc. We
call it a feasible spanning tree.

Recall that the simplex method always starts with a full-rank (m) constraint matrix.
But earlier we concluded that the coefficient matrix of the MCNF problem is of rank
m—\. Therefore, an artificial variable is required to make up the difference so that the
rank of the new matrix is m. The addition of an artificial variable is equivalent to
creating an arc leading to node m (or any other node). This particular one-ended arc is
called a root arc and the associated node (m) is called a root node. The feasible
spanning tree with a root arc is called a rooted spanning tree.

10.4.2 The Network Algorithm

Now we are ready to describe the network simplex algorithm that works on the
network directly. Assume that the given network has m nodes and n arcs, where n>m.
Each node is associated with a given commodity amount b¡ and each arc is associated
with a given unit flow cost Cy and given flow capacity Uy The lower bounds of all arc
flows are assumed to be 0. The problem is to determine the amount of arc flow Xy. The
algorithm is as follows:

Step 0 (Initialization). Find a rooted feasible spanning tree comprising m — 1 basic
arcs:

258 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

(a) Check if J2 °i = 0- If not> add a dummy node and its associated dummy arcs.
(b) Designate a demand node (b¡ < 0) as a root node and create a rooted arc

incident to the root node.

(c) Create a feasible spanning tree in the following process. Begin with
the end nodes and proceed toward the rooted node (say m + 1). Assign
flows to arcs so that at each node the net flow (=outflows — inflows)
equals b¡.

Step 1 (Node Potential). Compute the node potentials w, (or dual variables or
simplex multipliers) for all nodes as follows. Begin with the rooted node and set
w m + 1 = 0 , and proceed toward the end nodes. Determine M, iteratively by
ui-uj=cij.

Step 2 (Entering Arc). Compute the reduced costs ëy for all nonbasic arcs by
cy = u¡ — Uj — Cjj and then check the optimality (minimization) conditions for
both types of nonbasic variables. If Xy = 0, then the optimal condition is
c¡j < 0. If Xy = Uy, then the optimal condition is Cy > 0. If the current solution
is not optimal, then choose an entering arc that most violates either optimal
condition.

Step 3 (Leaving Arc). Form a unique cycle by adding the entering arc to the current
spanning tree. Determine the amount of arc flow Á that can increase without
exceeding any arc capacity Uy in the cycle and that can decrease without
violating the lower bound Xy > 0. The leaving arc will be the one that first hits
either 0 or Uy.

Step 4 (Updating). Find the new feasible spanning tree (feasible solution) by
adjusting the arc flows in the cycle so that the flow conservation at each node
is maintained. Go to step 1.

10.4.3 Numerical Example

We use the network in Figure 10.4 to show how the network simplex method works.
Each node / is associated with a given b¡. Each arc is associated with a triplet ($Cy, Uy,
xy), where Cy denotes the given unit flow cost, Uy denotes the given upper bound, and
Xy denotes the amount of flow to be determined.

Step 0. We construct a starting feasible spanning tree beginning with the end node 1
toward the root node 5. We first assign x 1 3 = 10 and jci4 = 30, and then assign
•X23 = 50 and x35 = 60. These four basic arcs form a five-node spanning tree. As
shown in Figure 10.5, we use the solid lines to represent the basic arcs (or variables)
that form the spanning tree and the dashed lines to represent the nonbasic arcs (or
variables). Initially, all nonbasic arcs are set at the lower bound Ly (assumed to be 0
from now on). Note that arc (1,3) is a basic arc even though its arc flow reaches the
arc capacity Ui3= 10. The total cost is 800 (verify!). Add a root arc JC5 = 0 to the
rooted node 5.

THE NETWORK SIMPLEX METHOD 259

($3,°o,*12)

\Cjj> Ujj, Xjj

50 -60

FIGURE 10.4 The given network (Taha, 2007).

Iteration 1.

Step 1. Consider the nodes in Figure 10.6. Compute the dual values u¿ iteratively in
the order of nodes 5 ,3 ,2 ,1 , and 4 via w, — u¡ = cy. These nodes are connected by the
basic arcs in the spanning tree. Let u5 — 0, and then compute w3 = u5 + 8 = 8,
"2 = u3 + 2 = 10, «i = «3 + 7 = 15, and u4 = u\ — 5 = 10.

Step 2. For all nonbasic arcs, compute the reduced costs c,y = w, — Uj — c¡/.

C\2 = U\—U2~C\2 = 15 — 10 — 3 = 2 > 0

Cl5 = U2-U5-C25 = 1 0 - 0 - 1 = 9 > 0

C45 = U4—U5—C45 — 10—0—4 = 6 > 0

(10.7)

($3,~, 0)

50 -60

FIGURE 10.5 First feasible solution (z = 800).

260 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

«i = 15 «4 = 10

FIGURE 10.6 Steps 1-3 for the first feasible solution.

Because x}2=
:X25 = X45 — 0, all nonbasic arcs violate the optimality condition

Cy < 0. Select arc (2, 5) as the candidate entering arc because it violates this
condition the most.

Step 3. Construct the cycle {(2,5), (3,5), (2,3)}. If arc (2,5) increases the flow by A,
then the flows of arcs (3, 5) and (2, 3) must decrease by A because of opposite
direction of flow. The amount of A must satisfy the following conditions:

For arc (2,5) :0 + A < 30
For arc (3,5) : 60-A > 0
For arc (2,3) : 50-A > 0

Therefore, A = min {30,60,50}~ 30. Arc (3,5) is the leaving variable. Because
arc (2,5) must be increased, we adjust the flow in the arcs of the cycle by an equal
amount of A in order to maintain the feasibility of the new solution. To achieve
this, we identify a positive (+) flow in the cycle by the same flow direction of
the entering arc and assign a negative (—) flow in the cycle by the opposite flow
direction of the entering arc. See Figure 10.6 for the assignment of + A or — Ain
the cycle. After adjusting the arc flow in the cycle, we obtain a new feasible
solution in Figure 10.7 with new flow of 30 in arc (2, 5), new flow of 30 in arc
(3, 5), and new flow of 20 in arc (2, 3).
Note that because no current basic arcs (2, 3) and (3, 5) leave the basis at zero
level, arc (2,5) remains nonbasic at level Uy, switching from level 0. However,
to maintain dealing with nonbasic arcs at level 0, we substitute the arc using its
reverse arc by the relations:

*25 = U25 -x51 = 30-X52 and 0 < x52 < 30

THE NETWORK SIMPLEX METHOD 261

40 -30

50 -60

FIGURE 10.7 The second feasible solution (z = 610).

similar to what we did in the simplex method for upper bounded variables.
This substitution causes changes in flow conservation equations at nodes 2 and
5 as well as on arcs. At node 2, the current flow equation is x23 + *25 — *i2 =
50 and the new flow equation becomes x23

 — x\2 — X52 = 20. At node 5, the
current flow equation is 0 — x2s — x35 — x45 = —60 and the new flow equation
becomes x52 — x35 — x45 = —30. The direction of flow in arc (2,5) is reversed to
(5,2) with x52 = 0. The unit cost of flow on arc (5,2) is —$ 1. These changes are
shown in Figure 10.8.

Iteration 2.
Repeat steps 1-3 on the adjusted network. We obtain new u¡ for nodes, cy for nonbasic
arcs, flow increment A, and new cycle. All of these are shown in Figure 10.9.

40 -30

20 -30

FIGURE 10.8 Adjusted network after the second feasible solution (z' = 580).

262 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

u2=10 «5 = 0

FIGURE 10.9 Steps 1-3 for the adjusted second feasible solution.

40 -30

($3, «o, 0)

FIGURE 10.10 The third feasible solution (z' = 550).

Iteration 3.

U 2 = 1 0 « 5 = 0

FIGURE 10.11 Steps 1-3 for the third feasible solution.

THE NETWORK SIMPLEX METHOD 263

($3, - , 5)

20 -60

FIGURE 10.12 The fourth feasible solution (z" = 285, z7 = 460, z = 490).

Iteration 4.

Check the optimality following conditions:

For arc (1,3)

For arc (4,1)

Fora rc (5 ,2)

en = —2andxi3 = 0 (satisfied)

C41 = —4 and Xu = 0 (satisfied)

C52 = —9 and x& = 0 (satisfied)

Optimal solution:

Basic variables : xn = 5,*23 = 25,^35 = 25,^45 = 5

Nonbasic variables : X13 = 0, X14 = 35—X41 = 35—0 = 35,

x25 = 3O-X52 = 3 0 - 0 = 30

Total cost = $490

» 2 = 1 0 "5 = 0

FIGURE 10.13 Steps 1-3 for the fourth feasible solution.

264 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

10.5 SOLUTION VIA LINGO®

The following LINGO® program can be used to find an optimum solution to the above
example (five nodes, seven arcs), as well as any minimum cost network flow problem
with appropriate network structure and input data (m, b¡, Cy, Uy).

MODEL :

S E T S :

NODES/1. .5/¡DEMAND;r
ARCS(NODES,NODES)/1,2 1,31,42,32,53,5 4,5/: CAP,FLOW,
COST;
ENDSETS
MINY=Y@SUM(ARCS:COST*FLOW);
@FOR(NODES(I):@SUM(ARCS(I,J):FLOW(I,J))
-@SUM(ARCS(K,I):FLOW(K,I))=DEMAND(I));
@FOR(ARCS:FLOW<=CAP);
DATA:
DEMAND = 40 50 0 -30 -60;
CAP = 100 10 35 60 30 100 100;
COST = 3 7 5 2 1 8 4 ;

ENDDATA

END

After running the program, we will obtain a standard (or default) output report that
includes the optimum solution containing all decision variables (zero or nonzero),
slack variables, reduced costs, dual prices, and even all input data. To avoid obtaining
such a lengthy report, we may select an option in the following "Solution Report and
Graph" menu to obtain specific set of information. For example, if we select the
attributes "flow" and "nonzero," the report will contain an optimum solution contain-
ing only nonzero flow values as shown in Figure 10.14.

10.6 NOTES

In this chapter, we present only the "primal" network simplex algorithm for the
MCNF problem. There are other algorithms such as the "dual" network simplex, the
primal-dual, and the out-of-kilter. To know these algorithms, the interested reader
may refer to Murty (1992), Ahuja et al. (1993), Bazaraa et al. (1990) and Phillips and
Garcia-Diaz(1981).

We provide how the network simplex method can work directly on the network
itself and give basic concepts and reasoning on its ties with the upper bound simplex
method. For more details about the correspondence between the two methods, see
Bazaraa et al. (2005).

Most introductory OR textbooks such as Hillier and Lieberman (2005), Taha
(2007), and Winston (1994) ignore the procedure about how to find a starting feasible
spanning tree. To learn how to construct it, read Bazaraa et al. (2005).

EXERCISES 265

Variable Value Reduced Cost

FLOW(l,2) 5.000000 0.000000

FLOW(l,4) 35.00000 0.000000

FLOW(2,3) 25.00000 0.000000

FLOW(2,5) 30.00000 0.000000

FLOW(3,5) 25.00000 0.000000

FLOW(4,5) 5.000000 0.000000

FIGURE 10.14 Solution to numerical example via LINGO.

The implementation of the network simplex method plays a very important role in
making the method efficient. Knowing that the method is about finding a series of
related spanning trees, the data (parameters and solutions) can be stored, accessed,
and updated by using efficient tree or listed structures. The interested readers,
especially computer programmers and analysts, should refer to Bazaraa et al.
(2005), Murty (1992), and Ahuja et al. (1993).

10.7 EXERCISES

10.1 Given the graph shown in Figure 10.15, identify (a) a path from node 1 to
node 6 and (b) a directed path from node 2 to node 7. If the numbers on each
arc represent arc capacity, identify the capacity of the paths you find in (a)
and (b).

266 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS

40

FIGURE 10.15 A directed graph.

10.2 Identify the vertex-edge incidence matrix of the graph in Exercise 10.1.

10.3 Given an m x n (0, 1, — 1) matrix M where m>n, m, n>3, how many
submatrices do you need to evaluate so that the total unimodularity of matrix
M can be identified? Show your reasoning.

10.4 Which of the following matrices are TU? Which are not? Why?

(1
- 1
0
0
0

^ o

0
1

- 1
- 1
0
0

1 0 \
0 0

- 1 0
- 1 1
0 1
0 l)

/ l 1 0 0 \
1 0 1 1
0 1 1 0

\ l 1 0 \j

(1) (2)

f-1
1

- 1
0

\o

0
0

- 1
- 1
1

0
1
0

- 1
1

1 \
- 1
1
0

o)
(3)

10.5 Generate three more TU matrices using the TU matrix given below.

/ 0 1 1 - 1 \
- 1 1 0 0
0 0 - 1 1

V i - i o i)

10.6 If the TU matrix in Exercise 10.5 is the vertex-edge incidence matrix of some
directed graph, draw the graph.

EXERCISES 267

[-30]

FIGURE 10.16 A maximum flow problem.

10.7 Consider the 0-1 matrix below. Is it possible that it is the vertex-edge
incidence matrix of some undirected graph? If yes, draw the graph. Other-
wise, why is it not?

(\ 0 0 1 \
1 0 1 0
1 1 0 1
0 0 1 1

\ 0 1 1 0 /

10.8 Check if the following matrices satisfy the sufficient condition of TU. If not, is
it TU? Why?

0
/ 0 - 1 1 0 0 \

0 0 - 1 - 1 0
1 1 0 - 1 - 1

/ 1 0 - 1 0 \
- 1 1 0 0
0 1 0 - 1

\\ 0 0 0 1 / V 0 - 1 - 1 1)
(1) (2)

10.9 Consider the graph in Exercise 10.1 again. Identify (a) a tree and (b) a
spanning tree (not minimal). Now assuming the numbers on each arc
represent flow cost, identify a minimal spanning tree.

10.10 For the graph in Exercise 10.1, identify (a) a cycle and (b) a directed cycle.

10.11 Create two TU matrices using the sufficient conditions in Theorem 10.1.
The two matrices must be of dimensions 5 x 5 and 6 x 4 .

10.12 Consider a three-supplier, three-customer transportation problem. Show its
coefficient matrix. Partition the columns of the matrix using the partitioning
approach.

10.13 Solve the following maximum flow problem using the network simplex
algorithm (Figure 10.16). Numbers on the arcs indicate the flow capacities.

This page intentionally left blank

PART III

SOLUTIONS

This page intentionally left blank

11
CLASSICAL SOLUTION APPROACHES

This chapter introduces three classical approaches for solving integer programs,
namely, branch-and-bound, cutting plane, and group theoretic. Although all ap-
proaches are capable of solving integer programs, their degrees of success vary in
software implementation. The cutting plane approach, when used as a stand-alone
solver, has potential to solve IP programs of limited size, but may not work well in
large-scale application. Similarly limited is the group theoretic approach, which has
not been implemented as a stand-alone solver in practice. However, the valid
inequality cuts generated by both cutting plane and group theoretic approaches can
be useful when combined with branch-and-bound to yield a powerful branch-and-cut
approach.

For over three decades, the branch-and-bound had been the prevailing solution
method until the emergence of the branch-and-cut in early 1990s. Branch-and-cut
combined branch-and-bound with the generated cutting planes into a much more
efficient "hybrid" approach. Similarly, the group cuts generated from the group
theoretical approach have also been incorporated, but at a lesser degree of
integration. As a whole, extracting the strengths of these two approaches and
injecting them into the branch-and-bound may greatly increase the modern solution
power for integer programs. In what follows, we will introduce the concepts and
background of these three solution approaches, and then exploit the potential
strengths of each approach.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

271

272 CLASSICAL SOLUTION APPROACHES

11.1 BRANCH-AND-BOUND APPROACH

Branch-and-bound is a general-purpose approach capable of solving pure IP, mixed
IP, and binary IP problems. For ease of exposition, sometimes we shall assume that
the given problem is a pure IP problem because a similar algorithm can be applied to a
mixed or binary IP problem. We also assume that the given problem is a maximization
problem because modification of the algorithm for the minimization problem is
straightforward.

11.1.1 Basic Concepts

Theoretically, any pure IP problem with finite bounds on integer variables can be
solved by enumerating all possible combinations of integer values and determining a
combination (solution) that satisfies all constraints and yields the maximal objective
value—hence the name of complete enumeration. Unfortunately, the number of all
possible combinations is prohibitively large to be evaluated even for a small problem.
A problem of n integer variables with m values each has a total of m" possible
combinations (feasible and infeasible solutions). Therefore, complete enumeration is
theoretically simple but practically intractable.

As a better alternative, implicit enumeration applies an intelligent enumeration
scheme that can cover all possible solutions by explicitly evaluating only a small
number of solutions while ignoring (or implicitly enumerating) a large number of
inferior solutions. One such strategy is called divide and conquer. Basically, this
strategy divides the given problem into a series of easier to solve subproblems that are
systematically generated and solved (or conquered). The solutions of these generated
subproblems are then put together to solve the original problem.

Branch-and-bound can be viewed as a divide-and-conquer approach to solving the
IP problem, in which a branching process for dividing and a bounding process for
conquering. Throughout the algorithm, a series of LP subproblems are systematically
generated and solved. Then upper and lower bounds are progressively tightened on the
objective value of the original IP problem.

A typical way to represent such a process is via a branch-and-bound (B&B) tree,
which is a specialized enumeration tree for keeping track of how LP subproblems are
generated and solved. The B&B tree by convention is drawn upside down with its root
node at the top. The root node that represents the LP relaxation of the original IP
problem (denoted by SLP) is solved. If the LP optimum solution satisfies the integer
requirement, the IP problem is solved. Otherwise, the LP objective value becomes the
initial upper bound on the IP optimal objective value and the root node is partitioned
into two successor nodes (subproblems) by two branches. These branches are valid cuts
in terms of simple inequality constraints that have the following properties: (a) they cut
off the current noninteger LP optimum point and other fractional region, and (b) the two
successor nodes are mutually exclusive and their union contains the same integer
feasible region as that of their predecessor (i.e., no integer points are eliminated). The
solution of an LP relaxation on a node provides information about (a) whether a further
branching from this node is needed (or whether the node can be pruned), and (b) a better
lower bound (for maximization problem) on the objective of the original IP problem.

BRANCH-AND-BOUND APPROACH 273

Note that in some texts, the term pruned may be replaced by fathomed to indicate that
no further exploration beyond that point is necessary.

There are three cases indicating that a node can be pruned: (1) the subproblem
has no feasible LP solution, (2) the subproblem has an integer optimum solution, and
(3) the upper bound of the subproblem optimum is less than or equal to the lower
bound of the original problem. These three cases are, respectively, referred to as
pruned by infeasibility, pruned by optimality, and pruned by bound. If a node is
pruned by optimality, its optimum solution can be used to increase the lower bound
on the objective value of the original IP problem.

Whenever an integer solution to a subproblem is obtained, it is a candidate
optimum to the original IP problem. In the solution process of B&B, the best integer
solution found so far is continuously updated. Such a solution is called an incumbent
solution. To illustrate how the B&B algorithm works, we use the following two
examples—one for pure and one for mixed IP problem.

Example 11.1 Solve the following pure IP problem by branch-and-bound approach.

Maximize z = 5y\ —2v2
subject to — y i +2v2 < 5

3y, +2y2< 19
v, + 3v2 > 9

y\, y2 > 0 and integer

We first solve the LP relaxation SLp As shown in Figure 11.1, the shaded area
represents the LP feasible region and the solid lattice points the IP feasible solutions.

FIGURE 11.1 LP and IP feasible regions for Example 11.1.

274 CLASSICAL SOLUTION APPROACHES

We obtain the noninteger optimum j j=39 /7 , y2 = &/7, and z = 25.57. Then the
objective value 25.57 becomes an upper bound to the IP problem. We set the lower
bound to — oo. Since both variables are fractional, we need to branch on them in an
attempt to obtain an integer optimum.

We arbitrarily select y\ as the variable to be branched. Two subproblems are
generated by adding the constraint of yx > 6 and y\ < 5 , respectively, to the LP
relaxation. From Figure 11.2 we can see that the triangle area S' is cut off by y\ < 5.
Clearly, the branch with the added constraint yx > 6 is infeasible, so it is pruned
by infeasibility. The other branch with the added constraint yx < 5 is optimized at
(yi. yi) = (5, 4/3), with objective value 22.33. So the new upper bound is updated
to 22.33.

Again, the variable y2 is fractional, so this time we branch on y2. The two
constraints y2 > 2 and y2 < 1 are then added. This time the area S" is cut off, as
shown in Figure 11.3.

The branch with y2 < 1 is infeasible, and hence is pruned by infeasibility. The
branch with y2 > 3 is optimized at (y¡, y2) = (5,2), with objective value 21. Since this
is a feasible solution to the IP problem, the value 21 becomes a new lower bound to the
problem, replacing the initial lower bound —00, and (5, 2) is a candidate solution.
Checking the tree, all branches are evaluated, so (yi,y2) = (5,2) is the optimal solution
to the IP problem, and the optimal objective value is 21.

The branch-and-bound algorithm is usually depicted as an enumeration tree, in
which the nodes denote the subproblems, and the branches correspond to constraints

FIGURE 11.2 LP and IP feasible regions after the first branching.

BRANCH-AND-BOUND APPROACH 275

FIGURE 11.3 LP and IP solution regions after the second branching.

(cuts) that separate the subproblems from their parent subproblems. The number
above each node is the optimal solution to the LP subproblem generated on that node
(which is also the upper bound on that branch). The number below the node indicates
the best lower bound on the original IP problem found so far. The previous procedure
is depicted in Figure 11.4.

25.57

Pruned by
infeasibility

(yi. >2) = (5, 2)

Candidate

(y„ y2) = (5.57, 1.14)

o-.,

y-¡

.yi)z

< l

= (5,4/3)

5) Pruned by
y infeasibility

FIGURE 11.4 Branch-and-bound tree for Example 11.1.

276 CLASSICAL SOLUTION APPROACHES

When an LP solution contains several fractional integer variables, the decision of
which integer variable to branch on next is needed. The following rules are commonly
used for choosing a branching variable:

1. Variable with fractional value closest to 0.5

2. Variable with highest impact on objective function
3. Variable with the least index

A decision is also needed as to which unpruned node to explore first. The most
commonly used search strategies include

1. Depth-first (last-in first-out; solve the most recently generated subproblem first)
2. Best-bound-first (best upper bound; branch on the active node with greatest

z-value)

The goal of the depth-first strategy is to quickly obtain a primal feasible integer
solution whose objective function value zk is a lower bound on the given IP
problem and can be used to prune nodes by optimality (rule 3). The best-bound-first
strategy chooses the active node with the best upper bound (for maximization
problem). The goal is to minimize the total number of nodes evaluated in the B&B
tree. Performance of these branching rules depends on the problem structure. In
practice, a compromise between the two is adopted. That is, apply the depth-first
strategy first to get one feasible integer solution, followed by a mixture of both
strategies.

Example 11.2 Solve the following mixed integer problem using branch-and-bound
approach. At each step, apply the rule of best-bound-first, and at each node, select the
variable with least index to branch first.

Maximize z = —y\+ 2y2 +y?,+2x\

subject to vi +y2~yi +3xi < 7

V2 + 3J3-X, < 5

3vi +*i > 2

Ïi,y2,y3 > 0and integer

x\ > 0

After solving the LP relaxation, we obtain an LP optimum yi = 6/11, y2 = 59/11,
V3 = 0, X\ = Al\ 1, and z = 120/11. This solution violates the integer requirements of y¡
and y2- We use this solution as the root node the branch-and-bound tree in Figure 11.5.
The number of each node indicates the sequence of subproblems evaluated. Note

BRANCH-AND-BOUND APPROACH 277

15) Pruned by
,_^/ infeasibility

FIGURE 11.5 Branch-and-bound tree for Example 11.2 using best-bound-first.

that at node 1, the constraint y{ < 0 was indicated on the left branch, but since ̂ i > 0,
)>i has to be fixed at 0. At node 7, the constraint y2 > 2 was intended to be added, but if
we trace back along node 7, we would see that the constraint of y2 < 2 was already
added at node 2. Combining these two constraints, we have y2 = 2. So is the constraint
of y 3 = 2 at node 8. The problem is finally optimized at node 12, where (1,5,0,1/3) is
the optimal solution, with objective value 9.67.

Figure 11.6 depicts the branch-and-bound tree for the same problem, where the
"depth-first" rule is applied, and at each node, the variable (violating an integer
constraint) with the largest absolute value cost coefficient is chosen to branch first.
Ties are broken arbitrarily.

Depth-first is sometimes called last-in first-out (LIFO) because it solves the most
recently generated subproblem first. It tends to pursue paths to the depths of the
tree, then backtrack to where that path started, and finally plunge down into another

9.33

1(0, 1,2,8/3)
Pruned by LB

278 CLASSICAL SOLUTION APPROACHES

10.91

Pruned by
¡nfeasibility

(1, 13/4, 1,5/4)

Pruned by LB

Pruned by
¡nfeasibility

FIGURE 11.6 Branch-and-bound tree for Example 11.2 using depth-first.

depth search. Yet another name for depth-first is "backtracking." Best-bound-first is
sometimes called "jumptracking" because it leads to searches that jump back and
forth across the tree.

11.1.2 Branch-and-Bound Algorithm

Now we describe the general branch-and-bound algorithm using the following
notation.

S = the given IP problem
SLP = the LP relaxation of S

BRANCH-AND-BOUND APPROACH 279

yLP = the solution to the LP relaxation of the given IP
z = lowest (best) upper bound on z* of the given IP problem
z = highest (best) lower bound on z* of the given IP problem

These are global bounds that are periodically updated as the branching proceeds
down the various paths in the tree, but are not shown on the tree. In Example 11.2,
z = 10.91 throughout and z was —oo, then 9,9.33, and 9.67 at nodes 1, 8,12, and 14,
respectively. Next comes more notation. Let

Sk = subproblem k of problem S
S£p = the LP relaxation of subproblem k

zk — the optimum objective value of Sk

zk — best (lowest) upper bound of subproblem Sk (shown above node k)
zk = best (highest) lower bound of subproblem Sk (shown below node k)

>£p = t n e optimum solution of the LP subproblem S£P

yj = noninteger value of integer variable y¡ (current numerical value of yj)
[a] = the largest integer <a (or rounding down a)
\a] = the smallest integer >a (or rounding up a)

We now formally describe the B&B algorithm

Step 0 (Initialization). Solve the LP relaxation (SLP) of the given IP problem (S). If it
is infeasible, so is the IP problem—terminate. If the LP optimum solution satisfies
the integer requirement, the IP problem is solved—terminate. Otherwise, initialize
the best upper bound (z) by the optimal objective value of problem SLP and the best
lower bound by z — —oo. Place S£P on the active list of nodes (subproblems).
Initially, there is no incumbent solution.

Step 1 (Choosing a Node). If the active list is empty, terminate. The incumbent
solution y* is optimal. Otherwise, choose a node (subproblem) Sk with S£p by one
of the rules (e.g., depth-first, best-bound-first, etc.)

Step 2 (Updating Upper Bound). Solve and set zk equal to the LP optimum objective
value. Keep the optimum LP solution y£p.

Step 3 (Prune by Infeasibility). If S£p has no feasible solution, prune the current node
and go to step 1. Otherwise, go to step 4.

Step 4 (Prune by Bound), li zk < z, prune the current node and go to step 1.
Otherwise, go to step 5.

Step 5 (Updating Lower Bound and Prune by Optimality).
(a) If the LP optimum y£p is integer, a feasible solution to S is found, an incumbent

solution to the given problem. Set zk = y^p and compare zk with z. If zk > z,
set z — zk, otherwise z does not change. The current node is pruned because no
better solution can be branched down from this node. Go to step 1.

(b) If the LP optimum y£P is noninteger, go to step 6.

280 CLASSICAL SOLUTION APPROACHES

Step 6 (Branching). From the current node Sk choose a variable y>j with fractional
value to generate two subproblems Sf{ and 5^ defined by

St¡ = Stn{y:yj<[yj}}

^2=Sfcn{y:yj>\yj]}

Place both of these two nodes in the active list and go to step 1.

11.2 CUTTING PLANE APPROACH

In geometry, an equation in two variables is called a plane and an equation in
n variables a hyperplane, strictly speaking. For simplicity, however, both in practice
are often referred to as a plane, regardless of the number of variables. Strictly
speaking, an inequality constraint in n variables is called a half-space, not a hyper-
plane. But an inequality constraint can always be converted to an equation by adding
or subtracting a nonnegative slack variable. The term cutting plane is often used for an
equality or inequality constraint that can cut off a fractional part of an LP feasible
region, without excluding any integer feasible solution. In the cutting plane approach,
one or more such cutting planes are added to the current LP simplex tableau, which in
turn are resolved for a new LP optimum. This process is repeated until the prescribed
integer requirements are satisfied. In this text, the collection of all such cutting plane
methods will be called a cutting plane approach (more specifically, a dual cutting
plane approach, due to the use of the dual simplex method for LP reoptimization).

11.2.1 Dual Cutting Plane Approach

A large variety of cutting plane methods were developed during the 1950s and 1960s.
Among them, the most prominent ones belong to the class of dual cutting plane
approach such as the fractional and mixed cutting plane methods developed by
Gomory. This class shares a common solution algorithm when they are utilized as
a stand-alone solver.

Step 1. Solve the integer program as if it were a linear program. If it is infeasible,
so is the integer program and then stop. Else if an LP optimal solution
satisfying the integer requirements is found, then the IP is solved. Otherwise,
go to step 2.

Step 2. Select a row to be a generating row (or source row) from the LP optimum
simplex tableau.

Step 3. Derive a cut constraint from the generating row and augment it to the current
tableau, resulting in a primal infeasible solution.

Step 4. Apply the dual simplex method to reoptimize the augmented linear program.
If the new LP optimum satisfies the integer requirements, the original MIP
program is solved. Otherwise, go to step 2.

CUTTING PLANE APPROACH 281

The main difference among various methods of cutting plane is how a cut
constraint is generated. The main requirement is that a generated cut constraint must
be valid, meaning that its addition will result in cutting off the current LP optimal point
but will not eliminate any integer feasible solution. In other words, every valid cut has
two properties:

• The current optimal solution to the LP relaxation problem will violate the cut
constraints.

• Any feasible point to the corresponding IP or MIP problems will satisfy the cut
constraint.

The class of dual cutting plane methods begins with an optimal LP solution and
requires application of a series of dual simplex steps to reoptimize a series of new LP
problems, each adding one or more constraints to the current simplex tableau
(although some cuts may be dropped from later considerations).

There is another class of cutting plane methods known as the primal cutting plane
approach. This approach commonly begins with a primal simplex tableau and creates
a series of primal simplex tableaux, from which cuts are generated. As a result, all
the subsequent simplex tableaux will remain primal feasibility and dual infeasibility.
The primal simplex method is applied throughout the process until both primal and
dual solutions are feasible, in which case an optimum solution if found. We shall not
describe them in detail. The interested reader may refer the Section 11.5.

11.2.2 Fractional Cutting Plane Method

The fractional cutting plane method is capable of solwingpure integer programs. This
method requires that the starting IP problem must contain all-integer coefficients so
that all slack variables, including those that are added after introduction of cuts, are
ensured to be nonnegative integers. Note that the integer assumption of the starting IP
problem does not limit the problem application because any coefficients consisting of
rational numbers can always be made integers by multiplying an appropriate number.

The fractional cutting plane method begins with an optimal simplex tableau of the
LP relaxation given below (recall that we use y¡ to denote integer variables):

Maximize z + YJ d^yk = do
k

subjectto yBi+^2gikyk = bi i =1,2,...,m , n ^
k V ■ J

yBi > 0 ; = 1,2, ...,m

yk = 0 k=l,2,...,p

where yBi and_y¿ denote basic variables and nonbasic variables, respectively. Note that
the current LP optimum solution is yB¡ = b¡ and yk = 0, in which some b¡ are assumed
to be noninteger. Optimality conditions require that dk > 0 for all k.

282 CLASSICAL SOLUTION APPROACHES

To find an integer solution, we arbitrarily select a row with b¡ noninteger. The
selected row, say r, is called a source row or generating row, from which a fractional
cut will be generated. Consider the source row

k

which can be rewritten by separating fractional and integral parts of all data:

VBr + Yl {(Srk-lSrkl) + [grk\}yk = (¿,~ \pT\) + [br\
k

where [a] denotes the largest integer <a. For example, |_5.4J — 5, j_— 1.8J = —2, and
|_3J = 3. The fractional part is always >0. For simplicity, we let

frk =g,k~\]Srk\

fro = br-[br\

be the fractional parts of tableau coefficients and the RHS of row r. Rearranging the
terms, we have

yBr + Yl \-Srk\yk - [br\ =u- Yjrkyk (11-2)
k k

Now in order for ysr and y^ (k = 1, ...,/?) to be integer, both the left-hand and
right-hand sides of (11.2) must be integer. By the definition of congruence, we have

/ K) - ^ / r * v * t = 0 (m o d l) (11.3)
k

But since/ro—^^/riji </rt) < 1, the necessary condition for integrality becomes

frO- Y2frkyk - 0

k

or ^/rtVfc = fro (Gomory fractional cutt) ^ , 4)
k

or Y -frkyk +s= -fro (Gomory fractional cut) ^j j_5)
k

where s > 0 is Gomory's slack variable associated with the fractional cut. Note that all
frk and/,o must be nonnegative fractions, that is, 0 <frk {k=\, ■ ■ -, p) and/ro < 1.

Example 11.3 Solve the pure IP problem in (11.1) using the cutting plane method.

CUTTING PLANE APPROACH 283

TABLE 11.1 Tableau 1 for Example 11.3

Basic Variable

z

y\
yi

y3

z

1

0
0
0

y\

0

i
0
0

yi

0

0
1
0

^3

0

0
0
1

?4

Mil

3/7
-1/7

5/7

ys

16/7

111
-3/7

8/7

RHS

179/7

39/7
8/7

58/7

We first add a nonnegative slack variable to each inequality constraint:

Maximize z = 5y\ —2y2

subject to —y\+ 2y2 + y3 — 5
3yl+2y2+y4 = 19
-y\-3y2+y5 = - 9
yi,y2,y3,y*,ys > Oandinteger

We then solve the LP relaxation, yielding the optimal simplex tableau shown in
Table 11.1.

The optimum solution is noninteger: yx = 39/7, y2 = 8/7, y3 — 58/7, y4 = y5 = 0,
and z= 179/7. We arbitrarily select yt row as the source row and generate the
following fractional cut.

3 2 4

7 y 4 + 7 * - 7

or

3 2 4
- ^ 4 - ^ 5 + 5 1 = - -

where s{ is called Gomory's slack variable to differentiate from the ordinary slack
variable. Appending the equation to tableau 1, we obtain tableau 2 (Table 11.2).

Applying the dual simplex iteration, s\ is replaced by y4 yielding tableau 3
(Table 11.3).

Repeating generation of fractional cuts and application of dual simplex iterations,
the reader may verify the subsequent simplex tableaux 4 through 6 (Tables 11.4-11.6).

TABLE 11.2 Tableau 2 for Example 11.3

Basic Variable

z

z

1

y\

0

y%

0

^3

0

J4

\lll

ys

16/7

i i

0

RHS

179/7

0 1 0 0 3/7 2/7 0 39/7
0 0 1 0 -1/7 -3/7 0 8/7
0 0 0 1 5/7 8/7 0 58/7
0 0 0 0 -3/7 -2/7 1 -4/7

284 CLASSICAL SOLUTION APPROACHES

TABLE 11.3 Tableau 3 for Example 11.3

Basic Variable Ji yi y-i y* y$ S\ RHS

2/3 17/3 67/3

y\
yi

y¡

J4

0
0
0
0

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

0
-1 /3

2/3
2/3

1
-1/3

5/3
-7/3

5
4/3

22/3
4/3

TABLE 11.4 Tableau 4 for Example 11.3

Basic Variable z >>i y2 yi

z 1 0 0 0

>"4

0

>5

2/3

Sl

17/3

s2

0

RHS

67/3

y\
yi
JV3

y*
S2

0
0
0
0
0

1
0
0
0
0

0
1
0
0
0

0
0
1
0
0

0
0
0
1
0

0
-1/3

2/3
2/3

-2/3

1
-1/3

5/3
-7/3
-2/3

0
0
0
0
1

5
4/3

22/3
4/3

-1/3

TABLE 11.5 Tableau 5 for Example 11.3

Basic Variable

2

y\
yz
y¡

y*
ys
Si

z

1

0
0
0
0
0
0

y\

0

i
0
0
0
0
0

J2

0

0
1
0
0
0
0

^3

0

0
0
1
0
0
0

y*

0

0
0
0
1
0
0

ys

0

0
0
0
0
1
0

Si

5

1
0
1

- 3
1
0

■S2

1

0
-1/2

1
1

-3/2
-1/2

RHS

22

5
3/2

3
1

1/2
-1/2

TABLE 11.6 Tableau 6 for Example 11.3

Basic Variable z y\ y2 y?,

z 1 0 0 0

y*

0

ys

0

S\

5

s2

0

■S3

2

RHS

21

y\
J2
>3

J4
ys
s2

0
0
0
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

1
0
1

- 3
1
0

0
0
0
0
0
1

0
1
2
2

- 3
- 2

5
2
2
0
2
1

CUTTING PLANE APPROACH 285

Because all basic variables are integer, we have an integer optimum y¡ = 5,
y2 = 2, and z = 21. The solution is the same as that obtained by branch-and-bound
approach.

The cutting plane approach often takes a large number of cuts to reach an
integer solution even for a small or moderate sized IP problem, although it can be
shown that the fractional cutting plane method is ensured to converge to an IP
optimum after a finite number of cuts. Here, we arbitrarily select a source row,
although alternative rules may be applied to select other source rows. For example,
we may select a source row r with/r0 closest to 0.5, or select a row with the largest
fro- However, no evidence shows that a certain selection rule is better than the
others in all cases.

11.2.3 Mixed Integer Cutting Plane Method

The mixed integer cutting plane method, also due to Gomory, can be used to solve the
following MIP problem:

Maximize z = \ J CJXJ + 2_] dkyk
j k

subject to Y^ a'ixi + 5 Z 8ikyk - b i (' = 1,2,..., m)
j k

xj>o (y = 1,2,...,«)

yic > 0 and integer (A: = 1,2,...,/?)

Essentially, the solution procedure is similar to that of the fractional cutting plane
method. It generates a valid cut from the optimal simplex tableau of the LP relaxation
of the MIP problem. Any row r associated with yk, which is basic but has fractional
right-hand side, may be chosen to generate the cut. Just like the fractional cuts, each
of the generated mixed cuts will violate primal feasibility and will be restored to
primal feasibility after applying the dual simplex method.

Let the nonzero coefficients (arj) of the continuous variables Xj (jGj) be
partitioned into two sets: positive coefficients (arj > 0) and negative coefficients
(arj<0). Also, let/,* = grk—[grk\ and/,o = br—[br\ as before. It can be shown that a
mixed cut due to Gomory can be derived (see Section 11.5) as

aoxJ+ ¿^ [T^\)arjXj+ 2 - frkyk+ ¿ - ~ ~ Ï Z 7 — y k - f r 0

j:arj>0 j:ar,<0 V » 0 V kfrk<f* k:frk>U Jr0

We use the following numerical problem to show how to generate a mixed integer
cut. The remaining procedure will be similar to that in Example 11.3, except that no
rows corresponding to continuous variables are used for source rows to generate
cuts.

286 CLASSICAL SOLUTION APPROACHES

Example 11.4 Solve the given MIP problem using a cutting plane approach.

Maximize z = 5x\ + 3x2 + 7y\ + 2>>2

subject to 7x\ + 8x2 + 9y\ + 3;y2 < 43

llxx+4x2 + 4yi+5y2 < 51

x > 0

y > 0 and integer

Solving the LP relaxation, we obtain an LP optimum y\ = 43/9, with the following
source row:

7 8 1 1 43
^ + ^x2+y1 + -y2+-s1=-

Here, we have all positive coefficients and no negative coefficients for the
continuous variables. Compute

u
frl

fa

and we obtain a mixed integer cut

7 8 1 1 7
9 X l + 9 X 2 + 3 y 2 + 9 S l - 9

In Exercise 11.10, the reader is asked to continue on this example.

11.3 GROUP THEORETIC APPROACH

Gomory showed that the coefficient row vectors of the derived inequalities form a
finite set that is closed under the operation of addition when the arithmetic operations
are taken modulo 1 (i.e., integer parts are dropped). Such a set forms what is called a
group. Furthermore, this group can have at most D elements, where D is the absolute
value of the determinant of the current LP basis. If the starting basis is an identity
matrix, then this group contains exactly D elements.

Gomory also showed that by relaxing nonnegative (but not integer) requirements
of the current basic variables, an integer program can be transformed into one in which
the columns of constraint coefficients and the right-hand side are elements of an
abelian group. If this group problem (in terms of nonbasic variables only) is solved
and a solution containing nonnegative values for all variables is obtained, then the

_ 7
~ 9
= 0
_ 1
~ 3

GROUP THEORETIC APPROACH 287

original integer program is solved. Before describing the role of group theory in
integer programming, we need some definitions from group theory.

11.3.1 Group Theory Terminology

Definition 11.1 A group is a set of elements with a single operation (e.g., ordinary
addition is taken modulo 1) defined on pairs of elements such that the operation is
closed, associative, and for each element there exist unique identity and inverse
elements.

Specifically, elements here are column vectors. Closure means that the sum of any
two elements is also an element in the group. Associativity means that the operation
satisfies the law of association such that a + (b + c) = (a + b) + c. The identity
element has the property that any element in the group added to the identity (on the
left or right) will result in itself. The inverse of an element has the property that the
sum of the inverse and this element will result in the identity element.

Definition 11.2 A group infinite if it contains a finite number of elements. The order
of a finite group is the number of elements comprising the group.

Definition 11.3 An additive group is a group whose operation is an ordinary
addition (with modulo 1). An abelian group is one in which the operation is
commutative such that a + b = b + a for all elements a and b in the group.

Definition 11.4 A cyclic group is one in which there exists an element such that
successive additions of the element to itself (or a scalar multiple of itself) will generate
the entire group. If a group does not have such an element, then the group is called
noncyclic or acyclic.

Definition 11.5 The number a is congruent to b modulo c if there exists an integer n
such that a — b = nc. The congruence relationship (or simply congruence) is written
as a = Z>(mod c). For example, 2 = 5(mod 3), —1 =3(mod 2), and 1 =0(mod 1).

To explain the above group definitions, we utilize tableau 1 of Example 11.3. The
group contains three elements: (1/3, 2/3,2/3)T, (2/3, 1/3,1/3)T, and (0,0,0)T. Hence,
the group is finite with the order of 3. The group is closed because the sum (modulo 1)
of any two elements will also result in an element in the group. For example, (1/3,1/3,
1/3)T + (0,0,0)T = (1/3, 1/3, l/3)T(mod 1); (2/3, 2/3, 2/3)T + (0, 0,0)T = (2/3, 2/3,
2/3)T(mod 1); and (1/3, 1/3, 1/3)T + (2/3, 2/3, 2/3)T = (0, 0, 0)T(mod 1). It can be
easily shown that the associative law also holds:

[(1/3,1/3,1/3)T + (2/3,2/3,2/3)T] + (0,0,0)T

= (l / 3 , l / 3 , l / 3) T + [(2/3,2/3,2/3)T + (0,0,0)T]
= (0,0,0)T(modl)

288 CLASSICAL SOLUTION APPROACHES

Element (0, 0, 0)T is the identity element for the entire group because any other
element added to it will result in itself. Element (1/3,1/3, 1/3)T is the inverse element
of (2/3, 2/3, 2/3)T and vice versa because (1/3, 1/3, 1/3)T + (2/3, 2/3, 2/3)T =
(1,1, l)T(mod 1) = (0, 0, 0)T The group is additive because its single operation on
any coordinate is an ordinary addition. The group is abelian because the operation is
communicative:

[(1/3,1/3,1/3)T + (2/3,2/3,2/3)T](mod 1)

= [(2/3,2/3,2/3)T + (l /3 , l /3 , l /3) T] (modl) = (0,0,0)T

11.3.2 Deriving the Group (Minimization) Problem

Consider the integer program with inequality constraints

Maximize z = c' y'

subject to A'y' < b (H-6)
y' > 0 and integer

where A' is an m x n integer matrix, y' an n column vector, b an m integer column
vector, and c'T an n integer row vector. After adding m nonnegative slack variables,
y„ +], yn + 2, • • -, yn + m> o n e to each inequality, we have the equivalent IP problem with
equality constraints

Maximize z = cTy
subject to Ay = b (11.7)

y > 0 and integer

where A = (A', I) is an m x (n + m) integer matrix, I a n m x m identity matrix, y an
(« + m) column vector, b an m integer column vector, and cT = (c/T, 0T) an {n + m)
integer row vector.

Partitioning variables into sets of basic and nonbasic such that y = (yB, yiv)T

with associated coefficients cT = (cB
T, cN

T) and A = (B, N), we have the partitioned
problem

Maximize z = c£yB + cJyN

subject to ByB + NyN = b (11.8)

yß>vN > 0 and integer

where B i s a n m x m basis matrix and N an m x n nonbasis matrix. To express yB in
terms of y^, we premultiply B _ 1 on the equalities in problem (11.8):

IyB + B 1NyN = B 1 b

or

yB = B 1 b - B 1 N y N

GROUP THEORETIC APPROACH 289

Substituting yB into the objective function, we obtain the IP problem in terms
of yN:

Maximize z = cBB_1b-(cBB_1N-CN)yN

subjectto IyB + B ' N y N = B ' b (11.9)

yB,yN > 0 and integer

Relaxing integer requirements and letting B be the LP optimum basis, we have the
optimum solution yB = B~'b, yN = 0 with z = cjB~'b. The optimality conditions are
cjB_1N—cj > 0. If B~'b happens to be an integer vector, the LP optimum solution
is also an IP optimum. When the solution vector B~'b contains noninteger compo-
nents, we must increase some y¡ € yN from value 0 to some positive amount while
maintaining the following conditions:

yB — B~'b-B~'NyN > 0 and integer

This poses two questions concerning the vector of basic variables yB:

(1) When is yB an integer vector?

(2) W h e n i s B " ' b - B - 1 N y N > 0 ?

We first address question (1) concerning integer vector. Denote the columns of
matrix B_1N as («i, a2, ..., a„)T and the right-hand side column B~'b as a0. Then
question (1) can be posed as a problem of finding some nonnegative components y¡
(j= 1, 2, . . . , ri) of yN such that

Y^Bjyj = «o(modl)
j (11.10)

yj > 0 and integer y, £ yN

Note that an integer vector ay multiplied by any integer scalar yy will yield a null
vector 0(mod 1) and that the addition or subtraction of multiples of y} — 0(mod l) will
not destroy the congruence relationships. Thus, (11.10) can be reduced to one that
contains only nonnegative fractional parts of ay and a0, denoted by àj and âo. We have
the equivalent form

]Pô/y/ = âo(modl)
(11.11)

yj > 0 and integer y, G yN

with the objective function

Maximize z = cBB~'b— (cBB_1N-cJj)yN

290 CLASSICAL SOLUTION APPROACHES

Dropping yB > 0, letting z = — z + c^B 'b and CN = cjB *N—cj, and changing
to a minimization problem, we obtain

Minimize z = 2_, ô'^/
j

subject to 2_. fyyj = *o (m°d 1) (11-1^)
j

yj > 0 and integer^- e yN

where c, G c\ . Note that all components of a¡ and âo are nonnegative fractions and
Cj > 0 for all / Equation (11.12) is termed a group minimization problem (or group
problem, for short).

11.3.3 Formulating a Group Problem

Example 11.5 Construct the group minimization problem for IP problem (11.1).
For ease of reference, we restate it here.

Maximize z = 5>>i —2y2

subject to — y\ + 2y2 < 5

3yi+2y2 < 19

yi + 3̂ 2 > 9

y\,yi > 0 and integer

Adding a nonnegative slack variable to each inequality constraint, we have

Maximize z = 5y\ —2y2

subject to —yi + 2y2 +yj =5

3yi+2y2+y4 = l9

-y\-3y2+y5 = - 9

y\, y 2, y 3, y A > O and integer

After solving the LP relaxation, we have the optimal basis B. basic variables y&
and nonbasic variables yN. Representing in partitioned form, we have

-=''^-(I)—(S)-(S>-Gi,i.
19 j , c ¡ = (5)-2,0),cj = (0,0)

GROUP THEORETIC APPROACH 291

Calculating the components of the optimum tableau, we have

/ 0 3/7 2/7 \ / 3/7 2/7 \
B " ' = 0 - 1 / 7 - 3 / 7 , B - ' N = - 1 / 7 - 3 / 7 = (a4,a5),

\ 1 5/7 8/7 / \ 5/7 8/7 /

/ 3 9 / 7 \
B ' b = 8/7 = a 0 , c ^ B - ' N - c 5 = (17/7,16/7), andc^B'b = 179/7

V58/7)

Converting to the notation for the group problem, we have

/ 3 / 7 \ / 2 / 7 \ / 4 / 7 \
«4 = 6/7 ,«5 = 4/7 ,«o = 1/7 . Ê J = cSB- 'N-c í = (17/7,16/7)

\5/lj \\/l) \2/lj

z = - z + 1 7 9 / 7

Thus, we have the following associated group problem:

. 17 16
Minimize z = —3*4 H 3*5

subject to
/ 3 / 7 \ / 2 / 7 \ / 4 / 7 \

6/7]y4+\ 4/7]y5= 1/7 (modi)
\5/7/ \\/7) \2/7j

(11.13)

y*,y5 > 0 and integer

Note that the system of congruence equations in (11.13) is equivalent to

6 U4+I 4 b 5 = | 1 J(mod7) (11.14)

11.3.4 Solving Group Problem as a Shortest Route Problem

Essentially there are two approaches available for solving the group minimization
problem: (1) treating it as a special shortest route problem and solving it by a more
efficient algorithm than the standard one, and (2) treating it as a variant of knapsack
problem and solving it by a dynamic programming algorithm. Here, we shall
describe how to construct the group problem as a special shortest route problem
and leave the knapsack approach for the interested reader (see references in
Section 11.5).

Now we want to construct a shortest route problem from the group minimization
problem (11.13). First, we construct a directed network with nodes equal to the
number of group elements D, where D is the absolute value of the determinant of

292 CLASSICAL SOLUTION APPROACHES

TABLE 11.7 Group Elements for Example 11.5

Group Element

K4&4

K5i5

gi

(2\
6

W
lâ4
5âs

g2

(6\
5 w

2Ä4

3ÓC5

g3

(2\
4 w

3 «4

lâ5

g4

(5\
3

W
4â4

6â5

g5

(l\
2

W
5Í4
4â5

g6

(4\
1

W
6â4
2â5

go

/°\
° w

7«4

7a5

the optimal basis B. For (11.13), or D = |detB| = 7. Each group element is a 3-tuple
column vector. To generate the entire group elements, we calculate

A:4â4(mod 7) for KA = 1,2,... 7

A:5a5(mod7)forA:5 = 1,2,.. .7

where

04 = I 6 I and i5 = 4

resulting in Table 11.7. Here, each ô,- can generate the entire group (g0, gi, . . . , go).
Thus, the group is cyclic and contains no cyclic subgroups.

Each directed arc (g„ gj) is constructed by connecting the initial node g, to the
terminal node by setting y¡ = 1 in the congruence relationship

8 /= (& + «#/) (mod D)

which incurs a distance c¡. Examples are

Si = (go + «4y4)(mod7) with a cost C4 = 17/7
85 = (go + *5>'5)(mod7) with a cost c5 = 16/7
82 — (gi +Ä4>>4)(mod7) with a cost C4 = 17/7
g6 = (g3+*53'5)(mod7) with a cost c5 = 16/7

Similarly, we can construct the remaining arcs of a complete directed network as
shown in Figure 11.7. Let node g0 be the origin (or source) node and g6 (= ôo) be the
destination (or sink) node of the shortest route problem. The objective of the problem
is to find a route from the origin to the destination such that the total distance is
minimal. To solve this problem, any standard shortest route algorithm will do.
However, due to the special structure of the network, standard algorithms can be
simplified in order to drastically increase the computational efficiency. For details
about the algorithms, see Section 11.5.

GROUP THEORETIC APPROACH 293

? 5 = i y$=l

FIGURE 11.7 Directed network constructed by group problem.

By inspection of the above network, we can easily find the shortest route with
y5 = 2, y4 = 0, and z = 32/7.

11.3.5 Solving the Original Integer Program

Recall that when the group problem was derived from an integer program, the
constraints yB > 0 were ignored. This implies that if the optimal solution yN (which is
a nonnegative integer) to the group problem also yields yB > 0, then we have already
solved the integer program. If some basic variable turns out to be negative, then the
optimal solution to the group problem is not an optimum to the original IP problem.
To verify this for our example, we calculate

" - S) —----̂ - (K)-(-^ $) o) - (i)
Since yB > 0, this optimal solution to the group problem is also an optimal solution

to the original IP problem with y = (yB, yN)T = (5,2,6,0,2)T. Should any component
of y turns out to be negative, we continue to find the next shortest route and test for
yB > 0 until such condition is obtained or no more route can be found, in which case
the original IP problem has no feasible solution. However, this process is quite
complicated and difficult to implement.

An alternative method is apply a branch-and-bound enumeration scheme that
implicitly examines all possible integer solutions to the group problem by succes-
sively adding constraints of the form ys > C for eachy, where C begins with value 0 and
is incremented by 1. Mori to (1976) utilized this basic bookkeeping scheme with
a particular branching rule and information from the optimal solution to the group
problem to create an efficient branch-and-bound algorithm. Again, the scheme is not
implemented in practice.

294 CLASSICAL SOLUTION APPROACHES

In conclusion, there are still several technical hurdles to overcome before the group
theoretic approach can be implemented as a general, stand-alone IP solver. However,
the faces of comer polyhedron generated by the group problem are strong cuts (or
valid inequalities) that can be incorporated into the novel branch-and-cut approach,
in the same manner as other cutting planes are utilized.

11.4 GEOMETRIC CONCEPTS

Now we discuss the solution space to the pure integer program defined by the
structural variables y' in (11.6), and the solution space to the group problem defined by
nonbasic variables yN in (11.12). Many important geometric concepts will be covered,
including polyhedron, convex hull, comer polyhedron, and faces. For illustration, we
reduce Example 11.5 to a two-constraint problem by dropping the first constraint.

Example 11.6

Maximize z = 5y\— 2yi

subject to 3yi+2y2<l9

- > i - 3 y 2 < - 9
y\, yi > 0 and integer

Adding nonnegative slack variables y3 and y4 to constraints 1 and 2, respectively,
we find the optimum LP solution containing basic variables y\ and y2, and so

yi »»=i::i-^7'7>y-. = (;;j = W ' B n - i -3

»=(;?MS).»-'-(-3£ %
.-»-(_^ ^).--"=(?/7).°-^-i-'
cJir 'N-cJ = (5,-2)[lÇp ^ ^ - (O . O) = (17/7,16/7),

z = c^B'b = 179/7

From (11.12), we obtain the associated group problem

w • • - 1 7 1 6

Minimize z = —y3 -\ y4

"*"■> P » + ($)»-(#)<■"""> (11J6)

J3J4 > 0 and integer

GEOMETRIC CONCEPTS 295

Solving the problem as a shortest route problem, we obtain the solution y3 = 0,
y4 = 2, which gives

»-.-,-,-.,*,-(*£)-(_'£ %)(°2)-{l)>-(l)
Since all components of vector yB are nonnegative, the optimal solution to the

original integer program is y = (5, 2, 0, 2)T with objective value

z = -z + c^B-'b = -32 /7 + 179/7 = 21

11.4.1 Various Polyhedrons in Original Space

From Chapter 8, we know that the solution region of the LP relaxation defined by the
constraints and the nonnegative restrictions in (11.15) is a polyhedron, say P. In our
example, P is the triangle area enclosed by points a', b', and c', shown in Figure 11.8.
A basis B selected from the coefficient matrix yields the basic feasible solution
y = (yB. yiM)T = (B~ 'b, 0)T, which is an extreme point to P. In our example, a', b', and
c' are extreme points of P. Taking the objective function into consideration, we obtain
an optimal extreme point c' = (39/7, 8/7)T with objective value z = 25.57. The
objective function, indicated by a dotted line and passing through vertex c', is plotted
in Figure 11.8.

Recall that the congruence constraints of the group problem (11.16) are obtained
from those of the IP program by ignoring the nonnegative requirements on the basic

FIGURE 11.8 Corner polyhedron in original space.

296 CLASSICAL SOLUTION APPROACHES

variables yB. In the original solution space, this is equivalent to dropping those
inequalities from A'y' < b and y' > 0 in (11.6), which are nonbinding at vertex e'.
In this example, there are two binding constraints at c', namely,

3yi+2y2<\9

-y{-3y2<-9

and two nonbinding constraints y3 > 0, y4 > 0.
An inequality constraint that is nonbinding at v' implies that it takes on a strict

inequality (<) when substituting v' into it. As a result, the associated slack variable is
strictly positive because only a basic variable can be positive. In general, when
constraint /' is binding at v', the associated slack variable y„ +, must take on value 0 and
the corresponding hyperplane yn + i = 0 must pass through v'. In our example, the
hyperplanes y3 = 0 and y4 — 0 must pass through c'. This implies that these hyper-
planes intersect at c'. As shown in Figure 11.8, the hyperplanes 3y\ + 2 j 2 = 19 and
y i + 3>'3 = 9 in the original solution space correspond to the hyperplanes y3 = 0
and ^4 = 0 in the space of nonbasic variables xN.

On the other hand, if y¡ > 0 or y¡ is a basic variable (where i: y¡ e ya), then the
hyperplane y¡ = 0 does not intersect the vertex v'. Thus, ignoring the nonnegativity
requirement on a basic variable y¡ is equivalent to allowing y¡ to take on any value
when the corresponding hyperplane does not pass through v'. In our example, we
have strict inequalities yx > 0 and y2 > 0, so hyperplanes yx = 0 and y2 = 0 do not
intersect at c'. Therefore, these hyperplanes can be dropped with affecting the
solution.

After dropping these hyperplanes, we obtain a polyhedron P with vertex c' — (39/7,
8/7)T as shown in Figure 11.8. Adding the integer requirements yields the lattice
points inside P, indicated by dots. The convex hull of these lattice points may be
viewed as the feasible region to the group problem. The corner polyhedron is obtained
by dropping the hyperplanes yx = 0 and ^2 = 0, and taking the convex hull of the
integer solutions. In Figure 11.8, the polyhedron bounded by integer points a', d', e',
and b' forms a corner polyhedron, which is denoted by Py and indicated by the shaded
area. The hyperplanes that bound Py are the faces of the corner polyhedron. Recall
that in «-dimensional space, a face is an (n — l)-dimensional hyperplane. Since n = 2
in our example, so a face must be a line such as face 1, face 2, and face 3, indicated
in Figure 11.8.

Note that any integer point y' in Py will produce nonnegative integer values for the
nonbasic variables yN that satisfy the congruence relationship in (11.16). Further-
more, a vertex of the corner polyhedron is an optimal solution for the integer program.
The vertex e' is at the intersection of faces 2 and 3 in Figure 11.8. These inequalities
are the strongest that can be obtained from the integer program without using the
requirements of yB > 0. Therefore, it is worthwhile finding the face inequalities
and using them in a cutting plane algorithm or in a branch-and-bound algorithm. To
enable generating these valid inequalities, we next investigate the corner polyhedron
in yN space.

GEOMETRIC CONCEPTS 297

11.4.2 Corner Polyhedron in Solution Space of Nonbasic Variables

The solution region defined by the constraints in (11.12), or (11.16) in particular for
Example 11.6, can also be plotted in yN space. To do this, recall that the congruence
relationship

^àjyj = ôo (modi)
j

is equivalent to

^yvyj=fio (mod I) (i = l ,2 , . . . , /n) (11.17)
j

where yj£y*¡, and/y is the ith component (i'= 1, 2, ..., ni) of âj(j = 1,2,..., n).
Because the left-hand side in (11.12) must differ from the right-hand side by an
integer amount and because y¡ > 0 and integer, the congruence can hold only when the
left-hand side isfi0, 1 + fi0, 2 + fi0, and so on. That is, equation (11.12) implies

n

Yjvyj>h (i=l ,2, . . . , / r t) (11.18)
7=1

Note that the inequalities (11.18) are the Gomory fractional cuts obtained from the
m equalities yB = B_ 1b - B_1NyN. For Example 11.6, we have

3/7y3 + 2 / 7 y 4 > 4 / 7

6 / 7 y 3 + 4 / 7 y 4 > l / 7 (11.19)

y3,y* > 0 and integer

Note that the second constraint is redundant and may be dropped without affecting
the solution.

Every y,- that satisfies (11.17) will also satisfy (11.18). However, the converse is not
true because y b y2 , . . . , y„ satisfying (11.18) may yield a value for ^.-«¿y/ that is not
an integer plus SLQ. Therefore, the constraints

^ ô / y , = ôo (modi)
7

yN > 0 and integer

for the group problem may be viewed in yN space by plotting the inequalities (11.18)
along with yN > 0 and integer, and taking the convex hull of the points satisfy-
ing (11.18). This region is termed the corner polyhedron PN.

We plot (11.19), or (11.16) to be exact, in the solution space of yN = (y3> ^4)
shown in Figure 11.9. The solution set is an unbounded polyhedron with two
extreme points at (4/3, 0) and (0, 2). The circled lattice points are those that satisfy

298 CLASSICAL SOLUTION APPROACHES

FIGURE 11.9 Corner polyhedron in yN space.

the congruence relationship. Some of them are marked by a, b, c, and d, and e in
Figure 11.9:

•='2M1M>- î - »
Using

yB = B b-B-'NyN

we obtain yB components, as shown in Table 11.8, for the corresponding points in the
original solution space.

TABLE 11.8 Integer Solution Points

Point a I

yN =

yB

73

^ 2 .

NOTES 299

To see the correspondence of these points in the original solution space in
Figure 11.8, we label such points with a bracket (a), (b), (c), (d), (e).

A convex set may be formed by the convex combinations of these circled lattice
points (integer solutions for both yB and yN) in the unbounded polyhedral cone.
That set is a corner polyhedron, denoted by PN. The corner polyhedron for this
example problem is the shaded area in Figure 11.9. Unlike the corner polyhedron in
the original space, the corner polyhedron in yN space always satisfies yN > 0. Also,
note that this corner polyhedron is an unbounded convex set. This is always true
because if yN satisfies (11.17), then for any integer K, the value KD (where D is the
absolute value of the determinant of B) added to each of its components will also
satisfy (11.18). To show their correspondences, we use the same labels for the faces
in Figure 11.8. The faces (faces 1 through 3) of this corner polyhedron are marked in
Figure 11.9.

It can be shown (Salkin and Marthur, 1989) that yB is an extreme point of corner
polyhedron Py if and only if the corresponding yN is an extreme point of P^ using the
relationship between faces. In our example, yN = (0, 2)T is an extreme point in PN

denoted by a, which corresponds to yB = (5,2)T, an extreme point e in P y . Similarly,
extreme point e in PN corresponds to extreme point d in Py.

11.5 NOTES

Sections 11.1

The branch-and-bound method was originated by Land and Doig (1960) and refined
by Dakin (1965), which is regarded as the basis of the current algorithm.

Sections 11.2

Three fundamental cutting plane methods, dual fractional, dual mixed integer, and
primal all-integer are developed by Gomory (1958,1960,1963). For details on these
and other cutting plane methods, see Garfinkel and Nemhauser (1972), and Salkin and
Mathur(1989).

Sections 11.3

Gomory (1960,1963,1965) developed group properties of IP program. For exposition
of group theory approach to solving integer programs, see Hu (1969), Chen (1970),
Chen and Zionts (1972), and Salkin and Mathur (1989).

Section 11.4

Special shortest route algorithms for solving the group problem are given in Hu (1968)
and Chen and Zionts (1976). Shapiro (1968) treated the group problem as a variant of
knapsack problem that is solved by a dynamic programming algorithm.

300 CLASSICAL SOLUTION APPROACHES

An equivalent group problem can be obtained by transforming the LP optimal basis
into a Smith's normal form (Hu, 1969), which can be solved more efficiently. The
form is a diagonal matrix (all elements not on the diagonal are zero) denoted by diag
(d\, d2,- .., d„), such that d¡ (i = 1,2,..., m) is a positive integer, d¡ dives di+1 (/ = 1.
2,..., m— 1), and D = det B can be determined by the product of diagonal elements d¡.
The diagonahzation process is performed by the elementary row and column
operations.

There are three types of group problems, depending on the number of a¡ elements
that can be used to generate the entire group: (1) each element (like Example 11.5),
(2) some but not each element, and (3) no single element. The groups determined by
types 1 and 2 are cyclic. The group type 3 is acyclic, whose elements are determined
by the direct sum of cyclic subgroups. For details see Salkin and Mathur (1989), for
example.

A sufficient condition for yB > 0 is used to ensure that an optimum solution yN to
the group problem is also an optimum solution y = (yn^n) to the original integer
program. Several sufficient conditions have been developed. See Gomory (1965),
Hu (1968), and Zionts (1974), for example. Sufficiency conditions have little use in
application although are of theoretical value.

11.6 EXERCISES

11.1 Solve the problem in Example 11.1 again using branch-and-bound. This time,
start your branching with y2. Graphically show the changes in the feasible
region at each node. Apply the depth-first rule.

11.2 Use the branch-and-bound method to solve the following IP problem. Show
your solution procedure graphically as in Figures 11.1-11.3.

Maximize y\ + 3y2

subject to vi +5v2 < 12

vi + 2v2 < 8

y i, y i > 0 and integer

11.3 Solve the following IP problem using the branch-and-bound method. Apply
the best-bound-first rule. At each node, branch on the variable with fraction
value closest to 0.5 first. Label the nodes in the order they are generated.

Maximize 3y i + 2y2 + y-¡ + 2y4

subject to y i — y2 + 2y3 + y4 < 11

y2+y3+y4 < 7

3yi-y3-3y4 < 5

y > 0 and integer

EXERCISES 301

zLP = 41.25

ZLP = 4 1

LP infeasible

Feasible solution

z = 40

Feasible solution

z = 40

Feasible solution

z = 37

FIGURE 11.10 A branch-and-bound tree.

11.4 Given a branch-and-bound tree for a maximization problem (as shown in
Figure 11.10), where the number of the nodes shows the order they are
generated, write the reason for each pruning.

11.5 Mary is the cashier of a fast food restaurant. Coins of four values are used to
get customers the change: 10,50, 100, and 250. Suppose now she is to give a
customer 910 of change. What is the minimum number of coins needed?
Formulate as an IP model and solve using branch-and-bound method. (Hint:
convert to maximization problem first). Verify your solution with LINGO®.

11.6 Solve the following IP problem using branch-and-bound. Apply the rule of
best-bound-first. At each node, branch on the variable with least index first.

Maximize 1 Oy i —yj + 5y¿ + 3j4—7y¡

subject to 3yi +2yi— y-$— y4—3y$ < 3

3yi-2y2 + 2y3-2y4 + 5y5 < 7

y\-yi+yA~ys < 3
yi,yi,yi,ys > O and integer,^ = {0,1}

11.7 Assume in Exercise 11.6 that y3, y5 are continuous. Solve the problem again
using branch-and-bound method. Apply the rule of depth-first.

11.8 Consider the IP problem in Exercise 11.3. Which of the two cutting planes
(fractional or mixed) could be applied to it? Why? No need to solve the
problem to optimum.

302 CLASSICAL SOLUTION APPROACHES

11.9 Let S = {y > 0 and integer yx-y2< 2, lyi + y2<2\,y\ + 5y2<34}.

(a) Find an inequality description of Conv(S).

(b) Find the extreme points of Conv(S).

11.10 Consider the problem in Example 11.4. Generate another Gomory fractional
cut using the row corresponding to the basic variable of y2.

11.11 Consider the integer problem

Maximize 5y\ —2y2

subject to Wy\—yi < 21

3yi -3y2 < 5

y\ < 4
y > 0 and integer

(a) Solve the LP relaxation and show the optimal simplex tableau.
(b) Is there any basic variable fractional in the optimal tableau? If yes, find

a Gomory fractional cut based on it.

11.12 Consider the following IP problem.

Maximize 3y\ + y2 + 1y^ + 3y$

subject to —y\ +3y2+y3— 2y¡, < 17

yi+2y2< 11
y2 + 3y4< 13
y > 0 and integer

Solve it using Gomory's fractional cutting plane. Show the cutting planes
you generated at each step.

11.13 Generate a group of fractional cuts based on variable y2 in Exercise 11.2.

11.14 Assuming in Exercise 11.12 that y2 is continuous, solve the problem using
Gomory mixed integer cut.

11.15 Complete solving Example 11.4 using Gomory mixed integer cutting plane
algorithm. Compare your results with the solution obtained in Example 11.2
using a branch-and- bound method.

For each of the problems in Exercises 11.16-11.18, (a) formulate the group
problem, (b) construct the group problem as a directed network, and (c) solve
the shortest route problem by inspection.

EXERCISES

TABLE 11.9 An Optimal Tableau

Basic Variable

z
yi

y*
y&

z

1
0
0
0

y\

7/10
5/10

16/10
16/10

y2

0
i
0
0

^3

69/10
5/10
2/10

-8/10

^4

0
0
1
0

ys

4/10
0

2/10
2/10

ye

0
0
0
1

yi

19/10
5/10
2/10
2/10

RHS

139/10
25/10
32/10

2/10

11.16

Maximize z = 4yi + 3y2 — 5y3 + 2>>4

subject to ly\ — 2y2 + 5>>4 < 11

-y3-y* < - 3

y\ + 2y2+y3 < 5

yuy2,y3,y*> 0 and integer

Add slack variables y5, y6, and y7 to the inequality constraints, respectively.
Then solve the LP relaxation and obtain the following optimum tableau
(Table 11.9).

11.17 (Balinski, 1965)'

Maximize z — Ay\ + 5y2

subject to — yi— y2 < —5

—3yi -2y2 < - 7

y i, y2 > 0 and integer

Adding nonnegative slack variables y3 and y4 to constraints 1 and 2,
respectively, we find the optimum LP solution containing basic variables
y, and y2.

11.18 (Zionts, 1974) (used with permission)

Maximize z — 5y\+ 2y2

subject to 2yi + 2y2 < 9

3y\+y2< 11

y\, y i > 0 and integer

' Reprinted with permission from author (see Bibliography). Copyright 1965 The Institute for Operations
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076.

304 CLASSICAL SOLUTION APPROACHES

Adding slack variables y3 and yA to constraints 1 and 2, respectively, and
ignoring the integer requirements, we solve the LP relaxation and obtain a
noninteger optimum solution, written in equation form, as follows:

Maximize z-l/4y3-6/4y4 = 75/4

subject to y2 + 3/4^3-2/4y4 = 5/4

y , - l / 4 y 3 + 2 / 4 y 4 = 13/4

yi,y2,y3,y4 > o

where yB = 0^, yù-
11.19 For the problem in Exercise 11.17, draw the solution space of the IP program

and identify the LP polyhedron, convex hull, corner polyhedron, and faces.

11.20 For the problem in Exercise 11.17, draw the solution space of nonbasic
variables and identify faces and corner polyhedron.

11.21 For the problem in Exercise 11.17, relate all faces between the solution space
of the structural variables and the solution space of the nonbasic variables.

11.22 For the problem in Exercise 11.18, draw the solution space of the IP program
and identify the LP polyhedron, convex hull, corner polyhedron, and faces.

11.23 For the problem in Exercise 11.18, draw the solution space of nonbasic
variables and identify faces and corner polyhedron.

11.24 For the problem in Exercise 11.18, relate all faces between the solution space
of the structural variables and the solution space of the nonbasic variables.

12
BRANCH-AND-CUT APPROACH

Since the development of the branch-and-bound (B&B), cutting plane, and group
theoretic approaches in the 1960s, progress on methods for solving large-scale IP or
MIP problems was very limited for two decades. Then in the mid-1980s, a novel
solution approach known as branch-and-cut (B&C) was introduced, which marked a
breakthrough milestone in the power of MIP solution algorithms. This approach and
its variations, coupled with the advances in modeling techniques, preprocessing
techniques, LP software, and computer hardware, make the solution of large-scale
MIP problems possible. As of today, the solution power has leapt from solving
problems with up to one hundred integer variables in the early 1980s to solving
problems with thousands of integer variables, and even in many instances with
millions of 0-1 variables.

This textbook aims at addressing four of the five major factors that contributed to
the advances in MIP: modeling techniques, preprocessing techniques, solution
algorithms, and commercial software. Only computer hardware is outside our scope;
modeling, transformation, and preprocessing techniques were addressed in Chapter 2
through Chapter 4. This chapter will address the solution algorithm known as branch-
and-cut. A substantial portion of the discussion will focus on the generation of valid
cuts capable of solving general and special MIP programs efficiently. Branch-and-cut
as a feature of MIP commercial software will be addressed in Chapter 15.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

305

306 BRANCH-AND-CUT APPROACH

12.1 INTRODUCTION

12.1.1 Basic Concept

Conceptually, the branch-and-cut method can be viewed as a generalization of the
branch-and-bound method. Basically, it builds upon the same branch-and-bound
framework with additional cuts generated and imposed on each node of the branch-
and-bound tree, prior to pruning and branching processes.

Although both methods solve a series of LP relaxation problems at various nodes,
their solution philosophies are different. B&B applies two simple bound cuts at each
node and takes advantage of fast reoptimization of the LP at each node. The B&C
philosophy is to do as much work as necessary to get a "tight bound" at the node
before pruning and branching. The work at each node may include generating strong
cuts, improving formulations, problem preprocessing, and applying a primal
heuristic. In practice, many cuts may be added at each node, which may slow
down the reoptimization. For a given large-scale problem, an empirical investiga-
tion is usually used to determine the proper number of cuts to be imposed on the root
and other nodes.

12.1.2 Branch-and-Cut Algorithm

We now describe the branch-and-cut algorithm below.
Let:

S — the given IP problem
SLP = the LP relaxation of S

yLP = the solution to the LP relaxation of the given IP
z = lowest (best) upper bound on z of the given IP problem
z = highest (best) lower bound on z of the given IP problem
Sk = subproblem k of problem S

■S£p = LP relaxation of subproblem k
Sk(t) = subproblem k at iteration t
S£P(0 = LP relaxation of subproblem k at iteration t as an LP problem
)£p(0 = the optimum solution of the LP subproblem S\^{t]
y* = the current incumbent solution
Z LP(0 = m e optimum objective value of Sr[p(t)
zk — lowest upper bound of subproblem Sk

zk = highest lower bound of subproblem Sk

Step 0 (Initialization). Preprocess the given IP formulation. Solve its LP relaxation
(SLP). If SLP is infeasible, so is the IP problem. Terminate. If the LP optimum
solution satisfies the integer requirement, the IP problem S is also optimized.
Terminate. Otherwise, set the best lower bound z = — oo, and z = z* for SLP.

INTRODUCTION 307

Set k = 1. Let Sk = S. Place Sk on the active list of nodes (subproblems).
Initially, there is no incumbent solution.

Step 1 (Choosing a Node). If the active list is empty, terminate. The current
incumbent solution y* is optimal. Otherwise, choose a node (subproblem) k with
Sk. Remove Sk from the active list. Set iteration number t = 1. Denote the current
subproblem by Sk(t), which has LP relaxation 5^P(i). Go to step 2.

Step 2. (Solving LP Relaxation of Subproblem). Solve S£p (i). If it is infeasible, prune
node k and go to step 1. Otherwise, keep the optimal LP solution to S£P(i), which is
y£p(i), and the optimal objective value z£P(0- Go to step 3.

Step 3 (Generating Cuts). Try to generate cuts to the optimized problem S£p(i) to
cut off the point y^P(t). If no cut can be added, go to step 4. Otherwise, add a
cut to S£P(i), resulting in a new LP problem s£ p (f+ l) . Increase iteration
number / b y 1. Go to step 2.

Step 4 (Pruning). If z£p(i) < z, prune node k and go to step 1. Otherwise, if y^P(t)
satisfies all the integer requirements of the given IP problem, go to step 5. If)£P(0
violates some integer requirements, go to step 6.

Step 5 (Updating Lower Bound). Since the optimal LP solution }>LP(0 satisfies all
integer requirements, a feasible solution to S is found and y^P(t) becomes a
candidate solution. Set zk to the optimal objective value of S^p(t), that is,
zk = z£p(i), and comparez* with z. If zk > z, setz = zk,aady*=yk

J,(t) becomes
the incumbent; otherwise, z does not change. Node k is pruned because no better
solution can be branched down from this node. Go to step 1.

Step 6 (Branching). Branch on the current node k to create more subproblems
Sk+ \ Sk + 2, and so on. Place these new subproblems in the active list and go to
step 1.

12.1.3 Generating Valid Cuts and Preprocessing

In Chapter 4, we learned about how to preprocess a given MIP model to obtain a
"better" formulation. That exposition and the experience of practitioners support the
belief that any original MIP formulation can almost always be improved. By
improvement, we mean the new formulation has a smaller difference between the
space of feasible continuous solutions and the space of feasible integer solutions. It
may also mean that a new formulation has fewer variables (especially integer), less or
no redundant constraints, and smaller differences between upper and lower bounds for
variables. In short, a new formulation with such properties is called a "tighter"
formulation. For the similarities and differences between preprocessing and cut
generation, readers are suggested to make a quick review of Chapter 4.

Both preprocessing and cut generation share the similar steps for "tightening"
formulation by adding and/or replacing constraints in the model so that the
integer solution space remains unchanged but has a smaller continuous solution
space. For this reason, they sometimes look alike. In fact, some software
programs (such as LINGO®) include both options of preprocessing and cut
generating in one place.

308 BRANCH-AND-CUT APPROACH

However, preprocessing and cut generation do have fundamental differences. First,
preprocessing is applied to the original model to create a new model (independent of
the relaxation problem), while cuts are generated and added to cut off a relaxation
solution. Second, preprocessing introduces tighter constraints that dominate existing
constraints, while cut generating introduces tighter constraints that cut off part of a
particular relaxation solution.

12.2 VALID INEQUALITIES

12.2.1 Valid Inequalities for Linear Programs

A linear inequality is called a valid inequality for an LP problem if it is satisfied by all
feasible solutions to the problem. Here, we are interested in when an inequality is
valid. This is answered by the following theorem.

Theorem 12.1 A linear inequality 7tTx < no is valid for a nonempty polyhedron
P = { x : Ax<b, x > 0 } if and only if there exists u > 0 such that uTA>ir and
uTb < n0.

To show this, we treat u as the dual variables to a maximization problem. Then
by the LP duality theorem, we have max{7tTx: Ax < b, x > 0} < n0 if and only if
min {uTb: uTA > n, u > 0} <n0. That is, JITX < no for all x in P and there exists at least
one u such that uTb < n0.

12.2.2 Valid Inequalities for Integer Programs

A linear inequality is valid for an MIP problem if it is satisfied by the set oí all feasible
solutions of the MIP, in particular with the integer restrictions in place. Given a
polyhedron P and an optimal LP solution x* € P, we are interested in the particular set
of valid inequalities that cuts off x*. Such particular valid inequalities are sometimes
called violated cuts. The problem consisting of the determination of whether x* is in
the new polyhedron, and if not to find an inequality cutting off x*, is called a
separation problem.

A violated cut pTx < bi is said to be stronger than a violated cut qTx < b2 if the
resultant polyhedron of pTx < b] is a proper subset of the resultant polyhedron of
qTx < b2. By Chapter 4 terminology, pTx < b\ results in a "better" formulation.

Consider Figure 12.1. The solid dots in the graph represent the feasible integer
points. Inequalities a, b, and c are valid, while d is not because it excludes an integer
point. Inequalities b and c are violated cuts, but a is not. Inequality c is stronger cut
than b because the new polyhedron formed by c is a subset of that by b.

12.2.3 Types of Valid Inequalities

Based on the types of MIP problems, we will present valid inequalities of three types.
Type 1 valid inequalities are generated from pure and mixed IP problems with no

CUT GENERATING TECHNIQUES 309

FIGURE 12.1 Valid inequalities for a pure integer program.

special structure. The advantage of this type is that they can always be used to
separate a fractional point and can be applied to all IP or MIP problems, but the
disadvantage is that the derived cuts are usually very weak. We will address inequal-
ities for pure and mixed IP problems in Sections 12.4 and 12.5, respectively.

Type 2 inequalities are basically derived from problems with some local structure
by considering a single constraint (such as knapsack sets) or a subset of the problem
constraints (such as set packing). The inequalities thus derived can at best only
separate fractional points that are infeasible to the convex hull of the relaxation.
Frequently, type 2 inequalities are facets of the convex hull of the relaxation and
should be stronger than type 1 inequalities. We will discuss the 0-1 knapsack sets and
sets with 0-1 coefficients in Sections 12.6 and 12.7, respectively.

Type 3 inequalities are typically derived from a large part or full set of a specific
problem structure such as the flow-conservation constraints in the network flow
problem. Usually these inequalities are very strong because they may come from
certain known classes offacets of the convex hull of feasible regions. However, their
applications are limited to the particular type of problem. These cuts are very useful
and widely implemented in most MIP software, because many hard combinatorial
optimization problems possess some or all constraints of special structure. We shall
discuss this type of problem in Section 12.8.

12.3 CUT GENERATING TECHNIQUES

Rounding, disjunction, and lifting are three powerful, widely used techniques to
generate cuts from constraints. In this section, we introduce the basic concept of each
technique, while the specific applications of various classes will be discussed in the
subsequent sections.

310 BRANCH-AND-CUT APPROACH

12.3.1 Rounding Technique

The rounding technique has been applied to model preprocessing in Chapter 4. For
example, a fractional upper bound on an integer variable can be rounded down and a
fractional lower bound can be rounded up as seen below:

y < 3.8 implies y < 3

and

y > 1.1 implies y > 2

Another rounding example in model preprocessing is GCD (greatest common
divisor) reduction, in which a constraint involves all integer variables with integer
coefficients such as 6y¡ + 3y2 + 12y3 < 17. The GCD of all coefficients is 3. Divide
the constraint by 3 and round down the right-hand side resulting in
2y, +y2 + 4y3<5.

The rounding technique for cut generation is in a more relaxed manner (hence,
weaker) and applied more locally. For example, a rounding cut may be applied to a
constraint involving nonnegative integer variables

where a¡ may be any number. We may divide the constraint by some (arbitrarily)
positive constant c and round down the right-hand side to obtain a rounding cut

0/
J

c
yj<

b
-
c

This rounding cut is relevant for the general pure integer programs. But unfortu-
nately, the cut thus generated may be very weak. We need additional information
about problem structure to generate stronger cuts. There are several problems, such as
node packing, for which strong cuts have been developed.

A strong rounding cut, called mixed integer rounding(MIR) cut, can be derived
from a constraint involving multiple integer variables and a single continuous
variable. This will be covered in Section 12.5.

12.3.2 Disjunction Technique

The disjunction technique is one of the most widely used techniques for constructing a
cut for problems involving both continuous and integer variables. For ease of

CUT GENERATING TECHNIQUES 311

FIGURE 12.2 Mixed IP feasible region.

exposition, we consider a constraint set involving a single continuous variable and a
single integer variable:

S= {(x,y) :x+y> 2.4,x > 0; v > Oandinteger}

View this MIP feasible region in Figure 12.2. The shaded area represents the
feasible region for the LP relaxation of S. The solid lines represent the feasible points
to S. Assume point (0, 2.4) is the point upon which a disjunctive cut is to be derived.
First, we partition S into two separate sets by adding the following two either-or
constraints:

y < L2-4J

and

y > \2A]

The shaded areas in Figure 12.3 show the two feasible regions represented by the
two disconnected sets. Either region is feasible to the original MIP problem. To
combine both feasible regions, we apply the disjunction technique to obtain a "union"
of the two disjoint sets. To achieve this, consider point A — (0, 3) that intersects
y = [2.4] = 3 and x = 0, and point B - (0.4, 2) that intersects y = [2.4] = 2 and
x + y > 2.4. Joining points A and B by a line and determining the inequality sign for

312 BRANCH-AND-CUT APPROACH

FIGURE 12.3 A disjunctive cut.

feasibility, we obtain a dotted line in Figure 12.3, which represents a disjunctive cut.
The crosshatched region represents the infeasible region being cut off. Note that this
inequality is valid for the original MIP because all feasible solutions to the MIP are
unchanged, and this is a violated cut because it violates the points in the crosshatched
region.

To represent this disjunctive cut algebraically, we first write a line equation passing
through two points A — (0, 3) and B = (0.4, 2),

y - 3 _ 2 - 3
x~^Q ~ 0.4-0

resulting in 5x + 2y = 6. After checking with the origin for feasibility, we obtain the
following inequality:

5x + 2y > 6

12.3.3 Lifting Technique

Lifting is a technique for strengthening valid inequalities and obtaining facet-defining
inequalities especially for binary IP programs. There are two types of lifting:
sequential versus sequence independent. In sequential lifting, the cut coefficients
{jij} are evaluated one by one, while in sequence-independent lifting, the 71/s are
evaluated simultaneously. The details of lifting procedure will be discussed later in
Section 12.6.1.

CUTS GENERATED FROM SETS INVOLVING PURE INTEGER VARIABLES 313

12.4 CUTS GENERATED FROM SETS INVOLVING
PURE INTEGER VARIABLES

This section introduces several violated cuts that are applicable only to pure integer
programs. These cuts cannot be applied to problems that contain both integer and
continuous variables.

12.4.1 Gomory Fractional Cut

Recall the fractional cutting plane method for pure integer programs described in
Chapter 11. Suppose an LP optimum contains a fractional value of some basic variable
(say yBr) in row r

yBr+^2grkyk = br (12.1)
ka

where J is the set of indices of all nonbasic variables. Row (12.1) can be used to derive
a Gomory fractional cut

5 > * M >/K) (12.2)
keJ

where frk = grk - [grk\ > 0 and fro = br- [br\ > 0.

12.4.2 Chvátal-Gomory Cut

The above Gomory fractional cut (12.2) is derived from the updated coefficients gy of
the optimum simplex tableau. To find the same fractional cut but in terms of the
original variables and coefficients g7-, we use the relation

where B _ 1 is the inverse of the optimum basis B. Matrix B"1 may be obtained by
direct calculations from B or by extracting it from the optimum simplex tableau.
Recall that if the initial simplex tableau utilizes slack variables as basic variables, then
the associated coefficients of the slack variables form an identity matrix and hence we
have the updated matrix, B ~~ ' I = B ~ '. The result implies that we can immediately find
B^1 in the columns located under the starting basic variables in the corresponding
simplex tableau, without additional calculations. One can show that a Gomory
fractional cut is the Chvátal-Gomory cut.

Theorem 12.2 Let ß denote row r of B ', ß, denote the ith element of ß, and
f'i — ß, - '\ßi\ for i = \, 2 , . . . , m. The Gomory fractional cut Y^kejfrkJk > fro, when

314 BRANCH-AND-CUT APPROACH

written in terms of the original variables and coefficients, is the Chvátal-Gomory
cut

¿[f'Tg,Jyy< [f'TbJ (12.3)

where n is the number of original variables, f' = {f[J^ ■ ■ ■ >/«)' 8/ls t n e original yth
coefficient column, and b is the original right-hand side column.

A family of Chvátal-Gomory cuts may be rewritten in terms of the original data of
the given pure IP problem defined by max{dTy: X)/8/3!/' < b, y > 0 and integer},
where g, (/'= 1, 2, . . . , n) are column vectors of matrix G of dimension mxn.

Let multipliers u > 0 and polyhedron P = {y : Y!* fifij — b, y > 0} be defined for the
IP. Then the inequality

E u V ^ » T b (12-4)
j

is a valid inequality for P because u > 0, YjSjyj — b and y > 0. Rounding down the
noninteger coefficients on the left-hand side of (12.4), we obtain a valid inequality,

£[uTg,J„<uTb (12.5)
j

The right-hand side of (12.5) can be further rounded down because y¡ are
nonnegative integer resulting in the integrality of the left-hand side,

i

The inequality (12.6), defined for any u, generates a valid inequality for a given
pure IP problem. The three-step Chvátal-Gomory procedure, (12.4)—(12.6), can be
used to construct a valid inequality for a pure integer program. The optimum dual
solution u for an LP relaxation can be used for the values in (12.4)-(12.6).

12.4.3 Pure Integer Rounding Cut

"Rounding" is a widely used technique for generating valid cuts for pure general
integer and pure binary programs. We saw a similar rounding technique in Chapter 4,
when a preprocessing method called GCD reduction is used. Here, we apply the
rounding technique to a < constraint involving nonnegative integer variables,

The rounding procedure is rather simple:

1. Divide the constraint by some positive constant d: Y(aj/d)yj — b¡d.
2. Round down the coefficients on the left-hand side: J2 _aj/d\yj < J2(aj/d)yj

<b/d.
3. Round down the right-hand side: Yl [aj/d\yj < [b/d\.

CUTS GENERATED FROM SETS INVOLVING MIXED INTEGER VARIABLES 315

If the given constraint is of > form, the procedure is similar except that the
rounding-down operations are changed to rounding-up operations.

Example 12.1 Derive an integer rounding cut for the integer feasible region of a
pure IP problem defined by the following inequality and y > 0 and integer:

1y\ + lyi + 4y3 + 10>>4 + 9y5 < 20

Dividing both sides by a coefficient of arbitrary selection (say, 9), we obtain an
equivalent inequality:

7 1 4 10 2
^yi + ^y2+^y3 + ^-y4+ys>2-

Since y > 0 and integer, rounding up the coefficients of all terms on the left-hand
side will give an upper bound on the left-hand side. That is,

7 1 4 10 2
y\+y2+yi + 2y4+y5 >^y\ + ̂ yi + ^B + y ^ + y s > 2 -

Then the inequality

2
y\+yi+yi + 2yA+y5 > 2 - (12.7)

is a weaker formulation of the feasible region. Since the left-hand side is integer, hence
we can round up the right-hand side to obtain an integer rounding cut for the original
IP problem:

y\ +)'2+),3+2>'4+>'5 > 3

12.4.4 Objective Integrality Cut

During the solution process for a pure IP problem, upper bounds on the optimum
objective value are obtained and updated. These upper bounds can also be used to
generate cuts. If the objective coefficients d are integer, then the entire left-hand side
must be integer because variables y are required to be integer. Let z be the best upper
bound found so far, we have an objective integrality cut

dTy > \i\

12.5 CUTS GENERATED FROM SETS INVOLVING MIXED
INTEGER VARIABLES

12.5.1 Gomory Mixed Integer Cut

Recall the Gomory mixed integer cutting plane method for mixed integer programs in
Chapter 11. If the LP optimum contains a basic integer variable with a fractional value,

316 BRANCH-AND-CUT APPROACH

the corresponding row (say r) is selected for generating a mixed integer cut. Let the
generating row r be

j k

We partition the continuous variables Xj into two cases: those with positive
coefficients and those with negative coefficients. We also partition integer variables
yk into two cases: those with/r/t </,<) and those with/r¿ >/K>- Then a Gomory mixed
integer cut can be generated by

E w+ E (A W E /*»+ E *^»>/*
7:ä,->0 j:ä,j<0 V»fl V fc^^ t:/ri>/K, Jr(>

where/^ = frit-LfritJ and/ro = ¿V — [br\- For simplicity, we drop subscript r to
obtain

E ö ^ + E (jh)ûJxJ+ J2&yk+ E fo^yk>fo (12.8)
1-/0

Example 12.2 Find a Gomory mixed integer cut for the following mixed integer
program:

Maximize 2xi + 5*2 + 3x3 + 4x4 + Ji + 7̂ 2 + 2^3

subject to x\ + 2x2 + 11*3 + M + 3yi + 2̂ 2 + ^3 < 23

- x i + x2 + x3 + 2x4-5^1 +y2 + 3y3 < 23

X I , X 2 , X 3 , X 4 , Í 1 , Í 2 > 0;yuy2,y3 > Oandinteger

The optimal tableau of its LP relaxation contains the following row, in which the
variable y2 is basic and fractional and S[and s2 are slack variables:

11 1 2 1 23
xi + x2 + 7x3 + -r-yi +y2--y3+ ^si--s2 = y

To construct a mixed integer cut, we must first classify the variables. Among
noninteger variables, xj, x2, X3, and S\ have positive coefficients, while s2 has a negative
coefficient. Integer variables are y¡, y2, and y3, whose nonnegative fractions are/i,/2,
and/3, respectively. After computing/] = 2/3,f2 = 0,f3 = 2/3, and/o = y — |_yj= 5,
we conclude/^ < / 0 for all k = 1, 2, and 3. That is, there are no integer variables yk

whose fk >/0. Applying (12.8), we obtain the following mixed integer cut:

2 / - 1 \ 2 2 2
(x i + x 2 + 7 x 3 + - s i) + (- 2) l — Js2+ -yi + ->>3 > 2

CUTS GENERATED FROM SETS INVOLVING MIXED INTEGER VARIABLES 317

In the previous section, we gave (12.8) without elaborating how it is obtained. Here
we will show how. Consider the following LP optimum simplex tableau,

xBr+^2ärjXj = br (12.9)
jeJ

For simplicity, we omit row subscripts in (12.9) to get (12.10) and assume that x¡
may be either an integer or a continuous variable.

x+^2äjxj = b (12.10)
jeJ

Since basic variable x > 0 is required to be an integer, it follows x = 0 (mod 1).
Since b by assumption is not an integer, it follows b =f0 (mod 1). Hence any integer
solution to (12.9) must satisfy

£ ö , x y = / o (m o d l) (12.11)
jeJ

Let the coefficients on the left-hand side of (12.11) be partitioned into two sets,
J+ = {j\âj > 0} and J- = {j\äj < 0}. Then,

y ^ äjXj + ^2äjXj =/o(mod 1) (12.12)
j€J+ J€J-

where 0 < / 0 < 1.
The left-hand side of (12.12) is either positive or negative. If it is positive, then it

must be one of/0,/0 + l , / 0 + 2, ..., and we have

Y^ ~aixi ̂ H *JXJ + H °Jxi -^° (12.13)
jeJ* j€J+ j£J-

If the left-hand side is negative, then it must be one of — 1 4- /0, —2 + f0, ■ ■ -, and we
have

J2 ~així ^ Yl ~aix> + S °JXJ ^~l+f° (12-14)
jeJ- jeJ+ yev-

Multiplying both sides of (12.14) by/o/(-l +/o), we have

E r r w ^ û (12.15)

318 BRANCH-AND-CUT APPROACH

Note that either (12.13) or (12.15) must hold. Because the left-hand sides of (12.13)
and (12.15) are both nonnegative, and one of them is >/0 , then by union (disjunction)
of two sets we conclude

Ew+Err^^ (12-16)

The above inequality must be satisfied by every integer solution, but will violate the
current LP solution, because substituting all nonbasic variables x, to 0 makes the left-
hand side zero, which cannot be > f0 (a positive fraction).

Note that in the process of deriving (12.16), we use only the fact that the basic
variable x on the left-hand side of (12.10) must be an integer and that the nonbasic
variables x¡ on the right-hand side must be nonnegative. Therefore, if some
nonbasic variables are not required to be integers, (12.16) still represents a valid
inequality.

However, we can further utilize the integer requirement of some nonbasic variables
Xj to improve (12.16) to a stronger inequality. To achieve this goal, we make the
coefficients a¡ for y s / + and {(äjfo)/(fo—1)) iorj G J~ to be as small as possible.

Consider a certain term aqxq in (12.11) for which xq is required to be integer.
Because (12.16) is derived from (12.11), any increasing or decreasing by an integer
multiple clearly will still satisfy the congruence relation (12.11). Among all aq > 0,
the smallest coefficient that can be obtained is/?. Among all aq < 0, setting aq tofq — 1
will give the smallest value to/o/(/0— 1) aq. Therefore, the smallest coefficient
in (12.16) must be

min{/j , /o(l-/ ,) /(l-/o)}

Clearly, if fq </0 , then

/ , (l - /o) < / o (l - / ,)

or

/ , < / o (l - / ,) / (l - / o)

If/? >/o. then

/ , > / o (l - / ,) / (l - / o)

Combining all four cases, we obtain Gomory mixed integer cut in the form

£■£•**,■ >/o
j

CUTS GENERATED FROM SETS INVOLVING MIXED INTEGER VARIABLES 319

where

f.* = üj if a¡ > 0 and Xj noninteger

/■* = -—-a¡ if ö, < 0 and x, noninteger
Jo-1

fj* = fq if/? < / 0 and x, integer

/•* = - r V (1 - / ?) if/? >/o and xy integer
1-/0

12.5.2 Mixed Integer Rounding Cut

Here we intend to derive a rounding cut for the mixed integer set in the following form:

S= {(y,x) : a T y -x < A, y > 0 and integer, x > 0} (12.17)

We begin with the simplest case where the set contains a single integer variable, a
single continuous variable, and a single inequality, symbolically

S' = {(y, x) : y—x < b,y > 0 and integer, x > 0}

Then the following inequality, due to Nemhauser and Wolsey (1988), is valid for
Conv(S').

y<[b\ + Yj (12.18)

where f=b— \b\. To prove (12.18), we consider the disjunction (union) of the
following two sets: S1 = S'H {(y, x): y < [b\} and S2 = S'n {(y, x): y > [b\ + 1}. For
S1, we multiply y < [b\ by (1 —/), multiply 0 < x by 1, and sum the two resultant
inequalities, yielding

(y - [A |) (l - /) < * (12-19)

equivalent to (12.18). ForS2, we multiply —(y - [b\)< —1 by/ multiply y — b< xby
1, and sum the two resultant inequalities, yielding (12.19) and then (12.18). There-
fore, (12.18) is valid for Conv(S' U S2) = Conv(S')-

The above single-integer variable case can be extended to derive a mixed integer
rounding cut for the two-integer variable case

5" = {Cyi,;v2,*) : g\y\ +giyi-x <b;x> 0;yuy2 > 0 and integer}

where gu g2, and b are scalars with fractional b.
Let /= b - [b\ > 0 and/t = gk - [gk\ > 0 for k = 1, 2. Then it can be shown that

the inequality

320 BRANCH-AND-CUT APPROACH

where (fk —f)+ = max (0,fk —f) is valid for Conv(S"). This can be generalized to the
set containing p integer variables and a single continuous variable.

Theorem 12.3 Let the set S = {(y, x): gTy - x < b, y > 0 and integer, x > 0}, the
inequality

Ç(kJ + i ^)^<W + ï ^ (12-20)

is valid for Conv(S), where f=b- [b\ > 0 , fk = gk- _gk\ > 0 , and (fk-f)
+ =

max(0, fk-f).

12.6 CUTS GENERATED FROM 0-1 KNAPSACK SETS

12.6.1 Knapsack Cover

Consider a knapsack constraint

K= {y e (0,1)" : Y^ajyj < b,aj > 0;b > 0} (12.21)

Any negative coefficient can be converted to a positive coefficient by substituting j y

for a new variable y'j — l—yj.
A set C is a cover if X],6c a/ > Ä, or A = ^ / 6 c aj~b > 0. The cover C is said to be

minimal if a¡ > A for all j S C.

Theorem 12.4 Let CÇJVbea cover of K and ICI be the number of elements in C,
then the cover inequality

X > < | C | - 1 (12.22)
jec

is valid for K. Moreover, if C is a minimal cover, then the inequality (12.22) defines a
/ace/ of Conv(/fc)

tfc = JÍT n {y : y,- = Oj G A^\C} (12.23)

where MC is the difference of sets N and C, and Conv(ATc) is the convex hull of Kc.

Example 12.3 Construct a cut for K={ye(0, l)5: 2yx + y2 + 5y3 + 2y4

+ 3y5<9}.

CUTS GENERATED FROM 0-1 KNAPSACK SETS 321

C= {3,4,5} is a cover because A = 5 + 2 + 3 — 9 = 1 > 0, and is a minimal cover
for K because 5 > 1, 2 > 1 and 3 > 1. We obtain the corresponding cover inequality
ys + y4 + y5< 2, which defines a facet of Conv({ y €(0, l)3:5y3 + 2y4 + 3y5<9}).

If a cover C is not minimal, then it is clearly seen that the corresponding cover
inequality is redundant because it is the sum of a minimal cover inequality and some
upper bound constraints.

12.6.2 Lifted Knapsack Cover

Lifting can be used to strengthen knapsack cover inequalities and to obtain a large
class of facet-defining inequalities for Conv(K) called lifted cover inequalities.

Consider the knapsack set K defined in (12.21) and let M be a subset of N. Suppose
we have an inequality,

5> , -v y <7r 0 (12-24)
jeM

which is valid for KM = K(~\ {y: yj = 0,jGN\M}. The lifting problem is to find the
lifting coefficients {nj},j€N\M, so that

^2nJyJ - n° (12.25)
jeN

is valid for K. Ideally, we would like inequality (12.25) to be "strong." That is, if
inequality (12.24) defines a face of high dimension of Con\(KM), we would like the
inequality (12.25) to define a face of high dimension of Com(K).

There are two types of lifting: (1) sequential lifting and (2) sequence independent
lifting. We first describe sequential lifting. The sequential lifting obtains coefficients
{iij},jeMAf, one at a time. Specifically, the coefficient nk is computed for a given
Are MM so that

^ Ji/Vy + nkyk < n0 (12.26)
jeM

is valid for Kuu{k)- This can be done by computing the lifting function

FM{ak) = mxa{nQ-'Ylnjyj : ̂ ajyj < b-ak,y € (0, l)M} (12.27)
jeM jeM

For a given k€N\M, suppose KMu{k] H {y: yk = 1} ¥"0- Then inequality

^ np} + Wie < "o (12.28)
jeM

322 BRANCH-AND-CUT APPROACH

is valid for KMlnk¡ if nk < F^a/c). Once variable V/t is lifted, Mis updated by including
k, and lifting can be done to a second variable by repeating the lifting function. The
lifting procedure for a cover inequality is given below.

Assume the given cover C = {r + 1, . . . , «} and MC —[l,...,r] after reordering
the variables.

1. Letk=\.

2. Compute
Fc(ak) = m a x ^ J , 1 njyj+ £y 6 C y/ : £/=/ W + E/ec«/» < ¿-a*,
ye (0,1)}

3. Compute nk = ICI - 1 - F c (a*).
4. A; <— A: + 1. Stop if k = r + 1, otherwise go to step 2.

Example 12.4 Find a lifted knapsack cover for the knapsack set

K = {y € (0, l)7 : 4v[+ 7v2 + 5y3 + v4 + 2v5 + 3y6 + 4y7 < 15}

LetM={2, 3, 7}, then

KM = Kn {y : yx = y4 = y5 = y6 = 0} = {y € (0, l)3 : 7y2 + 5y3 + 4y7 < 15}

The inequality y2 + y3 + y7 < 2 is valid for ÍTA/. So is y2 + y3 + y7 < 3
used below.

The lifting procedure is as follows:

1. Let k= 1. FM(ak) = FM(4) = mm{3 - (y 2 + y3 + y7): 7y2 + 5y3 +
4 y 7 < l l } = l.

2. KMu(i) = lye (0 , l):4y, + 7y2 + 5y3 + 4y7< 15}.
3- tfA*u(i)n{y:y1 = l} = {7y2 + 5y3 + 4 y 7 < l l } / 0 .

4. Let 71! = 1. Then the inequality, yx + y2 + y3 + y7 < 3, is valid for ÍÍTAÍUÍI }-
5. M <— M U {1}. Select another k. Repeat the procedure until all variables are lifted.

Now we apply the method of sequence independent lifting to the knapsack cover.
Before doing this, we need to define the term superadditive.

Definition 12.1 A function F: IR-> IR is superadditive on IR if F(c0 + F(c2) <
F(c\ + c2) for all real cl7 c2-

Let F: R —* U be a function. The inequality

J2 njyj+ Yl F^yj - n°
jeM jeN\M

is valid for K if the following two conditions are satisfied:

CUTS GENERATED FROM 0-1 KNAPSACK SETS 323

(i) F(c) < FM(C) for all real c

(ii) F{c) is superadditive

Example 12.5 Consider Example 12.4. Let

FM{ak) = min{7t0- ^7 t , y y : ^ a / v y < b-ak,y € (0,1)}

= min{3- (y 2 +y 3 +y 7) : 7y 2 + 5y3+4y 7< \7-ak,y € (0,1)}

We have

FM(ak) = <

' 0 0 < ak < 1
1 1 < ak < 8
2 8 < flfe < 13

I 3 a* > 13

Let F(ak) = ak — l, then F(a^) < FM(ak) for any a .̂ (i) is satisfied.
Since F(ak) + F(dj) = ak + aj—2 < F(ak + aj) — ak+aj—l, (ii) is satisfied.
In this problem, N\M = {1,4,5,6}, {ak} = {ßi,a4, a5, a6} = {4,1, 2,3}, we have

F{a{) = 3, F(a4) = 0, F(a5) = 1, F(a6) = 2, and the inequality

3yi+y2+y3+y5 + 2y6+>'7 < 3

is valid for K.

12.6.3 GUB Cover

A GUB (generalized upper bound) cover inequality is derived from the following
GUB set:

S= {ye (0,1)" : 5>,y,- < b^yj < l,QlnQJ = 0foralli?j,\JlQi = M}
j jeQt

A strong cut can be derived by

where C is a GUB cover defined by no two elements of C belonging to the same Q¡.

Example 12.6 Construct a GUB cut for S = {y G (0, 1): 2y{ + y2 + 5y3 + 2y4

3y5 + 6y6 + 4y7 + y8 < 9, yx + y3 + yA < 1, y2 + y7 < 1, y5 + y8 < 1, ye < 1 }•
Select a variable from each of the constraints 2-5 so that no two variables are the

same. Then, we obtain an inequality y3 + y6 + y7 + y8 < 4 as a GUB cover. There
are many other combinations that can be used to form GUB covers.

324 BRANCH-AND-CUT APPROACH

12.7 CUTS GENERATED FROM SETS CONTAINING
0-1 COEFFICIENTS AND 0-1 VARIABLES

The constraint sets comprising 0-1 coefficients and binary variables frequently arise
in graph- or network-related problems and in combinatorial problems, for example,
node packing and traveling salesman. Here, we will discuss the polyhedron of the
node packing problem and the construction of strong valid inequalities.

Definition 12.2 Given is a graph G = (V, E), where V and E are sets of vertices (or
nodes) and edges (or arcs), respectively. A node packing (set) S is a set of nodes such
that no two nodes have a common edge, that is,

5 = {y G {0, l } " 1 : yt+yj < 1 for all (/,/) G E}

where i,j G V and | V\ is the number of vertices. The node packing problem is to find
the maximum-cardinality node packing (independent node set) in G

Consider the graph for a node packing problem with five nodes and seven arcs in
Figure 12.4.

To represent in matrix notation, let A be an arc-node incidence matrix and y be a
column of 0-1 variables. Then, a node packing set must satisfy Ay < 1, where A is a
0-1 coefficient matrix and y is a 0-1 vector. For example, in Figure 12.4, | V\ = 5,
\E\=7, and the arc-node matrix is

FIGURE 12.4 Graph for node packing problem.

CUTS GENERATED FROM SETS CONTAINING 0-1 COEFFICIENTS 325

y =

"yr
yi

J3

V4

.ys.

1 =

"1"

- 1 -

1 1 0 0 0

1 0 1 0 0

0 1 1 0 0

A = 0 1 0 1 0

0 0 1 1 0

0 0 1 0 1

0 0 0 1 1

To find a node packing set, we can "directly" solve max {JZjJi yj '• Ay < 1, where
y¡ = 1 if node y is in the set, v̂ = 0 otherwise}. However, we can solve it easier by
constructing strong valid inequalities to the problem. To achieve this, we introduce the
concept of maximal clique.

Definition 12.3 Given is the graph G = (V, E), where V and E are sets of vertices and
edges, respectively. A set of nodes, Cq Ç V, is called a clique if every pair of nodes in
Cq is joined by an edge. A clique is maximal if it contains a maximal number of nodes.

Consider Figure 12.4. The two-node cliques are {1,2}, {1,3}, {2,3}, {2,4}, {3,4},
{3,5}, and {4,5}. The three-node cliques are {1,2,3}, {2,3,4}, and {3,4,5}. The set
{1,2,3,4} is not a clique because there is no edge between nodes 1 and 4. The set {2,3,
4,5} is not a clique because there is no edge between nodes 2 and 5. In fact, there is no
clique containing four or more nodes. Therefore, the maximal clique is three. The
maximal clique can be used to construct a strong cut for a node pack set called clique
cut (inequality).

Theorem 12.5 Let Cq be a maximal clique, the clique inequality or cut 5Z,-eC yj < 1
defines a facet of Conv({y € {0, l } m : Ay < 1}).

Consider Figure 12.4. For the maximal clique Cq= {1, 2, 3}, the clique cut is
y i + y i + y i < l- For the maximal clique Cq= {2, 3, 4}, the clique cut is y2 + y-$
y4< 1. For the maximal clique Cq= {3, 4, 5}, the clique cut is y3 + v4 + v5 < 1.
These three clique cuts provide strong valid inequalities for solving the node packing
problem in Figure 12.4. In this particular problem, the reader can list all the seven
constraints in Ay < 1 and verify that they all are dominatedby these three clique cuts.

yi+y2+yi < l

J2 + V3+J4 < 1

W + V4 + V5 < 1

(12.29)

(12.30)

(12.31)

Now we utilize these cuts to solve the node packing problem. From (12.29),
vi = 1 implies y2=y3 = 0. From (12.30), y 4 = l because we want to maximize

326 BRANCH-AND-CUT APPROACH

Z))=i yj- From (12.31), v4 = 1 implies y5 = 0. Now we have a solution yx = y4 = 1,
)'2 = y3 = v5 = 0. Similarly, we can generate two alternative solutions.

yi = ys = l, y, = y 3 = y 4 = o

yi = J5 = 1, V 2 = y 3 =) ' 4 = 0

These three solutions correspond to the respective node packing sets {1,4},{2,5},
and {1,5}, and there are no packing sets including three or more nodes. This example
shows how a maximal clique can be used to generate strong cuts to help solve a
problem containing 0-1 coefficients and binary variables. For this example, it is
coincidental that the generated cuts can immediately find a solution. Nevertheless,
the generated strong cuts are useful for making the branch-and-cut method more
efficient.

12.8 CUTS GENERATED FROM SETS WITH SPECIAL STRUCTURES

This section discusses several well-known special-structure constraint sets from
which strong cuts are generated, including

• Flow cover from a simple fixed-charge flow network
• Plant location

12.8.1 Flow Cover from Fixed-Charge Flow Network

Consider the following simple fixed-charge network flow problem in mixed integer
variables:

S = {(x, y) : y j Xj— 2_\ xj < b, x¡ < aßj for ally, x > 0, y binary}
jeNi jeN2

The constraints contain two sets: the flow-conservation constraints and fixed-
charge constraints imposed on each nodey". A flow cover cut is derived below:

jec¡ jec2 \ yeCi jeC2)

~Yla>~[J2aj-J2a'-bIHyj-]C xi-b

jeC, Vec, jec2) jeL2 ye/v2\(C2u¿2)

where C\ Ç /Vi, Ci Ç N2 are generalized covers defined by

CUTS GENERATED FROM SETS WITH SPECIAL STRUCTURES 327

} aj— y ^ Qj > b, where L2 = N2\C2-
jeC, jec2

Example 12.7 Assume the demand on a certain node is b = 5, and the capacities of
the supply and demand nodes are (13,15,8) and (9,14,10,12), respectively. Then the
constraint set is as follows:

x\ + x2 + x3 — X4—X5— x¿— Ax-] < 5
x\ < 13vi,x2 < I5y2,x3 < &y3,x4 < 9y4,x5 < \4y5,x6 < I0y6,x7 < I2y7

Let d CNX = {1, 2, 3}, C2QN2= {4, 7}, L2C(N2\C2) = {5}, with Eyec,0/ = 3 6

and Yl,jeC2aJ = 21. Then the inequality

x 1 + x 2 + x3 + 3(l -y1) + 5 (l -) ' 2) -21 -10v5 -x 6 <5

or equivalently,

xi+x2 + X3-x6-3yi-5y2-l0y5 < 18

is a valid cut for this problem.

12.8.2 Plant/Facility Location (Fixed-Charge Transportation)

Consider the following constraint set of the fixed-charge transportation problem

s = {(x, y) : E Xi>= ö; ' E xv ^ bjyj' x¡j

j

< min(a,-, bj)yj, x > 0, y binary, i e M,j € N}

A strong cut can be derived as follows:

£$>+ E [h-Y,h+ $>)+o-») * E«
jeC i&Kj jeC \ jeC ieK / ieK

where C Ç N is a subset of locations, and a cover such that Y^jecfy > IZíeir0' > ^ — ^

is a subset of clients, /£, Ç K is possibly a smaller subset of K, bj = min (6/, J2ieKai)

is the "effective" capacity of location j .

Example 12.8 Products are manufactured in four plants to supply customers from
five different cities, as shown in Figure 12.5. The capacities bj for the four plants are
30,20,40, and 30, respectively. The demands from the five cities a, are 15,12,18,10,

BRANCH-AND-CUT APPROACH

Customer i e M

FIGURE 12.5 Constructing a cut for plant/facility location,

and 16, respectively. The set of all constraints are

*11 +-«21 + *31 +*41 = 15

*12 + *22 + *32 + *42 = 12

*13+*23+*33+*43 = 18

Xi4 + X24 + X34 + X44 = 10

*15 + *25 + *35 + X45 = 16

Xu+Xn + Xi3+Xi4+Xi5 < 303Í1

*21 + *22 + *23 + *24 + *25 < 20>'2

*31 + *32 + *33 + *34 + *35 < 40^3

X41 + X42 + X43 + X44 + X45 < 30y4

xy < min(a¡,bj)yj

Let KCM= {1, 2, 3, 4} , ^ = {1, 2, 3}, tf2= {2, 3}, and tf3= {3, 4}. Compute

D / e J r a , = 15 + 1 2 + 1 8 + 1 0 = 55

¿i = min Í bi, ^2 a¡) = min(30,45) = 30

¡£K2 /

, '6*3 /

¿2 = min |

¿3 = min

min(20,30) = 20,

min(40,28) = 28

NOTES 329

Let CÇN= {1, 2, 3}, (52j€Cbj = 78 > £/6jra,- = 55, so C is a cover), then in-
equality

•Xii+*2i+*3i+*22+*32 + *33+*43+7(l-;yi)+5(l--;y3) < 55

or equivalently

^11 +JC21 +^31 + *22 + X32 + X33 + X43-7V] -5y3 < 43

is a valid cut for the problem.

12.9 NOTES

The branch-and-cut approach, a generalization of branch-and-bound (Land and Doig,
1960), follows a series of key contributing papers by Crowder et al. (1983), Johnson
et al. (1985), Van Roy and Wolsey (1987), and Hoffman and Padberg (1991). In fact,
the name was given by the authors in the last article, which claimed to solve a 0-1 IP
instance containing as many as 6000 binary variables. Johnson et al. (2000) present an
excellent survey paper about modeling and solving mixed integer programs using LP-
based algorithms. Marchand et al. (2002) provide a complete treatment of various
types of cutting planes that are useful or potentially useful in solving pure integer and
mixed integer programs. Cordier et al. (1999) describe a branch-and-cut MIP software
system called bc-opt.

Section 12.4

Gomory fractional (Gomory, 1960) and Chvátal-Gomory cuts for pure integer
programs are rarely implemented and are usually replaced by the Gomory mixed
integer cut (Gomory, 1960), even for pure integer programs.

Section 12.5

The Gomory mixed integer cut (Gomory, 1960) in (12.8) is the most implemented cut
for general IPs and MIPs. An alternative form of this cut is obtained by dropping the
first two terms corresponding to the continuous variables Xj in (12.8). Mixed integer
rounding cut is due to Nemhauser and Wolsey (1988).

Section 12.6

Knapsack covers (Crowder et al., 1983, Weisemantel, 1997) are the first cuts to find
extensive use in general purpose solvers and have been successfully used in
commercial codes for many years. GUB covers are due to Gu et al. (1998).

330 BRANCH-AND-CUT APPROACH

Section 12.7

Cliques are due to Johnson and Padberg (1983) and Atamturk et al. (1988).

Section 12.8

How covers are due to Padberg et al. (1985) and Gu et al. (1999).

12.10 EXERCISES

12.1 Consider the integer set S = {y > 0 and integer: 2y[+ 3y2 < 23, -5yi + 5
yi>8} and two given valid inequalities for S: y\ < 4 and —yt + y2 > 2.
Which one is stronger?

12.2 Graphically represent the feasible region of S = {x > 0: 3x\ + x2 < 6, Xi —
x2> 1 }• Check if Ixx + x2 < 10 is valid for S with no calculation involved.

12.3 Consider the set S = {y G (0, 1): 5yi + 2y2 - 3y3 - yA + 4y5 < 6}. Check if
the following inequalities are valid for S:

(a) y, = 1
(b)y 3 = 0

(c) yi + y2 + y5 < 2

(d) y3 + y 4 > l

12.4 In each of the following problems, a set S and a point are given. Find a valid
inequality for S that cuts off the point.

(a) S= {y>0 and integer: lyx + 10y2 + 5y3 + 13y4>30}, y = (0, 0, 0,
13/30)

(b) S = {x>0, y > 0 and integer: xx + x 2 < 4 1 , X\ + x2<15y), (x, y)
(10, 16, 15/26)

(c) S = { x > 0 , y G (0 , l) :*i + x2<3y, xx <2 , x2< 1}, (x, y) = (l, 1,2/3)
(d) S = {y > 0 and integer: 2y, + y2 + 7y3 + 5y4 + 3y5 < 25}, y = (25/2,

0, 0, 0, 0)

12.5 Generate a valid inequality using Chvátal-Gomory cut procedure for the
following IP:

Maximize y i+y2+y3

3yi+5y 2 -y 3 < 12

;yi+y3 < l

y\ -yi + 2y3 < 9

y > 0 and integer

EXERCISES 331

12.6 Let S = {x > 0, y > 0 and integer: -ax0 + ax + gy<b, bx0 + ax + gy<
b + ß, a, ß > 0}. Show that ax + gy < b is an MIR inequality for S. (Hint:
Scale each inequality in S by l/(a + /?).)

12.7 Consider the set S = {x > 0, y > 0 and integer: x < My, 0<x<b}. Show that
x<b-a(ß-y), where a = b-(|"¿]-1)M, ß = ¡fe] is valid for S.

12.8 Consider the mixed integer problem

Maximize y i + y 2 + ^3 — 2x

subject to 3.1yi + 1.3y2 + 1.4y3-x < 19.7

y > 0 and integer, x > 0

(a) Solve this problem using MIR cuts.
(b) Solve this problem using Gomory mixed integer cuts.

12.9 Consider Example 12.5. Suppose the objective function for Si and S2 is max
1 lxi + 6x2. Let Ui = (1/2, 1/3), u2 = (1, 1/4). Generate a disjunctive cut for
Si US2 using these parameters.

12.10 Show that the valid inequality in Example 12.1 is a Chvátal-Gomory cut.

12.11 Find two valid cuts for S = {y e (0,1): 4y, + 3y2 + 2y3 + 7y4 + 5ys < 11}
using two different algorithms learned in Chapters 11 and 12.

12.12 (Mixed Integer Knapsack) Let S = {x > 0, y € (0,1): Y.jei^^i ~y<b,b>0,
Qj > 0}, C Ç N is a cover. Then, the mixed integer knapsack inequality

Y,min \aJ> 5Z a'~b)XJ- Ylmin \aJ' Yl a~b I ~ H aJ+b+y

jec \ jeC) jec \ jeC) jeC
is valid for S. Consider the instance where S = {x > 0, y G (0, 1): 5XÍ + 3
x2 + 5x3 + 4x4 + 7x5 — y < 15}. Find at least three mixed integer knap-
sack covers for S.

12.13 Consider the following generalized assignment problem:

Maximize \] ¿ J c0\l
i j

subject to 2_, yy — ^ / = 1 , . . . , 4
j

YavyiJ-bJ ^ ' = 1 ' - - - ' 3

y'e(o,i)

where b = (6, 12, 10) and

332 BRANCH-AND-CUT APPROACH

FIGURE 12.6 A simple graph.

(a) Generate two knapsack covers.
(b) Find a Gomory fractional cut.
(c) Find two disjunctive cuts.

12.14 Consider the flow conservation set S = {x > 0, y G (0, 1): X\ + x2 + x3 +
*4 - (*5 + *6 + x7) < 6, xi < 5yu x3 < 4y2, x4 < 7v4, x5 < 3y5, x6 < 2v6,
*i < 5y7}. Derive a flow cover inequality with Cj = {1, 4}.

12.15 Given the following graph G(V, E) and the set S = {y,< + y} < 1, for (i,f) eE],
(a) Find two cliques of G.

(b) Generate two clique cuts associated with the two cliques in (1).
Figure 12.6

12.16 (The Stable Set) Given a graph G(V, E), a stable set is a subgraph induced by a
subset of vertices G', so that no pair of vertices in G' defines an edge of E. For
each stable set G' in G we can define a point y, in the following way:

_ f l ifieC
\o otherwise

The convex hull of all these points, called the stable set polytope,
associated with G will be denoted by STAB(G). Mathematically, it can be
expressed as

STAB(G) = Conv{y G (0,1) : y,+yj < l,(i,j) G E}

Let CÇE be a cycle of odd cardinality in G. The odd cycle inequality
£,-ev(c)*í ^ (¡ViQl-1)/2 i s valid f o r STAB(G). Consider the graph G(V, E)
in Exercise 12.15.

EXERCISES 333

(a) Find two stable sets in G.
(b) For each stable set found in part (a), find an odd cycle inequality for STAB

(G).

12.17 Consider the instance of a capacitated plant location problem where there are
three plants and four customers. The problem data are as follows: c = (100,
120, 110) and d = (90, 70, 80, 60).

(a) Formulate the problem with input data.

(b) Find a valid plant location inequality.

13
BRANCH-AND-PRICE APPROACH

In the previous chapter, branch-and-bound is generalized to include generation of cuts
or rows, hence the name branch-and-cut. In this chapter, branch-and-bound is first
generalized to include generation of columns by solving pricing problems, hence the
name branch-and-price, and yet another generalization includes generation of
columns and rows, hence the name branch-and-price-and-cut. Basically, all these
generalizations solve a sequence of LP relaxations of a given IP. Branch-and-cut
tightens the LP relaxations (or polyhedra) by adding cuts or constraints (rows).
Branch-and-price tightens the LP relaxations by generating a subset of profitable
columns associated with variables to join the current basis. These columns are
generated iteratively by solving subproblems or pricing problems.

13.1 CONCEPTS OF BRANCH-AND-PRICE

Branch-and-price builds upon the branch-and-bound framework. It applies column
generation throughout the branch-and-bound tree prior to branching. Branching
occurs when no profitable columns can be found and the LP solution does not satisfy
the integrality conditions. The concept of column generation is outlined below.

• The column generation approach is used when the LP relaxation of a given IP
formulation contains too many columns (associated with variables) to handle
explicitly and simultaneously.

Applied Integer Programming: Modeling andSolution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

334

DANTZIG-WOLFE DECOMPOSITION 335

• Instead of handling all columns of a given master problem explicitly, a restricted
version of the master problem that contains only a subset of columns (usually
associated with the basic variables) is maintained and updated, while the
remaining huge number of columns (usually associated with nonbasic variables)
are left out of the LP relaxation.

• Because most of these columns will likely have their associated variables equal
to zero in an optimal solution, only profitable columns (associated with nonbasic
variables) are generated and added to the current restricted master problem to
improve its current LP solution. Such columns can be generated iteratively by
solving subproblems (or pricing problems).

• The column generation approach to integer programming is closely related to
Dantzig-Wolfe decomposition in linear programming. Initially, the restricted
master problem is represented by the revised simplex tableau that contains
the current basis inverse, primal solution, and dual solution. Then the dual
solution is passed to update the objective function of a subproblem, which in turn
is solved to determine if the LP solution of the master problem is optimal—and if
not, to identify a pivot column to enter the basis to improve the current LP
solution.

• An LP optimum is found when there is no column that can be generated with a
profitable reduced cost. The LP optimum may or may not satisfy the integrality
conditions.

• If the LP optimum satisfies the integrality conditions, a lower bound for the IP is
found. Otherwise, the noninteger LP optimum (or approximation) can be used as
an upper bound and then branching occurs.

• A special (problem-specific) branching scheme is usually needed because
column generation may destroy the original problem structure.

In the next section, Dantzig-Wolfe decomposition for linear programs will be
introduced via the revised simplex method to provide the necessary background for
the development of column generation for integer programs.

13.2 DANTZIG-WOLFE DECOMPOSITION

Consider the following linear program containing two sets of constraints: Ax < b and
Gx < d. Usually, the first set of constraints is of general structure and the second set is
of special structure.

(LP) Maximize z = cTx
subject to Ax < b

G x < d
x > 0

where c is a "profit" vector in the objective function to be maximized. Let S =
{x: Gx<d, x > 0 } . For ease of exposition, we assume that S is bounded (this

336 BRANCH-AND-PRICE APPROACH

assumption can be relaxed). Since S is a bounded polyhedron, any point x € S can be
represented as a convex combination of all (say t) extreme points of S. Denoting these
extreme points by x1, x2, . . . , x', any x € S can be represented as

r

x = 53V
7 = 1

£¿7 = 1
7 = 1

A , > 0 y = 1,2 í

Substituting for x, LP can be transformed into the following so-called master
problem (PM) in the variables X\... X,.

t

(PA/) maximize z = \\<?-ii)Xj
7=1

;
subject to ^(Ax/)A/- < b

7=1

É4/ = 1
7 = 1

Ay>0 y = 1 , 2 , . . . , /

Let Cj — cT\j associated with basic variable X-¡, cB = (ci .. . c,■■.. . cm +i) , and
XK = (X\,..., Xj,..., Xm+i). Let u denote the vector of dual variables corresponding
to the constraint set £\ '= 1 (Ax7)^- < b, and a denote the dual variable corresponding
to the convexity constraint 5Z/=i X¡= 1. The right-hand side column of the master

problem is b m + i = [*?], and Bm +1 is a basis for PM.
In Figure 13.1, the left box depicts the original LP and the right box depicts

the transformed LP. There are three columns to the right of the transformed LP. In
the coefficient column j , the first entry is the negative of the /th coefficient of the
objective function, the next m entries are coefficients associated with the/th variable
of the general constraints, and the last entry is the y'th coefficient of the convexity
constraint. The RHS column contains one entry from the objective function, m entries
from the general constraints, and one entry from the convexity constraint.

In the dual variable column, the first m entries are dual variables (denoted by u)
corresponding to m general constraints and the last entry is the dual variable a
corresponding to the convexity constraint.

Because of t, the number of extreme points of set S, is usually very large and
intractable to explicitly enumerate all possible extreme points and explicitly solve this
problem. Instead, we solve the transformed problem (and hence the original problem)
by simply maintaining a revised simplex tableau of size {m + 2) x (m + 2), usually a
small subset of all possible extreme points. The revised simplex tableau of the master

DANTZIG-WOLFE DECOMPOSITION 337

Given LP

Findx

Max z = cTx

s.t. Ax < b

G x < d

x > 0

Equivalent

Let x satisfy
G i < d

Let x = £ ¿jxj

E ^ l
; lXj>o

Transformed LP

Find Xj for ally

t

Maxz=E (c M ^ y

s.t. S (Ax^)A,.<b

Y.Xj=\

Xj > 0 for ally

Coefficient RHS Dual
columny column variables

cV

Ax '̂

1

v. J

••

0

b

1

FIGURE 13.1 Dantzig-Wolfe decomposition.

problem is updated iteratively by generating pivot columns from the solutions of
subproblems.

From the transformed problem, a revised simplex tableau for the master problem of
size (m + 1) x (m + 1) can be constructed as shown in the left box of Figure 13.2.
Suppose that we have a basic feasible solution k = (AB, AN) and that B"1 of size
(m + 1) x (m + 1) is known. Then the primal solution can be obtained by calculating
B" ' b, the dual solution by CgB" ' = (uT, a), and the objective value by CgB~ ' b, where
eg is the profit vector of the basic variables with a profit of c¡ = CßV for each basic
variable k¡.

Consider Figure 13.2. The left box contains the subproblem subject to the
constraints of special structure and the right box contains the master problem. The
master problem passes the values of the current dual solution, (uT, a) — cBB_1, to
the subproblem for constructing its objective function. After the subproblem has been
solved, a pivot column is formed and passed to the master program. The interaction
between the master problem and the subproblem are repeated until the dual solution is
nonnegative.

m+\ •

Master tableau
(uT, a)

B'1

cT
BB'b

B ' b

l X

m+1

Use (uT, a) = c „B to construct subproblem

Generate column
Ck

to update master tableau

Subproblem

Findx

Min (uTA - cT)x + a

s.t. Gx < d

x > 0

ck = Min Cj

m = number of rows Ax*

FIGURE 13.2 Interaction between master problem and subproblem(s).

338 BRANCH-AND-PRICE APPROACH

To find an entering variable, x¿, we choose a variable with a most negative reduced
cost defined by

Ck = min {c, < 0}
y=l,2,...,/ J

^ m i n ^ o V î ^ - c V } (13.1)

= min {(uTA—cTW}+a
7 = 1 , 2 , . . . , / l '

Minimizing over all the extreme points in (13.1) is equivalent to solving over the
entire polyhedron S,

min{(uTA-cT)x}+a (13.2)

Note that a is a constant and can be dropped from consideration for finding an
optimum solution. That is, solving (13.2) is equivalent to solving the following
subproblem (Ps):

(Ps) Minimize (uTA—cT)x
subject to Gx < d

x > 0

The following are some important remarks regarding the decomposition algorithm:

1. The constraint set of the subproblem remains unchanged from iteration to
iteration, while the objective functions of the subproblem are different between
iterations.

2. At each iteration, a different dual vector is passed from the master problem to
the subproblem. Rather than solving the subproblem from scratch at each
iteration, the optimal basis of the last iteration could be used by modifying the
objective row.

3. At each iteration, the subproblem need not be completely optimized. It is only
necessary that the current basic feasible solution x* satisfies (uTA — c) x* +
a > 0. In this case, the corresponding k^ is a candidate to enter the basis of the
master problem.

Example 13.1 Solve the following problem by decomposition.

Maximize 2x\ + 2x2 + 3x3 — x4

subject to x\ + x2 + x-} + 2x4 < 17

—2x\ + 2x2 + X3 + X4 < 11

—X\ + X4 < 2

2xi + X3 < 9

X2 + X4 < 5

x > 0

DANTZIG-WOLFE DECOMPOSITION 339

Although there is no constraint set of special structure, we still can decompose the
problem into two sets: one set contains the first two constraints and the other contains
the remaining three. Here m = 2.

Let the starting basis, Bm+l, consist of s (slack variables) and Xx (can be any one
element of X). Since B m + 1 = 1 (the identity matrix), we have B~'+1 = 1 . Then the
entire vector x is nonbasic, hence x1 =(0, 0, 0, 0)T, and Ci = ex1 = 0 for ally. The
revised simplex tableau for master problem PM is as follows:

(uT,a)

Bm'+1

H^m+fim+l

B~ + 1 b m + i

z

S\

Si

X2

0 0 0

1 0 0

0 1 0

0 0 1

0

17

11

1

Given the vector (uT, a) from PM, the corresponding subproblem (Ps) is

(PS) Minimize (uTA—cT)x + a Minimize —2xj—2x2—3x3+X4 + O

Subject to G x < d Subject to (12.3) —(12.5)

x > 0 .

The subproblem is optimized at x2 = (0, 5, 9, 0)T, with objective function —37.
Since —37 < 0, the coefficient of x2, X2, enters the basis. The solution x2 is passed back
to the master problem. Calculate a new coefficient vector of X2,

B m + 1
Ax2

1

14
19
1

and the associated reduced cost —37. Adjoin this as a pivot column to the revised
simplex tableau, and pivot

z

S\

Si

h

0 0 0

1 0 0

0 1 0

0 0 1

0

17

11

1

h
-37

14

19

1

The tableau after pivoting is as follows:

z

S\

x2
h

0

1

0

0

1.95 0

0.74 0

0.05 0

-0.05 1

21.42

8.89

0.58

0.42

340 BRANCH-AND-PRICE APPROACH

The best feasible solution found so far is given by

A,xi + A2x2 = 0.42(0,0,0,0)T + 0.58(0,5,9,0)T = (0,2.89,5.21,0)T

with objective value 21.42. Note that the new (uT, a) = (0,1.95,0). This information is
used to generate the new subproblem

Minimize -5.89xi + 1.89x2-1.05x3 +2.95x4 + 0

subject to (12.3)-(12.5)

The subproblem is optimized at x3 = (4.5, 0, 0, 0)T with objective —26.53. Since
objective is still less than zero, the coefficient of x3, A3 is introduced into the basis, and
solution x3 is passed back to the master problem.

B m + 1
Ax3

1

-0.74 0"

0.05 0

-0.05 1

'4.5"

- 9

1
=

' 11.13"

-0.47

. L 4 7 .

Add the pivot column to the revised simplex tableau and pivot

h
-26.53

11.13

-0.47

1.47

After pivoting, the tableau becomes

z

S\

h

A,

0

1

0

0

19.5 0

-0.74 0

0.05 0

-0.05 1

21.42

8.89

0.58

0.42

z

■Sl

h
X,

0

1

0

0

1

-0.34

0.04

-0.04

18

-7.55

0.32

0.68

29

40/7

5/7

2/7

Because u > 0 , we can claim that the optimal solution has been found, with
objective value 29. The optimal solution is given by A2x

2 + A3x
3 = 5/7(0,5,9,0)T +

2/7(4.5, 0, 0, 0)T = (9/7, 25/7, 45/7, 0)T. If we solve this problem using another
method, we can find that this is not the unique optimal solution. Now let us work on an
example with two subproblems.

Example 13.2 Solve the following LP problem by decomposition.

Maximize -3xi + 7x2 + 5x3 + 4x4

subject to 2xi —x2 + 2x3 + 2x4 < 19
(13.3)

DANTZIG-WOLFE DECOMPOSITION 341

-2x\ +2x2+x3-3x4 < 21

X\+X2 < 12

3x\—X2 < 15

*3 + *4 < 5

—XT, + X4 < 2

x > 0

(13.4)

(13.5)

(13.6)

(13.7)

(13.8)

We can easily see that this problem has some constraints of special structures. That
is, constraints (13.5) and (13.6) involve only variables xx and x2, while con-
straints (13.7) and (13.8) involve only variables x3 and x4. Taking advantage of
these specialties, we can decompose this problem into a master problem with
constraints (13.3) and (13.4), and two subproblems, one subject to (13.5) and (13.6),
and the other subject to (13.7) and (13.8).

For the convenience of notation, we partition matrix A into (AiA2), where

A, =
2 - 1

- 2 2
2 2
1 - 3

We also partition x into x = [x^ x^2'], where x(1) = {x\X2) and x(2) = (x3x4). Then
the problem, in terms of extreme points, can be expressed as follows:

t\ h

Maximize /"Jci*! &j+ /JC2X) ßj
7=1

' i

7=1

'2

subject to ^Aix j 'Uy + ^A2xj2)y3; < b
7=1 7=1

7=1

h

7=1

ß>0

Let Ö] and a2, respectively, denote the dual variables corresponding to the
constraints

5 > = 1 and J2ßj=l
7=1 7=1

342 BRANCH-AND-PRICE APPROACH

Initialization step. Let the starting basis consists of sl5 s2, ¿i, and ß b which implies
that x, = (0, 0), x[' = (0, 0), and obtain the revised simplex tableau

z
Si

S2

ßx

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
19
21
1
1

Iteration 1. Generate two subproblems using (uT, a{) and (uT, a2).

Subproblem 1

minimize

subject to

(u ^ - c O x W + a ,

= JX\ —7X2

X\+X2< 12

3x i—X2< 15

x i ,x 2 >0

Subproblem 2

minimize

subject to

(uTA2-c2)x(2)+a2

= —5X3—4^4

X 3 + X 4 < 5

— X 3 + X 4 < 1 5

The two respective subproblems are optimized at (0,12) and (5,0) with objectives
—84 and —25. Since both objective values are negative, A2 and ß2 are both eligible to
enter the basis. Here, we choose À2 as the entering variable.

Bm + 2

A i X 2 '

1

0

1 0 0 0"
0 1 0 0
0 0 1 0
0 0 0 1

"-12"
24
1
0

"-12"
24
1
0

Master step. Adjoin the objective value of—84 at the top of the vector and append this
column X2 to the simplex tableau, and then pivot.

-84
-12
24
0
1

The updated tableau is as follows:

z
S\

Si

h
ßx

0 0 0 0
1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

0
19

21
1
1

z
S\

h
h
0>

0
1
0
0
0

3.5
0.5
0.04

-0.04
0

0 0
0 0
0 0
1 0
0 1

73.5
29.5
0.875
0.125

1

DANTZIG-WOLFE DECOMPOSITION 343

Iteration 2. Generate two subproblems with the new objective functions:

Subproblem 1 : minimize—4x\ + 0

and subproblem 2 : minimize—1.5x3 —14.5x4 + 0

The two subproblems are optimized at (5, 0) and (0, 5), respectively, with
objectives —20 and —72.5. Since X2 just entered the basis, it is not qualified to be
the entering variable, so this time j33 enters the basis.

B
m + 2

A2x3'

0

1

(2)1
0.5 0 0"

0.04 0 0

-0.04 1 0

0 0 1

" 10 "

-15

0

1

2.5

-0.625

0.625

1

Master step. Adjoin the objective value of —72.5 and append this column ß3 to the
simplex tableau, and then pivot.

z

Si

h
h
ßl

0

1

0

0

0

3.5 0 0

0.5 0 0

0.04 0 0

-0.04 1 0

0 0 1

73.5

29.5

0.875

0.125

1

03

-72.5

2.5

-0.625

0.625

1

The updated tableau is as follows:

z

Si

h
ß3

ßl

0

1

0

0

0

-1.33

0.67

0

-0.07

0.07

116

- 4

1

1.6

-1 .6

0

0

0

0

1

88

29

1

0.2

0.8

Iteration 3. Generate two subproblems with the new objective functions:

Subproblem 1 : minimize5.67xi—9.67x2 + 116

and subproblem 2 : minimize —6.33x3 + 0

Subproblem 1 is optimized at (0, 12), with objective value 0, and subproblem 2 is
optimized at (5,0), with objective -31.67. Since the objective value of subproblem 1
is 0, X is not qualified to enter basis, so /34 becomes the entering variable.

344 BRANCH-AND-PRICE APPROACH

B m + 2

A2xf
0

1

1

0

0

0

0.67

0

-0.07

0.07

- 4 0]

1 0

1.6 0

-1 .6 1

no i
5

0

1

" 13.33

0

-0.33

1.33

Master step. Add the objective value of —31.67 and append this column /34 to the
simplex tableau, and then pivot.

z

■Si

h
03
ßx

0
1
0
0
0

-1.33
0.67

0
-0.07
0.07

116
- 4
1

1.6
-1 .6

0
0
0
0
1

88
29
1

0.2

0.8

04
-31.67
13.33

0
-0.33
1.33

The updated tableau is as follows:

z

S\

h
03
04

0
1

0
0
0

0.25
0
0

-0.05
0.05

78
12
1

1.2
-1 .2

23.75
- 1 0

0
0.25
0.75

107
21

1
0.4
0.6

Iteration 4. Generate two subproblems with the new objective functions:

Subproblem 1 : minimize 2.5xj -6.5x2 + 78, and

Subproblem2 : minimize —4.75x3—4.75x4 + 23.75

Both subproblems have optimal objective value of 0, so we can claim that the entire
model is optimized with objective value of 107. The optimal solution (xu x2, x3, x4)T

is given by

(A2x^,/33X3
2) + 0 4 x f) = [0,12,0.4(0,5)+0.6(5,0)]T = (0,12,2,3)T

Now we apply the column generation scheme to a specific problem called the
generalized assignment problem (GAP).

13.3 GENERALIZED ASSIGNMENT PROBLEM

The assignment problem is to find a maximum profit assignment of n tasks to n
machines such that each task (i= 1, 2, . . . , ri) is assigned to exactly one machine

GENERALIZED ASSIGNMENT PROBLEM 345

(j= 1, 2, ..., ri) and each machine is assigned to exactly one task. The GAP is a
generalization of the assignment problem that finds a maximum profit assignment of
m tasks to n (m > ri) machines such that each task is assigned to exactly one machine
and that each machine is allowed to be assigned to more than one task, subject to its
capacity limitation.

13.3.1 Conventional Formulation

Let binary variable y,y = 1 if task / is assigned to machine y and y,y —0 otherwise.
Conventionally, GAP is formulated as

m n

Maximize z = /] /]piyyi j
i=l y=l

n

subject to Z__,yy = 1 i=l,2,...,m (assignment)
7=1

m

/JwyVy < dj j = 1,2,..., n (machine capacity)
i=i

yij = 0 or 1 for all i,j

where py is the profit incurred if task / is assigned to machine j , dj is the capacity of
machine j , and Wy is the amount of capacity of machine j used by task i.
The assignment constraint (13.9) ensures that each task is assigned to exactly
one machine. The capacity constraint (13.10) ensures that each machine capacity
is not exceeded. To get an idea about the structure of this formulation, consider a GAP
example of m = 3 tasks and n = 2 machines given below. Note: the size of the
constraint matrix is (m + ri) x mn.

Machine 1 Machine 2

y n yi\ V3i yi2 yn y^ RHS

I i =1
i i =i

i i =1
t»n M>21 W31 <d\

W12 w22 w 3 2 <d2

13.3.2 Column Generation Formulation

Consider the set of points satisfying S = [y'-Y^=\ wijy¡j ^ dj,y¡j = 0orl,j= 1,...,«}.
Clearly, S is just a finite set of points, say S= {z j , . . . ,zf',... , z¿ , . . . ,z^"},
where x1- =(z\j,Zy, ■.., zL)T anc^ ^j 1S t n e number of feasible solutions f o r /

(13.9)

(13.10)

(13.11)

346 BRANCH-AND-PRICE APPROACH

Every point y G {0, 1 }m can be represented by

(13.12)
k=\

K,

£4
Oorl

y = 1 , 2 , .

k=\,2,. ,Kj,j = 1,2,...,«

where y y = 1 if task / is assigned to machine _/ and yy = 0,A: =1 (k=l,..., KJ) if the
kth assignment of machine y is used and Ê = 0 otherwise.

Substituting (13.12) and the convexity constraint into the objective function of the
conventional GAP formulation and into the assignment constraints (13.9) that define the
master problem, we obtain the master problem in the column generation formulation

Maximize z = / _] / _ ,
7=1 k=\ \i=\)

subject to y~]y~/í^/ i = 1,2,..., m (assignment)
7=1 k=\

Yltf = 1 7 = 1,2,...,« (convexity)
k=\

X) = 0 o r l k=l,2,...,Kj;j=l:2,...,n

(13.13)

(13.14)

(13.15)

(13.16)

This alternative GAP is formulated in terms of columns representing feasible
assignments of tasks to machines. The assignment constraints (13.14) ensure that
each task is assigned to a machine. The convexity constraints (13.15)—(13.16) ensure
that exactly one feasible assignment of tasks to machines is selected for each machine.

To get an idea about the structure of this formulation, consider a GAP example of
m = 3 tasks and n = 2 machines given below. Symbol 0/1 in the entries represents 0 or
1 value of Zy.

Machine j

Variable

Task i

Machine j

1
2
3

1
2

¿!

0/1
0/1
0/1

1
0

x\ .
0/1 .
0/1
0/1 .

1
0

. Af

. 0/1

. 0/1

. 0/1

. 1

. 0

A
0/1
0/1
0/1

0
1

l\ .

0/1
0/1
0/1 .
0
1

. #

. 0/1
0/1
0/1

0
1

RHS

GENERALIZED ASSIGNMENT PROBLEM 347

The fundamental difference between the conventional formulation and the
column generation formulation is that the IP feasible solution S is replaced by a
finite set of points. Any fractional point to the LP relaxation of the conventional
formulation is a feasible solution to the LP relaxation of the column generation
formulation if and only if it can be represented by a convex combination of extreme
points of Conv(S). Geoffrion (1974) has shown that if polyhedron Conv(S) does not
have all integral extreme points, then the LP relaxation of the column generation
formulation will be tighter than that of the conventional formulation for some
objective functions.

However, the column generation formulation often contains a huge number of
columns due to a huge number of extreme points of a bounded polyhedron. It may be
necessary to work with restricted versions that contain only a subset of all columns and
to generate additional columns only as needed. The column generation formulation is
called the master problem and a restricted version of the master problem is called a
restricted master problem. Column generation is carried out by solving subproblems
or pricing problems of the form

Max\ Y^(Pij-ui)y>j-vj: Y^wuyij ^ djiyij = O o r l \

where w, and vy are determined from optimum dual solutions to the LP relaxation of a
restricted master problem.

Note that the column generation formulation contains an exponential number of
variables, while the conventional formulation contains much less variables. Why
bother developing a formulation with a huge number of variables? The reasons are as
follows. First, a compact IP formulation such as the conventional GAP has a weak LP
relaxation. The LP relaxation of the master problem in the column generation
formulation is tighter than that of the conventional formulation because fractional
solutions that are not convex combinations of 0-1 solutions to the knapsack con-
straints (13.12) are not feasible to the column generation formulation. The advantage
of applying decomposition to the column generation formulation is not to speed up the
solution of its LP relaxation but to improve the LP bound.

Second, instead of considering all possible feasible assignments, only a subset of
feasible assignments are considered, whose columns are generated by solving a
series of subproblems or pricing problems. In particular, the subproblem for GAP can
be decomposed into n knapsack problems, for which efficient algorithms are
available.

Unfortunately, it is intractable to directly solve the LP relaxation of the master
problem in the column generation formulation due to exponential number of variables
(columns). Instead, we solve the LP relaxation of a restricted version of the master
problem that considers only m + n columns, usually a small subset of all columns,
which can be directly solved by the revised simplex method. Moreover, the pivot
column associated with the entering variable can be generated by solving the
subproblem, which in turn can be decomposed into a set of n knapsack problems.

348 BRANCH-AND-PRICE APPROACH

Let M, be the dual variable (price) associated with the assignment constraint (13.14)
of task i and let vy be the dual variable (price) associated with the convexity
constraint (13.15) of machine/ The subproblem for machiney is a knapsack problem
defined by

(KP,) maximize z(KP,-) = /^(/fy— ufiyy—Vj
i

subject to ^2 w>jy>i = di
i

y¡j■ = 0 or 1 / = 1 , . . . , m

If the optimum value of any pricing problem is positive, then we have identified a
column with positive reduced cost that can be added to the restricted master problem
to improve the solution. If the maximal reduced costs of all the knapsack problems are
nonpositive, then the LP solution obtained is also maximal for the relaxation of the
unrestricted master problem.

13.3.3 Initial Solution

Column generation begins with an initial restricted master problem, which must
possess a feasible LP relaxation solution. This will assure that proper dual problem
information is available for passage to the pricing problem. An initial LP relaxation
solution, if exists, can be found by the two-phase simplex method.

13.4 GAP EXAMPLE

Here, we illustrate the column generation procedure to a GAP example with
parameters m = 3, n = 2, {d\, d2) = (11, 18),

/ 1 0 6 \

[Pij] i {Wij} =

/ 9 5 \

6 7

\3 V \ 5 H /

From 9zn + 6z2i + 3z31 < 11, we have four (=ÀTj) possible feasible solutions:

zf = {(1,0,0), (0,1,0), (0,0,1), (0,1,1)}

From 5z12 + 7z22 + 9z32 < 18, we have six (=K2) possible feasible solutions:

2* = {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)}

GAP EXAMPLE 349

Assuming L be the variable associated with z|, we obtain the master problem in a
column generation formulation:

Maximize 10A¡ + 1X\ + 5X\ + 12A| + 6Xl
2 + U2

2 + 1 \l\ + UX\ + 19/l| + 17A*

(13.17)

(13.18)

(13.19)

(13.20)

(13.21)

(13.22)

(13.23)

subject to AJ+O + O + O + ^ + O + O + ^ + O + A ^ 1

0 + À2 +0 + À4
t +0 + À\+0 + Àj + k5

2+0 = 1

0 + 0 + X] + Xi + 0 + 0 + X3
2 + 0 + X5

2 + X2 = I

X\ + X] + X\ + X\ + 0 + 0 + 0 + 0 + 0 + 0 = 1

O + O + O + O + Â + Â + A^+A^ + A^+A^ = !

tf>0

To get an identity matrix (i.e., B = B _ 1 = I) as an initial basis for the "restricted"
master problem, we add an artificial variable to each of equations (13.18)—(13.22) and
apply the two-phase method. In phase I, the objective is to minimize the sum of all
artificial variables (min J2T=i" tf). At the end of phase I, a feasible solution is obtained
if all artificial variables reduce to 0 (either become nonbasic or basic variables). In this
case, phase 2 begins and its objective is to maximize the original objective function.

In phase I, we begin with constructing a starting revised simplex tableau using all
artificial variables as basic variables XB = (X", X2,X", X%, X$)T and minimizing
5Zí=i Xa¡. At iteration 1, variable k\ enters the basis to replace X2. The pivot column
is (0, 1, 0, 0, 1)T with a reduced cost 3. At iteration 2, variable X\ enters the basis to
replace X\. The pivot column is (1, 1, 0, 0, 1)T with a reduced cost 2. At iteration 3,
variable X\ enters the basis to replace X". The pivot column is (0, 1, 1, 1, 0)T with a
reduced cost 2. At iteration 4, variable X2 enters the basis to replace X\. The pivot
column is (0,1, -1 ,1 ,0) T with a reduced cost 1. At iteration 5, variable X2 enters the
basis to replace X\. The pivot column is (0,0,0, - 1 , 1) T with a reduced cost 1. Since
there are no more positive reduced cost and all the artificial variables reduce to 0, we
have obtained an initial feasible solution, Xn = (Xi,Xi,Xi ,X2,X2) , after rearrangement,
withc£ = (7, 5, 12, 6, 11),

B =

' 0 0 0 1 0 "

1 0 1 0 0

0 1 1 0 1

1 1 1 0 0

0 0 0 1 1

, B - ' =

C£B~' = (0 ,7 ,5 ,0 ,6) , andc ¡B ' 1 b= 18^
master tableau

- 1

0

1

1

0

- 1

1

0

- 1

0

1

0

1

1

- 1

0

1

0

- 1

0

- 1 0 0 0

18. We have the following initial restricted

350 BRANCH-AND-PRICE APPROACH

z

A
A
A
4
¿I

0

- 1

0

1

1

- 1

7

0

- 1

1

0

0

5

- 1

0

1

0

0

0

1

1

- 1

0

0

6

1

0

- 1

0

1

18

0

0

1

1

0

Passing the dual values u¡ and v, to the subproblems, we have

Subproblem 1:

Max z(KPj) = (lO-O)zii + (7-7)z2i + (5-5)z3 1-0
s.t. 9zn +6z2i+3z3i < 11

Z n ,Z 2 l ,Z31 € { 0 , 1 }

Subproblem 1 is optimized at (1, 0, 0)T = z¡ with z(KP[)= 10.

Subproblem 2:

Max z(KP2) = (6-0)z12 + (8-7)z22 + (l l -5)z 3 2-6
s.t. 5zi2 + 7z22 + 9z32 < 18

^12,Z22,Z32 G {0, 1}

Subproblem 2 is optimized at (1, 0, 1)T = z\ with z(KP2) = 6.
z(KP]) >z(KP2) > 0, so we choose X\ as the new column. Compute B"'a¡ and

append the column to the revised simplex tableau and pivot:

z

A
A
A
A
A

0

- 1

0

1

1

- 1

7

0

- 1

1

0

0

5

- 1

0

1

0

0

0

1

1

- 1

0

0

6

1

0

- 1

0

1

18

0

0

1

1

0

- 1 0

0

1

0

1

- 1

The updated tableau is

z

A
A
A
A-y

A

0

- 1

0

1

1

- 1

- 3 5

0 - 1

- 1 0

1 1

1 0

- 1 0

10

1

1

- 1

- 1

1

6

1

0

- 1

0

1

18

0

0

1

1

0

0

0

1

0

0

0

GAP EXAMPLE 351

Subproblem 1:

Max z(KP,) = (10-0)zn + (7 + 3)z21 + (5-5)z3 i-10

s.t. 9zn+6z2i +3z3] < 11

Zl l ,Z 2 l ,Z 3 i G { 0 , 1 }

Subproblem 1 is optimized at (0, 1, 0)T = z? with z(KP[) = 0.

Subproblem 2:

Max z(KP2) = (6-0)z12 + (8 + 3)z22 + (11 -5)z 3 2 -6

s.t. 5zi2 + 7z22 + 9z32 < 18

Zl2,Z22,Z3 2 € { 0 , 1 }

Subproblem 2 is optimized at (0, 1, 1)T = z{ with z(KP2) =11 .
z(KP2) > 0, so we choose l\ as the new column. Compute B^'af and append the

column to the revised simplex tableau and pivot:

-11 z

¿.

4
K
A'j

X9

0

- 1

0

1

1

- 1

- 3

0

- 1

1

1

- 1

5

- 1

0

1

0

0

10

1

1

- 1

- 1

1

6

1

0

- 1

0

1

18

0

0

1

1

0

The updated tableau is

z

%

4
/ , ■ -)

/ ,•}

A2

11

- 1

1

1

0

- 1

8

0

0

1

0

- 1

16

- 1

1

1

- 1

0

- 1

1

0

- 1

0

1

- 5

1

- 1

- 1

1

1

29

1

1

1

0

0

Subproblem 1:

0

0

0

1

0

0

Max z(KP,) = (10-l l)zi i + (7-8)z 2 i+(5-16)z3 1 + l
s.t. 9z n +6z2 i+3z 3 1 < 11

Zll,Z21,Z3l S { 0 , 1 }

Subproblem 1 is optimized at (0, 0, 0)T with ztKPO = 1.

352 BRANCH-AND-PRICE APPROACH

Subproblem 2:

Max

s.t.

z(KP2) = (6 - l l) z 1 2 + (8-8)Z22 + (l l -16)Z32 + 5

5Zi2 + 7z22+9z32 < 18

Zl2,Z22,Z32 e {0, 1}

Subproblem 2 is optimized at (0, 1 , 0) = z| with z(KP2) = 5.
z(KP2) > z(KPi) > 0, so we choose X\ as the new column. Compute B - ^ and

append the column to the revised simplex tableau and pivot:

z

¿?
4
4
A
A

i i

- i

i

i

0

- i

8

0

0

1

0

- 1

16

- 1

1

1

- 1

0

- 1

1

0

- 1

0

1

- 5

1

- 1

- 1

1

1

29

0

1

1

0

0

The updated tableau is

z

A
i\

A
Aj

4

6

- 1

0

1

1

- 1

8

0

0

1

0

- 1

11

- 1

0

1

0

0

4

1

1

- 1

- 1

0

0

1

0

- 1

0

1

29

0

1

1

0

1

0

1

0

0

1

0

0

0

0

Subproblem 1:

Max z(KPi) = (10-6)zn + (7-8)z2i + (5- l l)z 3 1 + 4

s.t. 9zn+6z 2 i+3z 3 1 < 11

¿11,^21, Z31 G {0,1}

Subproblem 1 is optimized with z(KPt) = 0.

Subproblem 2:

Max z(KP2) = (6-6)z12 + (8-8)z22 + (l l - l l)z32 + 0

S.t. 5Zi2+7z22+9z32 < 18

Zl2,Z22,Z32 G {0, 1}

Subproblem 2 is optimized with z(KP2) = 0.

GAP EXAMPLE 353

z(KP2) = z(KP!) = 0, so the optimal solution to the original problem is found,
which is zl = (1 , 0, 0) and z2 = (0, 1, 1).

In the previous example, we were lucky enough not to obtain any fractional
solution to the restricted master problem, so branching was not needed. However, in
practice, when the number of columns in the master problem is large, encountering
fractional solutions is very common. Therefore, we use the following example to
explain the branching scheme for the generalized assignment problem.

13.4.1 GAP Branching Scheme

Suppose at some iteration the solution to the restricted master problem includes
X\ = 1/3,X\ = 2/3. In terms of the original variables, this is equivalent to zu = 1/3,
z12 = 2/3, which is infeasible. Hence, we need to branch on either zn or z[2. Let us
choose Z] i arbitrarily. The two children problems will be created by setting z u = 0
and Z]] = 1. It is easy to see that zu=0 implies that X\ and X\ are ruled out of the
master problem, while zn = 1 implies that X\ and X\ are ruled out. So at each child
node, the master problem is reduced by two columns. Furthermore, in subproblem 1 at
each branch, z n is already fixed to either 0 or 1, and hence subproblem 1 is also
reduced by one column. Interested readers may try other numerical examples to
practice this branching scheme.

Standard branching on the X variable creates a problem along a branch where a
variable has been set to zero. Recall that z* = (z\¡, Zy, ■ ■ ■, zk

mj) represents a particular
solution to theyth knapsack problem. Thus, setting Xj = 0 implies that the solution z*
is excluded. However, it is quite likely that the next time the knapsack problem for the
same/th machine is solved and the optimal solution is also the same one represented
by Zj. In this case, it would be required to find the next second best solution. At the /-
level of the branch-and-bound tree, we may need to find the /th best solution, which is
very hard.

Fortunately, this difficulty can be overcome by applying a simple branching rule.
Instead of branching on the X' s in the restricted master problem, we use a branching
rule that corresponds to branching on the original variables v,y. When y¡/ = 1, all
existing columns in the master problem that do not assign task / to machine/are deleted
and task i is permanently assigned to machine/ (i.e., variable Zy is fixed to 1 in the/th
knapsack). Conversely, when y¡¡ = 0, all existing columns in the master problem that
assign task / to machine/ are deleted and task i cannot be assigned to machine/ (i.e.,
variable z,y is removed from the /th knapsack problem). In either case, each of the
knapsack problems contains one fewer variable after the branching has been done.

Note that the branching scheme discussed here is specific to the GAP. This is
typical of branch-and-price algorithms. Each problem requires its own problem-
specific branching scheme.

13.4.2 Tailing-Off Effect of Column Generation

One of the difficulties encountered in applying the column generation is the so-called
tailing-off effect of column generation. This effect manifests itself as: after a large

354 BRANCH-AND-PRICE APPROACH

number of generated columns, the improvement in the objective value becomes very
small. Clearly, it is ineffective to continue column generation until an optimum is
found. Therefore, the alternative is to terminate the column generation prematurely.
The objective value to the current restricted master problem gives a lower bound on
the final LP value.

Lagrangian duality can be used to obtain an upper bound on the final LP value. To
illustrate this, consider the alternative GAP formulation (13.16)—(13.19). An asso-
ciated Lagrangian relaxation can be obtained by dualizing the assignment constraints:

n Kj (m \ m / n Kj \

E E 5>4 4+j> 1-EE44
7=1 k=\ \i=\ J i=l \ 7=1 k=\)

J

subject to yj^-i = 1 y = 1,2,...,«
k=\

A* = 0 o r l j=l,2,...,n;k=l,2,...,Kj

which provides an upper bound on the optimal value of the LP for any dual vector
u = («i, w2, . . . , um)T.

The reader can verify that the objective function can be rewritten as follows:

m n Kj m

E^-"')4 A* EM'+EmaxE
i=l ,/=l k=\

m n

= EM'-+Ez^)
(= 1 7 = 1

This shows that after solving a given pricing problem within the branch-and-price
algorithm, all the information needed to compute an upper bound of the final LP
solution is available. The difference between these two bounds is called a duality gap.
The width of this gap may be used as a stopping rule to terminate the column
generation process.

13.4.3 Treatment of Identical Machines

Should the machines be identical, there is a modification of the above methodology
available. Because the machines are identical, the variables L can be aggregated into
a single variable

** = £ 4
J

and the convexity constraints can be combined into a single new constraint

5> = „
k=\

GAP EXAMPLE 355

where n is an integer. The master problem simplifies to

K

Max y^j}¡J¡kk

k=\
K

subject to ^ z f Xk — 1
k=\

£t=n
k=\

where coefficients zk must satisfy the constraint

m

Furthermore, this problem has only one subproblem

m

(KP) maxz(KP) = ^ (/>,—«,-)z,-

m

subject to 2_,w>z* — d
(=i
z, = 0 or 1 for all i

To check if there exists a column with positive reduced cost, we calculate the value

z(KP)-v

where «,•(/= 1,2,..., m) and vare the optimum dual prices from the solution to the LP
relaxation of the restricted master problem, as usual. Note that this special GAP
problem has the structure of a 0-1 cutting stock problem.

With identical machines, many solutions will differ only by the names of the
machines; that is, by swapping the assignments of two machines we get two solutions
that are the same but have different values for the variables. This property will cause
performance problems when branching on the original variables; that is, when a
fractional solution is excluded at some node of the tree, it pops up again with different
variable values somewhere else in the tree. Another property—the large number of
alternate optima dispersed throughout the tree—excludes pruning by bounds as a
viable pruning strategy.

To resolve these performance problems, a special branching scheme exists that
works directly on the master problem but is focused on the pairs of tasks: consider
rows of the master with respect to tasks r and s. First divide the solution space into
a pair of sets in which r and s appear together; tasks r and 5 can be combined into
one task when solving the knapsack. The other branch occurs when the solution

356 BRANCH-AND-PRICE APPROACH

space is divided into another pairs of sets in which r and s must appear separately,
in which case a constraint zr + zs < 1 is added to the knapsack. Note that the
structure of the two subproblems differs depending on the branch. Specifically,
branch 1 is

m

2_, w¡z¡ < d and zr + zs < 1

and branch 2 is
m

WjZj < d and zr = zs

13.4.4 Branch-and-Price Algorithm

The application of branch-and-cut algorithm on the branch-and-bound tree is
summarized below.

Step 1 (Solving restricted master problem). Find a feasible solution to the LP
relaxation of the restricted master problem. If the solution is integral, go to step
3. Otherwise, go to step 2.

Step 2 (Branching). If A- is a noninteger, then by y y = Ylk=\ Aj^j w e know that the
corresponding y y is also a noninteger. Branch on y y by setting it to 0 and 1,
respectively. At each branch, y y is also fixed in the subproblem /. Go to step 3.

Step 3 (Solving Subproblems). Pass the dual solutions obtained from the solution of
the restricted master problem to the subproblem(s). Solve each subproblem. Go to
step 4.

Step 4 (Pricing). If none of the subproblems has a positive reduced cost, stop. Current
solution to the restricted master problem is optimal to the original IP problem.
Otherwise, choose one subproblem with a positive reduced cost. The optimal
assignment associated with it corresponds to the new column that can be generated.
Go to step 1.

13.5 OTHER APPLICATION AREAS

Branch-and-price has been applied to many other MIP problems. Several examples
are described below.

• Airline crew scheduling (Vance, Barnhart, Johnson, and Nemhauser)
• Vehicle routing with time windows (Desrochers, Desrosiers, and Solomon)
• Machine scheduling (Bard and Rojanasoonthon)
• Origin-destination integer multicommodity flow problems (Barnhart, Hane, and

Vance)

£

NOTES 357

Airline crew scheduling deals with finding a minimum cost assignment of flight
crews to a given flight schedule, while satisfying restrictions dictated by collective
bargaining agreements and the Federal Aviation Administration. Traditionally, the
problem has been formulated as a set partitioning problem. An alternative formulation
allows the use of a branch-and-price algorithm.

Vehicle routing problems with time windows is to find the minimum number of
vehicles required to visit all customers subject to capacity constraints and time
windows defined by the earliest and the latest times when the customer will permit the
start of service. The LP relaxation of the set partitioning formulation is solved by
branch-and-price algorithm.

Machine scheduling is to schedule «jobs on m nonhomogeneous parallel machines
with multiple time windows and job priorities. The objective is to maximize the
weighted number of jobs scheduled, where a job in a higher priority class has an
infinite more weight than a job in a lower priority class. A branch-and-price algorithm
is used to solve the problem.

The origin-destination integer multicommodity flow problem is a constrained
version of the linear multicommodity flow problem in which flow of a commodity
may use only one path from origin to destination. A new branching rule is devised that
allows columns to be generated efficiently as well as allow cuts or cover inequalities to
be generated at each node of the branch-and-bound tree. The use of column generation
and cut generation is called branch-and-price-and-cut.

13.6 NOTES

Sections 13.1 and 13.3

The term branch-and-price first appeared in Savelsbergh (1997) for solving the
generalized assignment problem, even though the application of column generation
using Dantzig-Wolfe decomposition principle appeared at least 5 years earlier in
Desrochers et al. (1992) for solving a generalized vehicle routing problem.

Section 13.2

The decomposition principle originated by Dantzig and Wolfe (1960).

Section 13.4

Applications of branch-and-price are airline crew scheduling (Vance et al, 1997),
vehicle routing with time windows (Desrochers et al., 1992, Bard et al., 2002),
and machine scheduling (Bard and Rojanasoonthon, 2006). For application of
branch-and-price-and-cut, see integer multicommodity flow problems (Barnhart
et al., 2000).

358 BRANCH-AND-PRICE APPROACH

13.7 EXERCISES

13.1 Solve the following LP problem using Dantzig-Wolfe decomposition.

Maximize — 3xj + XJ—XT, + X4
subject to 2*i— xi— X3 + X4 < 8

-2JCJ + 2x2 + 2x3 + 3x4 < 10

—X\ +X2 — 3X3+X4 < 3
x > 0

13.2 Solve the following problem using Dantzig-Wolfe decomposition:

Minimize 4xi + 2x2 + X3—2x4
subject to xi —X2 + 2x3 + X4 < 11

X2 +X3 +X4 > 17
3xi—X3—3x4 > 5
x > 0 and integer

13.3 Compare the Dantzig-Wolfe decomposition applied to the GAP problem with
its generic form in Section 13.2. Is there any difference? If there is difference, is
it simply an equivalent expression or is it completely different in concept?

13.4 Solve the following GAP problem with branch-and-price using the data given
below: m = 3, n = 2,

23
27

10
13
9

8 \
14
1 0 /

W =
/ 1 0

14

V8

9
11
13

14
SOLUTION VIA HEURISTICS,
RELAXATIONS, AND PARTITIONING

14.1 INTRODUCTION

This chapter introduces a variety of primal heuristic algorithms that can be used to
obtain a good solution or an approximate solution for an integer program or a
combinatorial optimization problem (COP). Both classical and artificial intelligence
(AI) heuristic algorithms are provided. The traveling salesman problem (TSP) and
other combinatorial optimization problems are used for the purpose of illustration.
This chapter also (a) describes various relaxation methods for solving integer
programming (IP) problems, (b) lists examples of IP model types to which the
Lagrangian relaxation approach is applied, (c) derives the associated Lagrangian dual
problems for both linear and integer programs, (d) provides three efficient methods
for solving the Lagrangian dual, and (e) develops a decomposition algorithm for
integer programming.

14.2 OVERALL SOLUTION STRATEGIES

Linear programming problems have been shown to be much easier to solve than
integer programming problems. However, the simplex algorithm and the capability it

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

359

360 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

provides to efficiently solve a sequence of linear programs is basic to solving integer
programs, be they pure, mixed, or binary. If the IP has special structure, the solution
to the LP relaxation is sometimes the solution to the IP (see Chapter 10). Otherwise,
the solution strategy recommended involves selecting from the following:

• Preprocessing

• Branch-and-bound (B&B)or its descendents
- branch-and-cut (B&C)

- branch-and-price

• Heuristics to develop

- Good, approximate solutions

- Tighter lower bounds

• Relaxations to develop tighter upper bounds

Furthermore, preprocessing, heuristics, and relaxations can be used at each node
in branch-and-cut. This exemplifies the strategy of using general-purpose algorithms
to control the overall MIP solution process and special-purpose approaches to
improve their overall effectiveness. The user of MIP solver software generally has
the option of selecting from these approaches, that is, creating a "customized"
approach.

14.2.1 Better Formulation by Preprocessing

Preprocessing was discussed in detail in Chapter 4. Recall that a better formulation
of an MIP is one that is easier to solve. It is widely accepted that almost any MIP
formulation can be improved by preprocessing—this is why modern MIP solvers
include a set of rules (see Section 4.2) bundled together into the so-called preprocessor
or presolver, automatically applied on behalf of the user. In Section 4.3, we introduced
basic preprocessing techniques for tightening bounds, fixing variables, and identify-
ing redundant constraints and infeasibility in general integer programming. In
Section 4.4, the reader can find techniques for the same functions, but specially
designed for pure 0-1 integer programs. The key idea of preprocessing is to
reformulate the problem statement created by the modeler in such a way that the
difference in objective function optimal values for the linear programming relaxation
and the respective integer program is as small as possible.

In general, preprocessing introduces tighter constraints that dominate existing
constraints, which are removed from the reformulated model. So, the problem size
generally is improved. Reformulation is completely independent of the solution of the
linear programming relaxation of the original model. Results of preprocessing MIP
models are reported to reduce problem size by a factor of 5 and runtime by a factor of
10; hence, preprocessing is valuable at the start of any attempt to solve an MIP model.
If you are given this option, use it.

OVERALL SOLUTION STRATEGIES 361

14.2.2 LP-Based Branch-and-Bound Framework

LP-based branch-and-bound remains central to state-of-the-art MIP solvers. The
application of branch-and-bound to general integer programs was presented in
Section 11.1. Recall that branch-and-bound can be viewed as a divide-and-conquer
approach to solving IP problems, in which a branching process for dividing and
a bounding process for conquering are applied. In the enumeration that keeps up
with progress toward optimality in this implicit enumeration approach, pathways
(branches) that cannot lead to a better solution than the best already identified are
systematically pruned (fathomed). At points where branching does occur, two linear
programs are generally solved and the resulting information is used to guide the
so-called "intelligent" search for the IP optimal solution.

Versions of the classic branch-and-bound algorithms specialized to binary integer
programs and mixed integer programs are well known and may be founded in Hillier
and Lieberman (2005). In all these versions, branch-and-bound is LP based; that is,
it depends on solution of an intelligently chosen sequence of linear programs to
approach the optimal integer solution. Because upper and lower bounds are
generated to aid with fathoming and testing for optimality, the algorithm provides
built-in measure of solution quality if the user wants to terminate the search before
optimality is reached. This is often necessary if branch-and-bound is used on large-
scale MIPs.

Heuristic and relaxation for systematically tightening lower and upper bounds,
respectively, are in fact important solution strategies in integer programming. These
general strategies will be introduced briefly in Sections 14.2.3 and 14.2.4 and in detail
in Sections 14.3 and 14.4.

14.2.3 Heuristics for Tightening Lower Bounds

Tightening bounds on variables was presented in Section 4.3. Here, we are concerned
with tightening bounds on the optimal value of an MIP. Prior to or during application
of a solution algorithm to solve the MIP, if a tighter lower bound on the optimal value
is known, searches can be limited to more promising portion of the relaxed LP feasible
region. In general, bounds obtained from LP relaxation may be too weak to guide the
search for the MIP optimum. Also, the heuristics presented in Section 14.3 often find
good solutions to the MIP—that is, solutions that are within a few percent of optimal.
Such solutions can be accepted as "good enough" or can become the starting point for
an algorithm (e.g., branch-and-bound), significantly reducing the algorithm's number
of iterations to converge.

Three heuristic approaches that have been successfully applied to MIPs are
presented in Section 14.3:

• Local search
• Tabu search

• Genetic algorithms

362 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

Some challenging MIPs can only be solved by heuristics, and these solutions are
of course approximate (each resulting in a lower bound on the optimal solution of the
original, or primal, minimizing MIP). Another weakness of heuristics is that they
provide no upper bound on the MIP optimal value, so the user will not know how
close to optimum he may be. Upper bounds require dual problem solution, as
discussed next.

14.2.4 Relaxations for Tightening Upper Bounds

Section 14.4 presents three "relaxation" approaches to obtaining a lower bound on the
optimal value of a primal, minimizing MIP:

• Linear programming relaxation

• Combinatorial relaxation
• Lagrangian relaxation

The first two create a revised (more extensive) feasible region, but leave the
objective function as is. The third approach substitutes another minimizing objective
function for ex, one that is the same or smaller value on the fixed feasible region.

14.2.5 Strong Cuts for Tightening Solution Polyhedron

The concept of cuts, additional constraints that cut off (reduce the extent of) the
relaxed LP solution space while leaving the MIP solution space unchanged, was
introduced in Chapter 12. Cuts are generated based on model data and are adjoined to
the (current) model to cut off a relaxation solution x* in the solution polyhedron P.
Stronger cuts produce smaller solution polyhedrons, which still contain the MIP
feasible region. Three cut-generating techniques were presented in Section 12.3:
rounding, disjunction, and lifting. MIP solvers today give the user many options for
cutting planes, both general and structure dependent. In Section 12.3, the reader will
find general cuts from sets involving pure integer variables and sets involving mixed
integer variables. More specialized cuts generated from 0-1 knapsack sets and sets
containing 0-1 coefficients and 0-1 variables are also presented along with cuts from
sets with special structure.

The branch-and-cut approach that first appeared in the mid-1980s was a break-
through that generalized the branch-and-bound method. It built upon the branch-and-
bound framework with additional cuts generated and imposed on each node in the
branch-and-bound tree, prior to pruning and branching. B&B applies two simple
bound cuts at each node and takes advantage of fast reoptimization of the LP at each
node. B&C activity at each node may include generating stronger cuts, problem
preprocessing, or even application of a primal heuristic. So, many cuts may be applied
at each node; the trade-off is that a tighter bound is generated at the node, prior to
pruning and branching. Branch-and-cut options are a standard feature of commercial
MIP solvers today.

PRIMAL SOLUTION VIA HEURISTICS 363

14.3 PRIMAL SOLUTION VIA HEURISTICS

A practicing engineer or operations analyst would say that a heuristic is a simple
procedure (or algorithm) that is meant to provide a good but not necessarily optimal
solution to a particular difficult problem easily and quickly. In MIP, a heuristic is an
approximate algorithm designed to quickly find good solutions, but the solution may
not be optimal. The word "heuristic" invokes the concept of purposeful search,
because the word derives from the Greek "heuriskein" that means "to discover."
Shapiro (2001) distinguishes between problem-specific heuristics that use "rules of
thumb" to arrive at good feasible solutions to MIPs and general-purpose methods
for intelligently searching the space of feasible solutions. He suggests that the latter
"may be combined with problem-specific heuristics to improve their effectiveness."
A term that is sometimes used when one heuristic controls another at a lower level of
activity is metaheuristic.

Local search heuristics start with a given feasible solution and by limited changes
(often called interchange) in one or a few coordinates, attempt to improve the
objective function value while retaining feasibility. Hence, this sort of heuristic
applies a rule to select an element from a set. For example, the traveling salesman
problem presents an obvious simple heuristic: go to the next closest city not yet
visited. Starting at home base and systematically moving from one city to the nearest
unvisited city until all cities have been visited, and then returning home generates a
feasible tour with no subtours. The route prescribed may not be optimal, in fact may be
far from optimal. Two more sophisticated local search methods, tabu search and
simulated annealing, will be discussed in the context of solving MIP problems in
sections to follow. Finally, the general-purpose heuristic method known as genetic
algorithms will be described.

There are many reasons to include a section on heuristics in any applied integer
programming text:

1. Good heuristics are available for many integer and combinatorial optimization
problems due to their structure.

2. Solving real-world MIPs by the approaches of earlier chapters can be too
slow—solutions are needed in seconds or minutes, not hours or even days.

3. The MIP formulation is too difficult for branch-and-bound, branch-and-cut, and
other LP-based approaches.

Tempering these practical considerations is required to assure quality (near
optimal) solutions. Unlike the earlier methods to solve MIPs, heuristic search can
become trapped at a local optimum. The improved local search heuristics, tabu search
and simulated annealing, have features that enable the search to escape from a local
optimum. Genetic algorithms build new, improved solutions from pairs of solutions,
mimicking the genetics of natural selection. These primal heuristics have another
weakness. While providing lower bound on the MIP minimum optimal value, which
improve as the heuristic discovers better solutions, they provide no upper bounds to
enable quantification of how close the heuristic solution is to optimal. This requires

364 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

dual problem solution, to be discussed in Section 14.4. Nemhauser and Wolsey (1988)
observed that "often, primal and dual heuristic solutions can be found in pairs.
The complimentary slackness conditions are one way of pairing heuristic solutions.
The dual solution provides an upper bound on the deviation from optimal of the primal
solution."

14.3.1 Local Search Approaches

Local search heuristics for MIP problems were included in Chapter 9 of the famous
text by Garfinkel and Nemhauser (1972). The same year Woolsey (1972) observed
that "many of those who actually solve (MIP) problems turn to heuristic methods to
get good starting solutions, followed by some kind of branch-and-bound solution to
take every possible advantage of problem structure." Papers published in the 1980s
by Zanakis and Evans (1981), Haessler (1983), and Hillier (1983) all discussed the
proper situation and role of local search heuristics. A comprehensive reference is
Walser (2008). Generally, there are three roles for local search heuristics in MIP:

1. Locate a feasible solution as starting place for an MIP algorithm, because
finding simply a feasible solution for an MIP can be difficult in practice.

2. Local search methods themselves can benefit from a feasible starting solution.

3. Local search methods can be integrated into general search method (e.g.,
genetic algorithms) or MIP methods (e.g., branch-and-cut).

The following is an example of two local search heuristics.

Example 14.1 (Example 2.5 Wolsey (1998)) Consider the following six city
symmetric traveling salesman problem (STSP) where city 1 is home base and the
matrix C consists of distances (costs) for every city pair.

12
10
18
24
—

1 1 \
32
6
3
19

-)

Wolsey applies a "greedy algorithm" that builds up the traveling salesman tour
segment-by-segment, always choosing the least costly segment not creating a subtour
if added to the current set of segments: The sequence is (1, 3) with cost 2; (4, 6) with
cost 3; (3,6) with cost 6; (1,2) with cost 9; (2,5) with cost 10; and (4,5) with cost 24.
The greedy tour is (1,3,6,4,5,2,1) with total cost 54. The nearest-neighbor heuristic
applied to the same matrix C yield the following: (1,3) with cost 2; (3,6) with cost 6;
(6, 4) with cost 3; (4, 5) with cost 24; (5, 2) with cost 10; and (2, 1) with cost 9.
The nearest-neighbor tour is (1, 3, 6, 4, 5, 2, 1) with total cost 54, the same as the
greedy tour.

PRIMAL SOLUTION VIA HEURISTICS 365

Examples of specific MIP models for which local search algorithms have been
developed are as follows:

• Real-time scheduling of jobs on mixed model assembly lines (Bolat et al., 1994)
• Trim-loss problem in slitting rolls of paper (Ramirez-Beltran and Aguilar-

Ruggiero, 1997)
• Capacitated production scheduling (Walser et al., 1998)
• Job shop scheduling with earliness and tardiness costs (Danna et al., 2003)
• Vehicle routing with time windows (Danna, 2004).

To motivate an example application of generic algorithms to appear in
Section 14.3.2, let us describe an application of a local search algorithm (nearest
neighbors) that appears in Shapiro (2001)1. The specific problem here is the local
delivery problem: m customers require delivery from a depot each day; each customer
has an integer demand for the product on a given day; and an unlimited number of
delivery trucks are available at the depot, each with identical capacity (10, in this
case). The cost of sending a truck on a particular route involves a fixed cost and a
variable cost depending on the cost associated with traveling each leg of the truck's
assigned route. The supplier wants to meet the daily delivery demand, yet minimize
the number of trucks used (fixed cost); and within each route, minimize the route cost
(an embedded traveling salesman problem). The nearest unserved neighbor is used
to created the routes, of course staying within the capacity constraint of the truck
and Shapiro's side constraint that no unserved customers more than 60 miles distant
from the currently included customers on a route will be considered.

Two versions of the heuristic are used; one, where the current unserved customer
closest to the depot is used to start each new route; and the other where the current
unserved customer farthest from the depot is used to start each new route. In the
example (5.1) in Shapiro (2001), the depot is labeled 0 and customer numbered 1-13.
Besides a 13 x 13 matrix of distances, the demand at each customer (an integer
between 2 and 9) is provided. The result of the first version of the heuristic was as
follows:

Route Customers Cost ($)

1 0-11-10-0 182
2 0-5-6-9-0 174
3 0-12-7-0 169
4 0-2-1-0 197
5 0-4-3-0 214
6 0-8-0 170
7 0-13-0 200
Total cost of routing solution 1 1306

1 From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage
Learning, Inc. Reproduced with permission, www.centage.com/permissions.

366 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

Note that in route 2, the shortest sequence (TSP solution) is 0-9-6-5-0 for a route
cost of 74, or a total trip cost of 174. For routes with one or two customers, the order
of listing yields the minimum distance (TSP) order of delivery.

The result of the second version of the heuristic was as follows:

Route Customers Cost ($)

8 0-13-3-5-0 241
9 0-1-2-6-0 252
10 0-10-7-0 192
6 0-8-0 170
11 0-4-9-0 199
12 0-12-0 138
13 0-11-0 132
Total cost of routing solution 2 1324

Note in routing solution 1, the larger cost routes are assigned later, whereas in
routing solution 2, the largest cost routes appear earlier. Also, the solutions are quite
different except for the repetition of the route 0-8-0. In the section on generic
algorithms, we will show how to select routes from these two preliminary solutions
(parents) to create a new solution (offspring) with 11% better performance than
routing solution 1. But for now, routing solution 1 is the best solution.

14.3.2 Artificial Intelligence Approaches

Artificial intelligence is a broad and intensely important field of study, encompassing
many approaches (expert systems, neural networks, heuristics, etc.) with an ever-
expanding list of applications for each approach. The discussion here is limited to
three heuristics that have proven themselves valuable for solving integer and
combinatorial programming problems:

• Tabu search
• Simulated annealing

• Genetic algorithms

Genetic algorithms are attributed to Holland (1975), though the most popular
reference to date was written by Holland's student Goldberg (1989). Simulated
annealing was conceived by Kirkpatrick et al. (1983) and independently by Cerny
(1985). However, the article by Glover (1986) suggested strongly that artificial
intelligence heuristics were appropriate for many of the difficult problems being
encountered while solving large MIPs and COPs with special structure. In this same
article, Glover is credited with creating (and coining the name) tabu search. Glover
promoted a "blend of heuristics and algorithms" and stated that "effective strategies
for combinatorial problems can require methods that formal theories are unable to
justify," that is, are not guaranteed to converge.

PRIMAL SOLUTION VIA HEURISTICS 367

Glover (1986) noted that "perhaps the most conspicuous limitation of a heuristic
method for problem solving involving discrete alternatives is the ability to become
trapped at a local optimum." He suggested four classes of heuristics to transcend the
problem of local optimality. Tabu search was one class, and simulated annealing was
introduced as a new entrant in the "controlled randomization" class, which was
already established with "random restart" and "random shakeup" approaches. From
the AI point of view, Glover states that "tabu search deviates to an extent from what
might be expected of intelligent human behavior" and that simulated annealing,
based on physical behavior of molten metal as it cools, resembles human behavior
only in that "a human may take non-goal-directed moves with greater probability at
greater distances from a perceived destination."

Generic algorithms are considered general-purpose or global-search heuristics.
Because they mimic both natural (genetic) adaptations and adaptations observed
in human behavior, they are properly called an artificial intelligence approach. The
processes found in genetic algorithms, such as crossover, selection, and mutation,
were adapted from evolutionary biology.

LetF = Ï {x,y)\^aijxj-\-'^gikyk < b¡ \

where/ = \,...,m;xj > 0,j = 1 , . . . , / j ; and yk integer, k = \,...,p

that is, F is the feasible region of an MIP, as defined in Chapter 2. In the application of
heuristics, a solution SeF that is currently the best solution is called the incumbent.
Local search heuristics, including tabu search and simulated annealing, define a
neighborhood Q(S) of solutions close to S within F. How Q{S) is formed is problem
specific. For instance, in the local routing problem, a neighborhood of a given
(incomplete) route might be to add any yet unassigned customer to the route, subject
to constraints that define F in that problem, or take away one of the customers assigned
to the route already. Wolsey (1998) illustrates neighborhood formation rules for two
COPs: uncapacitated facility location and the graph equipartition problem.

The term "tabu" in tabu search derives from a short-term memory feature of the
heuristic that prevents revisiting solutions that have been visited in the recent past.
A list of fixed or randomly varying size of recently visited solutions is maintained,
called the tabu list. Another approach is to prohibit visits to solutions that have certain
attributes.

Wolsey (1998) provided a description of a basic tabu search algorithm, which we
reproduce here as Figure 14.1, with permission.

Pedroso (2006) has described how to apply tabu search to the solution of a bounded
version of the generic MIP defined in Chapter 2:

Min z = ex + dy
subject to (x, y) £ F (defined above)

and for integer^, lk < yk < uk, k=\,...,p

368 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

1. Initialize an empty tabu list.
2. Get an initial solution 5.
3. While the stopping criterion is not satisfied,

3.1. Choose a subset Q'(S) ç Q(S) of nontabu solutions.

3.2. Let 5' = arg min{/(7'):7'eQ(S)).

3.3. Replace S by S' and update the tabu list.
4. On termination, the best solution found is the heuristic solution.

The parameters specific to tabu search are as follows:
(i) The choice of subset Q'(S). Here, if ß(S)is small, one takes the whole

neighborhood, while if Q(S) is large, Q'(S) can be a fixed number of

neighbors of S, chosen randomly or by some heuristic rule,

(ii) The tabu list consists of a small number t of most recent solutions or
modifications. If f = 1 or 2, it is not surprising that cycling is still
common. The magic value t = 7 is often cited as a good choice,

(iii) The stopping rule is often just a fixed number of iterations, or a certain
number of iterations without any improvement of the goal value of the
best solution found.

FIGURE 14.1 Tabu search algorithm (From Wolsey, Integer Programming. Copyright 1998
John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons).

Pedroso's strategy involves fixing the integer variables y by tabu search heuristic
and then obtaining the corresponding optimal objective value z and continuous
variables x by solving a linear programming problem via the simplex algorithm.
A critical measure at the end of this LP solution is the sum v of the constraint
violations, if any. Pedroso calls a solution S' better than SJ if the extent of constraint
violation v, < v,-, or if v, = y, and z, < zy. As Pedroso explains,

• The initial solution is obtained by rounding the LP relaxation optimal values for
integer variables to obtain a feasible solution.

• Tabu search starts operating on this solution by making changes exclusively
in the integer variables, after which the continuous variables are recomputed
through LP optimal solution.

• Modifications of the solutions are made using a simple neighborhood structure:
incrementing or decrementing one unit to the value of an integer variable's value
in the incumbent solution; hence, y' is a neighbor solution to y if y¡¿ =y¡c + 1 or
ïk =yie— 1> for one index k, and y) = yj for all indices y ^ k.

• Moves are tabu if they involve a variable that has been changed recently.

Pedroso states that "this is tabu search based on short-term memory, as described in
Glover (1989). As suggested in Glover (1990), we complement this simple tabu search
with intensification and diversification." See the notes for more on tabu search.

PRIMAL SOLUTION VIA HEURISTICS 369

As stated earlier, simulated annealing includes a probabilistic "controlled
randomization" feature that leads to evaluation of random neighbors of the incum-
bent, and due to an embedded looping process (the Metropolis algorithm popularized
by Hastings in 1970), moves to solutions with higher objective function value
with nonzero probability. In the Metropolis algorithm, an initial solution S (state
of material), an objective function/(internal energy), and initial temperature Tare
known. A neighbor S' is chosen randomly, and the energy levels of the incumbent/(S)
and the neighbor f(S') are compared. If the energy level is lower, keep S' with
probability 1 ; if the energy level is higher, keep S' with probability e^s) -^S)/T. The
temperature is gradually reduced by a factor r, 0 < r < 1, known as the cooling ratio.
This probability of accepting S' over S when f[S') >fiS) decreases as temperature
reduces (metal cools). A stopping criterion is when the metal is "frozen," that is, when
0 < T< 1. The probabilistic feature in the looping process periodically moves the
incumbent away from local optima, but the repeated application of r forces the
proportion of nonimproving interchanges to decrease over time.

Simulated annealing got its unusual name because it mimics the metallurgical
process known as annealing, a technique involving controlled cooling of a molten
metal to increase the size of its crystals. The heating causes atoms to wander
randomly through states of higher energy; gradually lowering the temperature
enables perfect crystals to form and allows probabilistic changes in state, the goal
is to bring the system from its initial state to a state with the minimum possible
energy. According to Kirkpatrick et al. (1983), simulated annealing offered the dual
benefits of

• ability to escape local minima at nonzero temperature, and
• divide and conquer outcomes, where gross features of the final state appear at

high temperature while finer details appear at lower temperatures.

Wolsey (1998) provided a description of the simulated annealing heuristic, which
we have reproduced as Figure 14.2, with permission.

Simulated annealing has been used to solve a variety of COPs as shown below and
is reputed to be very successful:

• Graph partitioning problem in Johnson et al. (1989)

• Graph coloring problem in Johnson et al. (1991)
• Traveling salesman problem in Kirkpatrick et al. (1983)
• Quadratic assignment problem in Wilhelm and Ward (1987)

Genetic algorithms employ a probabilistic search approach. Unlike tabu search
and simulated annealing, genetic algorithms maintain a pool (or population) of
candidate solutions, and this population evolves based not only on mutation (like
SA) but also on parent selection of certain pairs from the population, combination
(or crossover) to create one or two offspring, and finally on population selection
based on a fitness criterion—a new population is selected by replacing members of

370 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

1. Get an initial solution S.

2. Get an initial temperature T and a reduction factor r with 0 < r < 1.

3. While not yet frozen, do the following:
3.1 Perform the following loop L times:

3.1.1 Pick a random neighbor S' of S.

3.1.2 Let A =/(S') -f(S).

3.1.3 If A<0 , s e tS=S ' .

3.1.4 I f A > 0 , s e t S = S ' with probability e~m.

3.2 Set T <- rT. (Reduce the temperature.)

4. Return the best solution found.

Note that as specified above, the larger the A is, the lesser is the chance of

making a move to a solution worse by A. Also, as the temperature decreases,

the chances of making a move to a worse solution decrease.

Exactly as for local exchange heuristics, one has to define

(i) A solution
(ii) The neighbors of a solution
(iii) The cost of a solution
(iv) How to determine an initial solution

The other parameters specific to simulated annealing are then

(v) The initial temperaturer
(vi) The cooling ratior
(vii) The loop length L
(viii) The definition of "frozen," or the stopping criterion

FIGURE 14.2 Simulated annealing algorithm (From Wolsey, Integer Programming. Copy-
right 1998 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons).

the original population by an identical member of offspring. Thus, the population
evolves from one generation to the next. This process from evolutionary biology
can be modeled in a continuous generational genetic algorithm pseudocode in
Figure 14.3.

To illustrate the application of a genetic algorithm to a COP, consider the two
solutions obtained for the local routing problem introduced in Section 14.3.1 on local
search. The following example2 is taken from Shapiro (2001), who calls genetic
algorithms "perhaps the most popular class of heuristics for analyzing combinatorial
optimization problems arising in supply chain management." Shapiro provides an
excellent explanation of genetic algorithms in terms of chromosomes. He notes that

2 From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage
Learning, Inc. Reproduced with permission, www.centage.com/permissions.

PRIMAL SOLUTION VIA HEURISTICS 371

1. Choose initial population.
2. Evaluate the fitness of each individual in the initial population.
3. Repeat until termination (time limit, or sufficient fitness achieved by a

population member, or plateau reached):
(i) Select best-ranking individuals to reproduce
(ii) Create offspring by crossover and/or mutation
(iii) Evaluate the individual fitness of the offspring
(iv) Replace worst-ranked part of population with offspring

FIGURE 14.3 Genetic algorithm pseudocode.

"both crossovers and mutations are invoked probabilistically... this allows variations
in offsprings. The likelihood that a chromosome is included in an offspring depends
on its fitness value, which is defined relative to the objective of the optimization."
Chromosomes in our example are the various routes included in each solution (1 and
2) given earlier. The underlying legs in the routes, for example, "3-13" in route 8
"0-3-3-5-0" are variously called schemata, building blocks, or genes.

In Figure 14.4, from Shapiro (2001), crossover is applied to the two solutions of the
local routing problem given earlier. Recall that there were a total of 13 routes between
the 2 (parent) solutions. At the top of the figure, the routes are reordered by their
fitness, measured in cost per tons delivered. A probability of selection P(select) has
been attached to each route, and the probabilities decrease with fitness. The form of
the probability rule was P(x) = Ke~Xx for x < 15, where K= 1.953 and X = 0.04463
were chosen so that P(15) = 1.0, P{x) decreases with increasing x, and P(20) = 0.80.
Hence, any route approaching fitness value 15 should have a very high probability
of being selected in a crossover solution, and routes with fitness value 20 should have
a fairly high (0.8) probability of being selected.

A crossover solution is shown in the middle of the figure. A route was selected for
potential inclusion of its P(select) was greater than a randomly chosen number r,
0 < r < 1. But, the route is not included in the crossover solution if it visits a customer
already covered by an earlier route selected for inclusion in its crossover solution.
Of course, different streams of random numbers could be used to generate many
crossover solutions besides this one. At the end of the GA application, all but one
customer (customer 6) are in the crossover solution. Customer 6, with 2 units of
demand, could have been added to routes 6,4, or 11. Shapiro says, "this new route can
be viewed as a mutation of the original chromosome route 11." The resulting
crossover solution is approximately 11% better than the lowest cost parent (feasible
solution 1) with a cost $1306.

Applications of genetic algorithms to COPs include the following:

• Manufacturing cell design (Joines et al., 1996)

• Traveling salesman problem (Chatterjee et al., 1996) and (Katayama et al., 2000)
• Generalized assignment problem (Wolsey, 1998).

372 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
49

A

Selection

order

1

2

3

4

5

6

7

8

9

10

11

12

13

Selection

order

1

2

3

4

5

6

7

8

9

10

11

12

13

B 1

Route 3

Route 1

Route 13

Route 6

Route 10

Route 5

Route 8

Route 4

Route 2

Route 9

Route 11

Route 12

Route 7

Route 3

Route 1

Route 13

Route 6

Route 10

Route 5

Route 8

Route 4

Route 2

Route 9

Route 11

Route 12

Route 7

New Feasible

Solution

C [D [E F 1
Routes Ordered by Fitness Value

Delivered Cost/

Route Cost tons delivery ton

0-12-7-0 169 10 16.90

0-11-10-0 182 10 18.20

0-11-0 132 7 18.86

0-8-0 170 8 21.25

0-10-7-0 192 9 21.33

0-4-3-0 214 9 23.78

0-13-3-5-0 241 10 24.10

0-2-1-0 197 8 24.63

0-5-6-9-0 174 7 24.86

0-1-2-6-0 252 10 25.20

0-4-9-0 199 7 28.43

0-12-0 138 4 34.50

0-13-0 200 3 66.67

Crossover Analysis

Random Overlap

probability Route Cost earlier route

0.69 0-12-7-0 169 No

0.56 0-11-10-0 182 No

0.30 0-11-0 132 Yes

0.32 0-8-0 170 No

0.66 0-10-7-0 192 Yes

0.79 0-4-3-0 x x

0.55 0-13-3-5-0 241 No

0.24 0-2-1-0 197 No

0.80 0-5-6-9-0 x x

0.35 0-1-2-6-0 252 Yes

0.10 0-4-9-0 199 No

0.98 0-12-0 x x

0.92 0-13-0 x x

x = Rejected by probability test

Route 3 0-12-7-0 169

Route 1 0-11-10-0 182

Route 6 0-8-0 170

Route 8 0-13-3-5-0 241

Route 4 0-2-1-0 197

Augmented route 11 * 0-4-6-9-0 207

Total cost 1166

•Customer 6 was added to route 11 (0-4-9-0)

G

/^select)

0.92

0.87

0.84

0.76

0.75

0.68

0.67

0.65

0.64

0.63

0.55

0.42

0.10

Include

route?

Yes

Yes

No

Yes

No

No

Yes

Yes

No

No

Yes

No

No

FIGURE 14.4 Genetic algorithm applied to local delivery problem (From Shapiro, Modeling
the Supply Chain, IE Copyright 2001 South-Western, a part of Centage Learning, Inc.
Reproduced with permission, www.centage.com/permissions)

DUAL SOLUTION VIA RELAXATION 373

14.4 DUAL SOLUTION VIA RELAXATION

Section 14.3 was devoted to finding a first feasible solution to an MIP and then finding
improved feasible solutions through heuristics. No guarantee of optimality came with
the heuristic, but each improved solution gave a tighter upper bound on a minimizing
objective function for the MIP. In this section, we consider the dual problem of finding
lower bounds for a minimizing problem. Because the duality theory of integer
programming has been extremely developed for pure integer programs, we shall
assume the problem at hand is IP, as follows:

(IP) zIP = min{cx : x G F}, F = {x G Z"+ : Ax > b}

where c is n x 1, A is m x n, and b is m x 1 in dimension.
If a suitably tight lower bound on zIP can be found, then in combination with the

primal upper bounds discussed in Section 14.3, one can develop criteria for stopping
any algorithmic approach to find zIP once the current objective function value falls
within known bounds. This section presents three "relaxation" approaches to
obtaining a lower bound on z1P. The first two, linear programming relaxation and
combinatorial relaxation, create a revised (more extensive) feasible region but leave
the objective function as is. The third approach, Lagrangian relaxation, substitutes
another minimizing objective function for ex, one that has the same or smaller value
on the fixed feasible region. Another approach to finding a lower bound on zIP is based
on duality, and will be presented in Section 14.5.

Definition 14.1 A relaxation of an IP is any minimization problem

(RP) zR = min{zR(x) : x e FR}

with the properties

(Rl) F C F R

(R2) zR(x) < ex, for all x G F

Proposition 14.1 If RP is infeasible, so is IP. If IP is feasible, then zR < ZiP.

In Sections 14.4.1 and 14.4.2, one or more constraints will be dropped from F, and
zR(x) = ex.

14.4.1 Linear Programming Relaxation

The linear programming relaxation of IP is given by

(LP) zLP = min{cx : x G L}, where L = {x G R"+ : Ax > b}

An optimal solution x* to zLP is optimal for IP if x* has all integer values. Another
condition for x* to be optimal for IP is if ex* =ZiP, which of course is unknown.

374 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

So, with the right set of conditions on the upper bound, x*, and zLP = ex*, the LP
relaxation may provide insight into the optimal vector and value of zIP. Also, recall
from Section 4.1 that many combinatorial optimization problems have the property
that their LP relaxation has feasible region L equal to the convex hull of the basic
feasible integer solutions:

• Assignment
• Transportation

• Transshipment
• Maximum flow
• Linear minimum cost flow

These are the so-called "easy integer programs" of Chapter 10, and solving their LP
relaxation provides the integer optimum as well.

Consider the following example to see how helpful the LP relaxation can be.

Example 14.2 Suppose the integer program is

Min z = 5x\ + 4x2
3x, +2x 2 > 5
2*1 + 3x2 > 7
x\,X2 > Oand integer

Some obvious feasible points with their z-value are shown below:

(2.1) z = 1 4
(1.2) z = 1 3
(3,1) z = 1 9
(0,3) z = 1 2
(4,0) z = 20

So, an upper bound on z* is 12. Now, the solution to the LP relaxation of the integer
program is x* = (0.2, 2.2) with z* = 9.8. At this point, we know the optimal value of
the IP must be either 10, 11, or 12. In fact, the point (0, 3) turns out to be the optimal
integer solution with optimal value 12.

Another obvious property of the linear programming relaxation, in fact any
relaxation of IP, is that if the relaxation is infeasible, the original IP is infeasible.

14.4.2 Combinatorial Relaxation

As the name implies, sometimes when we remove one or more constraints from IP,
we create an instance of a combinatorial optimization problem. If that COP turns out
to be easy to solve, then a lower bound on ZIP can be generated rapidly. A five-city
(asymmetric) traveling salesman problem is used to illustrate the opportunity.

DUAL SOLUTION VIA RELAXATION 375

Example 14.3 Consider a matrix of distances for the TSP as follows:

/oo 11 3 6 9 \
5 oo 5 4 2
4 9 oo 7 8
7 1 3 oo 4

\ 3 2 6 5 o o /

Removing the constraints that no subtours are permitted, the relaxation is well
known to be the assignment problem. The optimal assignments and their distances
are as follows:

1—3 3
3 — 1 4
2 — 5 2
5 — 4 5
4 — 2 1

15

Two subtours (1 — 3 — 1) and (2 — 5 — 4 — 2) arise, and the optimal value 15 is a
lower bound on the optimal length of a five-city tour. Note this would also have been
the optimal value of the LP relaxation of the TSR To get an upper bound, arbitrarily
choosing the tour 1 - 2 - 3 - 4 - 5 - 1 yields a length of 11 + 5 + 7 + 4 + 3 = 30.
A much tighter bound is obtained using the nearest-neighbor heuristic, which yields
1 - 3 - 4 - 2 - 5 - 1 with a length of 3 + 7 + 1 + 2 + 3 = 16. So, using the COP
relaxation and a simple heuristic, we have obtained the optimal value of this TSP to be
either 15 or 16.

Wolsey (1998) provides examples including the TSP, the symmetric TSP, the
quadratic 0-1 problem, and the knapsack problem. We use a simple knapsack problem
to illustrate the power of bounding solutions.

Example 14.4 (Integer Knapsack Problem)

z = max 42*1 + 26x2 + 35x3 +71x4 + 53xs
14.4xi + 10x2 + 12. lx3 + 25x4 + 20x5 < 69.9
X[,X2, X3, X4, X5 > 0and integer

The COP relaxation of this problem is obtained by rounding each coefficient in the
constraint down to the largest integer less than or equal to the coefficient given:

z = max 42xi + 26x2 + 35x3 + 7IX4 + 53xs
14xi + 10x2 + 12x3 + 25x4 + 20x5 < 69
x\,X2,X3,X4,X5 = 0 and integer

376 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

The optimal LP relaxation of COP has x* = (4.93,0,0,0,0) and z* = 207. So, 207 is
an upper bound on zIP. Some obvious feasible vectors for COP and their objective
function values are as follows:

(4,0,0,0,0)

(0,6,0,0,0)

(0,0,5,0,0)

(0,0,0,2,0)

(0,0,0,0,3)

(3,0,0,1,0)

(1,5,0,0,0)

(0,0,4,0,1)

(0,0,0,1,2)

z =

z =

z =

z =

z =

z =

z =

z =

z =

168
156
175
143
159
197
172
193
177

So, the optimal value of IP is somewhere between the lower bound 197 and upper
bound 207. The optimal IP solution is (4,0,1,0,0) with z* = 206; the COP relaxation
provided a tight bound in this case.

14.4.3 Lagrangian Relaxation

The (IP) above can be rewritten as

(IP) ZIP = min{cx : x e F}

where F = {x G Z"+ : Aix > b1 ; A2x = b2}

F = {x € Z"+ : A,x > bi, A2x = b2}

and A) is m, x w, A2 is m2xn,b is m, x 1, and b is m2 x 1.
Note the original m constraints have been partitioned into two sets, with m\ +

m2 = m. It is traditional to think of one set, say A t\ > bt, as "complicated" constraints
and the other, A2x > b2, as simple or "easy" constraints. For example, A2x > b2 might
correspond to the constraint set of a COP, or they might just be an expression of
the lower bounds on x\, x2, ■ ■ -, xn. Instead of merely dropping the complicated
constraints from the problem as a relaxation, they can actually be assigned a multiplier
k G R + to form the Lagrangian relaxation of IP with respect to AiX > b^

LR(A) ZLR(A) = min{cx + A(b-Ajx) : A2x > b2, x G Z"+ }

LR(A) does not contain the complicated constraints and k > 0 forces b — A*x < 0
(as desired) to minimize the overall (penalized) objective function.

Proposition 14.2 zLR(A), as defined above for LR(A), has the property zIP > zhR(k),
for all k > 0.

LAGRANGIAN DUAL 377

Nemhauser and Wolsey (1988), in their Example 6.1, provide an extended explana-
tion of the bounds and geometry resulting from applying Lagrangian relaxation to
a maximizing integer program with two variables and five constraints. Four of the five
constraints are treated as "nice" and one as "complicating," so A is a scalar (which
enhances the geometric explanation).

Example 14.5 The Lagrangian relaxation of the IP given in Section 14.4.1 will be
developed using the first constraint 3x[+ 2x 2 >5 as the complicating constraint.
The multiplier X will, therefore, be a scalar in the formulation:

Min z = 5*i + 4x2 + A(5-3xi-2x2)

2x{ + 3x2 > 7

x\, x2 = 0 and integer

which can be rewritten as

Min z = (5-3A)x! + (4-2/1)JC2 + 5A

2x\ + 3x2 = 7
x\, X2 = 0 and integer

The solution of this problem would provide a lower bound on the original IP.
Lagrangian relaxation has been applied in integer programming to such difficult

problems as

• Airline scheduling (Yan and Lin, 1997)

• Generalized assignment problem (Nauss, 2006)
• Ship scheduling (Rana and Vickson, 1988).

14.5 LAGRANGIAN DUAL

As stated in Section 14.4, relaxation and duality are the two ways of finding lower
bounds on zIP in

(IP) ZIP = min{cx : x G F}, F = {x e Z"+ : Ax > b}

where c is n x 1, A is m x «, and b is m x 1 in dimension.
There is a theory of Lagrangian duality for both linear programming and integer

programming; Nemhauser and Wolsey (1988) is a comprehensive reference upon
which this section is based. As we shall see, any dual feasible solution provides a
lower bound on z for the primal. Note that in the relaxation methods of Section 14.4,
the relaxation must be solved to optimality to determine a lower bound.

378 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

14.5.1 Lagrangian Dual in LP

Consider LP as defined earlier, with the constraints partitioned into A ^ ^ b i
(complicated) and A2x > b2 (easy) constraint sets. Now

(LP) ZLP = min{cx : x G L}

where L = {x: AiX>b), A2 x>b 2, X G R " + }.
The Lagrangian dual of LP is

(LDLP) WLDLP = maxvv(u), where

w(u) — ubi +minimum(c—uA[)x,x G L'

u(l x mi) > 0 andL' = {x G R"+ : A2x > b2}

Proposition 14.3 (Weak Duality) If x0 is feasible for LP and u0 is feasible for
LDLP, then cx0 > w(u0).

Proposition 14.4 If L' is nonempty and bounded and LP has a finite optimal
solution, then zLP = wLDLP.

14.5.2 Lagrangian Dual in IP

Definition 14.2 The two problems

(IP) z = min{cx : x G F}, and

(D) w = max{n'(u) : u G U}

form a weak dual pair of w(u) < ex for all x G F and all u G U. When z=w, they are
said to form a strong dual pair.

Proposition 14.5 The integer program IP and the dual of its linear programming
relaxation LP, as given below, form a weak dual pair:

(DLP) WLDLP = max{ub : u G U}, where U = {u G R + : uA < c}

More generally, if a problem is dual to any relaxation of IP, it is a weak dual to IP.

Example 14.6 Consider the integer knapsack problem in Section 14.4.2. The LP
relaxation of this problem has dual LP:

w = min 69.9 u

14.4M > 42
10« > 26
12.1« > 35
25« > 71
20M > 53

M>0

M* = 2.92 and w* = 203.88, so 203.88 is a lower bound on zIP.

LAGRANGIAN DUAL 379

The COP relaxation of the IP has dual LP:

w = min 69 u
Uu > 42
10« > 26
12w > 35
25« > 71
20« > 53
w > 0

Here, u = 3 and w* = 207, so a better lower bound for zIP is 207. Note: u = 3 could
have been quickly determined to solve all five constraints (hence, was feasible), so its
objective function value 207 is known to be a lower bound of zjP without solving
the dual problem to optimality.

Proposition 14.6 Suppose IP and D are a weak dual pair. If x* 6 F and u* € U can be
found such that w(u*) = ex*, then u* is optimal for D and x* is optimal for IP.

14.5.3 Properties of the Lagrangian Dual

For any u G R™1, define the following integer programming problem

LRIP(u) w(u) = ubi + minimum (c-uAi)x

whereu > 0 and X = {x € Z"+ : A2x = b2}
The vector u is called the dual variable (Lagrange multiplier) associated with the

constraint AjX > bi, just as in the LP case. Note the function w(u) could alternatively
be written as

tv(u) = mincx + uibi—Aix)
xex

and w(u) < Z\P = min{cx: x G F}, for all u > 0.

Definition 14.3 The problem LRIP(u) is called a Lagrangian relaxation of IP with
parameter u.

To find the largest lower bound over all possible values of u, we need to solve the
Lagrangian dual problem.

LDIP wLDIP = max{w(u) : u € ^ ' }

Proposition 14.7 The problem LPIP(u) is a relaxation of IP, for all u > 0.

Proposition 14.8 Given a specific u e R+', if the following two conditions are
satisfied, then the optimal vector x*(u) of LRIP(u) is optimal for IP:

380 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

1. A,x*(u) > b ,
2. (Aix* (u));. = bi,- whenever u, > 0

Wolsey (1998) provides application of this proposition to the uncapacitated facility
location problem and the symmetric traveling salesman problem.

Proposition 14.9 wLDIP = minimum{cx: A[X> b b x eConv(X)}
This proposition states that the (primal) linear program given is dual to the IP
Lagrangian dual problem LDIP.

14.6 PRIMAL-DUAL SOLUTION VIA BENDERS' PARTITIONING

In Sections 14.4 and 14.5, we started with a pure IP and described various solution
approaches based on relaxations and duality. In each case, a set of "complicating
constraints" was assumed. In this section, while retaining the minimizing objective
function, we return to the MIP formulation used in most of the chapters of this book:

(MIP) ZMIP = min cixi + c2y2

subject to A[X + A 2 y > b i
Dy>b 2

x > 0, y = 0 and integer

where A! is m x n, A2 is m xp, D is m' xp, x is n x 1, y is/? x 1, bj is m x 1, b2 is
m' x 1, Ci is 1 x n, and c2 is 1 xp.

Benders' (Benders, 1962) partitioning approach applies to programming problems
that involve groupings of either different types of variables (e.g., continuous and
integer) or different types of constraints (e.g., linear and nonlinear). We are interested
here in explaining how Benders' general theory of decomposition can be applied to
MIPs. The integer variable y can be viewed as a "complicating variable"; with y fixed,
MIP becomes a linear program that can be readily solved. Setting y to a specific
integer value, say

the dual of the remaining LP is

(DLP1) maxu(bi-A2y')
subject to uAj < C[

u > 0

PRIMAL-DUAL SOLUTION VIA BENDERS' PARTITIONING 381

Next, adjoin a constraint uE < M to DLP1, where E is an m x 1 vector of 1 s and M
is an appropriately large positive integer. This minor adjustment to DLPl (hence to
MIP) results in a revised dual problem

(DLP2) max u(b, -A2y')
subject to uAi < ci

uE <M
u > 0

Properties of DLPl and DLP2 are as follows:

• If DLPl is bounded, then DLPl and DLP2 are equivalent LPs (uE < M is
redundant, for M large enough).

• DLPl and DLP2 are functions of y.
• If for a given value of y, DLPl is unbounded, then DLP2 will be bounded and the

constraint uE < M will be binding.

• Thus, if we solve DLP2 and uE < M is binding (slack variable = 0), then we
conclude DLPl is unbounded.

• The feasible regions of both problems are independent of y, so regardless of y,
the optimal solution of DLP2 is a vertex of the feasible region they share.

• The dual variable u is 1 x m, so all these vertices are in R™ ; say {w', u2,..., wT}.

Benders (1962) derived the following pure integer program that is equivalent to MIP:

(IP) min z

subject to z > c2y + w'(bi -A2y) / = 1 , . . . , T

D y > b 2

y > 0 and integer

This problem has T constraints (one for each of the vertices of DLP2) in addition to
the m' constraints expressed in Dy > b2.

The number of vertices (T) can be very large, so instead of solving IP with all T
constraints, IP is relaxed to start with only one constraint. One successively generates
vertex-related constraints (cuts) for the pure IP by alternately solving DLP2 (to obtain
a particular u') and the relaxed pure problem. This is why the algorithm is referred to
as a primal-dual algorithm.

Figure 14.5 presents the basic version of Benders' partitioning algorithm for
MIPs, adapted from McDaniel and Devine (1977); these researchers made modifica-
tions to create the Figure 14.4 version to gain convergence in fewer iterations.
Garfinkel and Nemhauser (1972) presented a more general version of Benders'
decomposition for MIPs; many versions of Benders' decomposition for MIPs with
special structure have appeared since the 1970s.

Each successive solution z' of the relaxation of IP results in a tighter lower bound
on zMIFS that is, the sequence {z'} is monotonically increasing. At iteration t, the best

382 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

Step 0 (Initialization). Set t = 1, B„ = + °° and select some e (convergence criterion)
that is feasible for DLP2.

Step 1 (Iteration t). Solve the relaxed pure integer program

(IP(0) min z subject to

z>c2y + u ' (b,-A2y) i=l,...,t

Dy>b2

y > 0 and integer

Select some H1

Let z' and y' be the solution. If z is unbounded from below, take y' to be some value that gives z'
some arbitrarily large negative value.

Step 2. Generate the most violated constraint of IP by solving the linear program

(DLP2(i)) max: «„ = u(b, - A2y') subject to

uA] < C|

uE<M

u > 0

Let the solution of this LP be optimal value U0 at u'+1.

Step 3. Check convergence criterion. Set B„ = min{B„, U0 +Ciy'}. If z' > B„ - e, stop; the optimal

solution has been reached. Otherwise, add the constraint z > c2y + u'+l (b] - A2y) to IP(i).
Return to step 1.

Set/ = r+ 1.

FIGURE 14.5 Benders' algorithm for MIP.3

upper bound on zMIP is given by

Bu = min{«ó+1 +ciy '} , i—\,...,t

3 Reprinted by permission of authors (see Bibliography). Copyright (1977), the Institute for Operations
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076.

EXERCISES 383

14.7 NOTES

Section 14.3

A comprehensive reference on local search heuristics is Walser (2008).
There is a huge literature on tabu search. For instance, for MPS files and test results

comparing Pedroso's tabu search approach with branch-and-bound, see the entire
chapter in Pedroso (2006). A problem-specific application of tabu search appears in
Rolland et al. (1997). Glover and Laguna (1997) include a chapter on tabu search in integer
programming, and another on tabu search applications—many of which are MIPs. A
recent edited collection by Rego and Alidaee (2005) contains chapters on advances for
solving classical problems, in addition to the chapter by Pedroso mentioned above.

Nemhauser and Wolsey (1988) state that "the efficiency of simulated annealing
depends on its neighborhood structure. For some combinatorial optimization pro-
blems, such as the traveling salesman problem, simulated annealing has found much
better solutions than those obtained by a random-start interchange algorithm."

The standard reference on genetic algorithms remains (Goldberg, 1989). Nieminen
(2001) reports the development of a genetic algorithm customized to find the (first)
feasible solution of an MIP to start the branch-and-bound algorithm. His strategy is
quite similar to Pedroso's from tabu search in that he fixed the integer values in the
MIP and solves the remaining problem as an LP. If the solution is infeasible, its fitness
is the sum of the infeasibilities; if the solution is feasible, the fitness is the optimal
value of the LP. This value is then used to determine a new generation of genomes
(individuals) made up of vectors of genes (integer values for y¡ that satisfy the integer
constraints). Hua and Huang (2006) report a variable grouping-based genetic
(VGGA) algorithm for large-scale integer programs. The MIP's LP relaxation is
solved first, then the integer variables are grouped and a standard genetic algorithm
is applied to the subproblem of each group. VGGA uses variable grouping to reduce
the dimensionality of the genetic algorithm's search space.

Section 14.5

The presentation here is derived from Nemhauser and Wolsey (1988).

Section 14.6

Benders' decomposition is discussed in Nemhauser and Wolsey (1988, Section
II.3.7). An application of Benders' decomposition to ship scheduling appears in
Scott (1995). An alternative decomposition approach (the Dantzig-Wolfe approach)
was presented as the basis for branch-and-price in our Chapter 13.

14.8 EXERCISES

14.1 Apply the "greedy" and "nearest (unserved)-neighbor" heuristics to the
following five-city symmetric traveling salesman problem:

384 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING

/ -
6
2
1

\ H

6
-
9

22
10

2
9
—
30
17

1
22
30
-
25

H \
10
17
25

- /

Are the routes the same, as in Example 14.1?

14.2 (Shapiro, 2001)4. The depot described in Section 14.3.1 is faced with their new
demands for local delivery:

Customer:
Tons:

1
5

2
4

3
2

4
7

5
3

6
5

7
4

8
4

9
6

10
5

11
3

12
2

13
6

14.3

(a) Apply the heuristic described in Section 14.3.1 to determine a feasible
routing solution for the new demands; all other factors of the vehicle routing
problem remain the same. In particular, apply the heuristic twice by changing
the rule for selecting the first customer in a route. First, use the heuristic to
select the first customer on each route to be the unserved customer that is
nearest to the depot. Second, use the heuristic to select the first customer on
each route to be the unserved customer that is farthest from the depot.

(b) Apply the genetic programming algorithm outlined in Figure 14.3 to
perform crossover operations on the two feasible routing solutions found
in part (a) using the probability function P(x) = 1.953e~004463*, where x
is the cost per delivered ton of a route. Use random numbers 1 < r < 99
from a calculator or a random number table and compare your offspring
with those of your classmates. If any customers are not visited in your
crossover solution, apply a heuristic as in Figure 14.3.

(Bazaraa et al., 1990)5. Consider the problem: Minimize X] + 2x2 subject to
3x] + x2 > 6, -Xi + x2<2, X\ + x2< 8, and xu x2>0. Let X= {x: —x{

x 2 < 2 , x\ + x 2 < 8, X\, x 2 > 0 } .
(a) Formulate the Lagrangian dual problem.
(b) Show that j{w) = 6w + minimum{0,4 - 2w, 13 - 14w, 8 - 24w}. (Hint:

Examine the second term \nf(w) and enumerate the extreme points of X
graphically.)

(c) Plot/(w) for each value of w.
(d) From part (c) locate the optimal solution to the Lagrangian dual problem.
(e) From part (d) find the optimal solution to the primal problem.

From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage
Learning, Inc. Reproduced with permission, www.centage.com/permissions.
5 From Bazaraa, Jarvis, Sherali, Linear Programming and Network Flows, 2nd ed. Copyright 1990 John
Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc.

EXERCISES 385

14.4 Consider Benders' reformulation IP of the MIP given in Section 14.6. Now,
consider if the MIP had been the maximization problem

Maxcjx + C2y

subject to Aix + A2y < bi
D y < b 2

x > 0, y > 0 and integer

(a) Write out Benders' reformulation of this MIP.
(b) Write out explicitly the Benders' reformulation of the mixed integer

program.

Maxl4xi + 10*2 + 4>>i + 2y2 + 6y3

35*1 + 24x2 + 9yi + 4y2 + 14j3 < 80
-2xi +4x2-^1 -2y2 + 3j3 < 10
x > 0, y > 0 and integer

15
SOLUTIONS WITH COMMERCIAL
SOFTWARE

This final chapter (a) provides some practical considerations when algorithms are
implemented as software, (b) describes the key components and features of a typical
software system to model and solve integer programming problems, and (c) intro-
duces three commonly used modeling languages (AMPL®, LINGO®, MPL®) and
solvers in more depth than earlier chapters. AMPL is from AMPL Optimization LLC,
LINGO® is from LINDO Systems, Inc., and MPL is from Maximal Software, Inc.

The purpose of this chapter is to introduce the reader to components of software
systems one might encounter, or be asked to implement, working as an operations
research analyst or programming specialist. Such implementations may require
repetitive solution of a model with different input data and often involve embedding
of the model and/or solver in an application (e.g., an inventory control system). There
are numerous options available; this chapter should help prepare the reader for such
responsibilities. It also enables the reader to understand that most of the topics of
earlier chapters, such as preprocessing, branch-and-cut, and primal heuristics, have
been implemented in commercial software, some as default settings and others as
options the user can control.

Of necessity, in describing the software components and their role in the system,
specific examples make the explanation more meaningful. It is not the authors'
intention to recommend any particular modeling language or solver for linear and
integer programming. Nor is it our intention to be comprehensive in the descriptions
we do provide; that is the job of the developers of the many commercial modeling
languages and solvers currently available and well indexed in the most recent survey

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

386

INTRODUCTION 387

in a long series published by INFORMS (Fourer, 2007). Each software product in turn
has a Web site where the reader can typically find detailed descriptions of the product,
tutorials, free trial downloads, bundling options for modeling languages with solvers,
contacts for licenses/pricing, and other information.

15.1 INTRODUCTION

In practice, after a linear program (LP) or mixed integer program (MIP) is formulated,
some computer software package (e.g., the CPLEX® solver) is typically used to solve
the problem. CPLEX is from ILOG®, an IBM® company. Hence, an input mechanism
is needed to translate the mathematical/algebraic description of the problem into a
format that the software recognizes. Such input mechanisms are often referred to as
modeling tools. Fourer et al. (2003) call this the problem of translation from
"modeler's form" to "algorithm's form," the latter referring to the simplex algorithm
and the simplex-based branch-and-bound and branch-and-cut methods, found in
commercial solvers. Common modeling tools for LP or MIP problems were devel-
oped chronologically, and they fall into three categories: (1) MPS format files, (2) LP-
format files, and (3) algebraic modeling languages.

The MPS format (Murtagh, 1981) was originally developed at IBM in the early
1960s and is widely used in both academia and industry. An MPS format file is a
column-oriented (i.e., input fields must fit within prespecified columns) text file in
which there are sections specifying various components of an LP or MIP problem. The
MPS format is a legacy from the mainframe era and is not as flexible as an LP-format
or algebraic modeling language. It is very difficult, if not entirely impossible, to
manually write an MPS file for a large-scale LP or MIP problem; one would always
resort to a software tool to generate an MPS file for his or her problem. "Even though it
is lengthy and rather cryptic to the human eye, the MPS format became a standard for
specifying and exchanging mathematical programming problems, and it is still
supported by modern commercial mathematical programming systems" (Atamturk
and Savelsbergh, 2005).

There are several variants of LP-formats, for example, CPLEX LP-format and the
LINDO equivalent, and each LP-format provider has documentation describing
components of an LP or MIP problem. The primary difference between the MPS
format and an LP-format is that whereas in the MPS format only the objective function
coefficients, constraint coefficients, and right-hand side elements are specified, in an
LP-format the objective function and constraints are explicitly written in algebraic
forms. Hence, an LP-format is more readable than the MPS format. To write a large-
scale problem in an LP-format, one still needs assistance of a software tool.

In linear and integer programming, the major conversion challenge has been
producing a compact representation of the constraint matrix. In the early 1980s, the
programs written and commercialized to handle this task were called matrix gen-
erators, but these proved to be difficult to debug and maintain. Algebraic modeling
languages evolved in the mid-to-late 1980s as an alternative to matrix generators,
enabling the direct linkage from "modeler's form" to "algorithms (solver) form."

388 SOLUTIONS WITH COMMERCIAL SOFTWARE

These algebraic modeling languages provide "computer readable equivalents" of
notation used in the algebraic expression of LP and MIP models. An algebraic
modeling language overcomes the deficiencies of an LP-format by introducing sets,
symbolic constants, indexed variables, indexed constraints, aggregate operators such
as summations, and other logical and flow control expressions. Furthermore, most
modeling languages separate the model and the data. Such separation is also
important to the maintainability of the models (e.g., model documentation, ease of
reuse). As described in Chapter 1, much more powerful solvers were being developed
in parallel over the past two decades. In fact, one solver developer has reported a 2360-
fold speedup due to software improvements and an additional 800-fold speedup due to
advances in hardware, 1988-2002 (Atamturk and Savelsbergh, 2005).

15.2 TYPICAL IP SOFTWARE COMPONENTS

In this section, we briefly describe the typical software components that make up a
software system to solve integer programming problems. The intent is to simply
familiarize the reader with these components. However, solution methods from
previous chapters that form the basis of certain components are identified and much
more extensive software references are provided. Also, we attempted to include
illustration of the implementation of these components in the descriptions of leading
commercial software that follows. The discussion will progress from the solution
"engine" or solver, back through modeling languages and option control, to the user
who is typically sitting at a PC as the input/output device.

15.2.1 Solvers

An LP or MIP model actually describes an infinite number of possible problems. An
"instance" of the problem is when specific data are assigned to the model, and an
optimal solution is sought. A solver is a software program that accepts the instance as
input, applies one or more of the solution techniques we described in Chapters 9-14,
and returns information about the optimal solution. For example, in solving an LP, the
information might be that the problem is unbounded, or it might be a unique optimal
vector with its optimal value, along with the dual values of the constraints. In solving a
MIP, the information would be related to the branch-and-bound method, the basis of
all state-of-the-art MIP solvers: for instance, how many nodes were explored, how
close is the "best solution found" to optimal, and so on. Of course, any MIP solver is
dependent on the speed of the LP solver that it repeatedly invokes; another feature that
determined MIP solver performance is the so-called "branching control" to separate
and select subproblems in the enumeration scheme.

In addition, "today's MIP codes have become increasingly complex with the
incorporation of sophisticated algorithmic components... the behavior of the branch-
and-bound algorithm can be altered significantly by changing the parameter settings
that control these components. Through extensive experimentation, integer program-
ming software vendors have determined default settings that work well in most

TYPICAL IP SOFTWARE COMPONENTS 389

instances encountered in practice" (Atamturk and Savelsbergh, 2005). In particular,
branch-and-cut (Chapter 12), branch-and-price (Chapter 13), and primal heuristics
(Section 14.3) have been applied by default in MIP solvers. As described in Chapters
12 and 14, cutting plane generators, using a variety of available cuts, are used to
tighten the upper bound on a maximizing objective; heuristics may be used to find
feasible MIP solutions and to tighten lower bounds. For example, Rothberg (2003)
reported that CPLEX using the following cuts we described in Chapter 12: knapsack
cover cuts, clique cuts, flow cover cuts, GUB cuts, Gomory mixed integer cuts, mixed
integer rounding (MIR) cuts, flow path cuts, and disjunctive cuts. Yet another feature
of solvers is their implementation of preprocessing (Chapter 4), in what is called a
presolver, discussed next.

15.2.2 Presolvers

Presolve is a feature found in both solvers and algebraic modeling languages; virtually
all commercial software products of these two classes included a presolver. In Chapter
4, we systematically detailed the standard techniques of preprocessing the problem
instance prior to solvers attempt to find an optimal solution. Techniques for tightening
bounds on variables and preprocessing a pure binary integer program (BIP) were
given, along with examples of their effectiveness in creating a "better formulation,"
meaning a formulation that is easier to solve. All these techniques guarantee that the
integer optimal solution of the original problem has not been eliminated from the
feasible region of the reformulation. The presolver is automatically invoked and
attempts to fix or eliminate variables, tighten bounds on variables, and tighten
constraints by modifying coefficients or reformulating. Special preprocessing tech-
niques are applied in the case of BIP. If problem infeasibility is detected by the
presolver, the user is notified and the solver is not invoked.

MIP solvers use a variety of preprocessing techniques at the root node of the
branch-and-bound tree; that is, before the first LP relaxation is solved. Preprocessing
is also applied at each subsequent call to the LP solver as branch-and-bound proceeds.
All this activity goes on behind the scenes and is not reported to the user. Solvers return
solution information to the user through the algebraic modeling language in terms of
the original model formulation. However, user options concerning preprocessing are
provided in most solvers. We discuss this briefly in Section 15.2.4. For example,
Rothberg (2003) reported that CPLEX's presovler used the following preprocessing
approaches described in Chapter 4: tightening bounds by rounding a fractional bound,
rounding by division with GCD, variable fixing, inactive constraints, and redundant
constraints. To review AMPL's presolver, see (Fourer et al., 2003, Section 14.1).

15.2.3 Modeling Languages

In practice, an analyst or operations research team (Batson, 1987) would decide that
the appropriate mathematical formulation of real problem is an MIP and proceed to
use the conventions and notation found in this book. As the initial data to describe this
model instance are located in various databases, the user quickly realizes that the

390 SOLUTIONS WITH COMMERCIAL SOFTWARE

problem is too large to write out completely and that the data are quite extensive and
will probably change many times as subsequent problem instances are explored. At
one time, the analyst would have had to develop an MPS description of the problem.
An algebraic modeling language is software designed to efficiently

• Formulate the model
• Access the data and move each datum into proper location as a model parameter
• Communicate the problem instance to a solver
• Communicate solver results back to the user

• Document the model that was solved
• Handle subsequent modifications to the model and/or updates to the data.

In summary, a modeling language provides efficient documentation, two-way
communication between user and solver, and reformulation—helping the analyst to
manage the model and the associated data. We shall discuss the communication
aspects in more detail in Section 15.2.5. Because of the close relationship between the
modeling language and the solver in use, they are often acquired as bundled products
from the respective sources. Solver providers may "offer integrated systems that
provide a modeling environment specifically for their own solver" (Fourer, 2007).
Features of three popular modeling languages (AMPL, LINGO®, and MPL) and how
they are used with a solver are discussed in subsequent sections in this chapter.

15.2.4 User's Options/Intervention

Assuming the user is working in a given modeling language, he/she may have more
than one solver to choose from on the organization's network. So, the most basic
option arises when an analyst indicates which solver is to be invoked. More generally,
all modeling languages and solvers provide users with options.

In a modeling language, a command interface is provided that will respond user
commands expressed in text or through a graphical user interface. Standard
commands related to solutions and sensitivity information desired are conveyed
in this manner, along with options the user wants to enable or disable. For instance,
the LINDO® solver enables the user to control the preprocessing operation by
changing the value of the parameter prelevel to turn on or off presolver options such
as simple presolve, variable fixing, coefficient reduction, elimination of variables,
and elimination of constraints. Or, the user may "turn off' the modeling language's
presolver and pass responsibility for presolve to the preprocessing routine of the
chosen solver.

User options in the solver enable the user to change certain parameter settings from
their default values, either because the user has the skill to identify and communicate
special features in the structure of the problem instance, or because the default settings
of the solver did not give acceptable results on the first attempt at problem solution.
These options may be accessible through the graphical user interface of the modeling
software, once the solver is called. A large portion of the paper by Atamturk and

TYPICAL IP SOFTWARE COMPONENTS 391

Savelsbergh (2005) is devoted to user control of the following options in three state-
of-the-art solvers:

• Node selection in branch-and-bound, expressed by the focus given to decrease
the global upper bound or to increase the global lower bound. Typically, four or
five search options are provided to the user and he/she can choose only one, or a
hybrid.

• Branching in branch-and-bound: Choosing integer variable whose value at a
currently active node is noninteger, for the next branching into two new nodes.
Simple branching was described in Section 11.1, based on rounding the
noninteger value up or down; a number of other advanced options, such as
strong branching, branching based on pseudo-costs, or pseudo-reduced costs, are
often available as alternatives.

• Cutting planes to provide improved LP bounds: There are two categories of cuts
implemented in MIP solvers, general cuts and strong special cuts such as
knapsack and fixed-charge flow, all discussed in Chapter 12. Solvers provide
users with parameters that control which cuts are enabled and how aggressive the
solver should be in "looking for cuts."

• Preprocessing prior to solving the relaxed LP at a node: All the preprocessing
techniques described in Chapter 4 are typically available in commercial solvers
and may be turned on or off by the user.

• Primal heuristics attempt to find feasible solutions to an MIP because such
solutions automatically provide a lower bound at that node in the branch-and-
bound tree. A good lower bound enables the tree to be pruned, and the search
reduced. Heuristics of the three types described in Section 14.3 may be options,
as well as heuristics developed by the solver provider.

Overriding the default settings in modeling languages and solvers can make the
integer program at hand more tractable, but the user must develop skills and insights
over time in order to choose wisely from among available options and learn how to
carefully monitor the solution process and duration to decide when to revert to default
on some options. Such skills and insights can only be developed with experience.

15.2.5 Data and Application Interfaces

Modeling languages must be capable of reading data in standard spreadsheet and
database formats. In fact, a main purpose of the modeling language is to retrieve data
from such structured data sources, on command, and generate a matrix that the solver
can use. Virtually all modeling languages and solvers can also handle model instances
expressed in simple text formats, especially the MPS and LP-formats discussed at the
start of this section. For the LINGO® modeling language, we provide a detailed listing
of database management systems and programming languages that interface with
LINGO® in Section 15.4. Similar capabilities to those described are provided in any
commercial modeling language.

392 SOLUTIONS WITH COMMERCIAL SOFTWARE

There are other web-based interfaces that provide users access to the
organization's modeling languages and solvers over network connections. Applica-
tion program interfaces (APIs) have been developed in such languages as C++ and
Java for calling each of the modeling languages and solvers mentioned in this chapter.
These APIs enable modeling languages and/or solvers to be embedded in customized
applications and provide the programmer with solution query methods and routines to
access information about the results of applying an optimization method to a problem
object. For instance, for MIP problem objects, the solver LINDO's API provides
access to values of variables and constraint slacks; methods and routines are provided
to retrieve other information about the optimization process, for example, the number
of nodes searched, the objective value of the best remaining node, and so on. All such
commercial solvers provide API libraries, and these enable the application program to
interface directly with an embedded solver.

Embedding of solvers in applications has a longer history than embedding of
models developed in modeling systems. Fourer (2007) has noted that it is now
possible to embed an entire modeling system, or a particular model, or an instance of
a model.

15.3 THE AMPL MODELING LANGUAGE

The AMPL® algebraic modeling language (Fourer et al., 2003) attains a very high
level of readability in that a model written in AMPL resembles the algebraic notation
in which one would formulate or describe an LP or MIP problem. An important
feature is that AMPL facilitates separation of a model structure and its data. Fourer et
al. (2003) state that "the separation of model and data is the key to describing more
complex linear programs in a concise and understandable fashion." This also enables
one to run the same model with different input data and then compare or analyze the
results. AMPL has many other features that assist a user in efficiently building an LP
or MIP model. The text by Fourer et al. serves as a user's guide and reference manual.
In Section 15.3.1 we will describe the basic components of the AMPL modeling
language. Then we will introduce several useful modeling techniques of AMPL
through examples in Section 15.3.2.

15.3.1 Components of the AMPL Modeling Language

For every LP or MIP problem, the following are the essential parts of the problem
description:

• Decision variables

• Objective function
• Constraints
• Variable bounds, which can be in the forms of nonnegativity constraints,

unrestricted variables (i.e., variables whose upper and lower bounds are oo
and — oo), or variables with finite upper or lower bounds

• Integrality requirements on decision variables

THE AMPL MODELING LANGUAGE 393

The above are specified by the following basic components in AMPL:

• Sets, used to index symbolic constants and variables
• Parameters, that is, symbolic constants as input data
• Variables
• Objective to be minimized or maximized
• Constraints

15.3.2 An AMPL Example: the Diet Problem

We will use a diet problem in Winston (1994) to illustrate these basic components of
AMPL. For the purpose of illustration, we have modified the original data so that the
optimal solution to the LP problem takes fractional values:

Minimize z = 50xi + 20x2 + 30x3 + 80x4

subject to 400x, + 200x2 + 150x3 + 500x4 > 500

3.2*i +2.5x2 > 6

2*i + 2x2 + 4x3 + 4x4 > 10

1.8xi+4.5x2+x3+5.6x 4 > 8
Xi,X2,X 3,X4 > 0

Setting

'c\~

Cl

c-i

_ c 4 .

"50"

20

30

. 8 0 .

, x =

" X i '

x2

X3

X 4 .

, b =

"V
b2

¿3

.V

"500"

6

10

. 8

and

A =

au a 12 an an

«21 «22 «23 «24

«31 # 3 2 ö 3 3 «34

«41 CI42 Ö43 a 4 4

400

3.2

2

1.8

200

2.5

2

4.5

150

0

4

1

500

0

4

5.6

we have the following equivalent model:

ILP1 minimize Yjjxj
7=1

subject to y2aüxj > bi (/' = 1 , . . . , 4)

(y = i , . . . , 4) xj > 0

To index constants or input data c¡, ay, Z>¡, i= 1, ..., 4,j= 1, . . . , 4, and decision
variables X j J = 1 , . . . , 4 , we need to define s e t s / = { 1 , 2 , 3 , 4 } a n d 7 = (1 , 2 , 3 , 4 } . This

394 SOLUTIONS WITH COMMERCIAL SOFTWARE

is done by the AMPL statements

S e t I : = 1. . 4 ;
S e t J : = 1 . . 4 ;

With / and J defined as above, we can declare the constants by the param
statements

param c {J} ;
param a {I, J} ;
param b {I} ;

The decision variables and nonnegativity constraints are specified by

v a r x {J} >= 0;

Now we can set up the objective function and constraints by the following
statements:

minimize z : sum(j in Jl c [j]*x[j];
subject to con {iinl}: sum{j in JJ a[i, j]*x[j] >= b [i] ;

Up to this point, we have set up the complete model structure for the diet problem.
Before we can solve the problem, we need to input data into matrix A and vectors b and
c. This is accomplished by the following section in the AMPL model, beginning with a
d a t a statement:

data;

param c : =
1 50
2 20
3 30
4 80;

param a :
1 2

1 400 200
2 3.2 2.5
3 2 2
4 1.8 4.5

param b : =
1 500
2 6
3 10
4 8;

Putting all the above together, we have the complete AMPL model shown in
Figure 15.1.

3 4 : =
150 500

0 0
4 4

1 5 . 6 ;

THE AMPL MODELING LANGUAGE 395

s e t I : = 1 . . 4 ;
s e t J : = 1 . . 4 ;
param c {J} ;
param a { I , J } ;
param b {I} ;
v a r x { j} >= 0;

min imize z : sum
s u b j e c t t o con

d a t a ;

param c :=
1 50
2 20
3 30
4 80 ;

param a :
1 2 3

{j i n J} c [j] * x [j] ;
i i n I } : sum {j i n j } a [i , j] * x [j]

4 : =
1 400 200 150 500
2 3 . 2 2 . 5 0
3 2 2 4
4 1.8 4 . 5 1 5

param b :=
1 500
2 6
3 10
4 8;

0
4
6 ;

>= b [i] ;

FIGURE 15.1 The AMPL model of the diet problem.

After we save the AMPL model to a file named, for example, d i e t , mod, we can
load the model by issuing the following command at an AMPL prompt:

ampl : model d i e t . m o d ;

We can also examine the model we have entered by an expand command:

ampl : expand;
min imize z :

5 0 * x [l] + 20*x[2] + 3 0 * x [3] + 8 0 * x [4] ;

sub j e c t t o c o n [1] :
4 0 0 * x [l] + 200*x[2] + 150*x[3] + 500*x[4] >= 500;

s u b j e c t t o c o n [2] :
3 . 2 * x [l] + 2 . 5 * x [2] >= 6;

s u b j e c t t o c o n [3] :
2 * x [l] + 2*x[2] + 4*x[3] + 4*x[4] >= 10;

396 SOLUTIONS WITH COMMERCIAL SOFTWARE

s u b j e c t t o c o n [4] :
1 . 8 * x [l] + 4 . 5 * x [2] + x [3] + 5 . 6 * x [4] > = 8 ;

Suppose we would allow only integral values for the decision variables x in the
diet problem. Hence, we have the following MIP problem:

4

[MIP] minimize z = 2_,cixJ

4

subject to 2_,a'JxJ — ^" / = 1 , . . . , 4
7=1

Xj > 0 and integer, j = 1 , . . . , 4

To model this problem in AMPL, all we need to do is to replace the v a r statements
in Figure 15.1 by the following:

v a r x {J} i n t e g e r >= 0;

and we have created the MILP model in Figure 15.2.

set I : = 1. . 4 ;
set J := 1..4;
param c {J};
param a {I, J} ;
param b {I};
var x {j} integer >= 0;

min imize z : sum {j i n J} c [j] * x [j] ;

s u b j e c t t o con {i i n I } : sum {j i n J} a [i , j] * x [j] >= b [i]

data;

param c :=

1 50
2 20
3 30
4 80;

param a :
1 2 3 4 : =

1 400 200 150 500
2 3.2 2.5 0 0
3 2 2 4 4
4 1.8 4.5 15.6;

param b :=
1 500
2 6
3 10
4 8;

FIGURE 15.2 The MILP model of the diet problem.

THE AMPL MODELING LANGUAGE 397

Now we have covered the basics in building an LP or MILP model in AMPL. In
Section 15.3.3, we will describe some enhanced modeling techniques.

15.3.3 Enhanced AMPL Modeling Techniques

In this section, we will illustrate the following modeling enhancement techniques
with AMPL:

1. Separation of the model structure and input data
2. Adding or deleting a constraint
3. Relaxing integrality constraints on some variables

It is often the case that after we have built a model, we would like to run the same
model with different sets of input data. The AMPL modeling language enables us to
do that through separating the model structure from the input data. Take the diet
problem in Figure 15.1 for example. We can slightly modify the statements in the file
d i e t , mod and split them into two files, for example, d i e t l .mod and d i e t l a .
d a t shown in Figures 15.3 and 15.4.

Note the difference between the model in d i e t l . m o d and d i e t l a . d a t
combined and that in d i e t . m o d is that the sizes of sets I and J are determined
in the data file after the following two statements are executed:

p a r am M:= 4;
param N: = 4;

Other than the above, the statements in the two models are identical. To load the
model structure and input data in AMPL, issue the following commands:

ampl : model dietl .mod;
ampl: datadietla.dat;

As we have already mentioned, the advantage of separating the model structure
from the input data is that we can feed the same model with different input data.
Suppose we have a similar LP problem with five constraints and six variables instead
of four constraints and four variables as specified in d i e t l a . d a t . We specify the
objective coefficients, constraint coefficients, and right-hand side in a file named
d i e t l b . d a t as indicated in Figure 15.5.

param
param
set I
set J
param
param
param
var x

M;
N;
: = 1. . M ;
:= 1..N;
C {J};
a {I, J};
b {I};
{J} >= 0;

minimize z: sum {j in J} c[j]*x[j];
subject to con {i in I}: sum {j in j} a[i, j] *x[j] >= b[i] ;

FIGURE 15.3 The model structure of the diet problem—file d i e t l .mod.

398 SOLUTIONS WITH COMMERCIAL SOFTWARE

data ;

param M := 4 ;
param N := 4 ;

param c : :
1 50
2 20
3 30
4 80;

param a :
1 2

1 400 200
2 3.2 2.5
3 2 2
4 1.8 4.5

param b :=
1 500
2 6
3 10
4 8;

FIGURE 15.4 The input data of the diet problem—file d i e t l a . d a t .

data;

param M :=
param N :=

param c :=
1 50
2 20
3 30
4 80
5 75
6 90;

param a:
1 2

1 400 200
2 3.2 2.5
3 2 2
4 1.8 4.5
5 0 - 3

param b :=
1 500
2 6
3 10
4 8
5 -12;

5;
6;

3 4 5 6 :=
150 500 100 300
0 0 0 0
4 4 1 2
1 5.6 2.2 0.8
-4 0 0 0;

FIGURE 15.5 The input data of the five constraint and six variable problem.

3 4 : =
1 5 0 5 0 0

0 0
4 4
1 5 . 6 ;

THE AMPL MODELING LANGUAGE 399

We can issue the following AMPL commands to load the new problem:

ampl : model dietl .mod;
ampl : datadietlb.dat;

There are various cases in which we need to add or delete a constraint, or even relax
integer requirements on certain variables. For example, we would like to compare
different production plans or service strategies in our study. Suppose we need to add
the following constraint to the model in d i e t .mod:

3x2 + 4JC3 < 3

We can issue the following in AMPL after we load d i e t . mod:

ampl : s u b j e c t t o new_con: 3*x[2] + 4 * x [3] < = 3 ;

To verify that the new constraint is indeed added, we can use the expand
command:

amp 1 : expand ;
min imize z :

5 0 * x [l] + 2 0 * x [2] + 3 0 * x [3] + 8 0 * x [4] ;

s u b j e c t t o con [1] :
4 0 0 * x [l] + 2 0 0 * x [2] + 1 5 0 * x [3] + 5 0 0 * x [4] >= 500;

s u b j e c t t o con [2] :
3 . 2 * x [l] + 2 . 5 * x [2] >= 6;

s u b j e c t t o c o n [3] :
2 * x [l] + 2*x[2] + 4*x[3] + 4 * x [4] > = 1 0 ;

s u b j e c t t o con [4] :
1 . 8 * x [l] + 4 . 5 * x [2] + x [3] + 5 . 6 * x [4] >= 8;

s u b j e c t t o new_con:
3*x[2] + 4*x[3] < = 3 ;

To delete the constraint new_con, we simply issue the following command:

ampl : d e l e t e new_con;

And we can verify the deletion by the expand command. Note that we cannot
delete an individual constraint in a set of indexed constraints. For example, we cannot
delete constraint con [3] only, although we can delete the entire set of constraints by
the command

ampl : d e l e t e con ;

400 SOLUTIONS WITH COMMERCIAL SOFTWARE

If we want to temporarily drop a constraint but restore it later on, we use the d r o p
and r e s t o r e command instead:

ampl : drop con [3] ;
ampl:...
ampl : restore con [3] ;

As we have seen, we can drop an individual constraint in a set of indexed
constraints.

Finally, we show how to relax integer requirements on variables. Take the MILP
problem in Figure 15.2 for example. If we would like to relax the integrality on all the
variables, we can change option r e l a x _ i n t e g r a l i t y from the default value of
zero to a nonzero value:

ampl : o p t i o n r e l a x _ i n t e g r a l i t y 1;

To restore the integrality requirements, set option r e l a x _ i n t e g r a l i t y back
to zero.

If we would like to relax the integer requirement only on a certain variable, we can
do so by setting the . r e l a x suffix of the variable to 1. For example,

ampl : l e t x [2] . r e l a x : = 1;

relaxes integrality on variable x [2] only.

15.3.4 AMPL Compatible MIP Solvers

A number of linear and MIP solvers have been identified in Fourer and Gay (2006) as
supported by AMPL, or see the AMPL Web site www.ampl.com. Detailed descrip-
tions of each of these solvers, and information on their respective providers and Web
sites, can be found in Fourer (2007). The CPLEX solution of a diet problem and other
standard LP/MIPs modeled in AMPL can be found in Fourer et al. (2003).

15.4 LINGO® MODELING LANGUAGE

LINGO® is a Fortran-based optimization tool designed by LINDO Systems, Inc., first
offered in 1988. According to LINDO Systems, LINGO® was their "first product to
include a full featured modeling language." In 1993, LINGO® added the first
nonlinear solver for PCs that can support general and binary integer restrictions. In
1994, LINGO® was included in Winston (1994), making itself the first IP software to
appear in a textbook. The release of Windows version LINGO® came into the market
in 1995. LINDO Systems Inc. also markets a solver called LINDO (first appearing in
1979) and a spreadsheet add-in optimizer What's Best® (since 1985).

According to the statement of LINDO System, Inc., "LINDO Systems products are
in use at over half the Fortune 500 companies—including 23 of the top 25." The latest

LINGO® MODELING LANGUAGE 401

trial versions of all three of these software packages may be downloaded from the Web
site www.lindo.com. The LINDO Systems company Web site also provides applica-
tion papers that cover many business and industry fields and, of course, reference
manuals for the software. A comprehensive guide to optimization modeling using
LINGO® is Schräge (2003). The user's guide and reference manual is LINDO
Systems (2004). Below, we first provide some technical details concerning LINGO®,
and then briefly describe its modeling conventions. Note that LINGO® contains built-
in documentation.

15.4.1 Prescription of Tolerances

When solving optimization problems, many calculations of multiplication and
division are involved. This will surely affect the accuracy of the solution due to the
limited precision of the computer. Hence, it is very important to set tolerances for the
solver. Tolerance is the + /— range within which a value can be viewed as the target
value. The major types of tolerances involved in LP/IP solvers include

• Feasibility Tolerances (for LP Models)
The feasibility tolerance allows that when the basic variables fall "close"

enough to the right-hand side values, the constraints are considered satisfied.
This tolerance directly affects solver's decision on whether to accept an optimal
basis. When it is very hard to maintain problem feasibility during the optimiza-
tion procedure, these tolerances can be set to lower values.

LINGO® controls this tolerance in two positions: the initial feasibility
tolerance and the final feasibility tolerance. The default values for these
tolerances are, respectively, 3e—06 and le—07.

• Integrality Tolerances
For some IP problems, it is hard to obtain a solution that is exactly integer. In

such cases, integrality tolerances are employed so that when the solution is
"close enough" to some integer number, it is accepted as an integer solution.

LINGO® defines two types of integrality tolerances: absolute integrality
tolerance and relative integrality tolerance. Assume xz is an integer value, and xr

is the (real) solution obtained. xr is accepted as the target solution if \xr - xz\ <
absolute integrality tolerance, or if \xr - xz\< relative integrality tolerance * xz.
Default value for the absolute integrality tolerance and relative integrality
tolerance are, respectively, le—06 and 8e—6.

• Optimality Tolerances
The optimality tolerance decides how closely a solution must be to the true

(theoretical) optimal solution to be "considered" optimal.

Similar to the integrality tolerances, LINGO® uses two parameters to control
optimality tolerances: absolute optimality tolerance and relative optimality tolerance.
The absolute optimality tolerance is a positive number r with default value of 8e—8.
When applied in the branch-and-bound solver, this tolerance forces the solver to

402 SOLUTIONS WITH COMMERCIAL SOFTWARE

always search for integer solutions that result in at least r units of improvement,
comparing to the best integer solution found so far. The relative optimality tolerance
is a positive fraction r with default value of 5e—8. It is used to force the branch-and-
bound solver to search only integer solutions with at least 100*r% improvement.
According to the LINGO® User's Guide (2004), typical values for the relative
optimality tolerance would be in the range 0.01-0.05.

15.4.2 Presolver—Automatic Problem Reduction

As introduced in Chapter 4, preprocessing and model reformulation are very
important for solving IP problems. LINGO® incorporates this method as an essential
feature. Presolver enables users to decide which preprocessing technique(s) to apply
before the solver actually starts the IP algorithms.

LINGO® presolver includes preprocessing techniques as well as all the cuts and
other IP algorithms like lattice approach. Here, we only list the preprocessing
techniques:

• G(general) C(common) D(divider)
• Coefficient Reduction
• Disaggregation

Note that LINGO® allows users to turn off the presolver because in some cases
preprocessing might cause excessive running time.

15.4.3 Solvers for Linear/Integer Programming

A unique feature of LINGO® is that all solvers (linear, integer, nonlinear, quadratic,
etc.) are integrated and directly linked to its modeling environment. When a model is
run, LINGO® will automatically pass the problem to the appropriate solver. Hence,
LINGO® is capable of solving a wide variety of optimization problems, including
linear programming, integer programming (binary, pure, and mixed), and nonlinear
programming problems.

The solvers for LP problems employ three approaches: primal simplex, dual
simplex, and barrier (or interior point approach). The third approach listed is not
addressed in this text, but see Hillier and Lieberman (2005) for a discussion. LINGO®
allows users to select which approach to use for a specific problem. The default is set to
allow solvers automatically decide the best method.

LINGO® employs branch-and-cut as the major IP algorithm, which starts by
solving the LP relaxation. Types of cuts to be generated can be selected by users.
These types include

• Flow Cover
• Gomory
• GUB

LINGO® MODELING LANGUAGE 403

• Knapsack cover
• Objective
• Plant location

The new íT-best MIP solver enables the user to see multiple best solutions to the
given MIP problem, where the number K can be specified by users.

15.4.4 Interfacing with the User

As this text is published, Microsoft Windows continues to be the most popular
platform for software users. Although LINGO® supports both Windows and UNIX
platforms, we only discuss interfacing with other applications on the Windows
platform.

Interfacing with programming languages: LINGO® uses the Dynamic Link
Library to allow users to hook up LINGO® functions with external applications.
The most recent version of LINGO® supports access from Visual Basic, Visual
C/C++, Delphi, Fortran, C#, .NET, and Visual Java.

Interfacing with databases: LINGO® supports connections with data sources such
as spreadsheet, text files, and databases. For small or moderate data volume, LINGO®
can link to spreadsheets such as Microsoft Excel® or FoxPro® through object linking
and embedding (OLE), which is a built-in function of LINGO®. Solutions can be
output to spreadsheet using @OLE, as well.

For large data volume, LINGO® has a built-in connection function named
@ODBC that helps link to database management systems (DBMS) that have open
database connectivity. Such DBMSs include

• Microsoft Access®
• dBase (DB/2)
• PeopleSoft Oracle®
• Paradox
• SQL Server

The most recent release of LINGO® (version 11.0) incorporated some functions
such as @TEXT and ©POINTER, which allow users to build links for both importing
and exporting data.

15.4.5 LINGO® Modeling Conventions

LINGO® uses sets at its fundamental building block. Each member of a set may
have one or more attributes associated with it, such as in a product mix
application, the product may have a profit, a monthly demand, and so on. Selected
attributes are the decision variables in the optimization model. Variables are
assumed to be nonnegative unless the statement @FREE() is invoked. Variables

404 SOLUTIONS WITH COMMERCIAL SOFTWARE

may be specified to be binary or general integer using statements @BIN or @GIN,
respectively.

As with MPL (see Section 15.5), the @SUM looping operator is used to specify an
objective function in a compact form. The general form is @SUM (set: expression),
for example, @SUM (Product (j): Profit (j) * ProductCount (j)). The @FOR operator
is another set looping function used to generate constraints over members of a set:
@FOR (set: constraint). Below is an example of how @FOR and @SUM are used to
specify a series of resource constraints:

@FOR (Machine (i) :
@SUM (Product (j) : ProdHours Used (i,j) * ProductCount (j))

< = ProdHours Limit (i) ;
);

The above LINGO® statement illustrates two aspects of modeling in LINGO®: (1)
The use of a derived set based on two or more simple sets (machine, product) = (i,j)
and (2) the scalability of the model—once constructed, data sets representing say a
new quarter of demand, resource availability, and so on could be input and run simply
by updating the DATA statements, leaving the model structure as it is.

A LINGO® model specification consists of three sections:

1. A SETS section that specifies the sets and their attributes. This describes the
problem parameters or data structure.

2. A DATA section that provides the data direction in vectors or matrices, or
specifies where it will be accessed (e.g., in certain cells of a spreadsheet).

3. A section that provides the mathematical model, often surprisingly compact.

15.4.6 LINGO® Model for the Diet Problem

Here, we will provide the LINGO® model for the

MODEL:

S E T S :

FOOD/1, 2, 3,4/: X, COST;
REQUIREMENT/1, 2, 3, 4/: RQMT, MIN;

ENDSETS:
DATA:

COST = 50, 20, 30, 80;
MIN = 500, 6, 10, 8;
RQMTPROV =

400 200 150 500
3.2 2.5 0 0
2 2 4 4

1.8 4.5 1 5.6;

MPL MODELING LANGUAGE 405

ENDDATA
MIN = @SUM (COST(J) * X (J))
@FOR (RQMT (I) :

@SUM (X (J) : RQMTPROVd, J) * X (J))
> = MIN (I) ;

) ;

The LINDO solution of a wide variety of LP/MIP problems can be found in
Schräge (2000).

15.5 MPL MODELING LANGUAGE

MPL®, which stands for Mathematical Programming Language, is a product of
Maximal Software, Inc. MPL is another algebraic modeling language, such as AMPL
and LINGO® described earlier. MPL can be used with many proprietary or open
source solvers (consult www.maximalsoftware.com for the most recent table or see
the last paragraph of this section). Student versions of MPL and CPLEX are available
for free by download from this Web site. A leading introductory operations research
text (Hillier and Lieberman, 2005) contains examples of solving linear and integer
programming problems in MPL/CPLEX files.

On its Web site, Maximal Software states, "The size of problems that corporations
are dealing with has increased and the speed of commercial optimization packages
(solvers) has risen dramatically to meet that demand. This means that users need
more advanced tools to collect and manage the data, formulate the model, and deliver
it to the solver. This is where an advanced modeling system, such as MPL, can
become very valuable." Some features of MPL that lend it to teaching modeling skills
include

• Takes full advantage of the graphical user interface of MS Windows
• An easy-to-learn syntax
• Powerful data management capabilities (for interface with spreadsheets and

databases)
• An online tutorial

The seven sessions currently available in the online tutorial include vectors and
indexes, separating data from the model; special types of constraints, and various data
management issues. A session on mixed integer programming is planned. The
interested reader should check for availability.

MPL for Windows is the most popular platform, but there are versions for UNIX
environments as well. MPL has operators to facilitate importing files (data or indexes)
from spreadsheets, databases, or external files. MPL also can export results back to
such locations, and MPL models can be embedded into other Windows applications

406 SOLUTIONS WITH COMMERCIAL SOFTWARE

that Maximal claims "makes MPL ideal for creating end-user applications." Sup-
ported databases include

• Access®
• ODBC
• Paradox

• FoxPro
• Dbase for the Windows version
• Oracle® for the Motif (UNIX) version.

The MPL Main Window provides access to the following 11 menus:

1. Main Menu
2. File Menu
3. Edit Menu
4. Search Menu

5. Project Menu
6. Run Menu
7. View Menu

8. Graph Menu
9. Options Menu

10. Window Menu
11. Help Menu

MPL provides extensive compatibility with Excel, for those whose transactional data
have been aggregated into what Shapiro (2001) calls "decision databases," which are
databases that are suitable for MIP modeling. A recent enhancement of MPL (the
OptiMax 2000 Component Library) enables the modeler to provide the end-user with the
appearance of a spreadsheet model while still using MPL as the behind-the-scenes
modeling language and permitting selection of the appropriate solver. This can be
important because of the well-known limitations of the built-in solver in Excel, such
as problem size limitations, speed of data importation and computing, the fact that the
optimization model itself is hidden, and Excel's solver lacks the advanced indexing
techniques available in modeling languages. Furthermore, Maximal states "OptiMax
allows MPL models to be seamlessly integrated directly into object-oriented program-
ming languages such as Visual Basic, VBA for Excel and Access, C/C++, Java, Delphi,
as well as many popular web-scripting languages."

15.5.1 MPL Modeling Conventions

Some notable features of building optimization models in MPL are

• MPL can dynamically store models of any size like LINGO® ; the only limitation
is how much memory is available on the machine

MPL MODELING LANGUAGE 407

• Variables and constants can be written on both sides of a constraint—the so-
called free format input of constraints, which means no conversion to standard
form is required of the modeler

• Summation over vector variables, of up to eight dimensions
• Expansion of similarly structured constraints; a single line enables you to

express multiple constraints of identical form, such as monthly inventory
balance you want repeated for each month in a planning horizon.

• Extensive flexibility when working with subsets of indexes, functions of indexes,
and multidimensional index sets.

A typical MPL model would begin with a TITLE declaration, and then an INDEX
section. Each entity (product, plant, machine, etc.) is assigned arbitrary labels that in
turn are used in data files, using colon, parentheses, and semicolon much as in other
modeling languages, for example,

p l a n t : = (p i , p 2 , p 3 , p 4 , p5) ;

The next section of an MPL model is DATA in which line by line the model is told
where data in the form of vectors or matrices will be found and what attributes will be
used to index such data; for example, to find the monthly demand for each product at
each plant, one would specify

Demand [p l a n t , p r o d u c t , month] : = SPARSEFILE
("Demand.da t") ;

indicating that demand is being stored in a matrix in sparse format, where only
nonzero values (and an identification of their index values) are entered in the data file.
MPL can access data that are either specified in vectors or matrices typed with the
model, or located in external to the model. The third section of an MPL model is
VARIABLES, in which each decision variable is given a short name. Inside brackets,
there is an indication of indexes associated with the variable, for example,

Inventory [plant, product, month] - > Invt;

where the arrow is used to create an abbreviation for variable names of more than four
letters. Should one or more variables be restricted to either binary or integer, those
variables are specified in separate sections labeled BINARY VARIABLES or
INTEGER VARIABLES, respectively. The fourth section of an MPL model declara-
tion is called MACROS, and there summations that will ultimately become part of the
objective function are specified, using the SUM operator, for example,

TotalRevenue : = SUM (plant, product, month: Price*Sales) ;
TotallnvtCost : = SUM (plant, product, month:

InvtCost*Inventory);

408 SOLUTIONS WITH COMMERCIAL SOFTWARE

where just inside the first parentheses are the indexes over which the summation runs,
and after the colon is the vector product of a data vector with a variable vector. Next,
the actual mathematical model is specified using variables, macros, operators, and
other mathematical logic, expressed in sections labeled MODEL (objective function)
and SUBJECT TO (nonbound constraints), for example,

MODEL

MAX Profit = TotalRevenue - Total Cost;
SUBJECT TO
SUM (product: Inventory) < = InvtCapacity; and other applic-
able constraints.

Finally, the modeler sets any upper bounds on variables in a BOUNDS section and
may declare variables to be free (real) valued, otherwise MPL assumes they are
nonnegative. An END statement used after the model formulation is judged complete.
Assuming one wanted to solve the model using CPLEX, you would choose Solve
CPLEX from the Run Menu mentioned earlier and find the solution using the View
Menu.

15.5.2 MPL Model for the Diet Problem

Here, we will provide the MPL model for the simple diet problem described in the
AMPL section above. Note that BR symbolizes brownies eaten, IC scoops of ice
cream eaten, COLA bottles of soda drunk, and PC pieces of pineapple cheesecake
eaten daily:

INDEX

FOOD : = (BR, IC, COLA, PC) ;
REQUIREMENT : = (Rl, R2, R3, R4) ;

DATA
COST [FOOD] : = (50, 20, 30, 80);
MIN [REQUIREMENT] : = (500, 6, 10, 8);
RQMTPROV [REQUIRMENT, FOOD] =

400 200 150 500
3.2 2.5 0 0
2 2 4 4

1.8 4.5 1 5.6;
VARIABLES

EAT [FOOD];
MACROS

TOTALCOST = SUM (FOOD; COST*EAT) ;
SUBJECT TO

NUTRITIONVALUE [REQUIREMENT] - >NVAL:
SUM (FOOD; RQMTPROV*EAT) > = MIN;

END

MPL MODELING LANGUAGE 409

15.5.3 MPL Compatible MIP Solvers

The numerous linear and MIP solvers supported by MPL have been identified in a
white paper at www.maximalsoftware.com. Detailed descriptions of each of these
solvers, and information on their respective providers and Web sites, can be found in
(Fourer, 2007).

This page intentionally left blank

REFERENCES

Agarwal, Y, K. Mathur, and H. Salkin (1989), "A Set-Partitioning-Based Exact Algorithm for
the Vehicle Routing Problem", Networks, Vol. 19, pp. 731-749.

Agnihothri, R. and P. Taylor (1991), "Staffing a Centralized Appoint Scheduling Department in
Lourdes Hospital", Interfaces, Vol. 21, pp. 1-15.

Ahuja, R., T. Magnanti, and J. Orlin (1993), Network Flows: Theory, Algorithms, and

Applications, Prentice Hall, Englewood Cliffs, NJ.

Anbil, R., E. Gelman, B. Patty, and R. Tanga (1991), "Recent advances in Crew-Pairing
Optimization at American Airline", Interfaces, Vol. 21, pp. 62-74.

Andrew, B. and H. Parsons (1993), "Establishing Telephone-Agent Staffing Levels through

Economic Optimization", Interfaces, Vol. 23, pp. 14-20.

Aneja, Y. and H. Kamoun (1999), Scheduling of Parts and Robot Activities in a Two Machine
Robot Cell", Computer and Operations Research, Vol. 26, pp. 297-312.

Applegate, D., R. Bixby, V. Chvátal, and W. Cook (2006), The Traveling Salesman Problem: A

Computational Study, Princeton University Press, Princeton, NJ.

Applegate, D., R. Bixby, V. Chvátal, and W. Cook (2007), Concorde, available at www.tsp.

gatech.edu.
Arabeyre, T., J. Fearnkey, F. Steiger, and W. Teather (1969), "The Airline Crew Scheduling

Problem: A Survey", Transportation Science, Vol. 3, pp. 140-163.
Atamturk, A., G. Nemhauser, and M. Savelsbergh (1998), "Conflict Graphs in Integer

Programming", Report LEC-98-03, Georgia Institute of Technology, Atlanta, GA.

Atamturk, A. and M. Savelsbergh (2005), "Integer-Programming Software Systems", Annals of
Operations Research, Vol. 140, No. 1, pp. 67-124.

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

411

412 REFERENCES

Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and P. Protasi
(1999), Complexity and Approximation, Springer-Verlag, Berlin, Germany.

Aykin, T. (1996), "Optimal Shift Scheduling with Multiple Break Windows", Management

Science, Vol. 42, pp. 591-602.

Baker, K. (1974), Introduction to Sequencing and Scheduling, John Wiley & Sons, New York,
NY.

Baker, B. and M. Fisher (1981), "Computational Results for Very Large Air Crew Scheduling
Problems", Omega, Vol. 9, pp. 613-618.

Balinski, M. and R. Quandt (1964), "On an Integer Program for a Delivery Problem",
Operations Research, Vol. 12, pp. 300-304.

Balinski, M. (1965), "Integer Programming: Methods, Uses, Computation", Management

Science, Vol. 12, pp. 253-313.

Ball, M., L. Bodin, and R. Dial (1983), "A Matching Based Heuristic for Scheduling Mass

Transit Crews and Vehicles", Transportation Science, Vol. 17, pp. 4-31.
Bard, J., G. Kontoravdis, and G. Yu (2002), "A Branch-and-Cut Procedure for the Vehicle

Routing Problem with Time Windows", Transportation Science, Vol. 36, pp. 250-269.

Bard, J. and S. Rojanasoonthon (2006), "A Branch-and-Price Algorithm for Parallel Machine
Scheduling with Time Windows and Job Priorities", Naval Research Logistics, Vol. 53, pp.
24-44.

Barnhart, C , E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance (1998), "Branch-and-
Price: Column Generation for Solving Huge Integer Programs", Operations Research, Vol.

46, pp. 316-329.

Barnhart, C , C. Hane, and P. Vance (2000), "Using Branch-and-Bound and Price-and-Cut to
Solve Origin-Destination Integer Multicommodity Flow Problems", Operations Research,
Vol. 48, pp. 318-326.

Barvinok, A., E. Gimadi, and A. Serdyukov (2002), "The Maximum TSP", in The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization, E. Lawler, K. Lenstra,
A. Rinoony Kan, and D. Shmoys (Eds), John Wiley & Sons, pp. 585-607.

Batson, R. (1979), Stability Theory for Mathematical Programming Problems with Unbounded
Convex Feasible Regions: A Point-to-Set Submap Approach, Ph.D. Thesis, Department of
Mathematics,The University of Alabama,Tuscaloosa, AL.

Batson, R. (1987), "The Modern Role of OR/MS Professionals in Interdisciplinary Teams",
Interfaces, Vol. 17, No. 3, pp. 83-93.

Bazaraa, M., J. Jarvis, and H. Sherali (2005), Linear Programming and Network Flows, 3rd ed.,

John Wiley & Sons, New York, NY.

Beale, E. (1955), "Cycling in the Dual Simplex Algorithm", Naval Research Logistics

Quarterly, Vol. 2, pp. 269-276.
Beasley, J. (Ed.) (1996), Advances in Linear and Integer Programming, Oxford University

Press, Oxford, England.
Bellmore, M. and S. Hong (1974), "Transformation of the Multisalesman Problem to the

Standard Traveling Salesman Problem", Journal of the ACM, Vol. 21, pp. 500-504.
Benders, J. (1962), "Partitioning Procedure for Solving Mixed Variable Programming

Problems", Numerishe Matematik, Vol. 4, pp. 238-252.

Bianco, L., S. Ricciardelli, G. Rinaldi, and A. Sassano (1988), "Scheduling Tasks with
Sequencing-Dependent Processing Times", Naval Research Quarterly, Vol. 35, pp. 177-184.

REFERENCES 413

Bixby, R., M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling (1999), "MIP: Theory and
Practice Closing the Gap", Proceedings of the 19th IFIP TC7 Conference on System
Modeling and Optimization, Vol. 174, Kluwer B.V., Deventer, The Netherlands, pp. 19-50.

Bixby, R., M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling (2002), "One Size Fits All?
Computational Tradeoffs in a Commercial Mixed Integer Programming Solver", presented
at The Institute for Mathematics and Its Application Workshop, October 14-19, University
of Minnesota, Twin Cities, MN.

Bland, R. (1977), "New Finite Pivoting Rules for the Simplex Method", Mathematics of

Operations Research, Vol. 2, pp. 103-107.

Bland, R. and D. Shallcross (1989), "Large Traveling Salesman Problems Arising in X-Ray
Crystallography: A Preliminary Report on Computation", Operations Research Letters,
Vol. 8, No. 3, pp. 125-128.

Bolat, A., M. Savsar, and M. Al-Fawzan (1994), "Algorithms for Real-time Scheduling of Jobs
on Mixed Model Assembly Lines", Computer and Operations Research, Vol. 21, No. 5, pp.
487-498.

Brearley, A., G. Mitra, and H. Williams (1975), "Analysis of Mathematical Programming Problem
Prior to Applying the Simplex Algorithm", Mathematical Programming, Vol. 8, pp. 54—83.

Brown, G., G. Ellis, G. Graves, and D. Ronen (1987), "Real-Time Wide Area Dispatching of

Mobil Tank Trucks", Interfaces, Vol. 17, pp. 107-120.

Cebry, M., A. DeSilva, and F. DiLisio (1992), "Management Science in Automating Postal
Operations: Facility and Equipment Planning in the United States Postal Service",
Interfaces, Vol. 22, pp. 110-130.

Cerny, V. (1985), "A Thermodynamical Approach to the Travelling Salesman Problem: An
efficient Simulation Algorithm", Journal of Optimization Theory and Applications, Vol. 45,
pp. 41-51.

Chatterjee, S., C. Carrera, and L. A. Lynch (1996), "Genetic Algorithms and Traveling

Salesman Problems", European Journal of Operational Research, Vol. 93, pp. 490-510.

Chen, D. (1970), A Group Theoretic Algorithm for Solving Integer Linear Programming
Problems, Ph.D. Thesis, Department of Industrial Engineering, State University of New
York at Buffalo, Buffalo, NY.

Chen, D., and S. Zionts (1972) "An Exposition of the Group Theoretic Approach to Integer
Linear Programming", Opsearch, pp. 75-102; also in Chapter 14, Linear and Integer
Programming, S. Zionts (1974), Prentice-Hall, Englewood Cliffs, NJ.

Chen, D. and S. Zionts (1976), "Comparison of Some Algorithms for Solving the Group

Theoretic Integer Programming Problem", Operations Research, Vol. 10, pp. 1120-1128.

Clarke, G., and S. Wright (1964), "Scheduling of Vehicles from a Central Depot to a Number of
Deliver Points", Operations Research, Vol. 12, pp. 568-581.

Cordier, C , H. Marchand, R. Laundy, and L. Wolsey (1999), "bc-opt: a branch-and-cut code for

mixed integer programs", Mathematical Programming, Series A, Vol. 86, pp. 335-353.

Cox, D., M. Burmeister, E. Price, S. Kim, R. Myers (1990), "Radiation Hybrid Mapping: A
Somatic Cell Genetic Method for Constructing High Resolution Maps of Mammalian
Chromosomes", Science, Vol. 250, pp. 245-250.

Croes, G. (1958), "A Method of Solving Travelling Salesman Problems", Operations Research,

Vol. 6, pp. 791-812.

Crowder, H., E. Johnson, and M. Padberg (1983), "Solving Large-Scale Zero-One Linear
Programming Problems", Operations Research, Vol. 31, pp. 803-834.

414 REFERENCES

Dakin, R. (1965), "A Tree Search Algorithm for Mixed Integer Programming Problems",
Computer Journal, Vol. 8, pp. 250-255.

Danna, E., E. Rothberg, and C. LePape (2003), "Integrating Mixed Integer Programming
and Local Search: A Case Study on Job-Shop Scheduling Problems", Proceedings CPAIOR'03.

Danna, E. (2004), "Integrating Local Search Techniques into Mixed Integer Programming",

40R, Vol. 2, pp. 321-324.

Dantzig, G. (1963), Linear Programming and Extensions, Princeton University Press,

Princeton, NJ.

Dantzig, G., D. Fulkerson, and S. Johnson (1954), "Solution of a Large-scale Traveling
Salesman Problem", Operations Research, Vol. 2, pp. 393-410.

Dantzig, G. and J. Ramser (1960), "The Truck Dispatching Problem", Management Science,
Vol. 6, pp. 331-344.

Dantzig, G. and P. Wolfe (1960), "Decomposition Principle for Linear Programs", Operations
Research, Vol. 8, pp. 101-111.

Danusaputro, S., C. Lee, and L. Martin-Vega (1990), "An Efficient Algorithm for Drilling

Printed Circuit Boards", Computers and Industrial Engineering, Vol. 18, pp. 145-151.

Day, R. (1965), "On Optimal Extracting from a Multiple File Data Storage System: An
Application of Integer Programming", Operations Research, Vol. 13, pp. 482-494.

Desrochers, M., J. Desrosiers, and M. Solomon (1992), "A New Optimization Algorithm for the

Vehicle Problem with Time Window", Operations Research, Vol. 40, pp. 342-354.

Dyckhoff, H. (1981), "A New Linear Programming Approach to the Cutting Stock Problem",
Operations Research, Vol. 29, pp. 1092-1104.

Eaton, D., M. Daskin, D. Simmons, B. Bulloch, and G. Jansma (1985), "Determining
Emergency Medical Service Vehicle Deployment in Austin, Texas", Interfaces, Vol. 15,
pp. 96-108.

Edmonds, J, and E. Johnson (1973), "Matching, Euler Tours and the Chinese Postman",
Mathematical Programming, Vol. 5, pp. 88-124.

Elshafei, A. (1977), "Hospital Lay-out as a Quadratic Assignment Problem", Operational
Research Quarterly, Vol. 28, pp. 167-169.

Farkas, J. (1902), "Über die Theorie der Einfachen Ungleichungen", Journal für die Reine und

Angewandte Mathematik, Vol. 124, pp. 1-27.
Farley, A. (1990), "A Note on Bounding a Class of Linear Programming Problems, Including

Cutting Stock Problems", Operations Research, Vol. 38 pp. 922-923.

Fortet, R., L'algèbre de Boole et ses (1959), "Applications en Recherche Opérationnelle",

Cashiers du Centre d'Etudes de Recherche Opérationnelle, l, pp. 5-36.

Fourer, R. (2007), "Linear Programming Software Survey", OR/MS Today, Vol. 34, No. 3, pp.
42-51.

Fourer, R. and D. Gay (2006), "AMPL: New Solver Support in the AMPL Modeling
Language," PowerPoint Presentation at the INFORMS Annual Meeting, Pittsburgh, PA,
November 5-8, www.ampl.com/INFORMS06.pdf.

Fourer, R., D. Gay, and B. Kernighan (2003), AMPL: A Modeling Language for Mathematical

Programming, 2nd ed., Brooks/Cole—Thompson Learning, Pacific Grove, CA.

Gale, D., H. Kuhn, and A. Tucker (1951), "Linear Programming and the Theory of Games",
Chapter 19 in Activity Analysis of Production and Allocation, T. C. Koopmans (Ed.), John
Wiley & Sons, New York, NY.

REFERENCES 415

Garfinkel, R. (1985), "Motivation and Modeling", in The Traveling Salesman Problem: A
Guide Tour of Combinatorial Optimization, E. Lawler, K. Lenstra, A. Rinoony Kan, and D.
Shmoys (Eds) John Wiley & Sons, Chichester, UK, pp. 17-36.

Garfinkel, R. and G. Nemhauser (1972), Integer Programming, John Wiley & Sons, New York,

NY.
Geoffrion, A.M. (1974), "Lagrangean Relaxation for Integer Programming", Mathematical

Programming Study, Vol, 2, pp. 82-114.

Gilmore, P. and R. Gomory (1961), "A Linear Programming Approach to the Cutting Stock
Problem", Operations Research, Vol. 9, pp. 849-859.

Gilmore, P. and R. Gomory (1963), "A Linear Programming Approach to the Cutting Stock
Problem—Part II", Operations Research, Vol. 11, pp. 863-888.

Gilmore, P. and R. Gomory (1964), "Sequencing a One State-Variable Machine: A Solvable Case
of the Traveling Salesman Problem", Operations Research, Vol. 12, pp. 655-679.

Glover, F. and E. Woolsey (1973), "Further Reduction of Zero-One Polynomial Programming
Problems to Zero-One Linear Programming Problems", Operations Research, Vol. 21, pp.
156-161.

Glover, F. and E. Woolsey (1974), "Converting 0-1 Polynomial Programming Problem to a 0-1

Linear Program", Operations Research, Vol. 22, pp. 180-182.

Glover, F. (1986), "Future Paths for Integer Programming and Links to Artificial Intelligence",

Computers and Operations Research, Vol. 13, pp. 533-549.

Glover, F. (1989), 'Tabu Search: Part I", ORSA Journal on Computing, Vol. 1, pp. 190-206.

Glover, F. (1990), "Tabu Search: Part II", ORSA Journal on Computing, Vol. 2, pp. 4-32.

Glover, F. and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers, Boston, MA.

Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Machine learning,

Addison-Wesley, Reading, MA.

Goldman, A. and A. Tucker (1956), "Theory of Linear Programming", article 4 in Linear
Inequalities and Related Systems, H. W. Kuhn and W. Tucker (Eds), Princeton University
Press, Princeton, NJ.

Gomory, R. (1958,1963), "An Algorithm for Integer Solutions to Linear Programs", Princeton
IBM Mathematical Research Report; also in Recent Advances in Mathematical
Programming Graves and Wolfe (Eds), McGraw-Hill, New York, NY.

Gomory, R. (1960), An Algorithm for the Mixed Integer Problem, RAND Corp., P-1885, Santa

Monica, CA.

Gomory, R. (1960,1963), All Integer Programming Algorithms, IBM Research Center Report
RC-189; also in Industrial Scheduling, Muth and Thompson (Eds), Prentice-Hall,
Englewood Cliffs, NJ.

Gomory, R. (1965), "On the Relation between Integer and Non-Integer Solution to Linear
Programs", Proceedings of National Academy of Science of the United States of America,
Vol. 53, pp. 260-265.

Gorry, A., and J. Shapiro (1972), "An Adaptive Group Theoretic Algorithm for Integer
Programming Problems", Management Science, Vol. 17, pp. 229-239.

Grotschel, M. and O. Holland (1991), "Solution of Large-Scale Symmetric Traveling Salesman
Problem", Mathematical Programming, Vol. 51, pp. 141-202.

Grotschel, M., M. Junger, and G. Reinelt (1985), "Facets of the Linear Ordering Polytope",
Mathematical Programming, Vol. 33, pp. 43-60.

416 REFERENCES

Grotschel, M. and M. Padberg (1985), "Polyhedral Theory", in The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, E. Lawler, K. Lenstra, A.
Rinoony Kan, and D. Shmoys (Eds), John Wiley & Sons, pp. 251-306.

Grünbaum, B. (1967), Convex Polytopes, John Wiley & Sons, New York, NY.

Gu, Z., G. Nemhauser, and M. Savelsbergh (1998), "Lifted Cover Inequalities for 0-1 Integer

Programs", INFORMS Journal on Computing, Vol. 10, pp. 417-426.

Gu, Z., G. Nemhauser, and M. Savelsbergh (1999), "Lifted Flow Covers for Mixed 0-1 Integer

Programs", Mathematical Programming, Vol. 85, pp. 439—467.

Guéret, C , C. Prins, and M. Sevaus (2002), Applications of Optimization with Xpress-MP,
Dash Optimization, London, England.

Gutin, G. and A. Punnen (2002), The Traveling Salesman Problem and Its Variations, Kluwer
Academic Publishers, Boston, MA.

Haessler, R. (1983), "Developing an Industrial-Grade Heuristic Problem-Solving Procedure",
Interfaces, Vol. 13, No. 3, pp. 62-71.

Hansen, P., B. Jaumard, and V. Mathon (1993), "Converting the 0-1 Polynomial Programming

Problem to 1 0-1 Linear Program", Operations Research, 22 (1), pp. 180-182.

Hanson, W. and R. Martin (1990), "Optimal Bundle Pricing", Management Science, Vol. 36,
No. 2, pp. 155-174.

Hastings, W. (1970) "Monte Carlo Sampling Methods Using Markov Chains and Their

Applications", Biometrika, Vol. 57, pp. 97-109.

Hillier, F. (1983), "Heuristics: A Gambler's Roll", Interfaces, Vol. 13, No. 3, pp. 9-12.

Hillier, F. and G. Lieberman (2005), Introduction to Operations Research, 8th ed.,

McGraw-Hill, New York, NY.
Hoffman, K. and M. Padberg (1991), "Improving Representations of Zero-One Linear

Programs for Branch-and-Cut", ORSA Journal of Computing, Vol. 3, pp. 121-134.

Hoffman, K. and M. Padberg (1993) "Solving Airline Crew Scheduling by Branch-and-Cut",

Management Science, Vol. 39, pp. 657-682.
Holland, J. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press,

Ann Arbor, MI.

Hong, S. and M. Padberg (1977), "A Note on the Symmetric Multiple Traveling Salesman

Problem with Fixed Charges", Operations Research, Vol. 25, pp. 871-874.

Hu, T. (1968), "On the Asymptotic Integer Algorithm", MRC Report 946, University of
Wisconsin, Madison, WI.

Hu, T. (1969), Integer Programming and Network Flow, Addison-Wesley, Reading, MA.

Hua, Z. and F. Huang (2006), "A Variable-Grouping based Genetic Algorithm for Large Scale

Integer Programming", Information Sciences, Vol. 176, pp. 2869-2885.
Ignizio, J. and T. Cavalier (1994), Linear Programming, Prentice-Hall, Englewood Cliffs, NJ.

Jeroslow, R., K. Martin, R. Rardin, and J. Wang (1992), "Gainfree Leontief Substitution Flow

Problems", Mathematical Programming, Vol. 57, pp. 375—414.

Johnson, D., C. Aragon, L. McGeoch, C. Schevon (1989) "Optimizing by Simulated Annealing:
An Experimental Evaluation. Part I: Graph Partitioning," Operations Research, Vol. 37,
pp. 865-892.

Johnson, D., C. Aragon, L. McGeoch, C. Schevon (1991) "Optimization by Simulated
Annealing: An Experiment Evaluation. Part II: Graph Coloring and Number
Partitioning", Operations Research, Vol. 39, pp. 378-395.

REFERENCES 417

Johnson, E., G. Nemhauser, and M. Savelsbergh (2000), "Progress in Linear Programming-
Based Algorithms for Integer Programming: An Exposition", INFORMS Journal on
Computing, Vol. 12, No. 1.

Johnson, E., M. Kostreva, and U. Suhl (1985), "Solving 0-1 Integer Programming Problems

Arising from Large Scale Planning Models", Operations Research, Vol. 33, pp. 803-819.

Johnson, E. and M. Padberg (1983), "Degree-two Inequalities, Clique Facets, and Bipartite

Graphs", Annals of Discrete Mathematics, Vol. 16, pp. 169-188.

Joines, J., C. Culbreth, and R. King (1996), "Manufacturing Cell Design: An Integer
Programming Model Employing Genetic Algorithms", HE Transactions, Vol. 28, No. 1,
pp. 69-85.

Jongens, K. and T. Volgenant (1985), "The Symmetric Clustered Traveling Salesman

Problem", European Journal of Operational Research, Vol. 19, pp. 68-75.

Karabakel N., A. Gunal, and W. Ritchie (2000), "Supply Chain Analysis at Volkswagen of

America," Interfaces, Vol. 30, No. 4, pp. 46-55.

Katayama, K., H. Sakamoto, and H. Narihisa (2000), "The Efficiency of Hybrid Mutation
Algorithm for the Travelling Salesman Problem", Mathematical and Computer Modeling,
Vol. 31, pp. 197-203.

Kemeny, J., H. Mirkil, J. Snell, and G. Thompson (1959), Finite Mathematical Structures,

Prentice-Hall, Englewood Cliffs, NJ.

Kirkpatrick, S., C. Gelatt, Jr., and M. Vecchi (1983), "Optimization by Simulated Annealing",
Science, Vol. 220, pp. 671-680.

Kontogiorgis, S. and Acharya (1999), "US Airways Automates Its Weekend Fleet
Assignment", Interfaces, Vol. 3, pp. 52-62.

Koopmans, T. and M. Beckmann (1957), "Assignment Problems and the Location of Economic
Activities", Econometrica, Vol. 25, pp. 53-76.

Land, A. and A. Doig (1960), "An Automatic Method for Solving Discrete Programming

Problems", Econometrica, Vol. 28, pp. 497-520.

Lander, E. (2001), "Initial Sequencing and Analysis of the Human genome", Nature, Vol. 409,

pp. 860-921.

Lasky, J. (1969), Optimal Scheduling of Freight Trucking, M.S. Thesis, Massachusetts Institute

of Technology.

Lawler, E., J. Lenstra, A. Rinnooy Kan, and D. Shmoys (Eds) (1985), The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, Chichester,
UK.

Lenstra, J. and A. Rinnooy Kan (1975), "Some Simple Applications of the Traveling Salesman

Problem", Operational Research Quarterly, Vol. 26, pp. 717-733.

Li, L., D. Fonseca, and D. Chen (2006), "Earliness-Tardiness Production Planning for Just-in-
Time Manufacturing: A Unifying Approach by Goal Programming", European Journal of
Operational Research, Vol. 175, pp. 508-515.

Lin, S. and B. Kernighan (1973), "An Effective Heuristic Algorithm for the Traveling Salesman

Problem", Operations Research, Vol. 21, pp. 498-516.

LINDO Systems Inc. (2004), LINGO: The Modeling Language and Optimizer, LINDO

Systems Inc., Chicago, IL.

Marchand, H., A. Martin, R. Weismantel, L. Wolsey (2002), "Cutting Planes in Integer and
Mixed Integer Programming", Discrete Applied Mathematics, Vol. 123, pp. 397-446.

418 REFERENCES

Martin, R. (1999), Large Scale Linear and Integer Optimization: A Unified Approach, Kluwer
Academic Publishers, Boston, MA.

Maximal Software (undated), "Developing Large-Scale Optimization Models with the MPL

Modeling System," White Paper, Maximal Software, Inc., www.maximalsoftware.com.

McCloskey, J. and F. Hanssmann (1957), "An Analysis of Stewardess Requirements and
Scheduling for a Major Airline", Naval Research Logistic Quarterly, Vol. 4, pp. 183-192.

McDaniel, D. and M. Devine (1977), "A Modified Benders' Partitioning Algorithm for Mixed
Integer Programming", Management Science, Vol. 24, No. 3, pp. 312-319.

Miller, C.E., A.W. Tucker, and R.A. Zemlin, "Integer Programming Formulation of Traveling
Salesman Problems", Journal of the ACM, Vol, 7, No. 4, pp. 326-329

Miller, H., W. Pierskalla, and G. Rath (1976), "Nurse Scheduling Using Mathematical
Programming", Operations Research, Vol. 24, pp. 857-870.

Miller, D. and J. Pekny (1991), "Exact Solution of Large Asymmetric Traveling Salesman
Problems", Science, Vol. 251, pp. 754-761.

Minieka, E. (1978), Optimization Algorithms for Networks and Graphs, Marcel Dekker,

New York, NY.

Morito, S. (1976), Integer Programming by Group Theory, Ph.D. Thesis, Case Western Reserve
University.

Murtagh, B. (1981), Advanced Linear Programming: Computation and Practice, McGraw-
Hill, New York.

Murty, K. G. (1992), Network Programming, Prentice Hall, Englewood Cliffs, NJ.
Nauss, R. (2006), "The Generalized Assignment Problem," Chapter 3 in Integer Programming:

Theory and Practice, Taylor and Francis, Boca Raton, FL.
Nemhauser, G. and L. Wolsey (1988), Integer and Combinatorial Optimization, John Wiley &

Sons, New York, NY.
Nieminen, K. (2001), Developing Mixed Integer Programming Methods, Master's Thesis,

Systems Analysis Laboratory, Helsinki University of Technology, Helsinki, Finland.
Noon, C. (1988), The Generalized Traveling Salesman Problem, Ph.D. Thesis, Department of

Industrial Engineering, University of Tennessee, Knoxville, TN.
Noon, C. and Bean (1993), "An Efficient Transformation of the Generalized Traveling

Salesman Problem", INFOR, Vol. 31, pp. 39-44.

Orlin, J. (1982), "Minimizing the Number of Vehicles to Meet a Fixed Periodic Schedule: An

Application of Periodic Posets", Operations Research, Vol. 24, pp. 760-776.

Padberg, M. and M. Grotschel (1985), "Polyhedral Computations", The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization, John Wiley & Sons, New York, NY.
Padberg, M. and G. Rinaldi (1987), "Optimization of a 532-City Symmetric Traveling

Salesman Problem by Branch and Cut", Operations Research Letters, Vol. 6, No. 1.

Padberg, M. and G. Rinaldi (1991), "A Branch and Cut Algorithm for the Resolution of Large-

Scale Symmetric Salesman Problems", SIAM Review, Vol. 33, pp. 60-100.
Padberg, M., T. Roy and L. Wolsey (1985), "Valid Linear Inequalities for Fixed Charge

Problems", Operations Research, Vol. 33, pp. 842-861.

Parker, R. and R. Rardin (1988), Discrete Optimization, Academic Press, Orlando, FL.

Pedroso, J. (2006), "Tabu Search for Mixed Integer Programming", Chapter 11 in Metaheuristic
Optimization via memory and Evolution: Tabu Search and Scatter Search, Springer,
New York.

REFERENCES 419

Phillips, D. and A. Garcia-Diaz (1981), Fundamentals of Network Analysis, Prentice-Hall,
Englewood Cliffs, NJ.

Pinedo, M. (2002), Scheduling: Theory, Algorithms, and Systems, 2nd ed., Prentice-Hall,
Englewood Cliffs, NJ.

Potvin, J. (1993), "The Traveling Salesman: A Neural Network Perspective", INFORMS

Journal on Computing, Vol. 5, pp. 328-348.

Potvin, J. (1996), "Genetic Algorithms for the Traveling Salesman Problem", Annals of
Operations Research, Vol. 63, pp. 339-370.

Ramirez-Beltran, N. and K. Aguilar-Ruggiero (1997), "Application of an Heuristic Procedure
to Solve Mixed-Integer Programming Problems", Computers and Industrial Engineering,
Vol. 33, Nos. 1-2, pp. 43^16.

Ratliff, H. and A. Rosenthal (1981), "Order-Picking in a Rectangular Warehouse: A Solvable
Case for the Traveling Salesman Problem", PDRC Report Series No. 81-10, Georgia
Institute of Technology, Atlanta, GA.

Ravindran, A., D. Phillips, and J. Solberg (1987), Operations Research: Principles and

Practice, 2nd ed., John Wiley & Sons, New York, NY.

Rao, M. (1980), "A Note on the Multiple Traveling Salesman Problem", Operations Research,

Vol. 28, pp. 628-632.
Rana, K. and R. Vickson (1998), "A Model and Solution Algorithm for Optimal Routing of a

Time-Chartered Containership", Transportation Science, Vol. 22, No. 2, pp. 83-95.

Rayward-Smith, V, I. Osman, C. Reeves, and G. Smith (Eds) (1997), Modern Heuristic Search

Methods, John Wiley & Sons, New York, NY.

Rego, C. and B. Alidaee (2005), Metaheuristic Optimization via Memory and Evolution,
Kluwar Academic Publishers, Boston, MA.

Reinelt, G. (1991) "TSPLIB—A Traveling Salesman Library", ORSA Journal in Computing,

Vol. 3, pp. 376-384.

Reinelt, G. (1994), The Traveling Salesman: Computational Solutions for TSP Applications,

Lecture Notes in Computer Science 840, Springer-Verlag, Berlin, Germany.

Reinelt, G. (1991) "TSPLIB—A Traveling Salesman Library", ORSA Journal in Computing,
Vol. 3, pp. 376-384.

Reinelt, G. (2007), TSPLIB, www.iwr.uni-heidelberg.de/groups/comopt/software/tsplib95/.

Reiter, S. and G. Sherman (1965), "Discrete Optimizing", Journal of the Society of Industrial

and Applied Mathematics, Vol. 13, pp. 864-889.

Rockafellar, R. (1970), Convex Analysis, Princeton University Press, Princeton, NJ.

Rolland, E., D. A. Schilling, and J. R. Current (1997), "An Efficient Tabu Search Procedure
for the P-Median Problem", European Journal of Operational Research, Vol. 96, pp.
329-342.

Rothberg, E. (2003), "The CPLEX Library: Presolve and Cutting Planes," www.mpi-inf.mpg.
de/conferences/adfocs-03/Slides/Rothberg_4.pdf.

Rothstein, M. (1973), "Hospital Manpower Shift Scheduling by Mathematical Programming",

Health Services Research, Vol. 8 pp. 60-66.

Salkin, H. and K. Mathur (1989), Foundations of Integer Programming, North-Holland,

New York, NY.

Salveson, M. (1955), "The Assembly Line Balancing Problem", Journal of Industrial
Engineering, Vol. 6, pp. 18-25.

420 REFERENCES

Savelsbergh, M. (1994), "Preprocessing and Probing Techniques for Mixed Integer
Programming Problems", ORSA Journal on Computing, Vol. 6, No. 4, pp. 445-454.

Savelsbergh, M. (1997), "A Branch-and-Price Algorithm for the Generalized Assignment

Problem", Operations Research, Vol. 45, pp. 831-841.

Schindler, S. and T. Semmel (1993), "Station Staffing at Pan American World Airways",
Interfaces, Vol. 23, pp. 91-106.

Schräge, L. (2003), Optimization Modeling with LINGO, 4th ed., LINDO Systems, Inc.,

Chicago, IL.

Schriver, A. (1986), Theory of Linear and Integer Programming, John Wiley & Sons,

New York, NY.

Scott, J. (1995), "A Transportation Model, its Development and Application to a Ship
Scheduling Problem", Asia-Pacific Journal of Operations Research, Vol. 12, No. 2, pp.
111-120.

Shapiro, J. (1968), "Dynamic Programming Algorithms for the Integer Programming Problem
I: The Integer Programming Problem Viewed as a Knapsack Type Problem", Operations
Research, Vol. 16, pp. 103-121.

Shapiro, J. (2001), Modeling the Supply Chain, Duxbury Press, Pacific Grove, CA.

Stigler, G. (1963), "United States V. Loew's, Inc.: A Note on Block Booking", Supreme Court

Review, Vol. 152.

Taha, H. (1975), Integer Programming: Theory, Applications, and Computations, Academic

Press, Orlando, FL.

Taha, H. (2007), Operations Research: An Introduction, 8th ed., Pearson Prentice-Hall, Upper

Saddle River, NJ.

Taylor, P. and S. Huxley (1989), "A Break from Tradition for the San Francisco Police: Patrol
Officer Scheduling Using an Optimization-Based Decision Support Tool", Interfaces, Vol.
19, pp. 4-24.

Thirez, H. (1968), Airline Crew Scheduling: A Group theoretic Approach, Ph.D. Thesis,

Massachusetts Institute of Technology.

Vance, P., C. Barnhart, E. Johnson, and G. Nemhauser (1997), "Airline Crew Scheduling: A
New Formulation and Decomposition Algorithm", Operations Research, Vol. 45, pp.
188-220.

Vance, P., A. Atamturk, C. Barnhardt, E. Gelman, E. Johnson, A. Krishna, D. Mahidhara, G.
Nemhauser, R. Rebello (1997), "A Heuristic Branch-and-Price Approach for the Airline
Crew Pairing Problem," Tech Report, TLI/LEC-97-06, Georgia Institute of Technology,
Atlanta, GA.

Vanderbeck, F. (2000), "On Dantzig-Wolfe Decomposition in Integer Programming and Ways
to Perform Branching in a Branch-and-Price Algorithm", Operations Research, Vol. 48, pp.
111-128.

Van Roy, T. and L. Wolsey (1987), "Solving Mixed 0-1 Programs by Automatic

Reformulation", Operations Research, Vol. 35, pp. 45-57.

Vasko, F, J. Wolfe, and K. Stott (1955), "Optimal Selection of Ingot Sizes via Set Covering",

Operations Research, Vol. 35, pp. 346-353.

Venter, J. (2001), "The Sequence of the Human Genome", Science, Vo. 291, pp. 1304—1351.

Vollman, T., W. Berry, and D. Whybark (1988), Manufacturing Planning and Control Systems,
2nd ed., IRWIN, Homewood, IL.

REFERENCES 421

Wagner, H. (1975), Principles of Operations Research, 2nd ed., Prentice-Hall, Englewood
Cliffs, NJ.

Walser, J., R. Iyer, and N. Venkatsubramanyan (1998), "An Integer Local Search Method with
Application To Capacitated Production Planning", Proceedings of the 14th National
Conference on Artificial Intelligence, AAAI/IAAI, 373-379.

Walser, J. (2008), Integer Optimization by Local Search: A Domain-Independent Approach,
Springer, New York.

Warner, D. (1976), "Scheduling Nursing Personnel According to Nursing Preference: A

Mathematical Programming Approach", Operations Research, Vol. 24, no. 5, pp. 760-776.

Watters, L. (1967), "Reduction of Integer Polynomial Programming Problems to Zero-One

Linar Programming Problems", Operations Research, Vol. 24, no. 5, pp. 1171-1174.

Weismantel, R. (1997) "On the 0/1 Knapsack Polytope", Mathematical Programming, Vol. 77,
pp. 49-68.

Wilhelm, M. and T. Ward (1987), "Solving Quadratic Assignment Problems by Simulated

Annealing", ¡IE Transactions, Vol. 19, No. 1, pp. 107-119.

Williams, H. (1993), Model Solving in Mathematical Programming, John Wiley & Sons,

Chichester, UK.
Williams, H. (1993), "Logic Applied to Integer Programming and Integer Programming

Applied to Logic", European Journal of Operational Research, Vol. 81, pp. 605-616.

Williams, H. (1999), Model Building in Mathematical Programming, 4th ed., John Wiley &

Sons, Chichester, UK.

Williams, H. and S. Brailsford (1999), "Computational Logic and Integer Programming" in
Advances in Linear and Integer Programming, J. Beasley (Ed.), Oxford University Press,
Oxford, UK. pp. 249-281.

Williams, H. and J. Wilson (1998), "Connections Between Integer Linear Programming and
Constraint Logic Programming—An Overview and Introduction to the Cluster of Articles",
INFORMS Journal on Computing, Vol. 10, pp. 261-264.

Winston, W. (1994), Operations Research: Applications and Algorithms, 3rd Edition, Duxbury

Press, Pacific Grove, CA.

Woolsey, R. (1972), "A Candle to Saint Jude, or Four Real World Applications of Integer
Programming", Interfaces, Vol. 2, No. 2, pp. 20-27.

Wolsey, L. (1998), Integer Programming, John Wiley & Sons, New York, NY.

Wolsey, L. (1989), "Strong Formulations for Mixed Integer Programming: A Survey",

Mathematical Programming, Vol. 45, pp. 173-191.

Yan, S. and C. Lin (1997), "Airline Scheduling for the Temporary Closure of Airports",

Transportation Science, Vol. 31, pp. 72-82.

Zanakis, S. and J. Evans (1981), "Heuristic 'Optimization': Why, When, and How to use It",

Interfaces, Vol. 11, No. 5, pp. 34-91.

Zionts, S. (1968), "On an Algorithm for the solution of Mixed Integer Programming Problems",
Management Science, Vol. 15, pp. 113-116.

Zionts, S. (1969), "Toward a Unifying Theory of Integer Linear Programming", Operations

Research, Vol. 17, pp. 404-410.

Zionts, S. (1974), Linear and Integer Programming, Prentice-Hall, Englewood Cliffs, NJ.

This page intentionally left blank

APPENDIX

ANSWERS TO SELECTED EXERCISES

CHAPTER 1

Problem 1.15

Maximize — 3x\ + 11x2—5x3—X4

s.t. x i+5x 2 -3x3+6x4 < 7

x\— X2— X3 + 2X4 < —3

Xj,X2,X3,X4 > 0

Problem 1.16

Let X\ = X] —X|

V3 = x 3 - (- 2) = x3 + 2 > 0(x'3-2)

Rewrite constraint 2:

—X2—X3—X4 < —13

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang
Copyright © 2010 John Wiley & Sons, Inc.

423

424 APPENDIX: ANSWERS TO SELECTED EXERCISES

LP : Maximize: — (xj+ — xj) + 5 x 2 + 2(x'3—2)—7x4—*5

s.t. - x 2 - (x ' 3 - 2) - x 4 < - 1 3

(x 1
+-x 1"")-X2 + 2x4 + 2x5 < 4

X i , X i , X 2 , X-î, X 4 , X5 -^ U

Maximize : —x,+ + xj~ + 5x2 + 2x'3—7x4—X5—4

s.t. —X2—x'3—x4 < —15

X,+ —Xf —X2 + 2X4 + 2X5 < 4

X1 , X1 , X2) X - i , X41 X5 ^ U

Problem 1.17

Maximize 7x 1 + 2x2 + *3 —4x4

s.t. 2xi—X2 + X3 < 10

xi +X4 = 12

Xi,X2,X4 > 0

x3 < 0

Let x3 = —x3 > 0 and rewrite constraint 2 as two < inequalities:

Maximize 7xi+2x2—x3—4x4

s.t. 2xj—X2—x3 < 10

x, + x 4 > 12

—xj—X4 < —12

X i} X2) Xo ^ X4 >o
Problem 1.18

Minimize

s.t.

.et x\

vhere X[+

x\

— \\X\ + 13X2 — 15X3

x2 + x3 = 7

* 1 ~ *3 < 3

xi unrestricted

X2 > 5,X3 > 0

= X[—Xj

= x\ if X] > 0

= 0 otherwise

= — x\ if xj < 0

= 0 otherwise

APPENDIX: ANSWERS TO SELECTED EXERCISES 425

Change objective function to maximize.

Let x2 = x 2 - 5 > 0 (x2 = x'2 + 5)

Finally, rewrite constraint 1 as 2 inequalities:

Maximize + ll(x,+ -xj~)-13(x2 + 5) + 15x3

S.t. x'2 + X3 < 2

—x2—X3 < —2

(X[+-Xj")-X3 < 3

>0

Problem 1.19

Let x'2 = 15-x2 > 0 (x2 = 15-x2)

Maximize x\ + (15—x'2) + X3

s.t. -X! + (15-x2) > 8

x i - (1 5 - x 2) + x 3 < 2

Xi,X2,X3 > 0

Maximize X]—x2 + X3 + 15

s.t. x\ + x 2 < 7

x\ +x2 +X3 < 17

> 0

CHAPTER 2

Problem 2.3

Sie/? 7:

Input parameters:

Decision variables:

Constraints:

Objective:

number of beverages n (say 3), number of food
items m (say 4), cost of each item c„ upper bound
on daily consumption of each item w,
whether or not to select each beverage y¡ (bin-
ary); 1 = 1,.. .,«(3), how much of each beverage
and food to consume x, (continuous > 0),
i = n + m(7)
total beverage consumed must equal L, total food
consumed must equal W, cannot drink more than
two types of beverage, upper bound on amount of
each beverage and food item
minimize total cost

426 APPENDIX: ANSWERS TO SELECTED EXERCISES

Step 2:

Item Amount/Day (oz) Cost/oz Daily Limitation (oz)

Water

Tea
Milk

Bread

Rice

Cereal

Apple

Xi

x2

x3

x4

*5

*6

X-,

C\

c2

c4

Cl

"1

" 2

" 3

u4

u5

"6
U-,

Indicator variables for beverages:

Water : y\ — 1 if water consumed

= 0 otherwise

Tea : j2 = 1 if t e a consumed

= 0 otherwise

Milk : V3 = 1 if milk consumed

= 0 otherwise

y\ +yi +yi < 2 (cannot consume more than two types of beverages)

7

Minimize

s.t.

^c¡x¡
1=1

-Xl + *2 + *3 = L

XA + X5 + X(, + X-i — W

y\ +V2 + V3 < 2

x\ <y\u{

x2 < yiu2

X3 < BW3

Xj < u¡, i = 4 , 5 , 6 , 7

X\, X2, X$, X4, X5, X(y, X-j > 0

y\,y2,y3 > O o r l

APPENDIX: ANSWERS TO SELECTED EXERCISES 427

Problem 2.4

Let Yy = 1 if stock i is bought in year^'

= 0 otherwise

Max : 90(y,i + YX2 + Yl3) + 120(72i + 2̂2 + Y23) + 100(K3i + Y32 + Y33)

+ 80(y4i + Y42 + Y43) + 130(y5i + 5̂2 + Y53)

s.t. IOK11 + 15K2i + I2F31 +9F4i + 131M < 45

20K12 + 15y22 + 25y32 + 15K42 + IOK52 < 60

157,3 +20r23 +20K33 + 15^43 + 10K53 < 50

IV = (0,1) i=l,...,5;j= 1,2,3

Problem 2.6

Let Yj = number of nurses of schedule type /, i— 1, . . . , 5.

(a)

(b) Min :

s.t.

1 0 1 0 0

1 0 0 0 0

0 0 1 1 0

A = 0 1 0 0 1

0 1 0 1 1

0 1 0 1 0

1 0 1 0 0

525Ki + 470Í2 + 550K3 + 500*4 + 42575

Y\ + Y3 > 20

F, + Y5 > 25

Y3 + Y4> 26

Y2 + Y5> 26

Y2 + YA + Y5 > 30

Y2 + Y4 > 30

Yi + Y3> 35

Yu Y2, Y3, Y4, Y5 > 0 and integer

428 APPENDIX: ANSWERS TO SELECTED EXERCISES

Problem 2.7

Let Xj be the number of part nurses hired to work (one day) on day /, i = 1, 2, s..., 7.

Min : 5257, + 470K2 + 550y3 + 500Y4 + 425Y5 + 150X,

+ 150X2 + I5OX3 + I5OX4 + I5OX5 + 150X6 + I5OX7

s.t. K,+ K 3 + X ! > 2 0

YI + YS+X2>25

K3 + K4+X3 > 26

Y2 + Y5+X4 > 2 6

Y2 + Y4 + Y5+X5>30

Y2 + Y4+X6>30

Yx + Y3+X7>35

Yi~4Y[> 0

*2-4K2 > 0

K3-4K3 > 0

YA-4Y'4 > 0

Y5-4Y'5 > 0

MY[+MY'A-XX > 0

MY[+MY'5-X2 > 0

MY^+MY4-X3 > 0

MY'2+MY'5-X4 > 0

MY'2 + MY'4 + MY'5 -X 5 > 0

MY'2+MY'4-X(, > 0

MY'i+MY'i-Xj > 0

^1, • ■ •, ̂ 5 > 0 and integer

X i , . . . , X7 > 0 and integer

Y[,...,Y'5 binary
Problem 2.11

Let Xij = amount shipped from DC, to retail partner y

i = l , . . . , 2 0 y = l , . . . , 5 0 0

APPENDIX: ANSWERS TO SELECTED EXERCISES 429

Let Yjj = 1 if DC, is used to supply partner;

= 0 otherwise

20 500
Min: EE(c A+^t i)

i=l 7=1
20

s.t. YlxV = dJ y = l , . . . , 5 0 0

i=l 7=1

20

S.l

i = l

500

Xij < M*Yy

Xy>0

Yij = (0,1)

i=l,..

i = l , . .
i = l . . .

. , 2 0 ; ; = 1,..

. . ,20; ; = 1,..
, . , 2 0 ; ; = 1,..

.., 500 (M = 'Yjlj
/— 1

..,500
,.,500

s.t

Problem 2.13

Let X|- be the amount of commodity A: (beverage type k) shipped from DC¡ to partner/
k=l,2, 3, and 4.

Furthermore, assume if any quantity of any commodity is shipped from DC, to partner
;', the fixed cost/} is incurred (but not repeated for k = 1, 2, 3, 4) as in Problem 2.11.

4 20 500
Min: EEE(c</*4+¿*y</)

Ar=l i = l 7 = 1

20

Yrfj = dJ ; '=1 , . . . ,500;À:=1, . . . ,4
i=i

4 4 500

^ . < M * K y / = 1 , . . . , 2 0 ; ; = 1,...,500 (M = ^ ^)
(t=l t= l7=l

4 > 0 ; = l , . . . , 2 0 ; ; = l , . . . , 5 0 0 ; f c = l , . . . , 4
^ = (0,1) / = 1 , . . . , 2 0 ; ; = 1 , . . . , 5 0 0

CHAPTER 3

Problem 3.2

Given : A T

B F

C F

D T

430 APPENDIX: ANSWERS TO SELECTED EXERCISES

(1) C n [(AUB) -► D)U ~ A

FnruF
FUF

F

(2) (A n D) U [C <-► (ß U D) U F]

r u f ^ t TUF

TUF ^ T

TUF

T

(3) Du{A-^[(cnA)u5]u~ö}n(cnß)

ru{rnF}

T U F

Problem 3.4

(a) Want x\ = 0orx2 = 0 (or both)

Let M = max{xi, xi}

ye{o,i}

x\ < M*y

x2 <M*(\-y)

x\,x2 > 0

Check:

if y = 1 then x\ = M and X2 = 0

if y = 0 then xj = 0 and X2 — M

Note: This generalizes to ^i(x)*g2W = 0.

APPENDIX: ANSWERS TO SELECTED EXERCISES 431

yo)

Problem 3.6

Let Yi

and C,

and Z/t

Let yx = 1

= 0

y2 = \

= 0

X\ =X

= 0

X2=X

= 0

y\ +yi < l

x\ <ay\

x2 < by2

* i > 0

X2 > ay2

y = ?>y\+2x

yi,y2e(0,l);

= 1

= 0

= profit of holding stock i

= 0,1

ifO<X<<2

otherwise

ifa<x<b

otherwise

if0<x<a

otherwise

i fa<x<b

otherwise

1-5^2 + 3X2

x\,x2>0

if stock i is purchased

otherwise

i = l , . . . ,

k= 1 , . . .

6

2

Objective function will be to Max : X)f=i C¡*Y¡.
Constraints 1 and 2 may be expressed as

2 < K, + Y2 + Y3 + Y4 + Y5 + Y6 < 4

Constraint3: Y3 + Y5<1.
Constraint 4: Either K, + Y2 + Y3 + Y4 = 2 or Y3 + Y4 + Y5 + Y6 > 2.
Let M be a large constant. Represent above as

Either Yi + Y2 + Y3 + Y4< 2and-Yx-Y2-Y3-Y4 < - 2

or -Y3-Y4-Y5-Y6 < -2

Yi + Y2 + Y3 + Y4-2 <M*Z¡

-Yi-Y2-Y3-Y4 + 2<M*Zi

-Y3-Y4-Y5-Y6 + 2 < M* (1-Z,)

432 APPENDIX: ANSWERS TO SELECTED EXERCISES

Constraint 5: If Y4 = 1, then K, = 1 as well, "not Y4 = 1" is "F4 = 0."

Either Y4 = 0 or K, = 1 (or both)

Either K4 < 0 or Y{ > 1

Either K4-0 < 0 or 1 -Y, < 0

Either y 4 - 0 < M * Z 2 1-K, < AÍ* (1-Z2)

Check:

If Z2 = 0, then Y4 = Oand 1-Ki < M (always true)

If Z2 = 1, then r4 < M and Yi = 1

(y4can be 0 or 1)

Note: A much simpler expression is just Y4 < 7i (Y4 — Y{ < 0).

Final model is

Max : C1Y1+ C2Y2 + C3Y3 + ■■■ + C„Y„

s.t. Yl + Y2 + Y3 + Y4 + Y5 + Y6<4

-Yl-Y2-Yi-Y4-Y5-Y6 <-2

Y3 + Y5<1

Yl + Y2 + Y} + Y4<2 + M*Zl

-Yi-Y2-Y3-Y4 < - 2 + Af *Z,

-Y3-Y4-Y5-Y6 < 2 + M(l -Z ,)

Y4<M*Z2

-Yx < 1+M(1-Z2)

Yl,...,Y6,ZuZ2 = (0,1)

Problem 3.10

Let Xj = start time of joby'-j = 1 , . . . , n

Xj +pj = end time of joby

Desire x¡ +pj < d¡ but may not be possible;^ = 1 , . . . , «

Define tardy time = t¡ = dj—(xj +Pj) = dj—Xj—pj

APPENDIX: ANSWERS TO SELECTED EXERCISES

To minimize total tardy time:

Min : y^Jj
7=1

tj = dj-xj-pj

For all i j , i = l,...,nj=l,...,n;andi¿ j

Either x¡ + t¡ < xj or xj + tj < x¡

that is, Xi—Xj + ti < Myk

Xj-Xi + tj <M(l-yk)

whereas (0,1); k=l,...,[^

To minimize the total number of tardy jobs:

Let yj = 1 if Xj+pj > dj

= 0 otherwise

Min : J^yj
7=1

s.t. if Xj+pj < dj, thcnyj = 0

which implies : "not x¡ +pj < dj or yj = 0

that is, —Xj—pj + dj < MjZj or yj < M(l—zj),

where A/,- = max{—Xj-pj + dj,yj} andz,-£{0,1}

Problem 3.11

Breakpoints are at ax = 0°, a2 = 40°, a3 = 100°, and a4 = 200°.
Any point on the line segment (?) is
t = AiO + A240 + A3100 + A4200
where A] + A2 + A3 + A4 = 1 and at most two consecutive A,- are >

Ai <y\

h <y\ +yi

h <y2+yî

h <yj,

y,-= 0,1 for i = 1,2,3

y\ +yi+y?, = l

434 APPENDIX: ANSWERS TO SELECTED EXERCISES

Model

/ (/) = A,/(0) + W O) + ^ (1 0 0) + W O O)

= Ai + 0.08A2 + O.O2A3 + 0.32/U

s.t. ¿1 < yi

h <yi+y-s

h < y 3

Á.I +A2 + h + M — 1

yi+y2+y3= 1

A,->0 y = l , 2 , 3 , 4

y , = 0 , 1 1= 1,2,3

Problem 3.12

Product bundling model with three customer segments i = 1,2,3 : n x = 300, n2 = 240,
and n3 = 600.

Letxy = price of bundle/ j= 1,2,3,4

and yij = 1, if customer segment / purchases bundle/

= 0, otherwise

and si = consumer surplus achieved by segment i in the "bundle/' chosen

Note: Both y y and s¡ assume customer / will purchase only one "bundle" to
achieve

s¡ = Maxj{rjj—Xj}

though we all know a customer may order two bundles, for example, HB plus
drink, but not combo.
Finally, let zij = yij* xß / = 1, 2, 3 and /= 1, 2, 3, 4.

APPENDIX: ANSWERS TO SELECTED EXERCISES 435

MIP Model

Max : 300(zn + z!2 + z13 +zj4) +240(z2i + z22 + z23 + z24)

+ 600(z31 + z32 + z33 + z34)

s-t. y\i+yi2+yi3+yu = l

J2I +3'22+)'23+}'24 — 1

^31 +>'32+y33+3'34 = 1

s\ > ru-xi

si > rn-x2

St > n-i-Xi

s\ > ri4-x4

s2 > r2\ -x\

s2 > r22-x2

s2 > r23-x3

52 > J"24—Xi,

53 > r3i—JCI

S3 > r32-x2

S3 > r33-x2

S3 > r34-x2

51 =ru * y i l - ^ I l+ ' ' l 2*3 ' l2 -^12 + ' ,13*3'l3-Zl3+'"l4*3'l4-Zl4

52 = r2\ *yu -Z2l + r22 *y22~Z22 + ^23 *y23~Z23 + >"24 *^24~^24

53 = ^31 * y3\~Z3l + r32* y32~Z32 + r33* y33~Z33 + r34* y34~Z34

Zy<Xj i= 1,2,3;;= 1,2,3,4

zV<rg*yij 1= l ,2 ,3 ;y= 1,2,3,4

^ > x , - (l -) ' / /) * M / ¿ = 1 , 2 , 3 ; ; = 1,2,3,4

where AÍ, is an upper bound on xjj = 1,2,3,4

y,y = (0,l) i = 1,2,3;;= 1,2,3,4

xj>0 ; = 1,2,3,4

Z0<O / = 1,2,3;;= 1,2,3,4

436 APPENDIX: ANSWERS TO SELECTED EXERCISES

CHAPTER 4

Problem 4.1

By graphing each feasible region, the student can see that the first one is the better
LP formulation for the problem, since Pj(feasible region of the first formulation)
C /^(feasible region of the second graph).

Problem 4.4

(1) 2yi +7y2-3j3 + 6y4-9y5 + y6 < - 12

(2) y i - 2 j 2 + y3 + AyA + 2y5-3y6 < 13

Iteration 1

1 <y\ < 4

0 < y2 < 7

4 < B < 10

2 < ^4 < M where M is a large constant

0 < y5 < 2

0<y6<M

yj integer; = 1,...,6

Constraint (1)

yi: U\ = 1/2*[-12 -7(0) - 6(2) -
+ 9(2)] = 12

y2: u2 = l/7*[—12 - 2(1) - 6(2) -
+ 3(10)+ 9(2)] = [3.14] = 3

y 3 : / 3 = l / - 3 * [- 1 2 - 2 (l) - 7 (0)
+ 9(2)] = [2.67] = 3

y4: M 4 = 1 / 6 * [- 1 2 - 2 (1) - 7 (0) -

+ 3(10)+ 9(2)] = [5.66] = 5
y 5 : / 3 = l / - 9 * [- 1 2 - 2 (l) - 7 (0)
+ 3(10)] = [4/-9] = 0
y 6 : « 6 = l / r [- 1 2 - 2 (l) - 7 (0) -
+ 3(10) + 9(2)] =22

1(0) + (10)

1(0)

- 6 (2) - 1 (0)

1(0)

- 6 (2) - 1 (0)

6(2)

Bound Tightens?

No

Yes

No

Yes

No

Yes

Updated bounds are y2 < 3, y4 < 5, and y6 < 22.

APPENDIX: ANSWERS TO SELECTED EXERCISES 437

Constraint (2) Bound Tightens?

yt: w, = l / r [1 3 - l (4) - 4 (2) - 2 (0) + 2(3) No
+ 3(22)] = 73

y2: l2 = 1/-2*[13 - 1(1) - 1(4) - 4(2) - 2(0) No
+ 3(22)] = -33

;y3: w 3 = l / l * [1 3 - l (l) - l (4) - 4 (2) - 2 (0) No
+ 3(22)]=76

y4: w4 =l /4*[13- 1(1) - 1(4) - 2(0) + 2(3) No
+ 3(22)] = 20

y5: M 5 = 1 / 2 * [1 3 - 1(1)- l (4)-4(2) + 2(3) No
+ 3(22)] = 36

y6: k= 1/-3*[13 - 1(1) - 1(4) -4(2) - 2(0) No
+ 2(3)] = - 2

Iteration 2

Constraint (1): Exactly as above. No changes beyond those identified in Iteration 1.
Constraint (2): Exactly as above. No bound changes. Stop.

New Model is

2)>i +7j?2-3>'3 +6y4-9y5 +y<> < - 12

yi-2y2+y3+4y4 + 2y5-3y6 < 13

1 < y\ < 4

0 < y2 < 3

4 < ;y3 < 10

2 < y A < 5

0 < y5 < 2

0<ye<22

yj integer j = 1,...,6

Problem 4.11

This is a pure 0-1 IP.
Constraint (1): 5x! + x2 + 3x3 — 2x4 + x5 — 3x6 < 9.
Row bound method:

wi = 5 (l) + l (l) + 3 (l) - 2 (0) + l (l) -3(0) = 10

h = 5(0) + 1(0) + 3(0)-2(l) + 1(0)-3(1) = - 5

- 5 < 9 < 10

438 APPENDIX: ANSWERS TO SELECTED EXERCISES

so no new conclusion, where 9 = b\.

Constraint (2): 2x\ — 2x2 + x3 + x4 — 2x5 + X(, < 6.

u2 = 2(l)-2(0) + 1 + 1-2(0) + 1 = 5

Now since b2 = 6 > u2 = 5, constraint 2 is redundant.
Constraint (3): Xi + x2 — x3 — x4 + 2x5 — x6 > 2.
Must be rewritten: — X\ — x2 + X3 + x4 — 2x5 + x¿ < —2.

i/3 = - l (0) - l (0) + l(l) + l (l) -2(0) + l(l) = 3

/3 = - l (l) - l (l) + l(0) + l (0)-2(l) + l(0) = - 4

Because —4 < —2 < 3, no new conclusion.
Constraint (4): 2x\ + x2 — 2x3 + 3x4 — x5 + x¿ > 8.
Must be rewritten: — 2X) — x2 + 2x3 — 3x4 + X5 — x6 < — 8.

£/4 = -2(0)-1(0) + 2(l)-3(0) + 1(1) —1(0) = 3

U = -2(1)-1(1) + 2(0)-3(l) + 1(0) —1(1) = - 7

Now —8<L4=—7, so constraint is infeasible and must be removed, or entire
program is infeasible.
Constraints (1) and (3) remain in the model.

Problem 4.15

To generate knapsack cut, need a¡ > 0.

Let y'2 = \-y2(y2 = \-y2)

and y'5 = l-y5(y5 = l - / 5)

Transformed constraint is

3 ? i - (l - y 2) + 2y3 + 4 y 4 - 3 (l - y s) < 5

3yl+y'2 + 2y3+4y4 + 3y'5 < 9

{y\,y4,y'5} is a knapsack cover because 3*1 + 0 + 0 + 4*1 + 3*1 = 10>9, but
(0, 0, 0, 1, 1), (1, 0, 0, 0, 1), and (1, 0, 0, 1, 0) are each feasible.
Hence, ng — 3.

So, yx +y4+y'5 < 2

that is,)», +y4 + (l-y5) < 2

y\ +y4-ys < 1

APPENDIX: ANSWERS TO SELECTED EXERCISES 439

Problem 4.17

Let x'2 = 1000x2. Then the model becomes

Max : z = 2xi + 3x2—X3

s.t. 21xi -5x 2 < 13

- I I X 1 + X 3 < 9

x'2+4x3 > 17

CHAPTER 5

Problem 5.7

Optimal matching of employees is (1, 6), (2, 7), (3, 8), and (4, 5), with z* = 6.

Problem 5.9

Let x\ = number of 8ft lengths sold uncut

X2 = number of 8ft lengths cut into two 4ft lengths

x-j = number of 14ft lengths cut into 10ft and 4ft lengths

X4 = number of 14ft lengths cut into 12ft lengths

x5 = number of 14ft lengths cut into 10ft lengths

x¿ = number of 16ft lengths cut into 12ft and 4ft lengths

Note: It can be shown that other cutting combinations are unprofitable, but if they are
included as variables in the model, their optimal value will be zero.
Optimal cutting plan is x* = (200, 0, 60, 40, 0, 40) with z* = $14,800.

CHAPTER 7

Problem 7.9

r(A) = 2

r(A : b) = 2

Hence, it is a consistent system with r = 2 < n = 3.
Thus, the given system has infinite number of solutions.

440 APPENDIX: ANSWERS TO SELECTED EXERCISES

Problem 7.10

If (125/92, 4/23, 91/92) = x \ then
z*=2*(125/92)-3*(4/23) + 10*(91/92) = (250-48 + 910)/92
= 1112/92=12.087.
First primal constraint: —3xt + x2 + 9x3 + xs¡.
-3*(125/92) + (4/23) + 9*(91/92) = 460/92 = 5. Hence, xs]* = 0.
Second primal constraint: X\ — 2x2 + x3 + xs2 = 2.
(125/92) - 2*(4/23) + (91/92) = (125-32 + 91)/92 = 184/92 = 2. Hence, x;2 = 0.
Third primal constraint: 6x\ + 5x2 + 2x3 + xs3 = 11.
6*(125/92) + 5*(4/23) + 2*(91/92) = (750 + 80 + 182)/92= 1012/92= 11.
Hence, xS3 * = 0.
By complementary slackness at optimal:

z = 12.087 = w*

x\ = 125/92 usl = 0

x*2 = 4/23 us2 = 0

x¡ = 91/92 u# = 0

**i = 0 u\ = ?

x*s2=0 u2 = ?

X*S3 = ° M 3 = ?

At optimal dual:

5 M I + 2 M 2 + 1 1 « 3 = 1112/92

—3wi + u2 + 6«3 = 2

u\—2u2 +5^3 = —3

9ui+u2 + 2u3 = 10

UUU2,U3 > 0

Using AT« = c, the student should verify u* = 12.1.

Problem 7.11

Dual is

Min: w = -5u\ + I7u2 + 5u3

s.t. — 2ui + 5u2 + 2M3 > 11

«i +4«2 > - 1 3

AU\ —U2 + H3 > 7

—5MJ— US > 9

U\,U2,U3 > 0

APPENDIX: ANSWERS TO SELECTED EXERCISES

Problem 7.12
Dual is

Max : w = 5u\ + 17«2 + 5«3

s.t. 2u\ +5u2-2u3 < 11

-U\ +4u2 < - 1 3

4u\-Ui + »3 > 7

—5u\— «3 = —9

M, > 0

w2 < 0

»3 unrestricted

Problem 7.13

Given:

X[= 7

x\ = 10

Xj = x*A = 0

xj = 6

z* = 9 4

Primal constraint 1 : X| + 2x2 + 3x3 + x4 — 3x5 + xsl = 9.
7 + 2*10 + 3*10 + 0 -3*6 = 2 7 - 1 8 = 9. Hence, xs* = 0 .
Similarly, substituting in primal constraints 2 and 3, xs2* = 0 and x^»
By complementary slackness at optimal:

z = 94 =

X[= 7

x\ = 10

x; = o

x; = o

x; = 6

^ 1 = 0

x*s2 = 0

4 = o

= w

«U=o
us2 = 0

*4 = ?

* 0

«s5=0

u\ = 1

U*2 = ?

* 0

M 3 = ?

442 APPENDIX: ANSWERS TO SELECTED EXERCISES

At optimal dual:

9M1 + 10W2 + HW3 = 9 4

u\ +2u2—3u3 = 4

2wi —W2 + 2«3 = 3

—3»i +«2 + 2«3 = 6

Using AT« = c, the student should verify u* = 94.04 = w*.

CHAPTER 8

Problem 8.1

No, because it is not convex.

Problem 8.3

After graphing the problem, we find the direction of min — 2x\ + x2 and hence
conclude that the problem is unbounded (z —» — oo).

Problem 8.5

(1)

Let*1 =(4, l),x2 = (-4, -1) . It can be seen from the graph that all ax1 + (1 - a) x 2

are not in S for each a, 0 < a < 1. Therefore, S is not a convex set.

APPENDIX: ANSWERS TO SELECTED EXERCISES

(2)

Let x ' = (4 , 6.25), x2 = (10, 2.5). It can be seen from the graph that all
ax1 + (1 — a) x2 are not in S for each a, 0 < a < 1. Therefore, S is not a convex
set.

(3)

Let x1 = (2,6), x2 = (4,0). It can be seen from the graph that all ax1 + (1 — a)x2

is not in 5 for each a, 0 < a < 1. Therefore, 5 is not a convex set.

444 APPENDIX: ANSWERS TO SELECTED EXERCISES

Problem 8.12

Extreme points: (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1).
There is a single simplex, the entire region.

Problem 8.16

After graphing the problem as shown below, it can be seen that there are three extreme
points; their exact coordinates are as follows:
2x\ + x2 — 1 and x2 = 0, hence, xl = (3.5, 0).
X! - x2 — 5 and x2 = 0, hence, x2 = (5, 0).
—3xi + x2 = 3 and 2x\ + x2 = l, hence, x3 = (0.8, 5.4).
Now, to find the extreme directions:

dx + d2 = 1

-2d1 +d2 < 0

dl-d2 <0

-2dl-d2 < 0

dl > 0

d2>0

Substituting d2 — l-dl:

(/' > -1 (redundant)

dl > 0 (redundant)

d] < \ (redundant)

So, 1/4 <dl< 1/2, 1/2 < cF < 3/4.
Considering d[+ d2 = 1 and -3d1 +d2 = 0. Hence, dl = 1/4 and d2 = 3/4.
Considering dl + d2 = 1 and dl -d2 = 0. Hence, dl = 1/2 and d2 = 1/2.

So, extreme points of D (extreme directions) are d1 = \^A ar,d d2 = ¡^ , a s s n o w n

in the following figure.

APPENDIX: ANSWERS TO SELECTED EXERCISES 445

Any point in the polyhedron can be represented by extreme points and extreme
directions as

3 2

x = ^2 aix' + ^2 ßjd
1=1 7=1

where

2_]a> = 1 ' a ' — ^ ¿ = 1 , 2 , 3
i = i

j 8 , > 0 7 = 1 , 2

= ax2 + (1 - a) x 3 + ßdl (all other a,-, j8y- = 0)

= a + (l - a)

Therefore, a = 4/9 and ß = 88/3.

+ ß
1/4
3/4

ax2 + (l - a) x 3 +j8i/1(all other a,, ¿3, = 0)

+ (l - a) + /3
1/2
1/2

Therefore, a = 23/48 and ß = 35/8.

446 APPENDIX: ANSWERS TO SELECTED EXERCISES

Note: The starting point for the ray extending to (10,25) is (8/3, 3); the starting point
for the ray extending to (5, 5) is (2.8125, 2.8125).

Problem 8.18

After graphing the problem, it can be seen that the constraint of X\ — 2x2 < 6 is not
necessary in the description of facets, while all others are necessary. Because (6,0) is a
degenerate extreme point and constraint 2 is not on the edge of the facet.

CHAPTER 9

Problem 9.4

In canonical form,

Max : - z + 2xx + 3x2-2x3

(1) S.t. X\ +X2 + X3 +S\ = 1

(2) x\ -2x2 + 2x3 + s2 = 2

Xi,X2,X3,Si,S2 > 0

With n = 5 variables and two equations, a basic feasible solution will have two basic
variables (and typically nonzero) and the other three nonbasic with value zero.
Substituting (1/3,1/3,1/3) in constraints (1) and (2) yield st = 0 and s2 = 5/3. The fact
that s2 ^ 0 is an argument that (1/3, 1/3, 1/3) could not be basic.

Problem 9.8

Canonical form:

Max : z—x\—2x2

(1) s.t. 2*1+5*2 = 21

(2) x\-x2+s\ = 10

x\,x2,S] > 0

Adjoining an artificial variable to (1)

Max : z—X\—2x2

s.t. 2 x i + 5 x 2 + * a = 21

x\—x2+S\ = 10

X\,X2,Si,Xa > 0

APPENDIX: ANSWERS TO SELECTED EXERCISES 447

Phase 1 objective: Max — z" + xa = 0.

Basic Variable

- z °
xa

Si

-z"

1
0
0

x¡

0
2
1

* 2

0
5

- 1

xa

1
1
0

í i

0
0
1

RHS

0
21
10

The coefficient of xa in row 0 is nonzero. Row 0—row 1 yields

Basic Variable — za

-za 1
xa 0
sx 0

2 be the entering variable and

Basic Variable — za

- z a 1
x2 0
s{ 0

X\

- 2
2
1

x2

- 5
5

- 1

xa be the leaving

X ,

0
2/5
7/5

x2

0
1
0

xa

0
1
0

variable.

Xa

1
1/5
1/5

■Sl

0
0
1

S\

0
0
1

RHS

- 2 1
21
10

RHS

0
21/5
71/5

Hence, xa is driven out of basis.
Phase 2 objective: Max z — xx — 2x2 = 0.

Basic Variable

z

x2

Si

z

1
0
0

Xl

- 1
2/5
7/5

x2

-2
1
0

x"

0
1/5
1/5

Sl

0
0
1

RHS

0
21/5
71/5

It is not yet in canonical form because the coefficient of x2 in row 0 is not 0. Let row
0 = row0 + row 1*2.

Basic Variable z X\ x2 x" ¡i RHS

z 1 - 1 / 5 0 2/5 0 42/5
x2 0 2/5 1 1/5 0 21/5
s, 0 7/5 0 1/5 1 71/5

448 APPENDIX: ANSWERS TO SELECTED EXERCISES

Let Xi be the entering variable, and since min{ (21/5)/(2/5), (71/5)/(7/5) }= 71/7, so let
the leaving variable be s\.

Basic Variable

z
x2

S\

z

1
0
0

X\

0
0
1

x2

0
1
0

xa

3/1
1/7
1/7

i i

1/7
-2/7

5/7

RHS

73/7
1/7

71/7

The optimum solution is (71/7,1/7) with an objective value of 73/7. In decimal form,
the optimum solution is (10.14, 0.14) with an objective solution of 10.43.

Problem 9.18

Let the price for beef, dog food, bread, bones, and chicken be Cj (J=l, ..., 5),
respectively. Uno consumes each type of food in the quantity of xi7lb, respectively.
Similarly, Dos and Tres consume x2j and x3j for each type of food.

(i)
3 5

Minimize z = ¿^zLcJx'J (CJ ls s n o w n m ta^^e m t n e t e x t)
i = l y = l

s.t. Xu > 0.5

X\4 > 1.7

*15 > 1-9

xn > 1.5

x23 > 0.3

x24 > 0.9

X25 > 0 . 1

*3i > 1.5

xn > 0.9

X33 > 0.8

X34 > 0.6

X35 > 0.2

*23 + X25 > 2.5

■*12+*14 + Xl5 > 2.7

■̂31 +^33 > 2.6

Xy > 0

APPENDIX: ANSWERS TO SELECTED EXERCISES 449

(ii) The LINGO model and solution by using sets are shown on the next page. As
shown in the solution, the minimum cost is $ 16.71 per day. Uno consumes 0 lb
beef, 01b dog food, 2.41b bread, 0.91b bones, and 0.11b chicken. Tres
consumes 1.5 lb beef, 0.9 lb dog food, 1.1 lb bread, 0.6 lb bones, and 0.2 lb
chicken.

MODEL :
SETS:
DOGTYPE/UNO,DOS,TRES/;
FOODTYPE/BEEF,DOGFOOD,BREAD,BONES,CHICKEN/:C;
LINK(DOGTYPE,FOODTYPE):B,X;
ENDSETS
DATA:
C = 2.510.81.21.6;
B = 0 0 0.5 1.7 1.9

01.50.30.90.1
1.50.90.80.60.2;

ENDDATA
MIN = @SUM(FOODTYPE(J) :C (J)*@SUM(DOGTYPE(I) :X(I,J))) ;
@FOR(DOGTYPE(I):@FOR(FOODTYPE(J)
X(2,3) + X(2,5) >=2.5;
X(l,2) +X(1,4) +X(1,5) >=2.7;
X(3,l) + X(3,3) >= 2.6;
END
Global optimal solution found at
Objective value:

Variable
C (BEEF)

C (DOGFOOD)
C(BREAD)
C(BONES)

C(CHICKEN)
B(UNO, BEEF)

B(UNO, DOGFOOD)
B(UNO, BREAD)
B(UNO, BONES)

B(UNO, CHICKEN)
B(DOS, BEEF)

B(DOS, DOGFOOD)
B(DOS, BREAD)
B(DOS, BONES)

B(DOS, CHICKEN)
B(TRES, BEEF)

B(TRES, DOGFOOD)
B(TRES, BREAD)
B(TRES, BONES)

:X(I,J)>=B(I, J)))

iteration:

Value
2.500000
1.000000

0.8000000
1.200000
1.600000
0.000000
0.000000

0.5000000
1.700000
1.900000
0.000000
1.500000

0.3000000
0.9000000
0.1000000
1.500000

0.9000000
0.8000000
0.6000000

;

16.
12

71000
Reduced Cost

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0,
0
0
0
0.

,000000
.000000
.000000
,000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

450 APPENDIX: ANSWERS TO SELECTED EXERCISES

B(TRES, CHICKEN)
X(UNO, BEEF)

X(UNO, DOGFOOD)
X(UNO, BREAD)
X(UNO, BONES)

X(UNO, CHICKEN)
X(DOS, BEEF)

X(DOS, DOGFOOD)
X(DOS, BREAD)
X(DOS, BONES)

X(DOS, CHICKEN)
X(TRES, BEEF)

X(TRES, DOGFOOD)
X(TRES, BREAD)
X(TRES, BONES)

X(TRES, CHICKEN)

Row
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

CHAPTER 10

Problem 10.4

0.2000000
0.000000
0.000000
0.5000000
1.700000
1.900000
0.000000
1.500000
2.400000
0.9000000
0.1000000
1.500000

0.9000000
1.100000

0.6000000
0.2000000

Slack or Surplus
16.71000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
2.100000
0.000000
0.000000
0.000000
0.000000
0.3000000
0.000000
0.000000
0.000000
0.9000000
0.000000

0.000000
2.500000
1.000000
0.000000
0.000000
0.000000
2.500000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

Dual Price
-1.000000
0.000000
0.000000
-0.8000000
-1.200000
-1.600000
0.000000
-1.000000
0.000000
-1.200000
-0.8000000
-1.700000
-1.000000
0.000000
-1.200000
-1.600000
-0.8000000
0.000000
-0.8000000

(a) This 6x4 matrix does not meet the second sufficient condition of Theorem
10.1, because there are two columns with more than two nonzero elements. So,
the theorem cannot be used to prove TU. This is not an interval matrix either.
The only way to check TU is to compute the determinant of 209 submatrices.
After computation, we can show that each of these has a determinant of - 1 , 0 ,
or 1. Hence, matrix is TU.

APPENDIX: ANSWERS TO SELECTED EXERCISES 451

(b) The matrix is not TU because the entire matrix is —2^0, 1, or — 1.

(c) The matrix is not TU. It is easy to find a 3*3 submatrix with determinant not
equal to — 1, 0, and 1, such as

1

-1

0

0

- 1

- 1

1

0

-

with determinant = 2

Problem 10.6

Problem 10.13

MODEL:
SETS:
NODES/A, B, C, D, E, F, G, H/ : DEMAND;
ARCS (NODES, NODES) /A,BA,CB,DC,DB,EC,GD,ED,GD,FE,HF,H
G,H/:CAPACITY,
FLOW,COST;
ENDSETS
MIN=@SUM(ARCS:COST*FLOW);
@FOR(NODES(I) :@SUM(ARCS(I,J) : FLOW(I,J))-
@SUM(ARCS(K,I):FLOW(K,I))=DEMAND(I));
@FOR(ARCS :FLOW<=CAPACITY);
DATA:
DEMAND = 2 5 2 0 2 0 5 1 0 0 - 3 0 - 5 0 ;
CAPACITY = 30 44 28 19 42 20 26 27 16 2 3 29 4 1 ;
COST = 3 5 3 5 5 4 6 7 2 8 9 7 ;
ENDDATA
END

Global optimal solution found at iteration: 8
Objective value: 916.0000

Variable Value Reduced Cost

FLOW(A, B) 21.00000 0.000000
FLOW(A, C) 4.000000 0.000000

452 APPENDIX: ANSWERS TO SELECTED EXERCISES

FLOW(B, D)
FLOW(C, D)
FLOW(B, E)
FLOW(C, G)
FLOW(D, G)
FLOW(D, F)
FLOW(E, H)
FLOW(F, H)
FLOW(G, H)

CHAPTER 11

Problem 11.3

28.
4.(
13,
20.
21.
16
23.
16
11

.00000
Í00000
.00000
.00000
.00000
.00000
.00000
.00000
.00000

0.
0.
0.
0.
0.
0.
0,
0,
0.

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000

Node

1
2
3
4
5 (Fathom—integer)
6 (Fathom by lower bound)
7 (Fathom—integer)

X\

7.11
6.83
6.67
6
6
5.67
6

x2

1.56
1
2
2.67
2
3
1

*3

0
0
0
0
0
0
0

*4

5.44
5.17
5
4.33
5
4
6

z

35.33
32.83
34
32
32
31
32

Problem 11.4

• Node 3 is fathomed due to "integer feasibility," and ultimately optimality as
well.

• Node 4 is fathomed due to "infeasibility."
• Node 6 is fathomed due to "optimality."
• Node 7 is fathomed due to bound: 37 < z = 40.

APPENDIX: ANSWERS TO SELECTED EXERCISES 453

Problem 11.11

(b)After obtaining the final tableau, the student should verify

Row 1 : x2 + 0 . 1 x 3 - 0 . 3 7 x 4 = 0.27

Row 2 : xi + 0. lx 3 - 0 . 03x 4 = 1.93

Hence,

C u t l : - 0 .1x3 -0 .63x4-0 .27

C u t 2 : - 0 .1x3 -0 .97x4 -0 .93

Problem 11.12

Max 3)>i + y 2 + 2y3 + 3y4

s.t. -y, +3y2+y3-2y4 + s¡ = 17

7yi +3y3+yi + s2 - 23

y\ + 2y2 + s-i = 11

y2 + 3y4+s4 = 13

- 0 . 1 1 8 J 1 - 0 . 2 6 5 J I - 0 . 9 1 2 5 2 - 0 . 2 0 6 5 4 + J 5 = -0 .147

- 0 . 2 2 2 y i - 0 . 2 2 2 i 2 - 0 . 8 8 9 i 4 - 0 . i l 1J5 + $I = -0 .778

-0.065yi -0 .258J! -0.839^2 -0.226s7+ss = -0 .968

-0 .25y 1 -0 .255 2 -0 .875 i7 -0 .125 j 8 +59 = - 0 . 7 5

-0 .571yl -0 .571s 2 -0 .286s8-0 .714j9 + iio = -0 .714

-0 .99> ' 1 -0 .99i 2 -0 .9959-0 .015,0+ 5ii = - 0 . 9 9

-0.559-0.4995io-O.OOl5n +sl2 = - 0 . 5

y \,y 2, y i, y A integer

Initial Solution: The Tableau

Row Yl Y2 Y3 Y4 SI S2 S3 S4 RHS

1.471 0.000 0.000 0.000 0.059 0.647 0.000 0.824 26.588
-0.882 1.000 0.000 0.000 0.265 -0 .088 0.000 0.206 5.147
2.235 0.000 1.000 0.000 0.029 0.324 0.000 -0 .088 6.794
2.765 0.000 0.000 0.000 -0 .529 0.176 1.000 -0 .412 0.706
0.294 0.000 0.000 1.000 -0 .088 0.029 0.000 0.265 2.618

Cut 1 : Using y2 as source row in initial tableau, we get

-0 .118j i -0 .2655i-0 .91252-0.20654 +s5 = -0 .147

1
2
3
4
5

ART
Y2
Y3
S3
Y4

454 APPENDIX: ANSWERS TO SELECTED EXERCISES

Cut 2: Using y3 as source row in Tableau 2, we get

-0.222y]-0.222s2-0M9s4-0.llls5+s1 = - 0 .778

Cut 3: Using y2 as source row in Tableau 3, we get

-0.065>>, -0 .2585, -0 .839 i 2 -0 .226^7+58 = -0 .968

Cut 4: Using y^ as source row in Tableau 4, we get

-0 .25J1-0 .2552-0.875^7-0.12558+59 = - 0 . 7 5

Cut 5: Using s4 as source row in Tableau 5, we get

-0.571>>i-0.57l52-0.28658-0.71459+51o = -0 .714

Cut 6: Using si as source row in Tableau 6, we get

-0.99yi-0.9952-0.9959-O.Ol5io + 5n = - 0 . 9 9

Cut 7: Using 57 as source row in Tableau 7, we get

-0.559-0.4995io-O.OOl5ii + 5 , 2 = - 0 . 5

Tableau 8 produces the optimal integer solution: z* = 25, y\ = 0, y2 = 4, y^ = 6, and

y A = 3.

Problem 11.14

Max 3yi + y2 + 2y3 + 3y4

Subjectto -y\ +3^2 +y3~2y4+s\ = 17

lyi + 3 j 3 + > ' 4 + 5 2 = 23

yi + 2 y 2 + 5 3 = 11

y2 + 3y4+s4 = 13

-0.118ji-> '2-0.26551-0.01552-0.20654 + 55 = -0 .147

-0.235}; ,-0.0295!-0.32452-0.33954+ 56 = -0 .794

-0 .182^1-0.27351-0.29854-0.15556+57 = -0 .363

-0 .333yi -0 .33354-0 .1425 6 -0 .6645 7 + 58 = -0 .666

yi,y3,y* integer > 0andy2 > 0

APPENDIX: ANSWERS TO SELECTED EXERCISES 455

After four cuts, the optimal integer solution is z* = 25, y¡ —0, y2 = 4, y3 = 6, and
y4 = 3.

CHAPTER 12

Problem 12.3

Given S = {ye(0,1) : 5y, + 2y2-3y3-y4 + 4y5 < 6}.

(1) y i = 1 is invalid because it excludes some feasible points in S, such as the
origin, (0, 1, 1, 1, 1) and others.

(2) y y = 0 is invalid because it excludes some feasible points in S, such as (1,1,1,0,
0).

(3) The inequality y¡ + y2 + y 5 < 2 is valid because C = {1, 2, 5} isa cover and
y\ + yi + Ï5 < 2 is the knapsack cover cut.

(4) ;y3 + y4 > 1 is invalid because it excludes some feasible points in 5, such as the
origin or (1,0, 0, 0, 0).

Problem 12.4

(l)rf=13.
Hence, yx + y2 + ^3 + y* > 3.
(0, 0, 0, 30/13) is "cut off' by this integer rounding cut.
(4)rf=2.
Hence, y{ + 3y3 + 2y4 + y5 < 12.
(25/2, 0, 0, 0) is "cut off' by this integer rounding cut.

Problem 12.5

Optimal tableau of the LP relaxation is as follows:

Basic

z
yi
*5

ys

y\

0.67
0.78
0.11
0.89

yi

0
1
0
0

y¡

0
0
0
1

í 4

0.33
0.22

-0.11
0.11

Í5

0
0
1
0

Í6

0.67
0.11

-0.56
0.56

RHS

10
3.67
0.67
6.33

Note: Any row may be used:
Using row 1, the C-G cut is y2 < 3.
Using row 2, the C-G cut is 2>y\ + 4y2-y3 < 14.
Using row 3, the C-G cut is — y2 + y3 < 6.

456 APPENDIX: ANSWERS TO SELECTED EXERCISES

Problem 12.8

Max y i +y2+yi-2x

Subject to : 3.lyi + l.3y2 + lAy^-x + Si = 19.7

yuy2,y>3 = 0 integer

The MIR cut is 1.727^i + y2 + y3 - 1.182* + 0.727.$! + s2= 15.
The solution is z* = 15 and y* = (0, 13, 2, 0). Using the Gomory mixed integer cut,
z* = 15, and y* = (0, 14, 1, 0)—an alternate optima.

CHAPTER 13

Problem 13.1

x* = (0, 4.5, 0.5, 0) withz*=4.

Problem 13.2

x*=(2, 16, 1,0) with z* = 4 1 .

CHAPTER 14

Problem 14.1

Yes, both yield the tour 4-1-3-2-5-4.

Problem 14.2

(a) The heuristic where the first customer of each route is the unserved customer
nearest the depot produces as follows:

Route

1
2
3
4
5
6
7
Total

Customers Visited

0-11-2-3-0
0-5-6-12-0

0-9-8-0
0-7-10-0

0-4-0
0-1-0
0-13-0

Tons Delivered

9
10
10
9
7
5
6

Cost

169
197
180
182
168
190
200
1286

APPENDIX: ANSWERS TO SELECTED EXERCISES 457

The heuristic where the first customer of each route is the unserved customer farthest
from the depot produces as follows:

Route

8
9
10
4
3
11
Total

Customer Served

0-13-2-0
0 - 3 ^ - 0

0-1-11-12-0
0-10-7-0
0-8-9-0
0-6-5-0

Tons Delivered

10
9

10
9

10
8

Cost

202
214
217
192
180
167
1172

(b) Performing the genetic algorithm's crossover operation will create an off-
spring that depends on the random number sequence used by the student.
Students should compare their crossover solution with the two parent solutions
and the offspring generated by classmates. The second solution above is likely
close to optimal.

This page intentionally left blank

INDEX

Abelian group, 287
Additive group, 287
Adjacent basic feasible solution, 211, 215,

222
Adjoint matrix, 158
Airline crew scheduling problems, 125
Algebraic modeling languages, 388
All-integer coefficients, 281
AMPL model, 394, 395

commands, 399
of diet problem, 395
modeling language, 392-400

AMPL compatible MIP solvers, 400
AMPL modeling techniques,

397^00
components of, 392-393

Application program interfaces (APIs),
392

Arc-node matrix, 324
Artificial intelligence approaches, 366-372
Artificial intelligence (AI) heuristic

algorithms, 131,359
Artificial variables, 216, 217
Assignment algorithms, Hungarian

algorithm, 7

Applied Inleger Programming: Modeling anc
Copyright © 2010 John Wiley & Sons, Inc.

Assignment problem, 143, 344
Associative law, 287

Backpack problem, See Knapsack problem
Backtracking, 278
Benders' general theory of decomposition,

380
Benders' partitioning approach, 380
Best-bound-first strategy, 276
Better formulation, definition, 82, 83
Binary integer program (BIP), 5, 59, 389

problem, 90
Binary variable(s), 59, 69, 70
Binding constraints, 296
Bipartite network, 116, 253
Bookkeeping scheme, 293
Boolean algebra, 55
Boolean expression, 55
Boolean operations, 58
Boolean variables, 55
Bounded linear programming problem, 87
Bounded polyhedron, 194, 222

representation theorem, 194
Bounded polytope, See Bounded

polyhedron

i, By Der-San Chen, Robert G. Batson, and Yu Dang

459

460 INDEX

Branch-and-bound (B&B) approach, 98,
272-280, 299, 305

algorithm, 273, 274, 278-280, 361, 388
behavior, 388
steps, 279

basic concepts, 272
development, 305
enumeration scheme, 293
origin, 299
solution process, 273

Branch-and-bound (B&B) tree, 272, 275,
277, 278, 353

branches, properties, 272
nodes, 272

Branch-and-cut (B&C) approach, 131, 201,
306-308, 329, 362

algorithm, 306-307, 356
application, 356
steps, 306

cut generating techniques, 309-312
from sets involving pure integer

variables, 313-315
preprocessing, 307-308
valid inequalities, 308-309

for integer program, 309
for linear programs, 308
types of, 308-309

Branch-and-price approach, 334, 356-357
application areas, 356-357
concepts, 334-335

Dantzig-Wolfe decomposition, 335-344
generalized assignment problem (GAP),

344-356
branch-and-price algorithm, 356
branching scheme, 353
column generation, tailing-off effect,

353-354
identical machines treatment, 354

Branching scheme, 355
Branching variable, selection rules, 276
Bundling products, examples, 67

Canonical system, 210
Capital budgeting problem, 31-32
Cargo loading problem, 31
Chain reaction, 95
Chvátal-Gomory cut, 313, 314

procedure, 314
Classical solution approaches, 271

Classical transportation problem, 249
Clique cut, 325
Coding computer programs, 4
Coefficient matrix, 86, 100, 295
Coefficient reduction process, 96
Coefficient vector, 339
Column generation approach, 334, 335

formulation, 346, 347, 349
vs. conventional formulation, 347
LP relaxation, 347
master problem in, 346, 349

tailing-off effect, 353-354
manifestation, 353

Combinatorial optimization problem (COP),
7, 84, 105, 106, 121, 130, 359, 376

classes of, 84, 105
classical assignment problem, 7
comparison of, 122
computational complexity, 121-125

of algorithm, 123
polynomial vs. nonpolynomial function,

124, 125
problem vs. problem instance, 123

group of, 106
IP formulations, 105
LP relaxation, 376
representative/typical model, 130
traveling salesman problem (TSP), 7, 130

Combinatorial optimization problem
modeling, 105, 130

cutting stock problem, 117-121
matching problem, 115-116
set covering/set partitioning, 106

applications, 113-115
set covering in networks, 111
set covering problem, 107-111
set partitioning/set packing, 111

traveling salesman problem (TSP), 130
Commercial modeling languages, 386
Commercial software, 386

solutions with, 386

typical IP software components, 388-392
data and application interfaces, 391-392
modeling languages, 389-390
presolvers, 389
sovlers, 388-389
user's options/intervention, 390-391

Complementary slackness theorem, 173
Complete enumeration scheme, 272

INDEX 461

Concave function, 61, 192, 193
Concavity, geometric interpretation, 193
Constraint equations, 210
Constraint set(s), 68, 69, 327, 339
Convex combination, 156, 188
Convex cone, 183, 191
Convex functions, 192
Convex hull, 84, 190
Convexity, geometric interpretation, 192
Convex polytope, 190
Convex sets, 183, 188

concave functions, 192-194
edge, 189
hyperplane, 189
intersection of, 188
line segments, 190
vs. nonconvex sets, 188
polyhedra, 188-190

cones, 191
extreme points, 190

unbounded, directions of, 191
Corner polyhedron, 295-299

in yN space, 298
CPLEX solver, 387
CPLEX's presovler, 389
Cramer's rule, 158
Cubic function, linearization, 65
Cut generating techniques, 309-312, 315,

320, 324, 326, 362
disjunction technique, 310-312
from 0-1 knapsack sets, 320-323

GUB cover, 323
knapsack cover, 320
lifted knapsack cover, 321-323

from sets containing 0-1 coefficients/0-1

variables, 324-326
from sets involving mixed integer

variables, 315-320
Gomory mixed integer cut, 315
mixed integer rounding cut, 319-320

from sets involving pure integer variables,
313-315

Chvátal-Gomory cut, 313
Gomory fractional cut, 313
objective integrality cut, 315
pure integer rounding cut, 314—315

from sets with special structures, 326
lifting technique, 312
rounding technique, 310

Cutting pattern, 117, 118
roll of given width, 117

Cutting plane approach, 80, 271, 280-286,
299

algorithm, 296
dual cutting plane approach, 280-281
fractional cutting plane method, 281-285
MIP problem solver, 286
mixed integer cutting plane method,

285-286
Cutting stock problem, 117-121

one-dimensional case, 117
two-dimensional case, 120-121

Dantzig-Fulkerson-Johnson constraints, 143
subtour elimination, 143

Dantzig-Wolfe decomposition, 335-344
principle, 120, 357

Database management systems (DBMS), 403
DBase (DB/2), 403
Microsoft Access, 403
Paradox, 403
PeopleSoft Oracle, 403
SQL Server, 403

Decision databases, 29
Decision variables, 29
Decomposing technique, 99-100
Decomposition algorithm, remarks, 338
Depth-first strategy, goal, 276
Diagonal matrix, 86, 158, 159
Diet problem, 397, 398

input data, 398
model structure, 397

Discrete optimization problems, 17
Discrete variables, 17
Disjunctive cut, 312
Distribution centers, 107
Divide-and-conquer approach, 272, 361
Dual cutting plane approach, 280-281

class of, 280, 281
stand-alone solver, 280

Dual linear program, 165
dual problem, formulation, 167-168
economic interpretation, 170
importance of, 171
nonstandard/standard form, 166
primal-dual simplex methods, 165

Dual optimum solutions, 172
primal, relationship, 172

462 INDEX

Dual simplex method, 16, 207, 231
maximization problem, 231
starting conditions, 231

Dual solution, 373
via relaxation, 373-377

combinatorial relaxation, 374-376
Lagrangian relaxation, 376-377
linear programming relaxation,

373-374
Duality gap, 354

Elementary column operations, 159
Elementary row operations, 159

determinant of a matrix, 162
inverse of a matrix, 160-161
linear equations, 162
rank of a matrix, 159-160
triangular matrix, 161-162
uses of, 159-165

Embedded looping process, 369
Enumeration approach, 361
Equality constraints, 183
Extreme ray, 223

definition of, 227
LP problem, 223
root/vertex of, 223

Facets of convex polyhedron, 309
Feasibility, geometric detection, 184
Feasible spanning tree, 257
Fixed-charge constraints, 326
Fixed-charge network, 326
Fixed-charge transportation problem, 38-39,

327
capacitated facility location problem, 41
transportation cost, 40
transportation problem, 39
uncapacitated facility location problem,

40
Flight crew scheduling problem, 109, 110

requirements/activities, 110
Flow balance equations, 249
Flow-conservation constraints, 326
Flow conservation equations, 249, 254
Flow cover, 326

from fixed-charge flow network, 326-329
plant/facility location, 327, 328

cut construction, 328
Flow shop sequencing, 140

Flyaway kit problem, 31
Formulation, 81-83

definition, 81
with same integer solutions, 83

Fractional cutting plane method, 281-285

Gaussian reduction, 162
Gauss-Jordan reduction, 162
Generalized assignment problem (GAP),

344-348
assignment constraints, 346
branching scheme, 353
column generation formulation, 345-348
formulation, 345, 354
initial solution, 348

Generalized upper bound (GUB) cover
inequality, 323

Generating row, See Source row
Genetic algorithm, 363, 365-367, 370-372

application, 365, 370-372
pseudocode, 371

Geometric concepts, 294—299
corner polyhedron, 297

in solution space of nonbasic variables,
297-299

polyhedrons in original space, 295-297
Geometric solution, 180

objective function, 181
polyhedron set, 180
requirements space, 183

equality constraints, 183-186
inequality constraints, 186-187

solution space, 181-183
Gomory fractional cut, 313
Gomory mixed integer cut, 318, 329
Gomory's slack variable, 282, 283
Graph theory, 132
Group elements, generation, 292
Group problems, types, 300
Group theoretic approach, 271, 286-294

definition, 287
group (minimization) problem derivation,

288
group problem formulation, 290-291
group problem solving, as shortest route

problem, 291
group theory terminology, 287-288
original integer program solving, 293-294

Hamiltonian cycle, 132

INDEX 463

Heuristic approaches, 361, 363, 367
algorithms, variety, 359
limitation, 367
MIP application, 361

Hybrid approach, 271

Identity matrix, 255, 313, 349
Implicit enumeration scheme, 272
Inequality constraints, 186
Infeasibility, geometric detection, 185
Integer knapsack problem, 375
Integer (linear) programming problem (IP), 3
Integer program(s), 4, 5, 54, 271, 294, 374,

377, 378, 381
classical solution approaches, 271

branch-and-bound, 271
cutting plane, 271
group theoretic, 271

classification of, 5
LP relaxation, 374

Integer programming (IP) models, 3, 15, 80,
85, 119-121, 133,377,379

algorithm, 131,402
performance of, 131
types of cuts, 402

application, 9, 30
interfaces, 8, 30
problem/model type, 8, 30

application papers, 8, 9, 21
classification, 9-14
in Interfaces, 9

COP relaxation, 379
cutting stock problem, 120
feasible regions, 273, 274
formulation, 80, 101, 112
Lagrangian relaxation, 377, 379
problem, 4, 123
quality of, 80, 101
solution regions, 275
solvers, types of tolerances, 401

Integer variable, 6, 59, 60, 311

binary representation, 59
Integrated circuits (IC) technologies, testing,

140, 141
Interval matrix, 254

Jumptracking, 278
Just-in-time production planning, 34-36

objective, 34

Knapsack problem, 30-31
approach, 291
constraint, 320
covers, 329
problem formulation, 5, 31, 47, 84, 122,

348, 378
two-dimensional, 31

Lagrangian dual, 377-380
in IP, 378
in LP, 378
properties of, 379-380

Lagrangian relaxation, 15, 354
assignment constraints, 354

Last-in first-out (LIFO), 277
Lifting technique, 312, 321

coefficients, 321
function, 321
procedure, 322
sequence independent lifting,

312,321
sequential lifting, 312, 321

LINDO solver, 390
LINDO Systems, 400, 401

LINGO, 400
Linear algebra, 155

algorithms, 180
bounded feasible region, 182
finite optimal solution, 182
solution space, 181

convex combination, 156
determinant of matrix, 157-158
Euclidean space, 155-156
linear combination, 156
linear independence, 156
lower triangular matrices, 158-159
matrix inversion, 157
rank of matrix, 155-156
upper triangular matrices, 158-159

Linear constraints, 3,5,55,56,62,64,65,81,
180

Linear programming (LP), 180
adjacent basic feasible solution,

211-212
algebraic concepts, 203

terms, 202-203
based methods, 80
basic feasible solution, 209-211
basic infeasible solution, 209

464 INDEX

Linear programming (Continued)
bounded/unbounded feasible region, 182,

197
canonical form, 207-208
convex set, 188
feasibility vs. infeasibility, 187
feasible region, 202, 273, 274

algebraic expression of, 202
finite optimal solution, 182
geometric concepts, 180, 203
optimum simplex tableau, 281, 317
problem, 3, 79, 166, 167, 340

mathematical definition, 167
matrix size, 79

reduced costs, 212-213
relaxation, 5, 80, 98, 281, 295, 316, 374

problems, 306
simplex-based methods, 208
solution regions, 275
solvers, types of tolerances, 401
unbounded convex sets, 191

LINGO model, 401-404
feature of, 402
modeling, aspects, 404
model specification, sections, 404
parameters, 401
program, 264
user's guide, 402

LINGO modeling language, 391, 400-405
interfacing with user, 403
LINGO model for the diet problem,

404-405
LINGO modeling conventions, 403^104
prescription of tolerances, 401
presolver, 402
solvers for linear/integer programming, 402

Local search heuristics, 363
Logical (Boolean) expressions

transformation, 55-58
basic logical (Boolean) operations on

variables, 56-58
conjunction, 56
disjunction, 56
double implication/biconditional, 58
either/or and if/then statements,

relationship, 57
negation, 57
simple implication, 57
truth table, 55-56

multiple Boolean operations on variables,
58

Lot sizing problem, 33

MACROS, 407, 408
Master problem, 336, 337, 339, 347

interaction with subproblem, 337
simplex tableau, 339

Matching problem, 115-116
integer programming formulation, 116
matching problems in networks, 115

Mathematical Programming Language
(MPL), 405^107

features, 405, 406
main window, 406
modeling language, 405-409

MPL compatible MIP solvers, 409
MPL model for diet problem, 408
MPL modeling conventions, 406-408

supported databases, 406
Matrix generators, 387
Matrix inversion, 157
Matrix triangularization method, 164
Maximum-cardinality node packing, 324
Metallurgical process, 369
Metropolis algorithm, 369
Miller-Tucker-Zemlin (MTZ) constraints, 144

formulation, 145
subtour elimination, 144

MILP model, of diet problem, 396
Minimum cost network flow (MCNF)

problem, 246, 248, 249
definition, 249
formulating transportation problem, 250
maximum flow problem, 251
model, 257
problem, 251
shortest path problem, 251
transportation-assignment problem,

249-251
transshipment problem, 251

Mixed integer cutting plane method, 285-286
MIP problem solver, 285

Mixed integer program (MIP), 3-5,21,22,29,
82,100,305, 312,360,361, 363-365,
381-383, 387

advancement factors, 305
assumptions on, 22-28, 47

additivity/separability assumption, 27

INDEX 465

anatomy of, 23
certainty assumption, 24
divisibility assumption, 22
integrality assumption, 22
proportionality (linearity) assumption,

24,27
simultaneousness assumption, 28
single-objective assumption, 28

Benders' partitioning algorithm, 381, 382
building blocks, 22
continuous variables, proportionality, 25
expression, 4
feasible region, 311
format, 55, 67
formulation, 380
integer variables, proportionality, 26
linearity assumption, 55
local search algorithms, 365
local search heuristics, example, 364
mathematical definition, 22
problem, 88, 166
software, 309
solution process, 360
standard vs. nonstandard forms, 5-7

Mixed integer rounding (MIR) cut, 310
Mixed integer set, form, 319
Mixed integer variables, 326
Model construction process, 29
Modeling enhancement techniques, 397
Modeling languages, 17, 386, 389-391

AMPL, 17, 386, 390
LINGO, 17, 386, 390
MPL, 17, 386, 390

Modeling process, 28-30
Modeling software, 390
Multicommodity network flow problem,

41-42
mathematical model, 42

Multiple traveling salesmen problem
(MTSP), 135-137

Network algorithm, 257-258
Network optimization problems, 43-44, 106,

246
blending constraints, 43, 44
class of, 248

maximum flow problem, 251
minimum cost network flow (MCNF)

problem, 248, 249

shortest path problem, 251
transportation-assignment problem,

249-251
transshipment problem, 251

facility location problem, 43
LINGO program, 264
multicommodity flow problem, 43
network fundamentals, 247

direct, 247
trees and spanning trees, 248

production lot sizing, 43
proportional constraints, 43
solutions, 246
totally unimodular (TU) matrices, 252

definition, 252
forward/backward substitution method,

255
lower/upper triangular matrix, 255
MCNF problem, matrix structure,

254
MCNF problem, naturally integer

solution, 255-256
sufficient condition, 252-254
transportation problem, 255

with side constraints, 43
Network simplex method, 246, 256

feasible spanning trees vs. basic feasible
solutions, 256-257

network algorithm, 257-258
numerical example, 258-263

Node-arc incidence matrix, 112, 116
Node covering problem, 111-113, 116

vs. 1-matching problem, 116
Node packing problem, graph for, 324
Node potential, 258
Nonbinary variables, 58

types, 58
to 0-1 variable transformation, 58-60

transform discrete variable, 60
transform integer variable, 58-59

Nonlinear functions, 27
Nonlinear programming problem, 27
Nonsimultaneous constraints transformation,

69-72
disjunctive constraint sets, 71
either/or constraints, 69-70
if/then constraints, 71
negation of constraint, 71
p out of m constraints, 70-71

466 INDEX

Nonzero coefficients, 285
negative/positive coefficients, 285

Object linking and embedding (OLE), 403
Operations research (OR) models, 28, 44

classes, 44
definitions, 28
study, phases of, 28

Operations Research Society of America
(ORS A), 18

Optimality test, 228
Optimum solution, 217

Parametric integer program, 24
Partition integer variables, 316
Partition matrix, 341

initialization step, 342
master step, 342-344

Pedroso's strategy, 368
Pedroso's tabu search approach, 383
Piecewise linear function, 61-64

arbitrary piecewise linear functions,
60-63

MIP formulation, 61
concave piecewise linear cost functions,

63-64
economy of scale, 63

transformation, 60-64
Pivot column, 234, 337, 339, 340, 347, 349
Polyhedral cone, 191
Polyhedral set, 180
Polyhedron, 199, 201

definition, 81
faces, facets, and dimension, 199-201
facets, 201-202
set, 180

Polynomial complexity, 124
Polynomial function, 124
Polytope, See Bounded polyhedron
Preprocessing techniques, 79, 80, 86, 101,

360, 389
automatic problem preprocessing, 86-87
better formulation, 79-86
coefficient matrix scaling, 100-101
MIP solvers, 389
preprocessor, functions, 86
problem decomposition into independent

subproblems, 99-100
pure 0-1 integer programs, 93-99

cutting planes generation from
minimum cover, 97-98

fixing 0-1 variables, 93-95
redundant constraints detection/

infeasibility, 95-96
rounding by division with GCD, 98-99
tightening constraints, 96-97

tighter constraints, 360
tightening bounds on variables, 87-93

bounds on 0-1 variables, 90
bounds on continuous variables, 87
bounds on general integer variables,

88-89
infeasibility, 91-93
redundant constraints, 91-93
variables fixing, 91-93

Presolver, See Preprocessor
Primal-dual formulation, 169
Primal-dual relations, 171

complementary slackness theorem, 173
duality theorem, 172
optimum solutions, 172
weak duality theorem, 171

Primal-dual simplex method, 165
Primal cutting plane approach, 281
Primal solution, 363, 380

via Benders' partitioning, 380-382
via heuristics, 363-372

artificial intelligence approaches,
366-372

local search approaches, 364-366
Probabilistic search approach, 369

genetic algorithms, 369
Problem preprocessing, functions, 93
Problem-specific heuristics, 363
Production planning problems, 32-36

capacitated lot sizing, 34
just-in-time production planning,

34-36
uncapacitated lot sizing, 33-34

Project selection problems, 30-32
capital budgeting problem, 31-32
knapsack problem, 30-31
single-period, 31

Pruning strategy, 355
Pure integer programming problem, 4

Quadratic function, 64, 65
linearization, 65

INDEX 467

Real-valued function, 192
Real-world problems, 107
Recession cone, 195, 196

normalization constraint, 196
Redundant constraint, 95, 96
Relative optimality tolerance, 402
Relaxation approaches, 359, 362, 373

combinatorial relaxation, 362, 373
Lagrangian relaxation, 362, 373
linear programming relaxation, 362, 373
for solving integer programming (IP)

problems, 359
Representation theorem, 199
Resource constraints, 404
Restricted master problem, 347, 353
Revised simplex method, 16, 233

LP problem, 233
Rooted spanning tree, 257
Rounding technique, 310

procedure, 314
Row bounding technique, 93

Set covering problem models, 45, 47,
106-111

definition, 107, 111
requirements/characteristics, 106

Set partitioning problem, 111
Shortest path problem, 247, 251
Simple covering problem, 111
Simplex method, 16, 213, 223

basic feasible/infeasible solutions,
220-221

better and feasible solution, 213-215
dual simplex method, 231-233
geometric interpretation, 220

basic feasible solution vs. extreme point,
220-222

nomenclature, 222-223
initial basic feasible solution, 216
optimality test, 216
pivoting operation, 215
revised simplex method, 233-238
updating simplex tableau, 215
for upper bounded variables, 227-231
upper bound technique, 228

Simplex tableau, 208, 211, 212, 214, 218,
219, 225

after pivoting, 215
before pivoting, 214

columns of, 219
extreme ray identification, 223-227
objective value, 219
pivot column, 219
pivot row, 219

Simulated annealing algorithm, 370
Simulated annealing heuristic, 369
Single-variable constraints, 207
Software packages, 401
Software systems, components, 386
Solution strategies, 359-362

better formulation by preprocessing, 360
heuristics for tightening lower bounds, 361
LP-based branch-and-bound framework,

361
relaxations for tightening upper bounds,

. 362
strong cuts for tightening solution

polyhedron, 362
Source row, 282
Spanning trees, 248
Standard minimization problem, 168
State-of-the-art MIP solvers, 388
Stigler's economic model, 68
Stochastic integer program, 24
Stopping criterion, 369

consumer surplus, 68
reservation prices, 68

Subproblems, objective functions, 344
Superadditive, definition, 322
Supply chain model, 45
Supply chain planning (SCP), 44, 45

MIP modeling situations, 45
problems, 44-47

descriptive models, 44
network structures, 44
normative models, 44

Tableau coefficients, 282
Tabu search, 367, 383

algorithm, 367, 368
problem-specific application, 383

The Institute of Management Science
(TIMS), 18

Totally unimodular matrices, properties of,
254

Transformation, 54
using 0-1 variables, 54

Transformed network, 139

468 INDEX

Transform functions, 66-69
binary products, 66
bundle pricing problem, 66
continuous variables, 66

Transportation model, 39, 250
formulating, 250
problem, 251,255

coefficient matrix for, 255
Traveling salesman problem (TSP), 17,

130-133, 136, 139, 145, 148, 359
applications of, 132, 139-142

genome sequencing for genetic study,
142

machine sequencing problems in various
manufacturing systems, 140

sequencing problems in electronic
industry, 140

vehicle routing for delivery and
dispatching, 141-142

asymmetric TSP, 132, 142
definition, 142
formulating, 142-145

data sets, 148
formulations, 145
generalized TSP, definition, 137
importance of, 130
instances, milestones of, 131
symmetric TSP, 132, 146

formulating, 146-148
transformations, 133-139

clustered TSP, 137
generalized TSP, 137
maximum TSP, 139
multiple traveling salesmen problem,

135

shortest Hamiltonian path, 133-134
TSP with repeated city visits, 134

variations, 133
Triangular matrix, 255

Unbounded polyhedron, 195
direction algebraically, 195
recession cone, 196
representation theorem, 199

extreme directions/points, 199
Uncapacitated facility location problem,

85
Undirected network, 147, 148

subtours in, 148
Upper bound technique, 228
Valid inequality theorem, 308
Variable fixing techniques, 91, 93
Variable grouping-based genetic algorithm

(VGGA), 383

Warehouse location problem, 108
requirements/activities, 108

Web-based interfaces, 392
Weighted b-matching, 116
Weighted perfect matching, 116
Workforce/staff scheduling problems,

36-38
scheduling full-time workers, 36, 37
scheduling part-time workers, 37

0-1 (binary) integer program, See Binary
integer program (BIP)

0-1 polynomial functions transformation,
64-66

Zero-valued variable, 222

	Applied Integer Programming: Modeling and Solution
	CONTENTS
	PREFACE
	PART I MODELING
	1 Introduction
	1.1 Integer Programming
	1.2 Standard Versus Nonstandard Forms
	1.3 Combinatorial Optimization Problems
	1.4 Successful Integer Programming Applications
	1.5 Text Organization and Chapter Preview
	1.6 Notes
	1.7 Exercises

	2 Modeling and Models
	2.1 Assumptions on Mixed Integer Programs
	2.2 Modeling Process
	2.3 Project Selection Problems
	2.3.1 Knapsack Problem
	2.3.2 Capital Budgeting Problem

	2.4 Production Planning Problems
	2.4.1 Uncapacitated Lot Sizing
	2.4.2 Capacitated Lot Sizing
	2.4.3 Just-in-Time Production Planning

	2.5 Workforce/Staff Scheduling Problems
	2.5.1 Scheduling Full-Time Workers
	2.5.2 Scheduling Full-Time and Part-Time Workers

	2.6 Fixed-Charge Transportation and Distribution Problems
	2.6.1 Fixed-Charge Transportation
	2.6.2 Uncapacitated Facility Location
	2.6.3 Capacitated Facility Location

	2.7 Multicommodity Network Flow Problem
	2.8 Network Optimization Problems with Side Constraints
	2.9 Supply Chain Planning Problems
	2.10 Notes
	2.11 Exercises

	3 Transformation Using 0–1 Variables
	3.1 Transform Logical (Boolean) Expressions
	3.1.1 Truth Table of Boolean Operations
	3.1.2 Basic Logical (Boolean) Operations on Variables
	3.1.3 Multiple Boolean Operations on Variables

	3.2 Transform Nonbinary to 0–1 Variable
	3.2.1 Transform Integer Variable
	3.2.2 Transform Discrete Variable

	3.3 Transform Piecewise Linear Functions
	3.3.1 Arbitrary Piecewise Linear Functions
	3.3.2 Concave Piecewise Linear Cost Functions: Economy of Scale

	3.4 Transform 0-1 Polynomial Functions
	3.5 Transform Functions with Products of Binary and Continuous Variables: Bundle Pricing Problem
	3.6 Transform Nonsimultaneous Constraints
	3.6.1 Either/Or Constraints
	3.6.2 p Out of m Constraints Must Hold
	3.6.3 Disjunctive Constraint Sets
	3.6.4 Negation of a Constraint
	3.6.5 If/Then Constraints

	3.7 Notes
	3.8 Exercises

	4 Better Formulation by Preprocessing
	4.1 Better Formulation
	4.2 Automatic Problem Preprocessing
	4.3 Tightening Bounds on Variables
	4.3.1 Bounds on Continuous Variables
	4.3.2 Bounds on General Integer Variables
	4.3.3 Bounds on 0-1 Variables
	4.3.4 Variable Fixing Redundant Constraints, and Infeasibility

	4.4 Preprocessing Pure 0-1 Integer Programs
	4.4.1 Fixing 0-1 Variables
	4.4.2 Detecting Redundant Constraints And Infeasibility
	4.4.3 Tightening Constraints (or Coefficients Reduction)
	4.4.4 Generating Cutting Planes from Minimum Cover
	4.4.5 Rounding by Division with GCD

	4.5 Decomposing a Problem into Independent Subproblems
	4.6 Scaling the Coefficient Matrix
	4.7 Notes
	4.8 Exercises

	5 Modeling Combinatorial Optimization Problems I
	5.1 Introduction
	5.2 Set Covering and Set Partitioning
	5.2.1 Set Covering Problem
	5.2.2 Set Partitioning and Set Packing
	5.2.3 Set Covering in Networks
	5.2.4 Applications of Set Covering Problem

	5.3 Matching Problem
	5.3.1 Matching Problems in Network
	5.3.2 Integer Programming Formulation

	5.4 Cutting Stock Problem
	5.4.1 One-Dimensional Case
	5.4.2 Two-Dimensional Case

	5.5 Comparisons for Above Problems
	5.6 Computational Complexity of COP
	5.6.1 Problem Versus Problem Instance
	5.6.2 Computational Complexity of an Algorithm
	5.6.3 Polynomial Versus Nonpolynomial Function

	5.7 Notes
	5.8 Exercises

	6 Modeling Combinatorial Optimization Problems II
	6.1 Importance of Traveling Salesman Problem
	6.2 Transformations to Traveling Salesman Problem
	6.2.1 Shortest Hamiltonian Paths
	6.2.2 TSP with Repeated City Visits
	6.2.3 Multiple Traveling Salesmen Problem
	6.2.4 Clustered TSP
	6.2.5 Generalized TSP
	6.2.6 Maximum TSP

	6.3 Applications of TSP
	6.3.1 Machine Sequencing Problems in Various Manufacturing Systems
	6.3.2 Sequencing Problems in Electronic Industry
	6.3.3 Vehicle Routing for Delivery/Dispatching
	6.3.4 Genome Sequencing for Genetic Study

	6.4 Formulating Asymmetric TSP
	6.4.1 Subtour Elimination by Dantzig-Fulkerson-Johnson Constraints
	6.4.2 Subtour Elimination by Miller–Tucker–Zemlin (MTZ) Constraints

	6.5 Formulating Symmetric TSP
	6.6 Notes
	6.7 Exercises

	PART II REVIEW OF LINEAR PROGRAMMING AND NETWORK FLOWS
	7 Linear Programming—Fundamentals
	7.1 Review of Basic Linear Algebra
	7.1.1 Euclidean Space
	7.1.2 Linear and Convex Combinations
	7.1.3 Linear Independence
	7.1.4 Rank of a Matrix
	7.1.5 Basis
	7.1.6 Matrix Inversion
	7.1.7 Determinant of a Matrix
	7.1.8 Upper and Lower Triangular Matrices

	7.2 Uses of Elementary Row Operations
	7.2.1 Finding the Rank of a Matrix
	7.2.2 Calculating the Inverse of a Matrix
	7.2.3 Converting to a Triangular Matrix
	7.2.4 Calculating the Determinant of a Matrix
	7.2.5 Solving a System of Linear Equations

	7.3 The Dual Linear Program
	7.3.1 The Linear Program in Standard Form
	7.3.2 Formulating the Dual Problem
	7.3.3 Economic Interpretation of the Dual
	7.3.4 Importance of the Dual

	7.4 Relationships Between Primal and Dual Solutions
	7.4.1 Relationships Between All Primal and All Dual Feasible Solutions
	7.4.2 Relationship Between Primal and Dual Optimum Solutions
	7.4.3 Relationships Between Each Complementary Pair of Variables at Optimum

	7.5 Notes
	7.6 Exercises

	8 Linear Programming: Geometric Concepts
	8.1 Geometric Solution
	8.1.1 Objective Function
	8.1.2 Solution Space
	8.1.3 Requirement Space

	8.2 Convex Sets
	8.2.1 Convex Sets and Polyhedra
	8.2.2 Directions of Unbounded Convex Sets
	8.2.3 Convex and Polyhedral Cones
	8.2.4 Convex and Concave Functions

	8.3 Describing a Bounded Polyhedron
	8.3.1 Representation by Extreme Points
	8.3.2 Example Application of Representation Theorem

	8.4 Describing Unbounded Polyhedron
	8.4.1 Finding Extreme Direction Algebraically
	8.4.2 Representing by Extreme Points and Extreme Directions
	8.4.3 Example of Representation Theorem

	8.5 Faces Facets and Dimension of a Polyhedron
	8.6 Describing a Polyhedron by Facets
	8.7 Correspondence Between Algebraic and Geometric Terms
	8.8 Notes
	8.9 Exercises

	9 Linear Programming: Solution Methods
	9.1 Linear Programs in Canonical Form
	9.2 Basic Feasible Solutions and Reduced Costs
	9.2.1 Basic Feasible Solution
	9.2.2 Adjacent Basic Feasible Solution
	9.2.3 Reduced Costs

	9.3 The Simplex Method
	9.3.1 Better and Feasible Solution
	9.3.2 Updating Simplex Tableau by Pivoting
	9.3.3 Optimality Test
	9.3.4 Initial Basic Feasible Solution

	9.4 Interpreting the Simplex Tableau
	9.4.1 Entire Simplex Tableau
	9.4.2 Rows of Simplex Tableau
	9.4.3 Columns of Simplex Tableau
	9.4.4 Pivot Column and Pivot Row
	9.4.5 Predicting the New Objective Value Before Updating

	9.5 Geometric Interpretation of the Simplex Method
	9.5.1 Basic Feasible Solution Versus Extreme Point
	9.5.2 Explanation of "Simplex Method" Nomenclature
	9.5.3 Identifying an Extreme Ray in a Simplex Tableau

	9.6 The Simplex Method for Upper Bounded Variables
	9.7 The Dual Simplex Method
	9.8 The Revised Simplex Method
	9.9 Notes
	9.10 Exercises

	10 Network Optimization Problems and Solutions
	10.1 Network Fundamentals
	10.2 A Class of Easy Network Problems
	10.2.1 The Minimum Cost Network Flow Problem
	10.2.2 Formulating the Transportation–Assignment Problem as an MCNF Problem
	10.2.3 Formulating the Transshipment Problem as an MCNF Problem
	10.2.4 Formulating the Maximum Flow Problem as an MCNF Problem
	10.2.5 Formulating the Shortest Path Problem as an MCNF Problem

	10.3 Totally Unimodular Matrices
	10.3.1 Definition
	10.3.2 Sufficient Condition for a Totally Unimodular Matrix
	10.3.3 Some Properties of Totally Unimodular Matrices
	10.3.4 Matrix Structure of the MCNF Problem
	10.3.5 Lower Triangular Matrix and Forward Substitution
	10.3.6 Naturally Integer Solution for the MCNF Problem

	10.4 The Network Simplex Method
	10.4.1 Feasible Spanning Trees Versus Basic Feasible Solutions
	10.4.2 The Network Algorithm
	10.4.3 Numerical Example

	10.5 Solution via LINGO
	10.6 Notes
	10.7 Exercises

	PART III SOLUTIONS
	11 Classical Solution Approaches
	11.1 Branch-and-Bound Approach
	11.1.1 Basic Concepts
	11.1.2 Branch-and-Bound Algorithm

	11.2 Cutting Plane Approach
	11.2.1 Dual Cutting Plane Approach
	11.2.2 Fractional Cutting Plane Method
	11.2.3 Mixed Integer Cutting Plane Method

	11.3 Group Theoretic Approach
	11.3.1 Group Theory Terminology
	11.3.2 Deriving the Group (Minimization) Problem
	11.3.3 Formulating a Group Problem
	11.3.4 Solving Group Problem as a Shortest Route Problem
	11.3.5 Solving the Original Integer Program

	11.4 Geometric Concepts
	11.4.1 Various Polyhedrons in Original Space
	11.4.2 Corner Polyhedron in Solution Space of Nonbasic Variables

	11.5 Notes
	11.6 Exercises

	12 Branch-and-Cut Approach
	12.1 Introduction
	12.1.1 Basic Concept
	12.1.2 Branch-and-Cut Algorithm
	12.1.3 Generating Valid Cuts and Preprocessing

	12.2 Valid Inequalities
	12.2.1 Valid Inequalities for Linear Programs
	12.2.2 Valid Inequalities for Integer Programs
	12.2.3 Types of Valid Inequalities

	12.3 Cut Generating Techniques
	12.3.1 Rounding Technique
	12.3.2 Disjunction Technique
	12.3.3 Lifting Technique

	12.4 Cuts Generated from Sets Involving Pure Integer Variables
	12.4.1 Gomory Fractional Cut
	12.4.2 Chvátal–Gomory Cut
	12.4.3 Pure Integer Rounding Cut
	12.4.4 Objective Integrality Cut

	12.5 Cuts Generated from Sets Involving Mixed Integer Variables
	12.5.1 Gomory Mixed Integer Cut
	12.5.2 Mixed Integer Rounding Cut

	12.6 Cuts Generated from 0–1 Knapsack Sets
	12.6.1 Knapsack Cover
	12.6.2 Lifted Knapsack Cover
	12.6.3 GUB Cover

	12.7 Cuts Generated from Sets Containing 0–1 Coefficients and 0–1 Variables
	12.8 Cuts Generated from Sets with Special Structures
	12.8.1 Flow Cover from Fixed-Charge Flow Network
	12.8.2 Plant/Facility Location (Fixed-Charge Transportation)

	12.9 Notes
	12.10 Exercises

	13 Branch-and-Price Approach
	13.1 Concepts of Branch-and-Price
	13.2 Dantzig–Wolfe Decomposition
	13.3 Generalized Assignment Problem
	13.3.1 Conventional Formulation
	13.3.2 Column Generation Formulation
	13.3.3 Initial Solution

	13.4 GAP Example
	13.4.1 GAP Branching Scheme
	13.4.2 Tailing-Off Effect of Column Generation
	13.4.3 Treatment of Identical Machines
	13.4.4 Branch-and-Price Algorithm

	13.5 Other Application Areas
	13.6 Notes
	13.7 Exercises

	14 Solution via Heuristics Relaxations and Partitioning
	14.1 Introduction
	14.2 Overall Solution Strategy
	14.2.1 Better Formulation by Preprocessing
	14.2.2 LP-Based Branch-and-Bound Framework
	14.2.3 Heuristics for Tightening Lower Bounds
	14.2.4 Relaxations for Tightening Upper Bounds
	14.2.5 Strong Cuts for Tightening Solution Polyhedron

	14.3 Primal Solution via Heuristics
	14.3.1 Local Search Approaches
	14.3.2 Artificial Intelligence Approaches

	14.4 Dual Solution via Relaxation
	14.4.1 Linear Programming Relaxation
	14.4.2 Combinatorial Relaxation
	14.4.3 Lagrangian Relaxation

	14.5 Lagrangian Dual
	14.5.1 Lagrangian Dual in LP
	14.5.2 Lagrangian Dual in IP
	14.5.3 Properties of the Lagrangian Dual

	14.6 Primal–Dual Solution via Benders' Partitioning
	14.7 Notes
	14.8 Exercises

	15 Solutions with Commercial Software
	15.1 Introduction
	15.2 Typical IP Software Components
	15.2.1 Solvers
	15.2.2 Presolvers
	15.2.3 Modeling Languages
	15.2.4 User's Options/Intervention
	15.2.5 Data and Application Interfaces

	15.3 The AMPL Modeling Language
	15.3.1 Components of the AMPL Modeling Language
	15.3.2 An AMPL Example: the Diet Problem
	15.3.3 Enhanced AMPL Modeling Techniques
	15.3.4 AMPL Compatible MIP Solvers

	15.4 LINGO Modeling Language
	15.4.1 Prescription of Tolerances
	15.4.2 Presolver—Automatic Problem Reduction
	15.4.3 Solvers for Linear/Integer Programming
	15.4.4 Interfacing with the User
	15.4.5 LINGO Modeling Conventions
	15.4.6 LINGO Model for the Diet Problem

	15.5 MPL Modeling Language
	15.5.1 MPL Modeling Conventions
	15.5.2 MPL Model for the Diet Problem
	15.5.3 MPL Compatible MIP Solvers

	REFERENCES
	APPENDIX: ANSWERS TO SELECTED EXERCISES
	INDEX

Applied Integer
Programming

