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z = f(x)
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Fig. 3.1 Propagation of uncertainty from one variable to another.

rise to the computed result zo, and how the range =0x
about xo gives a corresponding range =40z about .

Before proceeding to any general methods of evaluating 6z,
it is instructive to see how finite perturbations are propa-
gated in simple functions. For example, consider the func-

tion
z = x?
If x can range between x, + 0x and xy — Ox then z can
range between zo + 0z and 2o — 0z where
2o &= 0z = (xp == 0x)?
= x2 -+ 2xo 0x + (0x)®

we can ignore (0x)2, since dx is assumed to be small com-
pared with x, and equate 2o to x2, giving us the value
of 0z as

52’ = 2%’[} 5x
This can more conveniently be expressed in terms of the

relative uncertainty 0z/zy as
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02/2y = 2x9 Ox/x3 = 2 6x/x

Thus, the relative uncertainty of the computed result is
twice that of the initial measurement.

Although it is essential to bear in mind the nature of the
propagation of uncertainty, as illustrated by this example
with finite differences, a considerable simplification of the

formulation can result from the use of the techniques of
the differential calculus.

General Method for Uncertainty in Functions of a
Single Variable
It will be noticed that these finite differences 6z and 6x are
merely an expression of the derivative dz/dx. We can there-
fore obtain our value of 0z by using standard technicues
to obtain
dz
Je f(x)
and then writing
0z = f'(x) ox (51
This is a relatively simple procedure and will work in cases
where the elementary finite difference approach would lead
to algebraic complexity.
. T
Thus, if S e
g e RO
dx (x%2 4+ 1)2
S et
(1 + 7>
1 — x°
0z = ;- 0
g (1 -+ x%)2 i
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This would have been very awkward by any other ap-
proach. It gives 8z generally as a function of x and ox,
and the particular value desired would be obtained by
setting » = xo. Let us now use this technique to evaluate

the uncertainty for some common functions.

(a) Powers
Consider 2 = x5
e it
dx

0z = nx"1 ox

The significance of this result becomes a little more obvious
when expressed in terms of the relative uncertainty. Thus,

DoE
Z 5

Ox
P

This will hold for either powers or roots, so that the preci-
sion diminishes as a quantity is raised to powers or improves
on taking roots. This is a situation which must be carefully
watched in an experiment in which powers are involved.
The higher the power, the greater is the initial precision

that is needed.
(b) Trigonometric I'unctions

We shall do only one example since all the others can be

treated in a similar fashion.

Clonsider 2z = Sin X
dz _ COS X
dx

8z = COs x 0x

This is one case where the elementary method of inserting
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Xy == 0x shows the nature of the result more clearly. This
substitution can be easily verified to give

02 = Cos x sin Ox

showing that the éx in the previous result is really sin dx in
the limit. Only in the case of a very large uncertainty
would this difference be significant, but it is best to under-
stand the nature of the result. Clearly éx should be ex-
pressed in radian measure. The result will normally have

straightforward application when dealing with apparatus
such as the spectrometer.

(¢) Logarithmic and Exponential Functions

Consider z = log x
az _ 1
dx X

0z = Hl-ax
ok

If B
de _
dx
0z = ok 6.;5*

Thhis is a rather more important case since the exponential
func.tion is one of common occurrence in physics and engi-
neering. These functions can become VETy sensitive to the
exponent when it takes values much over unity, and the
uncertainty 6z can be seen to have potentially large values.
This will be familiar to anyone who has watched the cur-




54

3.4

THE PROPAGATION OF UNCERTAINTIES

rent fluctuations in a thermionic diode which can result
from quite small filament temperature variations.

As stated above, the method can be easily applied to any
function not listed above by evaluating the appropriate
derivative and using Equation (3.1).

Uncertainty in Functions of Two or More Variables

If the result is to be computed from two or more measured
quantities, x and y, the uncertainty in the result can be
regarded in two different ways. We can, first, be as pessi-
mistic as possible and suppose that the actual deviations
of x and » happen to combine additively in such a way that
the value of z is driven as far as possible from the central
value. We shall, in this way, calculate a 6z which gives
the extreme width of the range of possible z values. It is
possible to argue against this that the probability is small
of a number of uncertainties combining in magnitude and
direction to give the worst possible result for z. "This 1s true,
and we shall deal later with the matter of the probable un-
certainty in z. For the moment, however, let us calculate
the 6z which represents the widest range of possibility of z.
This is certainly a safe, though pessimistic, approach since
if 8x, 0y etc. represent limits within which we are “almost
certain’® the actual value lies, then this 0z will give limits
within which we are equally certain that the actual value
of z lies.

The most instructive approach initially is to use the ele-
mentary substitution method, and we shall use this for the
first two functions
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(a) Sum of Two or More Variables

Consider
Z=xhy

‘The uncertainty in z will be obtained from
Zui52=x;]:|:5.ﬁf+)}{}:l:5_}f

and the maximum value of 6z is given by choosing similar
signs throughout. As might be expected, the uncertainty
in the sum is just the sum of the individual uncertainties.
This can be expressed in terms of relative uncertainties

0z _ Ox + 0y
2 X )

but no increased clarification is achieved.

(b) Dufference of Two Variables
Cogsider
zZ=x—=19
As in the case above, 6z will be obtained from
2o = 0z = (xo &= 0x) — (yo & Oy)

Thus, we can obtain the maximum value of 6z by choosing
the negative sign for 0y giving, once again,

0z = 0x - Oy

The significance of this is more clearly apparent if we con-
sider the relative uncertainty given by

0z _ 0x + 0y
2 kel

This shows that, if xo and y, are close together, x — y is
small, and this relative uncertainty can rise to very large
values. This is, at best, an unsatisfactory situation and it
can become sufficiently bad to destroy the value of the
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measurement. [tis a particularly dangerous condition since
it can arise unnoticed. It is perfectly obvious that no one
would attempt to measure the distance between two points
a millimeter apart by measuring the distance of each from
a third point a meter away, and then subtracting the two
lengths. However, it can happen that a desired result 1s to
be obtained by subtraction of two measurements made
separately (two thermometers, clocks, etc.) and the char-
acter of the measurement as a difference may not be
strikingly obvious. All measurements involving differences
should be treated with the greatest caution. Clearly the
way to avoid this difficulty is to measure the difference
directly, rather than obtain it by subtraction between two
measured quantities. For example if one has an apparatus
within which two points are at potentials above ground of
Vy = 1500 v and Vs, = 1510 v respectively, and the required
quantity is Vy — Vi, only a very high quality voltmeter
would permit the values of V; and V, to be measured to
give Vo — Vy with even say 10 per cent. But an ordinary
10 v table voltmeter connected between the two points and
measuring V., — V1 directly will immediately give the
answer with 2-3 per cent precision.

General Method for Uncertainty in Functions of Two
or More Variables

These last two examples, treated by the elementary method,
suggest that, once more, the differential calculus may offer
a considerable simplification of the treatment. It is clear

that if we have

z = f(x, )

217}
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the appropriate quantity required in order to calculate §z
is the total differential 4z, given by

S (—C%:) s (gf)dy

We shall take this differential and treat it as a finite dif-
ference, 6z, given, in terms of the uncertainties 8x and 0y, by

P (g) s (gf) 5 (3.2)

where the derivatives df/dx and §f/ dy will normally be
evaluated for the values xq, yo at which 8z is required. We
shall find that the sign of d//dx or df/dy may be negative,
in which case, using our pessimistic requirement for a maxi-
mum value of 6z, we shall choose negative values for the

appropriate ox or dy giving a wholly positive contribution
to the sum.

(a) Product of Two or More Variables

Suppose
z = xy
Using Equation (3.2) we need
0z 0z
) and -@) = X

Thus, the value of éz is given by

0z = y O0x + x Oy

The significance of this is more clearly seen in the relative
uncertainty

52 _ 0x ¥y

z x y

1.e., when the result is a product of two variables, the rela-
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tive uncertainty of the result is the sum of the relative un-

certainties of the components.

'The most general case of a compound function, and one
very commonly found in physics, is the one in which an
algebraic product has components raised to powers in the
form
z = x%P°

where ¢ and 6 may be positive or negative, integral or
fractional powers. In this case the formulation is greatly
simplified by taking logs of both sides before doing the dif-
ferentiating.
Thus,

log z = alog x + b log y
Therefore, differentiating implicity,

4z _ 9% 4 oD
Z X y

As usual, we take the differentials to be finite differences,

giving

Note that this process gives the relative uncertainty directly.
This 1s frequently convenient but, if the absolute uncer-
tainty 0z is required, it is simply evaluated by multiplying
by the computed value zj, which is normally available.
This form of implicit differentiation is still the simplest even
when 2 is itself raised to some power. For if the equation

reads
2

25 = xy

it 1s unnecessary to rewrite it

2

Uy

PO L
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and work from there because, by taking logs,
2log z = log x + log y

1.e., 2§'_zz‘_3_‘f_|_.‘_3.l’
= X P

giving 0z/z as required.

(b) Quotients

These come under the heading of the previous section,
which permits negative values, and we repeat that the maxi-
mum value of 6z will be obtained by neglecting the nega-
tive sign in the differential.

If a function other than those already listed is encountered,
some kind of a differentiation will usually be found to work.
It is frequently a convenience to differentiate an equation
implicitly, thus simplifying the working by avoiding the
necessity for calculating the unknown explicitly as a func-
tion of the other variables. For example, consider the lens
equation

+ 3

§

1_1
s

where f is a function of the measured quantities s and s
We can differentiate the equation implicitly to obtain

It is now possible to calculate df or df/f directly and more
casily than would have been the case by writing f explicitly
as a function of s and s". Thus, a formula may be prepared
for the uncertainty into which all the unknowns can be
inserted directly. Make sure that the appropriate signs are
used so that the contributions to the resultant uncertainty
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all add positively to give the outer limits of possibility for

the answer.

If the function is too big and complicated to work out a
value of 0z in general, one can always take the measured
values xp, y0 and work out z,. Then 1if one evaluates the
result by substituting the actual numerical values of xy + 6x,
9o + 0y (or yo — 0y if appropriate) to give one of the
outer values of z and then repeating the other way, the
limits on 2z have been determined and 6z obtained.

Compensating Errors

A special situation can arise when compound variables are
involved. Consider, for example, the well-known relation
for the angle of minimum deviation D in a prism of re-
fractive index p and vertical angle 4

_ sin% (4 + D)

= sin § A

If A and D are measured variables with uncertainties 04
and 0D, the quantity p will be the required answer, with
an uncertainty ou. It would be fallacious, however, to cal-
culate the uncertainty in A + D, then in sin 3 (4 + D), and
combine it with the uncertainty in sin 5 4, treating the func-
tion as a quotient of two variables. This can be seen by
thinking of the effect on u of an increase in 4. Both
sin + (4 + D) and sin 3 A increase, and the change in u is
not correspondingly large. The fallacy is in the application
of the particular methods of the previous sections to vari-
ables which are not independent (e.g., 4 + D and 4). The
cure is either to reduce the equation to a form in which the
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variables are all independent, or else to go back to first
principles and use the equation of Sec. 3.5 directly.

Cases which involve compensation of errors should be
watched carefully since they can, if treated incorrectly,
give rise to large errors in uncertainty calculations.

Standard Deviation of Computed Values: General Methods

As has been frequently stressed, this last section has been
concerned with outer limits of possibility for the computed
value z. We have already suggested that this represents an
unrealistically pessimistic approach and that the more use-
ful quantity would be a probable value for 8z, provided we
can attach a numerical meaning to “probable.” The limits
given by this quantity will be smaller than =6z, but we
have the hope of an actual numerical significance for them.
Such statistical validity will be possible only if the uncer-
tainties in x and y have such validity, and we shall, there-
fore, assume that the measurements have been sufficiently
numerous to justify a calculation of the standard deviation
of the x values s,, and correspondingly, of s,. We then
hope to be able to calculate an s,.

However, we must first inquire what we mean by s,. We
assume that the measurement has taken the form of pairs
of observations x, y (for example, the current through and
the potential across a resistor, which have been measured
with the aim of obtaining the resistance) obtained by repe-
tition under the same conditions. Each pair will define a
value of z and, if the repetition had yielded n pairs, we
shall have a set of n values of z showing statistical fluctua-
tions. ‘The quantity we require, s, is the standard devia-




THE PROPAGATION OF UNCERTAINTIES

tion of this set of z values. Now these individual 2z values
may never be calculated, because one would calculate the
means ¥ and 7 and obtain Z directly using the assumption
(valid if s, s, and s, are small compared, respectively,
with x, y, and z) that

Z=f (E: ) )
Nevertheless, that is the significance of the s, we are about
to calculate.

If we assume that the universes of the x, », and 2z values
have a Gaussian distribution, the quantity o, (of which we
are about to calculate the best estimate in terms of s,) wi'l
have the usual significance that any 2z value will stand a
68 per cent chance of falling within 40, of the true value.

As before, let

z = fx, )
and consider perturbations ox, 0y which lead to a perturba-
tion 0z given by

0z 0z
_ 5
5z (a:;) S (ay) 'y

This perturbation can be used to calculate a standard devia-
tion for the n different z values since

= V2 (62)/n

=321+ )Yl
(@) 0+ (5) @

(@) @]
x/) \ 0y

Thus

|
!
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*2 @ff)f 0z\* Z (3)*
6)) n,
dz\ [0z
T <3f> (Qv) et

2 ) 9
But Eﬂ,_(?_ff_)_ — J‘i and ,E.._(._ahj__)__ — 53
n

and, since dx, 6y may be considered for the present purpose
to be independent perturbations,

2 0xdy =0
Thus, finally

= V(02/9x)%2 + (9z/99)%" (B:5)

If z is a function of more than two variables the equation
1s extended by adding similar terms.

Thus, if the components of a calculation have standard
deviations of some degree of reliability, a value can be found
for the probable uncertainty of the answer where ‘prob-
able” has a real numerical significance.

The calculation has been carried out in terms of the vari-
ance or standard deviation of the x and y distributions.
However, in actual practice the quantities we want are the
best estimates of ¢,, o, etc., and so we would use the
modified value with denominator n — 1 in accordance with
Equation (2.9). The result would then be a best estimate
for o.. The standard deviation of the mean for z can then
be calculated by direct use of Equation (2.7) and this will
give the limits within which the mean value of z, Z, stands
a 08 per cent chance of falling.

Note that most actual experiments do not accord with the
assumptions of the development just given. If we are meas-

P s o
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uring the flow rate of water through a pipe, we shall
measure the flow rate, pipe radius and pipe length inde-
pendently and each one with a number of readings dictated
by the intrinsic precision of the measurement. We cannot,
therefore, use Equation (3.3) directly, since the various s’s
are different types of quantity. The solution is to calculate
the standard deviation of the mean for each of the ele-
mentary quantities first. If these are used in Equation (3.3),
the result of the calculation will be immediately a standard
deviation of the mean for z.

3.8 Standard Deviation of Computed Values: Special Cases

Let us now apply Equation (3.3) to a few common exam-
ples. In all the following cases the various s§’s are all as-
sumed to be best estimates of the appropriate universe

value ¢.
(a) Sum of Two Variables
2=y
hence g—i = 1, %ﬁ = 1
and 5. =V m

Note that this result affords a justification for Equation (2.7)
on page 33. The mean value for the sample, 2 x;/n, is just
a function such as z = x + », where x and » happen to be
independent measurements of the same quantity. Thus if

S PREPIERE

-a-—z- — la 83 = li’f o B B
dx1 n 0xo n ‘
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N o ks

i s \’(};) 2+ (%) 2+ -
= Vns?/n? = Sz
| V'n

(b) Difference of Two Variables

A=)

0z z
Here = =l E—e
Ox > 0y :

. LA ‘
but again S = Vi + 52

As dealt with in Sec. 3.4 on page 56, the previous consider-
ations regarding measurements of differences are still valid.

(c) Product of Two Variables

Z = xy

hence o2 = 7, 2 = x
dxi =y

thus 5. = V2 4 e

and the specific value for s, at the particular values X0, Y0

of x and y would be obtained by substituting xo and y, in
the equations.

Just as in the previously treated case of products, the equa-

tion 1s more clearly expressed in terms of relative values of
s 1.e. s./z. We obtain

s 1
j = V§2/x2 + §2/)?

(d) Variables Raised to Powers

=y

Jz
Ox

= qx%1
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5. = ValxHe—Dg?
Again this is more instructive when expressed in terms of
the relative value

I
4&_‘
[ )

L] ¥

Sz
/-

I
S
|

(e) The General Case of Powers and Products
z = x%°

Obviously the results of (¢) and (d) can be extended to

give the result
5 _ \j( _) X (b __)
z X y

In this result note that the presence of negative indices in
the original function is unimportant, since they occur only
squared 1n the expression for s..

If a function other than those listed above 1s encountered,
the use of Equation (3.3) will yield the required result.
It can be seen that, for the case of a function of a single
variable, z = f(x), Equation (3.3) reduces to the same form
as that for uncertainties, Equation (3.1). The result is,
therefore, the same for standard deviations as it was for
uncertainties in the case of the trigonometric, exponential
and logarithmic functions treated in Sec. 3.3.

Note that, although we listed in Secs. 3.2 to 3.5 a number
of different approaches to the problem of outside limits to
uncertainty, the standard deviation of 2z is a uniquely de-

fined quantity and there is no alternative to the use of

Ecuation (3.3).
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3.9 Combination of Different Types of Uncertainty

Unfortunately for the mathematical elegance of the de-
velopment, it very frequently occurs that the uncertainty
in a computed result is required when the component quan-
tities have different types of uncertainty. Thus we may
require the uncertainty in

2 = flx, )

where x is a quantity to which have been assigned outer
limits +0x within which we are “almost certain’ that the
actual value lies and y is a quantity whose uncertainty is
statistical in nature, and for which a sample standard devia-
tion s, and a standard deviation of the mean 50/ n have
been calculated. We require the uncertainty in z. The
problem is that the uncertainty in z is a difficult thing even
to define. We are trying to combine two quantities which
have, in effect, completely different distribution curves.
One is the standard Gaussian function but the other is a
rectangle, bounded by the outer limits of uncertainty, and
flat on top because the actual value of the unknown x is
equally likely to be anywhere between the outer limits
Xo == 0x. Any general method of solving this problem is
likely to be far too complex for general use, but particular

solutions can be found following a method suggested by
Dr. T. M. Brown.

In the calculation for z one uses the sample mean j for the
» value. This has the significance that it stands approxi-
mately a 3 chance of coming within =s,/Vn of the true
value. Let us therefore calculate limits for x which, simi-
larly, give a % probability of enclosing the true value. Since

the probability distribution for x is rectangular, 2 of the

e e e o




