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Introduction 

The Traveling Salesman Problem (TSP) is one 
of the most widely studied combinatorial opti- 
mization problems. Its s tatement is deceptively 
simple, and yet it remains one of the most chal- 
lenging problems in Operat ional  Research. Hun- 
dreds of articles have been written on the TSP. 
The book edited by Lawler et al. (1985) provides 
an insightful and comprehensive survey of all 
major research results until that date. The pur- 
pose of this survey paper  is less ambitious. Our  
main objective is to present  an integrated overview 
of some of the best exact and approximate algo- 
rithms so far developed for the TSP, at a level 
appropriate  for a first graduate course in combi- 
natorial optimization. 

C : (Cij) be a distance (or cost) matrix associated 
with A. The TSP consists of determining a mini- 
mum distance circuit passing through each vertex 
once and only once. Such a circuit is known as a 
tour or Hamiltonian circuit (or cycle). In several 
applications, C can also be interpreted as a cost 
or travel time matrix. It  will be useful to distin- 
guish between the cases where C (or the prob- 
lem) is symmetrical, i.e. when c u = cyi for all 
i,j ~ V, and the case where it is asymmetrical. 
Also, C is said to satisfy the triangle inequality if 
and only if Cij q- Cjk ~ Cik for all i,j,k ~ V. This 
occurs in Euclidean problems, i.e. when V is a set 
of points in ~2 and c~ is the straight-line dis- 
tance between i and j. 

2. Applications 

I. Definition 

Let G = (V, A)  be a graph where V is a set of 
n vertices. A is a set of arcs or edges, and let 

The most common practical interpretation of 
the TSP is that of a salesman seeking the shortest 
tour through n clients or cities. This basic prob- 
lem underlies several vehicle routing applications, 
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but in this case a number  of side constraints 
usually come into play (see Laporte,  1992). Sev- 
eral interesting permutat ion problems not di- 
rectly associated with routing can also be de- 
scribed as TSPs. Here  are some selected exam- 
pies. 

1. C o m p u t e r  wiring (Lenstra and Rinnooy Kan, 
1975). Some computer  systems can be described 
as modules with pins attached to them. It is often 
desired to link these pins by means of wires, so 
that exactly two wires are attached to each pin 
and total wire length is minimized. 

2. Wallpaper cut t ing (Garfinkel, 1977). Here,  n 
sheets must be cut from a roll of wallpaper on 
which a pat tern of length 1 is repeated.  For sheet 
i, denote by a i and b i the starting and ending 
points on the pattern,  where 0 ~< a i ~< 1 and 0 ~< b i 

1. Then cutting sheet j immediately after sheet 
i results in a waste of 

aj - b i if b i <~ aj ,  

cij = ~ 1 + a t - b i if b i > a j .  ( 1 )  

The objective is to order the n sheets so as to 
minimize total waste. In order to define the prob- 
lem as a TSP, consider a dummy sheet n + 1 with 
Ci ,n+  1 = 0 and cn+ 1,~' = 0 for all i , j  = 1 . . . . .  n. A l -  
ternatively, define bn+ 1 as the end of the roll 
position at the start of cutting and assume that 
after the last sheet, a final cut must be made to 
restore the row to its original position. Then 
an+ 1 = b , + l ,  and cij can be defined as in (1) for 
all i , j  = 1 . . . . .  n + 1. 

3. Hole  punch ing  (Reinelt, 1989). In several 
manufacturing contexts, it is necessary to punch 
holes on boards or metallic sheets. The problem 
consists of determining a minimum-time punch- 
ing sequence. Such a problem occurs frequently 
in metallic sheet manufacturing and in the con- 
struction of circuit boards. These problems are 
often of large scale and must be solved in real- 
time. 

4. Job sequencing. Suppose n jobs must be 
performed sequentially on a single machine and 
that cij is the change-over time if job j is exe- 
cuted immediately after job i. Then again, by 
introducting a dummy job, this problem can be 
formulated as a TSP. 

5. Dar tboard  design (Eiselt and Laporte,  1991). 
Dartboards  are circular targets with concentric 
circles, and 20 sectors identified by the numbers 1 

to 20. Players throw darts at target points on the 
board. In the most common version of the game, 
the objective is to reduce an initial value of 301 to 
zero by substracting scores. The game rewards 
accuracy in the throw and it is often more impor- 
tant to hit one's target that to merely register a 
large score. A natural objective for designing a 
dartboard is therefore to position the 20 numbers 
around the board so as to maximize players'  risk. 
For fairly accurate players, it is reasonable to 
assume that the sector that is hit is always the 
targeted sector or its neighbour. Let ~ - =  
(rr(1) . . . . .  ¢r(20)) be any permutat ion of the num- 
bers 1 . . . . .  20. In what follows, ~-(k) must be 
interpreted as ~-(k mod 20) whenever k < 1 or 
k > 20. Consider a player aiming at ~-(k) and 
hitting 7r(k + 1) with probability p,  and 7r(k) 
with probability 1 -  2p. For this player, the ex- 
pected deviation from the aimed score is equal to 
p[~r(k  - 1) - 7r(k)] +p[Tr(k + 1) - or(k)]. A pos- 
sible objective is to maximize the expected sum of 
square deviations, i.e. Y'.2°a{p[~-(k - 1) - 7r(k)] 2 
+ p [ T r ( k +  1)-Tr(k)]2}. Since p is a constant, 
this is equivalent to solving a TSP with cii = (i - 
j)2. 

6. Crys ta l lography  (Bland and Shallcross, 
1989). In crystallography, some experiments con- 
sist of taking a large number  of X-ray intensity 
measurements  on crystals by means of a detector. 
Each measurement  requires that a sample of the 
crystal be mounted on an apparatus and that the 
detector be positioned appropriately. The order 
in which the various measurements  on a given 
crystal are made can be seen as the solution of a 
TSP. In practice, these problems are of large 
scale and obtaining good TSP solutions can re- 
duce considerably the time needed to carry out 
all measurements.  

3. Complexity 

In order to study the complexity of the travel- 
ing salesman problem first consider the following 
well-known decision problem:  

H A M I L T O N I A N  C I R C U I T  (HC) 
Instance:  A graph G = (V, A). 
Question: Does G contain a Hamiltonian circuit? 

It is well known that HC is NP-complete (Garey 
and Johnson, 1979, p. 47). We show that TSP is 
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NP-hard by using the following transformation. 
Given any instance of HC relative to a graph 
G h = (V  h, A h) with vertex set V h = {1 . . . . .  n} and 
arc set A h = {(i, j)}, define a TSP instance having 
V = V  h, A = { ( i , j ) : i , j = l , . . . , n ,  i4=j} and cii 
= 1 if (i, j )  ~ A  h and cir = m, otherwise. Then G 
contains a Hamiltonian circuit if and only if the 
optimal value of the TSP instance is equal to n. 

A number  of special cases of TSP are, how- 
ever, solvable in polynomial time (see, for exam- 
ple, Gilmore, Lawler and Shmoys, 1985). Exam- 
ples of such problems include: 

1. TSPs where C = (cij) is an upper  triangular 
matrix, i.e. cij = 0 for all i > j ;  

2. The wallpaper cutting problem described in 
Section 2; 

3. A class of job sequencing problems defined 
by Gilmore and Gomory  (1964). In this problem, 
there are n - 1 jobs to be processed sequentially 
in a kiln. Job i requires a starting tempera ture  of 
a i and must be finished at tempera ture  b i. Fur- 
ther assume that the initial kiln tempera ture  is a n 
and that the final tempera ture  must be b n. Then 
the problem can be formulated as a TSP with 

c i j  

ifa <.bi 
- ¢ 1  i 

where f and g are cost density functions and 
f ( x )  + g (x )  > 0 for all x since otherwise, it would 
be profitable to keep changing the kiln tempera-  
ture. 

4.  E x a c t  a l g o r i t h m s  

A large number  of exact algorithms have been 
proposed for the TSP. These can be best under- 
stood and explained in the context of integer 
linear programming (ILP). We examine in this 
section a number  of ILP formulations and of 
algorithms derived from these formulations. 

4.1. Integer linear programming formulations 

One of the earliest formulations is due to 
Dantzig, Fulkerson and Johnson (DFJ)  (1954). It 
associates one binary variable x/j to every arc 

(i, j), equal to 1 if and only if (i, j )  is used in the 
optimal solution, i =~j. The DFJ formulation is 
(DFJ) 

Minimize ~ cijxij ( 2 )  
i4=j 

subject to ~_~ xij = 1, i = 1 . . . .  , n, (3) 
j=l  

n 

~ X i j  = 1, j = 1 . . . . .  n, (4) 
i - 1  

£ Xi j< I S I - 1 ,  
i , j~s 

S c V ,  2 ~  IS] ~ < n - 2 ,  (5) 

xij ~ {0, 1}, 

i, j = 1 . . . . .  n, i :~j. (6) 

In this formulation, the objective function 
clearly describes the cost of the optimal tour. 
Constraints (3) and (4) are degree constraints: 
they specify that every vertex is entered exactly 
once (3) and left exactly once (4). Constraints (5) 
are subtour elimination constraints: they prohibit 
the formation of subtours, i.e. tours on subsets of 
less than n vertices. If there was such a subtour 
on a subset S of vertices, this subtour would 
contain I S I arcs and as many vertices. Constraint 
(5) would then be violated for this subset since its 
left-hand side would be equal to I S[ and its 
right-hand side equal to IS I - 1. Because of de- 
gree constraints, subtours over one vertex (and 
hence, over n -  1 vertices) cannot occur. There-  
fore it is valid to define constraints (5) for 2 ~< 
I S I ~< n - 2 only. Finally, constraints (6) impose 
binary conditions on the variables. 

An alternative equivalent form of constraints 
(5) is 

£ £ X i j > / 1  S c V ,  2 <  ISl < n - 2  (5 ' )  
i~S j~3  

where S = V \ S .  Constraints (5 ')  can be derived 
from (5) by noting that every vertex i of S is the 
origin of one arc to another  vertex of S or to a 
vertex of S. Since there are [SI vertices, I S[ = 
~i,j~sXij a t- ~i~S~j~_~Xij, and the equivalence of 
(5) and (5')  follows trivially. The geometric inter- 
pretat ion of connectivity constraints (5 ')  is that in 
every TSP solution, there must be at least one arc 
pointing from S to its complement,  in other 
words, S cannot be disconnected. 
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This formulation contains n ( n  - 1) binary vari- 
ables, 2n degree constraints and 2 n - 2n - 2 sub- 
tour elimination constraints. Even for moderate 
values of n, it is unrealistic to solve DFJ directly 
by means of an ILP code. The model is usually 
relaxed, and solved by means of specialized algo- 
rithms. 

Miller, Tucker and Zemlin (MTZ) (1960) have 
proposed an alternative formulation that reduces 
the number of subtour elimination constraints at 
the expense of extra variables u i (i = 2 . . . . .  n). 
The MTZ subtour elimination constraints can be 
expressed as 

U i - -  Uj  + ( n  - 1 ) x i j  <~ n - 2 

i ,  j =  2 . . . .  , n ,  i 4: j ,  (7) 

l < ~ u i < ~ n - 1  i = 2  . . . . .  n. (8) 

Constraints (7) ensure that the solution con- 
tains no subtour on a set of vertices S c_ V\{1} 
and hence, no subtour involving less than n ver- 
tices. Constraints (8) ensure that the u i variables 
are uniquely defined for any feasible tour. In 
order to see how constraints (7) operate, suppose 
there was a subtour (il, i 2 . . . . .  i k ,  il) with k < n. 
Writing constraints (7) for every arc of that sub- 
tour gives 

U i l - - U i 2 +  ( n  - 1) ~<n - 2 ,  

l,li2--Ui3+ ( n  -- 1) -<<n - 2, 

u i k -  ui, + ( n -  1) ~ n -  2. 

Summing up these constraints yields k ( n  - 1) ~< 
k ( n  - 2), a contradiction. 

It has been observed recently (Desrochers and 
Laporte, 1991) that constraints (7) can be 
strengthened by introducing an extra term in 
their left-hand side to yield 

U i - -  Uj  @ ( n  - 1)Xi j  + ( n  - 3)Xji  <~ n -- 2 

i , j = Z , . . . , n ,  i ~ j .  (9) 

The validity of constraints (9) can be estab- 
lished as follows. Rewrite constraints (7) as 

u i - u j  + ( n  - 1)Xi j  + oljiXji ~ n - 2 (10) 

where currently o Q i  = O. We seek the largest pos- 
sible value of aji so that (10) remains a valid 
inequality. In the optimal solution, xji can take 
only two values: 

- if xji = 0, then (10) is satisfied for any aji; 

- i f x j i = l ,  t h e n x i j = 0 ( f o r n > 2 )  a n d u j + l  
= u i, so that aji <~ n - 3. 

In spite of its relative compactness, the MTZ 
formulation is weaker than the DFJ formula- 
tion in the following sense. D en o t e  by 
z '(DFJ)[ z ' (MTZ)] the optimal value of the linear 
relaxation of DFJ [MTZ], i.e. the relaxation ob- 
tained by dropping integrality conditions. Then 
z ' (MTZ)  ~< z ' (DFJ) (Wong ,  1980). This result has 
not been proved for the modified MTZ formula- 
tion using constraints (9), but it is known that 
there exist cases where it produces a weaker 
linear relaxation than DFJ (Desrochers and La- 
porte, 1991). 

Finally, a number of alternative formulations 
have been proposed and compared, but none of 
these seems to have a stronger linear relaxation 
than DFJ (Langevin, Soumis and Desrosiers, 
1990). 

4.2. The ass ignment  lower bound  and  related 

branch-and-bound  algori thms 

Branch-and-bound (BB) algorithms are com- 
monly used for the solution of TSPs. In the 
context of mathematical programming, they can 
best be viewed as initially relaxing some of the 
problem constraints, and then regaining feasibil- 
ity through an enumerative process. The quality 
of a BB algorithm is directly related to the quality 
of the bound provided by the relaxation. 

For the TSP, an initial lower bound can be 
obtained from the DFJ formulation by relaxing 
constraints (5). The resulting problem is an as- 
signment problem (AP) which can be solved in 
O ( n  3) time (see Carpaneto, Martello and Toth, 
1988). Thus, a valid lower bound on the value of 
the optimal TSP solution is the AP bound de- 
fined by (2)-(4) and the nonnegativity require- 
ments on the variables. 

Several authors have proposed BB algorithms 
for the TSP, based on the AP relaxation. These 
include Eastman (1958), Little et al. (1963), 
Shapiro (1966), Murty (1968), Bellmore and Mal- 
one (1971), Garfinkel (1973), Smith, Srinivasan 
and Thompson (1977), Carpaneto and Toth 
(1980), Balas and Christofides (1981) and Miller 
and Pekny (1991). We briefly describe the last 
three algorithms which are probably the best 
available. 
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In the Carpaneto  and Toth algorithm, the 
problem solved at a generic node of the search 
tree is a modified assignment problem (i.e. x ,  is 
fixed at 0 for all i) in which s o m e  x i j  variables 
are fixed at 0 or at 1. If  the AP solution consists 
of a unique tour over all vertices, it is then 
feasible for the TSP. Otherwise, it consists of a 
number  of subtours. One of these subtours is 
selected and broken by creating subproblems in 
which all arcs of the subtour are in turn prohib- 
ited. We will use the following notation: 

z*:  the cost of the best TSP solution so far 
identified; 

zh: the value of the objeiztive function of the 
modified AP at node h of the search tree; 

Zh: a lower bound on Zh; 
Ih: the set of included arcs (x~j variables fixed 

at 1) at node h of the search tree; 
Eh: the set of excluded arcs (xij variables fixed 

at O) at node h of the search tree. 

Step 1. (Initialization.) Obtain a first value for 
z*  by means of a suitdble heuristic. Create node 
1 of the search tree: set I 1 := E 1 := ~, and obtain 
z~ by solving the associated modified AP. If z~ >/ 
z*,  stop: the heuristic solution is optimal. If  the 
solution contains no illegal subtours, it consti- 
tutes the optimal tour: stop. Otherwise, insert 
node 1 in a queue. 

Step 2. (Node selection.) If the queue is empty, 
stop. Otherwise, select the next node (node h) 
from the queue: here we use a breadth first rule, 
i.e. branching is always done on the pendant  
node having the lowest z h. 

Step 3. (Subproblem partitioning.) The solution 
obtained at node h is illegal and must be elimi- 
nated by partitioning the current subproblem into 
descendant subproblems hr characterized by sets 
Ihr and Eh; In order to create these subproblems, 
consider a subtour having the least number  s of 
arcs not belonging to I h. Let these arcs be 
(i 1, j~) . . . . .  (i,, j~), in the order in which they 
appear  in the subtours. Then create s subprob- 
lems with 

I 1 k, r = l ,  

Ih = l l h u { ( i , , , j ~ ) : u = l  . . . . .  r - - i } ,  

r = 2 , . . . , s ,  

Eh = E  h U { ( i r , j r ) } ,  r = l  . . . . .  s. 

Execute Step 4-6 for r = 1, . . . ,  s. 
Step 4. (Bounding.) Compute  a lower bound 

Zhr on Zhr by row and column reduction of the 
cost matrix. If Zhr < Z *, proceed to Step 5. Other-  
wise, consider the next r and repeat  Step 4. 

Step 5. (Subproblem solution.) Solve the sub- 
problem associated with node h r (a modified AP 
restricted by Ih, and Ehr). If  Zh~>Z*, consider 
the next r and proceed to Step 4. 

Step 6. (Feasibility check). Check whether the 
current solution contains subtours. If it does, 
insert node h r in the queue. Otherwise, set z* := 
Zhr and store the tour, if z*  = z h, go to Step 2. 

Using their algorithm, Carpaneto  and Toth 
have consistently solved randomly generated 
240-vertex TSPs in less than one minute on a 
CDC 6600. The main limitation of this algorithm 
appears  to be computed memory rather than 
CPU time. 

The Balas and Christofides algorithm uses a 
s t ronger  relaxation than the AP relaxation. Its 
description and the computational  effort required 
for the lower-bound computat ions are much more 
involved, but the resulting search trees are smaller 
and the procedure is overall more powerful. Due 
to its complexity, it will only be sketched here. 
Interested readers are referred to the Balas and 
Christofides (1981) paper.  In addition to con- 
straints (3), (4) and (6), subtour elimination con- 
straints (5), connectivity constraints (5 ')  and some 
positive linear combinations of these are consid- 
ered, and introduced into the objective function 
in a Lagrangean fashion. Let T be the set of all 
such constraints and t a given constraint. Their 
generic expression can be written as 

y '  , 
a i j x i j  ~ ao ,  t ~ T. 

i , j~  V 

The Lagrangean objective is then 

A ) : m i n (  E c i j x i j -  E L(  A, 
x i , j ~ V  t ~ T  

~ i , j~  V 

where A = (A 1 . . . . .  A r )  is the vector of Lagrange 
multipliers, and x is any modified AP solution. 
The strongest relaxation is given by maxa~ 0 
{L(A)}. As the number  of components  of A is 



236 G. Laporte / The traveling salesman problem: Overview of algorithms 

exponential, the required maximum is not deter- 
mined by Lagrangean relaxation. Instead, a lower 
bound on its value is obtained by restricting A to 
lie in the set {A > 0: Zlu,v ~ ~n, such that u~ + v/ 
+S, t~rAt  a~j=cij if (i, j )  belongs to the AP 
solution; u~ + v/+ Et~rAt  a~j > c~j, otherwise}. 
Balas and Christofides propose an approximation 
procedure for computing A. At a given node of 
the search tree, the procedure solves an AP with 
dual values given by u and v. It then computes A. 
A lower bound on the value of the TSP tour 
associated to that node of the search tree is given 
by 

Eui + E vj+ EAt a°. (12) 
i ~ V  j ~ V  t ~ T  

The authors then show how (12) can be com- 
puted for three particular classes of constraints 
(11). Using this procedure, Balas and Christofides 
report optimal solutions to randomly generated 
325-vertex problems in less than one minute on a 
CDC 7600. 

More recently, Miller and Pekny have pro- 
posed a new powerful BB algorithm based on the 
AP relaxation. Consider the dual AP: 
(DAP) 

n n 

Maximize ~_, u s + ~., vj (13) 
i=1 j = l  

subject to eij - u i - vj >~ O 

i , j = l , . . . , n ,  i ~ j .  (14) 

Denote  by z*(TSP)  the optimal TSP solution 
value, by z*(AP)  the optimal value of the AP 
linear relaxation, and by z*(DAP)  the optimal 
value of the dual AP linear relaxation. Clearly 
z*(AP)  = z*(DAP).  Moreover, note that z * ( A P )  
+ (c~j-  u i - v j )  is a lower bound on the cost of 
an AP solution that includes arc (i, j). Miller and 
Pekny make use of this in an algorithm that 
initially removes from consideration all x~j vari- 
ables whose cost c~j exceeds a threshold value A. 
Consider a modified problem TSP'  with associ- 
ated linear assignment relaxation AP '  and its 
dual DAP' ,  obtained by redefining the costs ci~ 
as follows: 

, [c~j i f c , y < A ,  
Cij  = (15) 

otherwise. 

The authors prove the following proposition 
which they use as a basis for their algorithm: an 
optimal solution for TSP'  is optimal for TSP if 

z * ( T S P ' )  - z * ( A P )  ~<A + 1 - u ; - V ' ~ x  (16) 

and 

! r 
a + 1 - u i - Uma x ~ 0 (17) 

for i = 1 . . . .  ,n ,  where u'  and v'  are optimal 
solutions to DAP' ,  and V'ax is the maximum 
element of v'. The quantity A + 1 - u~ - Vma x un- 
derestimates the smallest reduced cost of any 
discarded variable. The algorithm is then: 
Step 1 (Initialization). Choose A. 
Step 2 (TSP'  solution). Construct (ci~) and solve 

TSP' .  
Step 3 (Termination check). If (16) and (17) hold, 

then z * ( T S P ' ) = z * ( T S P ) :  stop. Other- 
wise, double A and go to Step 2. 

The authors report  that if A is suitably chosen 
in Step 1 (e.g., the largest arc cost in a heuristic 
solution), there is rarely any need to perform a 
second iteration. To solve TSP' ,  the authors have 
developed a BB algorithm based on the AP relax- 
ation. They have applied this procedure to ran- 
domly generated problems. Instances involving 
up to 5000 vertices were solved within 40 seconds 
on a Sun 4 /330  computer. The largest problem 
reported solved by this approach contains 500000 
vertices and required 12623 seconds of computing 
time on a Cray 2 supercomputer. 

Finally, it is worth mentioning that in a differ- 
ent paper, Miller and Pekny (1989) describe a 
parallel branch-and-bound algorithm based on 
the AP relaxation. These authors report that ran- 
domly generated asymmetrical TSPs involving up 
to 3000 vertices have been solved to optimality 
using this approach. 

4.3. The shortest spanning arborescence bound and 
a related algorithm 

In a directed graph G = (F, A), an r-arbores- 
cence is a partial graph in which the in-degree of 
each vertex is exactly 1 and each vertex can be 
reached from the root vertex r. The shortest 
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spanning r-arborescence problem (r-SAP) can be 
formulated as 

cijxij (18) 
i~j 

subject to ~ xij = 1, j = 1 . . . . .  n, (19) 
i = 1  
i~j 

E ~-,xij>>-l, S c V ; r ~ S ,  (20) 
i~S j ~ ,  

x i j > ~ O , i , j = l  . . . . .  n , i - ~ j .  (21) 

The problem of determining a minimum-cost 
r-arborescence on G can be decomposed into two 
independent  subproblems: determining a mini- 
mum-cost  arborescence rooted at vertex r, and 
finding the minimum-cost  arc entering vertex r. 
The first problem is easily solved in O(n 2) time 
(Tarjan, 1977). This relaxation can be used in 
conjunction with Lagrangian relaxation. How- 
ever, on asymmetric problems, the AP relaxation 
would appear  empirically superior to the r- 
arborescence relaxation (Balas and Toth, 1977). 

An early reference to this lower bound is made 
by Held and Karp (1970). More recently, Fis- 
chetti and Toth (1991) have used it within a 
so-called 'additive bounding procedure '  that com- 
bines five different bounds: 

- the AP bound, 
- the shortest spanning 1-arborescence bound, 
- t h e  shortest spanning 1-antiarborescence 

bound 1 - SAAP; ( r -SAAP is defined in a man- 
ner similar to r-SAP but now it is required that 
vertex r should be reached from every remaining 
vertex), 

- for r = 1 . . . . .  n, a bound r-SADP obtained 
from r-SAP by adding the constraint 

xrj = 1, (22) 
j~r 

- for r = 1 , . . . ,  n, a bound r -SAADP obtained 
from r-SAAP by adding the constraint 

E Xir = 1 .  (23) 
i¢r 

The lower-bounding procedure described by 
Fischetti and Toth was embedded within the 
Carpaneto  and Toth (1980) branch-and-bound al- 
gorithm on a variety of randomly generated prob- 
lems and on some problems described in the 
literature. The success of the algorithm depends 

(r-SAP) 

Minimize 

on the type of problem considered. For the easi- 
est problem type, the authors report  having solved 
2000-vertex problems in an average time of 8329 
seconds on an HP 9000/840 computer.  

4.4. The shortest spanning tree bound and related 
algorithms 

The AP-based algorithms described in the pre- 
vious section are valid whether  C is asymmetrical 
or symmetrical. However, in the latter case, the 
AP solutions will in general contain several sub- 
tours containing only two vertices, resulting in 
excessive computing times for their elimination. 
Symmetrical problems are bet ter  handled by spe- 
cialized algorithms that exploit their structure. 
We now describe an ILP formulation for symmet- 
rical TSPs. 

Consider a TSP defined on G = (V, E)  where 
E is an edge set. Let xij be a binary variable 
equal to 1 if and only if edge (i, j )  is used in the 
optimal Solution. These variables are only defined 
for i < j. The formulation is then 
(SYM) 

Minimize ~ CijXij 
i<j 

subject to ~ xik + ~ xkj = 2, (24) 
i<k j>k 

k = 1 . . . . .  n,  (25) 

E Xij• I S I - 1 ,  
i jEs  (26) 

S c V ,  3 ~ [ S I  ~ < n - 3 ,  

xij ~ {0, 1}, (27) 

i , j = l  . . . . .  n, i < j .  

In this formulation, constraints (25) specify 
that every vertex has a degree of 2. Constraints 
(26) are subtour elimination constraints. They 
need not be defined for I SI = 2 and n - 2 since 
constraints (25) and (27) combined prevent the 
formation of subtours involving 2 (and thus n - 2) 
vertices. Constraints (27) impose binary condi- 
tions on the variables. 

As for (DFJ), connectivity constraints equiva- 
lent to (26) can be derived. These can be written 
a s  

~_~ xij>~2 , S c V ,  3~< ISI ~ < n - 3 .  
i~S,j~S 

or  j~S,i~'S 

(26 ' )  
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In order to show the equivalence of (26) and 
(26'), consider D(S) = )'~k~S(Ei<kXik + ~'j>k 
Xk), the sum of degrees of vertices of S. Every 
edge (i, j) for which i,j ~ S makes a contribution 
of 2 to D(S), whereas edges (i, j) with i ~ S, 
j ~ S or j ~ S, i ~ S contribute by only one unit. 
Hence, 

o(  s) = 2 E x,j + E x j, 
i , jeS iES,j~'S 

orjeS,i~S 

and the equivalence follows. 
A useful relaxation can be extracted from SYM 

by exploiting the following consideration. In any 
feasible solution, the degree of vertex 1 must be 
equal to 2, while the remaining vertices must all 
be connected. A valid lower bound on the opti- 
mal TSP solution value is therefore the length of 
the shortest 1-spanning tree (1-SST), i.e. the 
shortest tree having vertex set V\{1}, together 
with two distinct edges at vertex 1. Formally, 
determining a least cost 1-SST is achieved by 
solving 
(1-SST) 

Minimize ~ cijxij (28) 
i<j 

subject to ~ xiy = n, (29) 
i<j 

~ Xlj = 2, (30) 
j=2 

E Xij~ 1, 
i~S,j~S\{1} 

or j~S,i~S\{1} 

S c V \ { 1 } ,  1< ISl < n - l ,  

(31) 
Xij ~ {0, 1}. (32)  

redundant) to impose (27) for these values of 
IsI. 

Christofides (1970) and Held and Karp (1971) 
were among the first to propose a TSP algorithm 
based on this relaxation. Improvements and re- 
finements were later suggested by Helbig Hansen 
and Krarup (1974), Smith and Thompson (1977), 
Volgenant and Jonker (1982), Gavish and 
Srikanth (1986), and Carpaneto, Fischetti and 
Toth (1989). In the original Held and Karp algo- 
rithm, the 1-SST bound is reinforced by introduc- 
ing constraints (25) in the objective function to 
yield the Lagrangean 

L(A) = min 
x 

E CijXij 
i <j 

k~V  "i<k j>k 

= m i n {  Y'. E(cij--}-Ai+Aj)xij) 
x i~Vj>i  

-- 2 )-'~ Ai, 
i ~v  

where x is a feasible 1-SST solution. By perform- 
ing dual ascents, Held and Karp obtain a lower 
bound on the strongest Lagrangean relaxation 
max~{L(a)}. This bounding process is embedded 
in a branch-and-bound scheme in the following 
manner. First define 

z*: the cost of the best TSP solution so far 
identified; 

Zh: the best lower bound on max~{L(h)} de- 
rived at node h of the search tree; 

hh: the value of A yielding Zh; 
Ih: the set of included edges at node h of the 

search tree; 
Eh: the set of excluded edges at node h of the 

search tree. 

However, in practice the 1-SST problem is 
better solved by means of a specialized algorithm 
(see Aho, Hopcroft and Ullman, 1974). This for- 
mulation is clearly a relaxation of SYM. Indeed, 
constraint (29) is obtained by taking half the sum 
of constraints (25); constraint (30) is constraint 
(25) for k = 1, and constraints (31) are a weaker 
form of (26'). The fact that these constraints are 
also imposed for t S[ = l , 2 , n - 2 a n d  n - 1  is of 
no concern since it would have been valid (and 

Step 1 (initialization). Obtain a first value for 
z* by means of a suitable heuristic. Create node 
1 of the search tree: set 11 := E 1 := ¢. Obtain z 1 
and h 1 by performing Lagrangean ascents, start- 
ing with h =(0). If Zl>iZ*, stop: the heuristic 
solution is optimal. If the solution consists of a 
tour, it is feasible and optimal: stop. Otherwise, 
insert node 1 in a queue. 

Step 2 (Node selection). If the queue is empty, 
stop. Otherwise, select the next node (node h) 
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from the queue on with to branch: select h with 
the least lower bound z h. 

Step 3 (Subproblem partitioning). Rank the 
edges e l , . . . ,  ep of E \ ( I  h U E  h) according to the 
amount by which z h would increase if the edge 
was excluded. In other words, if h r w a s  a node of 
the search tree with Ih, = I h and E h ,  = E h k.) {er} , 

then z h >~z h >1 . . .  >~z h . The sets of included 
1 2 p • • • 

and excluded arcs in subproblems originating from 
node h are 

Ih~ = Ih, Eh~ = E h t_) {el} , 

Ih2 = I h U {el}, Eh2 = g  h U {e2}, 

I h 3 = I h U { e l ,  e2}, E h 3 = E h U { e 3 } ,  

Ihs=Ih  U { e l , . . . , e s _ l } ,  E h s = E h  L ) R i U R  j 

where s ~< p is the smallest index for which there 
exists a vertex i such that Ih, does not contain 
two edges incident to i, but Ih~+, does; there may 
exist another vertex j possessing this property. R i 

is the set of all edges incident to i and not in Ihs. 
Execute Step 4 and 5 for  r = 1 . . . . .  s. 

Step 4 (Bounding). Compute Zh, starting with 
A h. If zh < z * ,  proceed to Step 5. Otherwise, 
consider the next r and repeat Step 4. 

Step 5 (Feasibility check). If the solution ob- 
tained at node h, is not a tour, insert node h r in 
the queue. Othogwise, set z * := Zh, and store the 
tour; if z* = z h, go to Step 2. 

Using this procedure, He ld  and Karp (1971) 
have solved a number of classical TSPs with very 
limited branching. Helbig Hansen and Krarup 
(1974) have improved upon the original algorithm 
by a more judicious choice of parameters in the 
ascent procedure. Volgenant and Jonker (1982) 
have experimented with a new ascent procedure, 
upper-bound computations in the branch-and- 
bound tree, and new branching schemes. Gavish 
and Srikanth (1986) use fast sensitivity analysis 
techniques to increase the underlying graph spar- 
sity and reduce the problem size. More recently, 
Carpaneto, Fischetti and Toth (1989) have sug- 
gested a number of further improvements to the 
Held and Karp lower bound by making use of an 
additive bounding procedure. 

4.5. The 2-matching lower bound and related algo- 
rithms 

The 2-matching relaxation of the TSP is ex- 
tracted from SYM by omitting constraints (26). It 
provides a lower bound on the value of the opti- 
mal TSP solution. This relaxation can then be 
embedded in an optimization algorithm by first 
solving the linear relaxation of the 2-matching 
problem, and by then gradually introducing vio- 
lated subtour elimination constraints and inte- 
grality constraints. The principles behind this 
method were first laid out in the seminal papers 
by Dantzig, Fulkerson and Johnson (1954, 1959). 
This work was followed by that of Martin (1966) 
and of Miliotis (1976, 1978). It was Miliotis who, 
to our knowledge, developed the first completely 
automatic procedure for solving symmetrical TSPs 
using this relaxation. He proposed several algo- 
rithms that differ in the order in which the vio- 
lated constraints are introduced and in the way 
integer solutions are reached. One of these is a 
pure cutting planes algorithm: 

Step 1 (First subproblem). Solve a first sub- 
problem defined by (24), (25) and 0 ~< xii ~< 1 (i, j 
= 1 , . . . ,  n, i < j ) .  If the solution is feasible, stop. 
If the solution is infeasible but integer, go to Step 
3. 

Step 2 (Reoptimization). Regain optimality by 
introducing Gomory cutting planes (Gomory, 
1963) and by reoptimizing. If the solution is feasi- 
ble, it is also optimal: stop. 

Step 3 (Subtour elimination). Eliminate one or 
several subtours by introducing the appropriate 
subtour elimination constraint(s). Reoptimize. If 
the solution is not integer, go to Step 2. If the 
solution is integer and contains subtours, repeat 
Step 3. 

A variant of this problem consists of reaching 
integrality by branch and bound. Subtour elimi- 
nation constraints are then introduced in individ- 
ual subproblems through the branching process. 
These constraints remain, however, valid for the 
whole of the branch-and-bound tree. 

As indicated by Miliotis, the two steps that 
consists of checking for integrality and then for 
violated subtour elimination constraints can be 
interverted, leading to a stronger algorithm. It 
must be observed that subtour elimination con- 
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straints can be applied to fractional components, 
i.e. connected subgraphs having fractional xij 
variables associated with some of their edges. 
Efficient procedures for generating violated sub- 
tour elimination constraints have been suggested 
by Gomory and Hu (1961), Crowder and Padberg 
(1980), and Padberg and Rinaldi (1990). 

Miliotis' work was followed by that of Crowder 
and Padberg (1980), Padberg and Hong (1980), 
Padberg and Rinaldi (1987, 1990) and Gr6tschel 
and Holland (1991), among others. The basic idea 
behind this line of research consists of introduc- 
ing several types of valid constraints before 
branching on fractional variables (on this subject, 
see Gr6tschel and Padberg, 1985, and Padberg 
and Gr6tschel, 1985). The effect of this is to 
increase the value of the LP relaxation and thus, 
to limit the growth of the search tree. These 
constraints are particularly powerful since they 
are facets of the polytope of integer solutions of 
SYM. Here are the most commonly used con- 
straints (see Padberg and Rinaldi, 1990): 
(a) Subtour elimination constraints, 

J 

x~j< ISI-1, ScV ,  3~< ISI ~ < n - 3 ,  
i,j~S 

(26) 

(b) 2-matching inequalities, 

E Xij"b E Xij< [ H I + ½ ( I E ' [ - 1 ) ,  (33) 
i,j~H (i,j)~E' 

for all H c V and all E '  c E satisfying 
(i) [{i, j} n H I  = 1 for all (i, j )  ~ E ' ;  

(ii) [{i, j } n { k ,  I}[ =¢,  (i, j)--/=(k, I ) ~ E ' ;  
(iii) ]E ' [  >t 3 and odd. 

The set H is called the handle and the edges of 
E '  are called teeth (see Figure 1). 
(c) Comb inequalities, 

E Xij"l- ~ E Xij< IHI 
i,j~H k = l  i,j~T k 

+ ~ ( I T k l - - 1 ) - - ½ ( s - - 1 ) ,  (34) 
k = l  

H i~ =! • h 

• j ,  

Figure. 1 .2 -Match ing  inequalities.  E = {(il, J l)  . . . . .  (is, Js)} 

H 
T1 

. .•  Ts 
J 

Figure 2. Comb inequalit ies 

for all H, T1, . . . ,  T s c V satisfying 
(i) IT k A H I  > / 1 ( k = 1  . . . . .  s); 

(ii) [ T ~ \ H [ > t l ( k = l  . . . .  ,s); 
(iii) T k A T  t = ¢  ( l ~ k < l ~ < s ) ;  
(iv) s >1 3 and odd. 

Again, H is called the handle and T t . . . . .  T s 
are called the teeth of the comb (see Figure 2). 
(d) Clique tree inequalities, 

k = l  i,j~H k t = l  i,j~T t k = l  

+ ~ (IT, I - t t )  - (s + 1) /2 ,  (35) 
l=1  

for all H~ . . . .  , H r c_ V, and all T 1 . . . . .  Ts _c V which 
are handles and teeth, respectively, of a clique 
tree. A clique tree is a connected subgraph of the 
graph K n derived from G by defined all Xn(n - 1) 
potential edges. The cliques of a clique tree are 
partitioned into handles and teeth; they satisfy 
the following properties: 

(i) no two teeth intersect; 
(ii) no two handles intersect; 

(iii) each tooth contains at least 2 and at most 
n - 2 vertices, and at least one vertex not belong- 
ing to any handle; 

(iv) each handle intersects an odd number 
(>/3) of teeth; 

(v) if a tooth T and a handle H have a 
nonempty intersection, then H n T is an articula- 
tion set of the clique tree, i.e. a minimal set S of 
vertices such that the subgraph of G = (V, E)  
induced by V \ S  has more connected compo- 
nents than G. 

Finally, in (35), t t is the number of handles 
intersected by tooth T t. 

Padberg and Rinaldi (1990) and Gr6tschel and 
Holland (1991) suggest efficient procedures for 
identifying violated instances of these four types 
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of constraints. By incorporating these procedures 
within an ILP code, these authors have solved to 
optimality TSPs containing between 17 and 2392 
vertices. At time of writing, the 2392-vertex prob- 
lem is believed to be the largest nonrandom sym- 
metrical TSP ever solved to optimality. 

5. H e u r i s t i c  a l g o r i t h m s  

Since the TSP is a NP-hard problem, it is 
natural to tackle it by means of heuristic algo- 
rithms. One stream of research has consisted of 
developing heuristics with a guaranteed worst-case 
performance. Most effort has, however, been de- 
voted to the design of heuristics with good empir- 
ical performance. In this section, we examine 
these two streams. 

5.1. Heuristics with guaranteed worst-case perfor- 
mance 

Consider a symmetrical TSP defined on a graph 
G and where C satisfies the triangle inequality. 
Let z * be the value of the optimal TSP solution. 
A simple way to derive a lower bound on z * is to 
first compute the length of a shortest spanning 
tree T on G. As shown by Aho, Hopcroft  and 
Ullman (1974), this can be done in O(n 2) time. 
Denote  by l(T) the length of that tree. A possible 
strategy for visiting all vertices is to traverse the 
spanning tree along its edges in the following 
fashion: 

Step 1 Consider any leaf i 0 (vertex of degree 1) 
of the spanning tree and set i := i 0. 

Step 2 
- If there is any untraversed edge (i, j )  inci- 

dent to vertex i, follow that edge to vertex j. Set 
i := j and repeat  Step 2. 
- If all edges from vertex i have already been 
traversed, go back to the vertex k from which i 
was first reached. If k = i0, stop; otherwise set 
k .'= i and repeat  Step 2. 

In order to illustrate this procedure, consider 
the spanning tree depicted in Figure 3. Starting 
with i 0 = 1, one then proceeds to 3, 2, 3, 4, 5, 6, 5, 
8, 5, 7, 5, 4, 3 and 1. It is easy to see that every 
edge of the spanning tree is then covered exactly 
twice. In general, this solution is not a tour. In 
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1 2 1 2 

4- 5 6 4 5 6 

7 ~ 8  8 
Figure 3. Optimal traversal of a graph using a shortest span- 

ning tree 

order to obtain a tour, the above procedure must 
be modified by using shortcuts. Follow the path 
obtained, but skip any already visited vertex. In 
our  example, one would follow the path 
(1, 3, 2, 4, 5, 6, 8, 7, 1). Since the triangle in- 
equality is satisfied, this never increases the total 
distance traveled and moreover, the resulting 
closed path is a tour of length not exceeding 
2/ (T)  ~< 2z*  

Christofides (1976) has proposed an improve- 
ment to the above procedure. It is based on the 
following observation. The shortest spanning tree 
is not in general Eulerian. However, an Eulerian 
graph can be derived from it by linking its odd- 
degree vertices by means of a minimum-cost 
matching algorithm. This can be done in O(n 3) 
time (Papadimitriou and Steiglitz, 1982). New 
edges corresponding to the optimal matching so- 
lution are then appended to the tree. Let l (M) 
denote their total length. The resulting graph is 
Eulerian and its complete traversal requires a 
total distance of I (T)+ l(M). Again, using short- 
cuts, a tour of total length not exceeding l(T) + 
l (M) can be obtained. This is illustrated in Figure 
4. Figures 4a and 3a are identical. Figure 4b is 
obtained by solving a minimum-cost matching 
problem; the added edges are shown by the 
dashed lines. Traversing the resulting graph by 

1 2 1 2 

s 6 ""..s 6_ 

7 ~  8 7 ~ " "  8 
Figure 4. Optimal traversal of a graph using a shortest span- 

ning tree and minimum matching 
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Figure 5. Christofides' heuristic 

means of the above procedure can be done by 
following the path (1, 2, 3, 4, 5, 6, 8, 5, 7, 5, 3, 1). 
Using shortcuts yields the tour (1, 2, 3, 4, 5, 6, 8, 
7, 1). 

We now focus our attention on I(M). Consider 
the sequence of vertices on an optimal TSP tour 
and link by shortcuts all vertex pairs correspond- 
ing to edges in the optimal matching solutions; 
delete all in[ermediate vertices. The total length 
of these edges is I(M). Now close the tour by 
linking these edges in the same order as they 
appear on the tour (see Figure 5). The newly 
introduced edges have a total length of I(M')<~ 
I(M) since the first matching is optimal. Since 
I(M) + I(M') <~ z*, it follows that I(M) <~ z * / 2  
and therefore, the heuristic yields a tour of length 
not exceeding I(T) + I(M) <~ 3z */2.  

Finally, it should be mentioned that no heuris- 
tic with a guaranteed worst-case performance is 
known for the asymmetrical TSP. 

5.2. Heuristics with good empirical performance 

We now concentrate on a number of heuristics 
known to yield good TSP solutions in an empiri- 
cal sense. Broadly speaking, TSP heuristics can 
be classical into tour construction procedures 
which involve gradually building a solution by 
adding a new vertex at each step, and tour im- 
provement procedures which improve upon a fea- 
sible solution by performing various exchanges. 
The best methods are composite algorithms com- 
bining these two features. Most methods de- 
scribed in this section work on symmetrical and 
asymmetrical problems. There are, however, some 
exceptions that will be indicated. For further 

readings on this subject, see Rosenkrantz, Stearns 
and Lewis (1977), Golden and Stewart (1985) and 
Ong and Huang (1989). 

5.2.1. Tour construction procedures 
(a) The nearest-neighbour algorithm (Rosen- 
krantz, Stearns and Lewis, 1977). 

In this method, a feasible tour is constructed 
by taking at each step the decision that is imme- 
diately the most advantageous. The main-interest 
of this 'myopic' algorithm lies in this simplicity. 

Step 1. Consider an arbitrary vertex as a start- 
ing point. 

Step 2. Determine the closest vertex to the last 
vertex considered and include it in the tour. If 
any vertex has not yet been considered, repeat 
Step 2. 

Step 3. Link the last vertex of the tour to the 
first one. 

The complexity of this procedure is O(n2). A 
possible modification is to consider in turn all n 
vertices as a starting point. The overall algorithm 
complexity is then O(n3), but the resulting tour is 
generally better. 
(b) Insertion algorithms (Rosenkrantz, Stearns 
and Lewis, 1977; Stewart, 1977; Norback and 
Love, 1977, 1979; Or, 1976). 

This category includes a number of similar 
algorithms whose basic structure can be summa- 
rized as follows: 

Step 1. Construct a first tour consisting of two 
vertices. 

Step 2. Consider in turn all vertices not yet in 
the tour. Insert in the tour a vertex chosen with 
respect to a given criterion, for example: 
- the vertex yielding the least distance incre- 

ment; 
- the vertex closest to the current tour; 
- the vertex furthest away from the tour; 
- the vertex forming the largest angle with two 

consecutive vertices of the tour, etc. 

Depending on the criterion that is used, the 
complexity of this type of procedure varies be- 
tween O(n 2) and O(n log n). 
(c) The patching algorithm for asymmetrical TSPs 
(Karp, 1979). 
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Figure 6. Merging two subtours in the patching algorithm 

The following procedure was devised by Karp 
for asymmetrical TSPs. It exploits the fact that on 
problems for which the cifs  are uniformly dis- 
tributed, the assignment relaxation of the TSP 
provides a near-optimal solution (see Balas and 
Toth, 1985). 

Step 1. Solve the AP with cost matrix C. 
Step 2. If  the solution contains only one circuit, 

stop. 
Step 3. Select the two circuits having the largest 

numbers of vertices. Select an arc (i, j )  on the 
first circuit and an arc (k,  l) on the second circuit 
that minimize the cost Cil q- Ckj -- Cij -- Ckl of  

merging the two circuits (see Figure 6). Go to 
Step 2. 

5.2.2. Tour improuement procedures 
These methods are used to improve a tour 

obtained by any means. They will be classified 
into three main categories. 
(a) The r-opt algorithm (Lin, 1965). 

Step 1. Consider an initial tour. 
Step 2. Remove r arcs from the tour and 

tentatively reconnect the r remaining chains in 
all possible ways. If  any reconnection yields a 
shorter tour, consider this tour as a new initial 
solution and repeat  Step 2. Stop when no im- 
provement  can be obtained. 

This heuristic was originally devised for sym- 
metrical TSPs. In this case, the number  of candi- 
date solutions at each step is of the order of  n r 
since there are (~) ways to remove r arcs and r! 
ways to reconnect the resulting undirected chains. 
Not all these reconnections are, however, feasi- 
ble. In general, r is taken as 2 or 3. One interest- 
ing exception is the Christofides and Eilon (1972) 
implementat ion of this method with r = 4 and 5. 

Lin and Kerninghan (1973) have proposed an 
improvement  to this method.  Here,  the value of r 
is modified dynamically throughout the algo- 
rithm. This procedure is considerably more diffi- 
cult to code than the original Lin r-opt method, 
but it generally produces near-optimal solutions. 
Recently Johnson (1990) has developed a "rando-  
mized iterated L in -Kern ingham method"  that 
produces near-optimal solutions. Or (1976) has 
proposed a simplified exchange procedure requir- 
ing only O(n 2) operations at each step, but pro- 
ducing tours nearly as good on the average as 
those obtained with a 3-opt algorithm. Or 's  algo- 
rithm can be described as follows: 

Step 1. Consider an initial tour and set t := 1 
and s := 3. 

Step 2. Remove from the tour a chain of s 
consecutive vertices, starting with the vertex in 
position t, and tentatively insert it between all 
remaining pairs of consecutive vertices on the 
tour. 
- If the tentative insertion decreases the cost of 

the tour, implement it immediately, thus defin- 
ing a new tour; set t := 1 and repeat  Step 2. 

- If no tentative insertion decreases the cost of 
the tour, set t := t + 1. If  t = n  + 1, then pro- 
ceed to Step 3, otherwise repeat  Step 2. 
Step 3. Set t : = l  and s : = s - l .  I f s > 0 ,  g o t o  

Step 2; otherwise stop. 

Before closing this section, it is worth mention- 
ing that Kanellakis and Papadimitriou (1980) have 
suggested an adaptat ion of the Lin and Kernighan 
procedure to the asymmetrical case. According to 
the analysis of Golden and Stewart (1985), fur- 
ther experiments are required to confirm that this 
procedure is indeed competitive. 
(b) Simulated annealing (Kirkpatrick et al., 1983). 

This successive improvements method is de- 
rived from an analogy with a m~terial annealing 
process used in mechanics (Metropolis et al., 
1953). In order to bring a material to a minimal- 
energy solid state, it is necessary to heat it until 
its particles are randomly distributed in the liquid 
state; then, to avoid local minima, its tempera ture  
is gradually reduced in steps, until the system 
reaches an equilibrium step for a given tempera-  
ture level. At a high tempera ture  T, all possible 
states can be reached but as the system cools 
down, the number  of possibilities is reduced and 
the process converges to a stable state. 
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In combinatorial optimization, the aim is to 
move from a given initial solution to a minimum- 
cost solution, by performing gradual changes to 
the starting solution. Denote  by T the state of 
the process (T corresponds to a tempera ture  level 
in a physical system). In the beginning, the value 
of T is high and the number  of allowed moves is 
also high. This number  decreases with T, until no 
change to the solution is possible. A local mini- 
mum has then been reached. 

For a given value of T, the algorithm is similar 
to the r-opt procedure: all solutions y in a neigh- 
bourhood of a solution x are examined. How- 
ever, substituting x by y is sometimes allowed 
even if this results in a larger cost. This reduces 
the probability of becoming t rapped in a local 
optimum. Simulated annealing can be applied to 
a large spectrum of combinatorial optimization 
problems. Formally, it can be summarized as fol- 
lows: 

Step 1. Consider an initial tour x of cost F(x). 
Step 2. Consider a solution y of cost F(y) in 

the neighbourhood of x. If  F ( y )  < F(x), set x := y 
and repeat  Step 2. If  F(y) >~ F(x), define Pr exp 
{[F(x) - F(y)]/T}, where T is a parameter  tend- 
ing towards zero as the process evolves. Ran- 
domly select a number  r in [0,1]. If  r <~Pr, set 
x :=y  and repeat  Step 2. Otherwise, repeat  Step 2 
with a new solution y in the neighbourhood of x, 
or stop if this neighbourhood has been com- 
pletely examined. 

Simulated annealing has been applied to the 
TSP by a number  of authors including Bonomi 
and Lutton (1984), Rossier, Troyon and Liebling 
(1986), Golden and Skiscim (1986) and Nahar,  
Sahni and Shragowitz (1989), with apparently a 
mixed degree of success. 
(c) Tabu search (Glover 1977, 1988, 1989, 1990; 
Glover and McMillan, 1986). 

As in the previous two methods, successive 
neighbours of a solution x are examined and, as 
for simulated annealing, the objective is allowed 
to deteriorate in order to avoid local minima. In 
order to prevent - cycling, solutions that have al- 
ready been examined are forbidden and inserted 
in a constantly updated ' tabu list'. The method 
can be summarized in three steps: 

Step 1. Consider an initial solution x of cost 
F(x). Set the tabu list T := ~. 

Step 2. Let N(x) be a neighbourhood of x. If  
N ( x ) \ T =  ¢, go to Step 3. Otherwise, identify a 
least cost solution y in N ( x ) \ T  and set x . '=y .  
Update  T and the best known solution. 

Step 3. If  the maximum number  of allowed 
iteractions since the beginning of the process or 
since the last update has been reached, stop. 
Otherwise, go to Step 2. 

The success of this method depends on the 
careful choice of a number  of control parameters.  
For more details on this, see Soriano (1989). 
Several authors have applied tabu search to the 
TSP (see Knox, 1988, Malek, 1988, and Fiechter, 
1990) with seemingly very positive results. 

5.2.3. Composite algorithms 
In recent years, two effective composite algo- 

rithms have been developed. The first is the 
Golden and Stewart (1985) CCAO heuristic. The 
second, GENIUS,  is more recent. It was devised 
by Gendreau,  Hertz  and Laporte  (1990). 
(a) The CCAO algorithm (Golden and Stewart, 
1985). 

This heuristic was designed for symmetrical 
Euclidean TSPs. It exploits a well-known prop- 
erty of such problems, namely that in any optimal 
solution, vertices located on the convex hull of all 
vertices are visited in the order in which they 
appear  on the convex hull boundary (Flood, 1956). 
The method can be summarized as follows: 

Step 1 (C: convex hull). Define an initial (par- 
tial) tour by forming the convex hull of vertices. 

Step 2 (C: cheapest insertion). For each vertex 
k not yet contained in the tour, identify the two 
adjacent vertices i k and jk on the tour such that 
Ci k k "~ Ck Jk -- Cik Jk is minimized. 

'Step 3" (A: largest angle). Select the vertex k*  
that maximizes the angle between edges (ik, k) 
and (k, j~) on the tour, and insert it between ik. 
and Jk*- 

Step 4 Repea t  Steps 2 and 3 until a Hamilto- 
nian tour of all vertices is obtained. 

Step 5 (O: Or-opt). Apply the Or-opt  proce- 
dure to the tour and stop. 

The rationale behind Steps 2 and 3 is that by 
selecting k * so as to maximize the angle it makes 
with the tour, the solution remains as close as 
possible to the initial convex hull. 
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(b) The GENIUS algorithm (Gendreau,  Hertz and 
Laporte, 1992). 

One major drawback of the CCAO algorithm 
is that its insertion phase is myopic in the follow- 
ing sense: since insertions are executed sequen- 
tially without much concern for global optimality, 
they may result in a succession of bad decisions 
that the post-optimization phase will be unable to 
undo. GENIUS executes each insertion more 
carefully, by performing a limited number of local 
transformation of the tour, simultaneously with 
the insertion itself. It consists of two parts: a 
generalized insertion phase, followed by a post- 
optimization phase that successively removes ver- 
tices from the tour and reinserts them, using the 
generalized insertion rule. 

The algorithm has been extensively tested on 
randomly generated problems and on problems 
taken from the literature; all these problems were 
symmetrical and Euclidean. Tests revealed that 
GENIUS produces in shorter computing times 
better solutions than CCAO, itself superior to all 
tour construction heuristics developed in this sec- 
tion. This algorithm also appears to compare 
favourably to tabu search and simulated anneal- 
ing, although the number of comparisons was 
more limited in the case of these two methods. 

6. Conclusion 

The TSP occupies a central place in Opera- 
tional Research. It underlies several practical ap- 
plications and its study over the last 35 years or 
so has led to important theoretical developments. 
Problems involving a few hundred vertices can 
now be solved routinely to optimality. Instances 
involving more than 2000 vertices have also been 
solved exactly by means of constraint relaxation 
algorithms. A number of powerful heuristics have 
also been proposed: tabu search methods and 
generalized insertion algorithms appear to hold 
much potential. 
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