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PROBLEMS OF STOCKS 
1 Introduction 

1.1 General, 1.2, Characteristics of the problems of stocks, 1.3, Graphical 
representation, 1.4, Replenishment, 1.5, Replenishment delays. 

— Arnold KAUFMANN, 1970, “Méthodes et modèles de la Recherche 
Opérationnelle”, Vol. I, 2.nd. edition, Dunod, Paris, p 165, Chapter IV, “Les 
Problèmes de stocks” 

1.1 General 
The supply of materials and equipment required for a manufacturing process, 

the customers’ orders, the reasonable availability of reserve parts incur varied 
problems.  It is difficult to make a coherent and logical classification of the problems 
of stocks.  The nature of demand should, however, be considered first: 

• Determined (predictable with a certain accuracy); 
• Random, but statistically stable; 
• Random, but statistically unstable (seasonal); 
• Unknown. 

In stock problems, there can be constraints: 
 • Interactions between the various products;  
 • Limitations of means (volume, weight, financial availability, etc.). 

Each time, an economic function will be defined to be optimized, which will 
often be, when demand is random, in the form of a mathematical expectation of 
global cost. 

1.2 Characteristics of the problems of stocks 
Given the variety of recognized stock problems in industrial practice or other 

areas, just a review of main cases will be done, to identify some simple concepts.  
The stock problems present themselves in the form of wait phenomena of a particular 
nature.  Rather than assuming (as is done in the theory of queues) that units arrive one 
by one, it will be assume that arrivals relate to sets of units.  The phenomena will be 
studied with support on probability, but in certain cases, otherwise frequent, in which 
variances are weak, deterministic models can be associated with them.  All the 
problems of stocks include: 

(1) A demand for certain articles, which is generally a random function of time, 
but may also be known and determined. 

(2) The existence of a stock of the items to meet demand, which runs out and has 
to be replenished.  The replenishment can be continuous, periodic or done at 
any intervals. 

(3) Costs associated with these operations, investments, depreciation, insurance, 
various risks, storage, etc., and also one, more or less arbitrarily, assigned to 
stockout, which is essential in some problems.  These costs allow to establish 
an economic function that we intend to optimize. 

(4) Objectives to achieve or constraints involved as a consequence of the nature of 
the problem. 
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1.3 Graphical representation 
In order to describe a problem of stocks, it is convenient to use the 

representation given in Figure 1, in which appear the initial stock, Si, the final stock, 
Sf, the interval θ separating them.  In general, demand quantities are random, 
represented by steps.  Often this path is replaced by a straight line or a curve which 
will give an easier analytical description of demand. 

 
Figure 1 

1.4 Replenishment 
Suppose that the time interval between the issuance of the order to replenish 

and the reception is zero (negligible).  Two main methods of basic inventory 
management are used.  The first is called method by periods.  A period T is 
established after which the replenishment is carried out systematically.  This method 
has the drawback of risk of stockout and can lead to a costly management, but has the 
advantage of being automatic.  The second may be termed a method of relaxation by 
analogy with physical phenomena of the same nature:  the amount provided is 
constant, but the intervals T1, T2, T3, ..., are no longer equal.  There is no risk of 
stockout, the administration is generally less expensive, but not so easy to become 
systematic. 

1.5 Replenishment delays 
Suppose that the replenishment delay (time interval between issuing the order 

and reception) is independent of the amount ordered, i.e. constant and of duration τ. 
Compare what would occur by either method.  In the first (method by periods, T 
constant), the date of issue of order is known and it is necessary (to determine the 
quantity to be ordered) to extrapolate what was ordered in the interval T – τ preceding 
τ;  in certain cases, τ can even be greater than T.  In the second method (relaxation, 
several Ti), however, the quantity to order is constant, but the date of issue is 
unknown and has to be determined through extrapolation, which is sometimes 
insufficiently precise;  in some cases, τ > Ti.  In general, the demand is known in 
probability.  Sometimes, the delay is proportional to or a function of the order, which 
complicates the situation. 

A method widely used for the management of stocks is to issue an order of 
constant size as soon as the stock reaches a critical value or replacement level.  This 
may be called the two-bin system (“system of two boxes.").  This method offers the 
advantage of a convenient management, but does not always guarantee against 
stockouts with sufficient probability. 
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2. Study of simple cases, proportional costs 
2.1, First case: search for the economic (optimal) order quantity; 2.2, Numerical example, 
2.3, Second case: EOQ  with cost of shortage; 2.4, Numerical example, 2.5, Third case: 
random demand with loss on surplus and additional shortage cost (storage cost negligible) 
2.6, Numerical example; 2.7, Search for the shortage cost; 2.8, Resolution, 2.9, Fourth case: 
random demand with costs of storage and shortage; 2.10, Numerical example; 
2.11, Resolution by numerical calculation, 2.12, Fifth case: known demand with storage cost 
proportional to the price of sale or purchase; 2.13, Numerical example. (...) 

Only the first and fourth cases will be briefly addressed below. 

2.1 First case: the economic order quantity 

Suppose parts of a certain model that are subject to constant demand, h parts 
per unit time, and stockout is not allowed.  The parts are acquired in orders or lots.  
Suppose that a fixed cost of ordering, regardless of the number of parts, is cL. 1.  The 
cost of storage of a part per unit time (day, for example) is cS.  The demand for a total 
θ time interval, under study (e.g., one year), is N.  Assuming that all orders contain 
the same number of parts, n, the question is what value to give n so that the overall 
cost of ordering and storage of parts N is minimal (excluding the cost of the parts 
themselves).  The number r of orders and the period T of replacement of the stock 
will also be determined. 

The average level of the stock during a period T is n / 2 (n in the beginning, 0 

in the end).  The storage cost during this period is thus  
1
2 n cS T.  The total cost of an 

order is 

Moreover, it is 

and 

The total cost for the time interval θ is: 

So, z depends on the variable n, the other parameters, N, θ, cL and cS  being known.  
The minimum z (obtained by differentiating or recalling that in the above form the 
two quantities must be equal)2 occurs for 

                                                 
1 L for “launch”. 
2 See Appendix. 
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which is the optimum size sought.  Substituting n = n0 in 
N
n T

=
θ

, we have 

and, as total cost, from Eq. {4}, 

2.2 Numerical example 
A manufacturer receives an order for N = 120 000 parts, to be delivered in one 

year (θ = 360 days).  At what rate should he replenish his stock, if delay is not 
permissible in delivery ? 

See “plate” http://web.ist.utl.pt/mcasquilho/compute/or/Fx-eoq.php .  In the 
plate, the nomenclature is 

Here  There  
N demand in period d 120e+3 
cL setup cost K 30e+3 $ 

(any) purchase cost c 1 
cS holding cost h 0,35 $/d × 360 d = 126 $ 

The demand in this case is at a constant rate.  The costs are: 

We have:  

(Although it is not a priori important in this case, it should be numerically verified 
if n0 is to be rounded down or up, examining the consequences in T0 and, 
essentially, z0). 

(This cost refers to one year.) 
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Another example, perhaps with more realistic data, is as follows (in Tavares 
et al. [1996], p 163), with its own nomenclature. 

Annual demand r = 1200 kg / year 
Unit cost of purchase C1 = 20 $ / kg 
Fixed cost of ordering A = 15 $ 
Unit cost of possession C2 = 25 % of C1 per year = 5 $ / kg-year 

In the notation presented above (Kaufmann's): 

Total demand (per year) N = 1200 kg 
Time span θ = 1 year 
Fixed cost of ordering A = 15 $ 
Unit purchase cost C = 20 $ / kg 
Fixed cost of ordering cL = 15 $ 
Cost of storage (per unit) cs= 25 % of C per year = 5 $ / kg-year 

We find, as solutions to the various variables of interest: 

The annual cost of the material, not included in the model, is NC = 1200 × 20 
= 24 000 $, so (after the optimization) the maintenance charges represent 
424 / 24 000, or 1,8 % of that cost.  Specifically, we would lead T0 to a reasonable 
value (21 days, 28, 30, “1.st day of each month”, etc.).  In Figure 2 is plotted z 
depending on the size of the order n to monitor the increase of z for non-optimal 
values of n. 

 
Figure 2 

(2.3 ... 2.8) 
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2.9 Fourth case:  random demand with costs of storage and 
shortage 

Suppose that demand, for a certain time interval T, is random, where p(r) is 
the probability of a total demand r on the interval T.  The demand is discontinuous, 
but practically it can be assumed that its rate of change is constant.  The parts retain 
their value in the range T, but the cost of storage per unit time, with the interest of 
capital they represent, has the value cs (cost per unit of time).  It is assumed that the 
shortage of a part results in a loss cp per unit of time.  Consider the following 
example. 

A factory produces cranes and has several deposits in various parts of the 
country.  Some spare parts are very expensive, but must be made available to 
customer in depots since the cranes should not be unavailable too long in case of 
failure.  Let us consider one of these parts and determine the stock to place in a depot 
in order to minimize the expense of the cost of storage (including income from 
invested amounts) and of the cost of shortage (loss of a customer, borrowing another 
crane, etc..). 

(1) Average Stock corresponding to situation “a”, no-shortage: 

(2) Average Stock corresponding to situation “b”, shortage: 

(This refers to a fraction s/r of the period under consideration.) 

(3) Average shortage corresponding to the situation “b”, shortage: 

(This refers to the remaining fraction of the period.) 
The mathematical expectation of the total cost of the stock will be: 

It can be shown that the minimum of z(s) occurs at a value s0 such that 

with 
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[Note also that ρ = L(s0) implies that both s0 and s0 + 1 correspond to optimum, while 
ρ = L(s0 – 1) implies optimal s0 or s0 – 1.]  Of course, the determination of s0 can be 
made directly numerically. 

(2.10) 

2.11 Numerical resolution 
Let cs = 100 $ / month, cp = 20 cs = 2000 $ / month and use the following table 

of the probability function p(r) observed for monthly consumption, r. 
r 0 1 2 3 4 5 ≥ 6 
p(r) 0,1 0,2 0,2 0,3 0,1 0,1 0 

See plate  http://web.ist.utl.pt/mcasquilho/compute/or/Fx-inventoryRand.php 

The calculations for s = 0, 1, 2, ..., seeking a minimum value of z(s) provide 
(in the monetary unit $): 

and successively, 

Assuming monotonicity, as z1 < z0 (cost is decreasing), we must continue the 
calculations (and so on until it starts to increase) to detect the optimum, i.e. minimum. 
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It is now simultaneously z3 < z2 and z3 < z4, i.e., z2 > z3 < z4, so the minimum 
has been found, with z* = 290 $.  See Figure 3. 

 
Figure 3 

Appendix 
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Queueing systems are presented, with a brief introduction and formulas for usual practical 
cases.  Some examples are solved and computer resolution is mentioned. 

Keywords:  queueing systems, queueing theory, queue, waiting line. 

1. Fundamental and scope 
The waiting phenomena, which originate the queues, are related to random 

processes, i.e., the models of which include random components.  These are 
associated to probability. 

The queue is almost inevitable in many situations, unless means are made 
available at costs possibly disproportionate to the benefits of a quick service.  When 
circumstances impose a quick service, capable of limiting the waiting time to a 
reasonable level, the working conditions can be evaluated through the queueing 
systems theory1. 

The queues are frequent phenomena found in everyday life, and also in 
situations in economics, society, and the military.  Examples:  customers in a bank or 
post office;  people waiting for a taxi or telephoning to a taxi service;  cars at a (road) 
junction2;  planes waiting to land or take off;  broken machines waiting for repair.  
Several examples are given in Fig. 1.  Erlang in the 1920’s was one of the first to 
study the queueing subject applying it to the telephone system. 
 

Arrivals Nature of service Servers 
Customers Sale of an article Vendors 

Ships Unloading Docks 
Planes Landing Tracks 

Telephone calls Conversations Telephone circuits 
Arrival of cars Customs control Customs workers 

Messages Decoding Decoders 
Repair machines  Repair Mechanics 

Fires Fire fighting Fire brigade 
Requests Confection, repair Repair-shop 

Fig. 1  Examples of waiting phenomena. 

A queue is characterized by several components:  customers’ population, 
arrival pattern, number of servers, service pattern, system capacity (size) to hold 
customers, and the queue discipline.  Consideration of the costs of maintaining a 
                                                 
1 US “waiting line”;  Pt «filas de espera», «bichas»;  Es «colas»;  Fr «phénomènes, files d’attente»;  It 

« fenomeni (o file) d’attesa, code»;  De »Schlange(n)«. 
2 US “intersection”;  Pt «cruzamento»;  Fr, «carrefour». 
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queueing system from the supplier side and the customers’ side makes it an economic 
optimization problem.  The objective of this text is to present formulas that permit 
that optimization. 

2. Queues structure 
The structure of a queueing system is addressed based on the above mentioned 

parameters and characteristics.  A systematization of the queueing systems by the 
Kendall’s notation is given, as well as a nomenclature. 

Customers’ population 
The customers’ population may be infinite or finite.  It is finite if the number 

of possible customers is limited and known, such as the number of machines subject 
to failure in a factory;  infinite, otherwise. 

Arrival pattern 
The arrival pattern of customers is usually specified by the interarrival time, 

the time between successive customer arrivals to the service.  It may be deterministic 
or a random variable with a probability distribution presumed known.  [Other aspects 
will not be considered here, such as:  arriving singly or in batches;  or balking (refusal 
to enter) or reneging (leaving the queue because the wait is too long).] 

Number of servers 
The number of servers is the number of persons, machines, tellers, gates, etc., 

to attend customers.  These will be considered equivalent and in parallel (other cases 
being series or more or less complex combinations of servers in series and in 
parallel). 

Service pattern 
The service pattern is usually specified by the service time, which may be 

deterministic or a random variable with probability distribution assumed known.  
(The service time may depend on the number of customers.  The customer may be 
attended completely by one server or any combination of servers.) 

System capacity 
The system capacity is the maximum number of customers, both those in 

service and those in the queue(s).  Whenever a customer arrives at a facility that is 
full, the customer is denied entrance to the facility and not allowed to wait outside the 
facility, which would increase the limited capacity, and is forced to leave.  Capacity 
is, thus, either infinite or finite. 

Queue discipline 
The queue discipline is the order in which customers are served.  This can be 

on a first-in, first-out (FIFO) basis (i.e., service in order of arrival, the usual one), a 
last-in, first-out (LIFO) basis, a random basis or a priority basis (as in hospital 
emergency services). 

To make queue classification simpler, the so-called Kendall’s notation is 
usually employed. 

Kendall’s notation 
The Kendall’s notation indicates ({1}):  v, the arrival pattern;  w, the service 

 

 v / w / x / y / z {1}
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pattern;  x, the number of servers;  y, the system’s capacity;  and z, the queue 
discipline, as in Table 1.  If y or z is not specified, it is taken to be ∞ or FIFO, 
respectively. 

Table 1  Kendall’s notation 

 Queue characteristic Symbol Meaning 

v, w 
Interarrival time 

or 
service time 

D 
M 
Ek 
 

G 

Deterministic 
Exponential 
Erlang-type 

          (k = 1, 2 …) 
Any other 

x Number of servers Number ∞ if not specified 

y System’s capacity Number ∞ if not specified 

z Queue discipline 

FIFO 
LIFO 
SIRO 
PRI 
GD 

First in, first out 
Last in, first out 

Service in random order 
Priority ordering 

Any other ordering 

The initials are related to:  D, deterministic or “degenerate” (a deterministic 
variable being a constant, a degenerate random variable);  M, Markovian (Markovian 
“birth and death” process, typically with Poissonian arrivals);  G, general. 

 
Fig. 2  Simplified queue taxonomy. 

Let it be noted that in the frequent M/M/s case of more than one server, s > 1, 
the customers (and the selling entity) benefit from a single queue (which is rarely the 
case in large stores) [Ravindran et al., 1987, 329].  This can be easily accomplished 
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by making available numbered tickets (as in post offices and usually pharmacies, in 
Portugal). 

For a simplified taxonomy of queues, see Nemetz-Mills [2008], from whom 
Fig. 2 was taken.  This author mentions “single or multiple channel”, i.e., single or 
multiple servers —here, M/M/1 and M/M/s— and “single or multiple-phase”.  A 
multiple-phase queueing system (2.nd and 4.th rows in the figure) is a (“pure”) 
mixture of parallel and series servers, a complex case having a better resolution by 
Monte Carlo simulation. 

Only M/M/1/∞/FIFO and M/M/s/∞/FIFO systems, i.e., for short, 

  M/M/1 M/M/s {2}

will be addressed in the following sections. 

3. Single and multiple server queues 
The set of a queue (or queues) and the servers constitutes the waiting system 

or simply the system.  In the cases where it is supposed to have several queues, the 
customers place themselves either automatically in the shortest queue or according to 
a priority.  (The term “customer” will be used instead of the more general “unit”, 
whether it is a person or any other entity.)  These priorities make the queue discipline 
(hospitals, restaurants). 

With the given structure of a waiting phenomenon, the notation in Table will 
be used: 

Table 2  Notation 

  Meaning 
m  Number of existing customers (population size) 
n  Number of customers in the system (waiting or 

being served) 
α  Arrival rate (T–1, customers / time unit) 
µ  Service rate (T–1, services / time unit) 
ψ  Utilization factor, or traffic intensity,  α/(sµ) 
ν  Number of customers in queue 
j  N. of customers being served 
s  N. of servers 

So, it is 

 
snnj
snnj

>=+
≤=

ν
if

 {3}

The values n, ν and j are random.  If it is 

 =np  Pr(n customers in the system) {4}

then, pn, a probability, represents the fraction of the time the system is in state n. 

3.1 Single server queues 
The basic variables for a single server queue system, s = 1, will now be 

determined for the simpler and usual case of an infinite population, i.e., m = ∞. 
The Poisson process is often used to model the situation in which a count is 

made on the number of events occurring in a given time, here the arrival of customers 
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to a service facility:  ( ) ( )[ ]( ) !expPoi jttjp jαα−=  ,  j = 0..∞  ([α] = T–1).  The time 
between events in a Poisson process follows an exponential3 distribution with the 
same parameter α, ( ) ( )τttf −= exp , with mean τ = 1/α ([τ] = T).  The parameter τ is 
the expected time between events. 

To find pn, consider its evolution during an instant, from time t to t + dt, with 
dt small enough so that no two (or more) events can occur. 

 ( ) ( )( ) ( ) ( ) ttpttpttp dd1d
departure

1
change  no

00 µα +−=+  {5a}

 ( ) ( ) ( ) ( ) ( ) ( )( ) ttpttpttpttp nnnn d1ddd
change  nodeparture

1
arrival

1 µαµα −−++=+ +−  {5b}

This becomes 

 
( ) ( ) ( ) ( )tptp

t
tpttp

10
00

d
d

µα +−=
−+

 {6a}

 
( ) ( ) ( ) ( ) ( ) ( )tptptp

t
tpttp

nnn
nn µαµα +−+=

−+
+− 11d

d
 {6b}

Introducing the utilization factor [H&L, 2005, 770] or traffic intensity [Ravindran 
et al., 1987, 320] 

 
µ

α
ψ

S
=  {7}

which is here simply 
µ
α

ψ = , and in the limit as dt goes to zero, it is 

 ( ) ( ) ( )tptptp 100
1

+−=′ ψ
µ

 {8a}

 ( ) ( ) ( ) ( ) ( )tptptptp nnnn ψψ
µ

+−+=′ +− 1
1

11  {8b}

The system will be studied only in the steady state (null derivatives), so it is 

 010 =+− ppψ  {9a}

 ( ) 0111 =+−+ +− nnn ppp ψψ  {9b}

or [from ( ) 012 1 ppp ψψ −+= , ( ) 123 1 ppp ψψ −+= , etc.] 

 01 pp ψ=  {10a}

 
( )( ) ( ) 0

2
0

2
002 1 ppppp ψψψψψψψ =−+=−+=  

( )( ) ( ) 0
3

0
223

123 1 ppppp ψψψψψψψ =−+=−+=  
etc. 

{10b}

So, in general, it is 

                                                 
3 Also called “negative exponential” [Ravindran et al., 1987, 293]. 
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 n
n pp ψ0=  {11}

The population size is m = ∞.  As the probabilities must, of course, add to one, and 
recognizing the sum of a geometric series (it is ψ < 1), it is 

 
ψ

ψ
−

=== ∑∑
∞

=

∞

= 1
1 0

0
0

0

p
pp

n

n

n
n  {12}

Thus, it is 

 ψ−= 10p  {13}

and generally 

 ( ) n
np ψψ−= 1  {14}

[The geometric distribution can be recognized in Eq. {14}:  ( ) ( )nrrnp −= 1 , 
n = 0..∞, with parameter r = 1 – ψ, mean ( ) rr−= 1µ , i.e., ( )ψψ −1 .] 

The probability p0 is the fraction of time the system is idle (empty), and the 
parameter ψ can be taken as the fraction of time the server is busy [Ravindran et al., 
1987, 320]. 

The mean or expected value of the number of customers in the system is, by 
the definition of mean, 

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) 21

1

1

1

100

111
d
d

1
d
d

1

111

−−
∞

=

∞

=

−
∞

=

∞

=

∞

=

−−=−−=−=

=−=−=−==

∑

∑∑∑∑

ψψψψ
ψ

ψψψ
ψ

ψψ

ψψψψψψψ

n

n

n

n

n

n

n

n

n
n nnnnpn

 {15}

or 

 
ψ

ψ
−

=≡
1

nL  {16}

The mean number of customers in the queue, or mean queue length (with a 
queue of zero if there are 0 or 1 customers in the system), is 

 

( ) ( ) ( )

( ) ( ) ( )
ψ

ψ
ψ

ψ
ψψψψψ

ψψν

−
=−=−−=

=−−=−=≡

∑∑

∑∑
∞

=

−
∞

=

−

∞

=

∞

=

1d
d

111

111

2

2

12

2

22

22

n

n

n

n

n

n

n
nq

n

npnL
 {17}

The difference between L (customers in the system) and Lq (customers in the 
queue) should be, and is, the mean number of busy servers, ψ: 

 
( )

ψ
ψ
ψψ

ψ
ψ

ψ
ψ

=
−
−

=
−

−
−

=−
1
1

11

2

qLL  {18}

An equation known as Little’s formula (cited in most queueing literature) 
relates L to W, the mean waiting time in system: 

 ( ) WpL N α−= 1  {19}
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When it is N = ∞, as in the cases presented, the formula reduces to L = α W (as the 
probability pN  obviously tends to zero).  This permits easily finding the mean time in 
the queue, W, and mean time in the system, Wq.  The formulas for the M/M/1 case 
are shown in Table 3.  As α and µ are rates (times per unit time), the expressions with 
1/α or 1/µ represent, indeed, time. 

Table 3  Synopsis for M/M/1 

Variable and formula  
Probability of 0 customers in the system  

ψ−= 10p       with   1<=
µ
α

ψ  (a) 

Probability of n customers in the system  
( ) n

np ψψ−= 1  
1

0
1 +

=
−== ∑ nn

j jn pP ψ  
(b) 

Mean of no. of customers in the queue (waiting)  

ψ
ψ
−

=
1

2

qL  (c) 

Mean of no. of customers in the system  

ψ
ψ

ψ
+=

−
= qLL

1
 (d) 

Mean of time in the queue (a customer waiting)  

αµ
ψ

ψ
ψ

α −
=

−
=

1
1 2

qW  (e) 

Mean of time in the system (a customer spending)  

µαµψ
ψ

αα
11

1
1

+=
−

=
−

== qW
L

W  (f) 

The probabilities of waiting at least t  (with t ≥ 0) are given [H&L, 1995, 
681] by 

 
( ) ( )[ ]tt ψµ −−=> 1expwaitPr  
( ) [ ]ttq >=> waitPrwaitPr ψ  {20}

[the first expression an exponential distribution with parameter µ(1 – ψ)]  which lead 
to (and confirm) W = 1 / (µ – α) and Wq = ψ / (µ – α). 

3.2 Multiple server queues 
For this case, similar but more laborious derivations can be made.  The results 

only are presented in Table 4.  A single queue for customers waiting and steady state 
are also supposed. 

In the particular case of s = ∞, it is 

 
( ) ( ) ( ) 








==+

−
=

∞→

−

µ
α

ψψ
ψ

ψ
expexpexp

!
lim

1
11

0 ss
s

s
p

s

s
 {21}
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Eq. {21} comes from the fact that  (i) the sum (from 0 to s – 1) can be recognized as 
the Taylor series development of the exponential function  and  (ii) the other term 
goes to zero.  So, p0 becomes a constant: 

 ( )µα−= exp0p  {22}

The remaining variables will have the following values: 

 !0 n
pp

n

n
ρ

=  

0=qL      
µ
α

ρρ ==+= qLL ;          0=qW      
µµ
11

=+= qWW  
{23}

Indeed, p0 is not 1 (a value that might be intuitive), as there are customers 
arriving;  Lq is zero (zero customers waiting), but L is not zero, as they are being 
served (spending useful time);  and Wq is zero (no wait in queue), but W is the 
inevitable service time, 1 / µ (not zero).  This may be the case of a self-service 
situation if there are “many” servers, enough for all the arriving customers. 

Table 4  Synopsis for M/M/s 

Variable and formula  
Probability of 0 customers in the system  

( )
( )

( )∑
−

=

− +
−

=
1

0

1
0 !1!

s

n

ns

n
s

s
s

p
ψ

ψ
ψ

      with   1<=
µ

α
ψ

s
 

Remark:  1
0
−p , not 0p  

(a) 

Probability of n customers in the system  

( )










≥

≤≤
=

snp
s
s

snp
n

s

p
n

s

n

n

0

0

!

0
!

ψ

ψ

 

( ) sn
s

s
pPp

s
s

PP n
s

snj
j

s

sn ≥
−

+=+= −
∞

=− ∑ ψ
ψ

ψ
1!! 0101  

(b) 

Mean of no. of customers in the queue (waiting)  

( )2

1

0
1! ψ
ψ
−

=
+

s
s

pL
ss

q  (c) 

Mean of no. of customers in the system  









+=+==

µ
αψα

1
sWsLWL qq  (d) 

Mean of time in the queue (a customer waiting)  

α
q

q

L
W =  (e) 

Mean of time in the system (a customer spending)  

µ
1

+= qWW  (f) 
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The probabilities of waiting at least t  (with t ≥ 0) are given [H&L, 1995, 
684] by 

 
( ) ( )

( )
( )[ ]









−−
−−−−

−
+=> −

ρ
ρµ

ψ
ψµ

1
1exp1

1!
1ewaitPr 0 s

st
s

s
pt

s
t  

( ) ( ) ( )[ ]tsPt sq ρµ −−−=> − 1exp1waitPr 1  

{24}

which leads to (and confirms) W = 1 / (µ – α). 

4. Illustrative examples 
Suppose α = 10 hr–1  and  µ = 15 hr–1 (data from Baker’s [2006, 2] 

pharmacy example).  For s = 1, s = 2 (in the reference), and s = 100, the results are 
given in Table 5.  (In the reference, ρ is used for ψ.)  In this case, with α / µ = 0.667, 
they show, namely, little difference from 2 to 100 servers. 

Table 5  Results for growing s (other data constant) 

 s = 1 s = 2 s = 100 
ψ  (or ρ) 0.667 0.333 0.007 

p0 0.333 0.500 0.513 
Lq 1.333 0.083 0.000 
L 2.000 0.750 0.667 

Wq 0.133 0.008 0.000 
Service time, 1 / µ 0.067 0.067 0.067 

W 0.200 0.075 0.067 

Various examples can be run on the author’s Internet page [Casquilho, 2008].  
Also, an economic optimization of s can be made there. 

5. Conclusions 
The theory applicable to queueing systems —provided that the underlying 

conditions are met, namely, steady state— can lead to useful results, permitting 
significant control on the behaviour of such systems.  The calculations are 
cumbersome, adequate to computer treatment. 
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