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Abstract. Recording patient clinical data in a comprehensive and easy
way is very important for health care providers. However, and although
there are information systems to facilitate the storage and access to pa-
tient data, many records are still in paper. Even when data is stored elec-
tronically, systems often are complex to use and do not provide means
to gather statistical information about a population of patients, thus
limiting the usefulness of the data. Physicians often give up searching
for relevant information to support their medical decisions because the
task is too time-consuming. This paper proposes Umedicine, a web-based
software application in Portuguese that addresses current limitations of
clinical information systems. Umedicine is an application for physicians,
patients and administrative staff that keeps clinical data (e.g., symptoms,
clinical examination results, and treatments prescribed) up to date on a
database in a structured way. It also provides easy and quick access to a
large amount of clinical data collected over time. Furthermore, Umedicine
supports the application of a particular clustering algorithm and a visu-
alization module for analyzing patient time-series data, to identify evolu-
tion patterns. Preliminary user tests revealed promising results, showing
that users were able to identify the evolution of groups of patients over
time and their common characteristics.

Keywords: clinical information system, data analysis, clustering, data
visualization

1 Introduction

For health care providers, recording every patient’s clinical information compre-
hensively is of paramount importance. However, for many years this information
has been recorded in paper and kept in large dedicated archives, making it dif-
ficult to retrieve relevant past clinical information quickly and effectively when
required for patient care or for scientific research purposes.



With the widespread use of computers, new software tools were developed
for clinical staff to record information about patients. This easy access to clinical
data promises a significant impact in clinical practice. In particular, continuous
patient monitoring can be ubiquitous, enabling fast response by clinical staff
and quick situation assessment by physicians; clinical research can benefit from
much larger, easier-to-access data sources, that will accelerate the discovery of
new medical knowledge; and health care managers will be able to make more
informed decisions regarding institutional policies.

Currently, existing medical information systems often are too complex to use
and provide free-form fields for collecting patient’s medical information, which is
not stored as structured data. For this reason, many patient records are still in
paper and, in the cases where the information is in the system, it is not possible
to gather statistical information about a population of patients, thus limiting
the usefulness of the data. As a consequence, physicians often give up searching
for relevant information to support medical decisions because the task is too
time-consuming [2, 10].

Hence, there still is a need of tools to enable integration and analysis of
clinical data in an effective manner [10, 11] and to make it useful in everyday
practice. Physicians should have means to explore existing patient data quickly
to support their diagnosis, treatment decisions and research.

In this paper, we propose Umedicine, a new clinical information system that
addresses the current limitations of this kind of systems. Umedicine is a web-
based application with an appealing and easy-to-use user interface to be used
by physicians and administrative staff in hospitals/clinics and patients at home.
Through it, physicians and patients can enter clinical data into a platform that
provides easy, quick and always-on access to a large amount of clinical data.
Clinical data is persistently kept in an electronic and structured format in a
database, thus enabling data analysis to extract interesting patterns and the
application of visualization techniques to show these patterns to physicians. To
the best of our knowledge, our application is the only one that supports: (i)
filling in standard international diagnosis-support questionnaires, (ii) collecting
and storing patient data (personal data and clinical data such as symptoms,
clinical examination results, diagnosed pathologies and prescribed treatments) in
a structured way that is appropriate to each medical specialty, and (iii) applying
data analysis algorithms, all integrated in one software platform. In particular,
we demonstrate the use of a clustering algorithm and a visualization mechanism
for analysis of patient time-series data.

Umedicine is designed to support any medical specialty, and in this paper
we used the Urology specialty to demonstrate the use of the application. We
performed a preliminary evaluation of the Umedicine user interface with users,
asking them to perform several task scenarios. Users also filled in a satisfaction
questionnaire to assess Umedicine qualitatively. The results were promising, as
users were able to complete with success all the tasks and were mostly satisfied
with the user interface provided.



Fig. 1. Architecture of the Umedicine system

2 Architecture and Implementation

Umedicine has a client-server style architecture with three main components
(see Fig. 1): (i) a front-end available to the user through a web browser client,
(ii) a back-end server, and (iii) a relational database. Users interact with the
system through a web browser, which submits HTTP requests to the server. The
server returns an HTML page. Data may be asynchronously requested from the
server through Asynchronous JavaScript and XML (Ajax) requests made by the
browser. To respond to Ajax requests, the server queries a relational database
and returns the data to the client in the form of JSON objects. The use of
Ajax allows to exchange only new necessary data to fill the page, minimizing
data transfers from the server and improving user waiting time. The server is
developed in Java with extensive use of Spring Framework4. Web pages are
generated with the JavaServer Pages (JSP) and Apache Tiles5 technologies.

Umedicine supports four types of users: non-administrator physicians, ad-
ministrator physicians, clerks and patients. Non-administrator physicians can
add new patients to the system and search, read and modify patient personal
and medical information. In addition to having access to all the functionalities
available to non-administrator physicians, administrator physicians can add new
clerks and physicians (both administrator and non-administrator) to the system.
Patients can view and modify their own personal information, view their own
examination results and history and fill medical questionnaires for diagnosis
support. Clerks can add new patients to the system and add limited patient per-
sonal information (name, birth date, contact and profession). The application
is implemented in a way that ensures that each type of user can only use the
functionalities and have access to information as described above. Data confi-
dentiality is guaranteed in communications between clients and server by use of
Transport Layer Security (TLS) encryption.

2.1 Front-end

Umedicine is implemented as a web application, providing responsive user in-
terfaces for the different types of user, and can be used both on mobile and

4 https://spring.io/
5 https://tiles.apache.org/



desktop environments. In this section, we focus on the user interfaces offered for
physicians and patients.

When the physician selects a patient, the patient’s information page is shown,
as illustrated in Fig. 2. It is organized in six parts:

– Personal information (Informação Pessoal): area where physicians can
view and modify information such as name, birth date, contact and habits
of the patient;

– Disease (Doença): area where physicians can select the medical condition
that applies to the selected patient and view or modify information about
symptoms; following the development team’s physician advice, this area also
includes the rectal examination information; users can view symptom and
rectal examination histories and add new symptoms and examination results;

– Treatment (Tratamento): this area displays information about ongoing
treatments and provides means to view treatment history and add new treat-
ments;

– Questionnaires (Questionários): this area provides access to three internationally-
accepted diagnosis-support questionnaires that a patient can answer at home
or during a medical appointment; these questionnaires are used to com-
pute scores that represent the severity of a patient’s condition; Umedicine
currently supports three relevant standard questionnaire-based scores: State
Self Esteem Scale (IIEF), International Prostate Symptom Score (IPSS) and
State Self Esteem Scale (SSES);

– Diagnosis support examinations (Exames Auxiliares de Diagnóstico):
this area shows the most recent results for several kinds of medical exam-
inations and laboratory tests; the user can add new results and access the
patient’s examination and test histories;

– Notes (Observações): physicians can write a textual note about the patient’s
condition on the day of the medical appointment and view notes from pre-
vious appointments.

The user interface available to patients is more limited (Fig. 3). It contains
an area on the left where they can view their current photo and alerts requiring
attention. The middle area shows their current personal information. On the
right, patients can view information about examinations, current medications
and past surgeries. At the bottom, patients can choose to edit their personal
information or to answer a diagnosis support questionnaire. Note that these tasks
can be performed away from the clinic, saving time during medical appointments
and give more privacy to patients.

2.2 Back-end Server

The back-end server replies to the requests sent by the browsers, performs oper-
ations on the data and stores or retrieves data as necessary from the database. It
is responsible for ensuring that each user has access to, and only to, the data they
need, and for loading the data or web pages requested by the users. The server is



Fig. 2. A patient’s information page as viewed by a physician using Umedicine

Fig. 3. A patient’s information page as viewed by the patient using Umedicine

implemented as a Java application with extensive use of the Spring Framework
ecosystem6. It follows the Model-View-Controler (MVC) design pattern and is
composed of three main layers — from top to bottom: controllers, services and
Data Access Objects (DAOs) (Fig. 4).

Controllers are the components responsible for the interaction with the clients.
They receive client requests, invoke the appropriate business logic methods and
send a response if required. Controller code (as well as service and DAO code)
is, as much as possible, organized to maximize separation of concerns. In other
words, a controller is written to support a specific set of coherent functionalities.
For example, the code responsible for handling requests related to user account
6 https://spring.io



Fig. 4. Umedicine’s server component architecture

creation is supplied by methods of the class UserController; requests from pages
where users fill in questionnaires are handled by the QuestionnaireController
class; and so on.

Any business logic-related processing of the data retrieved from the database
or sent by the clients takes place in the Services layer. Service methods are in-
voked by controllers (or other services) and return data that controllers use to
respond to the requests issued by the client. Service code is also organized accord-
ing to functionalities. UserService, for instance, contains the code responsible for
user account creation, performing duties such as invoking the Data Access Ob-
ject (DAO) methods that store user data in the database (after performing any
required data processing) or sending emails with new passwords to new users.
In a similar fashion, there is a QuestionnaireService class that handles question-
naire data, and so on. Services also organize data retrieved from the database
via DAOs into objects suitable to be used by the controllers, which may return
data to the browser.

The bottom layer, DAOs, contains the code that enables the interaction
between the server and the database. This code includes the SQL queries that
insert new rows, update existing rows and retrieve data from the database tables.
Information retrieved from the database is converted to Java objects and passed
on to the upper service layer for further processing.



2.3 Relational Database

Umedicine’s architecture encloses a relational database to store three kinds of
data persistently: (i) clinical data inserted by patients or physicians; (ii) user
authentication data; and (iii) metadata concerning a specific medical field. The
current version of the application has a database that is set up for Urology but
its schema is designed to be adaptable to other medical specialties. For this
end, the metadata that corresponds to domain knowledge – drug names, disease
names, symptoms, medical examinations and diagnosis-support questionnaires
– is stored in the database rather than in the back-end server and is accessed
when the application loads. With this approach, different domain knowledge
from other medical specialties can be substituted into the database and plugged
into the server with minimal modification of server and client code (ideally no
modification will be needed whatsoever). This approach also enables switching
easily from metadata in Portuguese to metadata in another language.

To illustrate Umedicine’s database model, we present the subset of the database
relational schema that models medical examinations. Primary keys of relations
are underlined and foreign keys are specified by FK:

Clinical metadata:

ExaminationType (typeName, subTypeName)
Parameter (paramName, paramUnit, paramType)
ExaminationParameter (typeName, subTypeName, paramName)

typeName, subTypeName: FK (ExaminationType)
paramName: FK (Parameter)

Clinical data:

Patient (pNumber)
PerformedExamination (pExamID, pNumber, typeName, subTypeName, date)

pNumber: FK (Patient)
typeName, subTypeName: FK (ExaminationType)

PerformedExaminationValue (pExamID, paramName, value)
pExamID: FK (PerformedExamination)
paramName: FK (Parameter)

There are two types of data modeled in this relational schema: (i) clinical
metadata and (ii) clinical data. ExaminationType, Parameter and Examination-
Parameter are relations that model metadata. This metadata is accessed when
the application starts and is used to determine the information that is shown in
the user interface. The ExaminationType table stores all the possible types and
subtypes of medical examinations. The tuples: <Urofluxometry, - > and <Blood
Tests, Liver function> are examples of records stored in this table. Urofloxome-
try is a medical examination by itself while there are several kinds of blood tests



Fig. 5. Parameter Volume of type FLOAT and unit milliliter (mL)

so the subtype field is required. The Parameter table stores the existing parame-
ters, their measurement units and expected types, i.e., String, Integer, Float or
enumerated (in the case the type is ENUM, there is another table not represented
here that stores the possible values). The tuples: <Creatinine, mg/dl, float> and
<Volume, ml, float> are examples of records of the Parameter table. The table
ExaminationParameter stores the correspondence between an examination and
its parameters. In accordance with the previous examples, the following tuples:
<Urofluxometry, -, Volume> and <Blood Tests, Liver function, Creatinine> are
examples of tuples of the ExaminationParameter table.

The tables Patient, PerformedExamination and PerformedExaminationValue store
clinical data collected by the application. In particular, Patient stores data about
patients (<P1> and <P2> are examples of tuples); PerformedExamination stores
the examinations performed by each patient ( <PE1, P1, Blood Tests, Liver
function, 27/6/2016> and <PE2, P2, Urofluxometry, -, 28/7/2016> are ex-
amples of tuples); and PerformedExaminationValue stores data about the filled
parameters of the examination performed by a patient (examples of tuples are:
<PE1, Creatinine, 1.02> and <PE2, Volume, 157>).

Figure 5 shows the application screen shown for the examination parameter
Volume, which is of type float and is measured in milliliters. The metadata
stored in the database table Parameter, in particular, supplies the (meta)data
to be shown in the forms presented in the front-end user interface. The clinical
data that will be filled in by the users is then stored in the database tables that
store clinical data and is further available for future visualization and analysis.

3 Clinical Time-Series Data Clustering and Visualization

A major advantage of medical information systems is the fact that they are
capable of storing data from a large population of patients, hence providing
a large source of data for discovering trends in disease progression that might
be difficult to uncover by physicians in their daily clinical practice. In order
to make such datasets useful, the medical information system needs to provide
means to find groups of similar patients with basis on their personal and medical
history and enable the exploration of the characteristics of the patients in these
groups. We propose an approach to address this requirement, using an off-the-
shelf state-of-the-art clustering algorithm for time series to find groups of patients
with similar variation of relevant clinical parameters. We complemented the data
analysis performed by the clustering algorithm with a visualization module to
enable physicians to explore the results for each group of patients discovered
by the algorithm. This approach can be applied to any medical parameter that
varies over time.



3.1 Creating Time-Series Data Clusters

Clustering algorithms are widely used in biological research, among many other
fields, for a variety of tasks [9]. The use of classical clustering techniques such as
k -means has important disadvantages when used with biological or clinical data:

1. These algorithms tend to find clusters of similar size, hence they may not
find interesting, relatively small clusters.

2. Each element (patient) is assigned to one and only one cluster, while it may
display behavior similar to more than one (albeit at different intervals in
time), or to none.

3. These algorithms compute clusters using all dimensions (which, in time-series
data, translate to time points) at once, hence they may not cluster together
time series that are similar in all but one or two time points.

Biclustering algorithms are a family of clustering algorithms that overcome
these disadvantages. Due to the similar size of genomic and medical datasets,
we expect that biclustering’s benefits apply to medical time series as well. Bi-
clustering algorithms find groups of patients with basis on a subset of the time
points instead of using all time points at once. In other words, they produce
a local model instead of a global model [5]. The input data of biclustering al-
gorithms is represented as a data matrix, where each row represents the evolu-
tion of a given medical parameter for a patient, each column represents a time
point and each matrix element holds a value for a medical parameter. Biclus-
tering algorithms find clusters of rows in the input data matrix that are similar
across a subset of the columns. The complexity of biclustering algorithm depends
on the applied criteria of similarity between rows, but most formulations are
NP-hard [5, 7]. Hence, most biclustering algorithms resort to heuristics without
guaranteeing optimal solutions, or have prohibitive running times. The problem
becomes tractable, however, in cases where the measured medical parameter is
discrete and the search for similar series is restricted to contiguous time points [5].
The Contiguous Column Coherent Biclustering (CCC-Biclustering) algorithm [5]
overcomes these restrictions to find clusters in time-series data in time linear in
the size of the input data matrix. However, many medical parameters of interest
are not discrete. In the original paper, the authors are concerned with changes
in gene expression, which are measured in a continuous positive scale with fixed
zero minimum. Hence, the authors apply a discretization strategy to represent
the variation of the gene expression in three levels: significant increase, signifi-
cant decrease and no change of gene expression. This strategy reflects their goal
of finding groups of genes with similar expression variation patterns. For other
problems, care must be taken to choose an appropriate discretization approach
as well.

Due to its performance, we decided to use the CCC-Biclustering algorithm
in Umedicine. We illustrate the application of CCC-Biclustering in Umedicine
with International Prostate Symptom Score (IPSS) time-series data, but this
algorithm can be applied to any clinical parameter that is measured at different
time instants. IPSS is a score calculated from a standardized questionnaire given



to certain Urology patients, such as patients that suffer from Benign Prostatic
Hyperplasia (BPH). Physicians request that BPH patients fill in the question-
naire several times during the treatment, obtaining scores that reflect the evolu-
tion of patients over time. IPSS has a uniform scale of integer values between 0
(best-case scenario for the patient) and 35 (worst-case scenario for the patient).
It is, thus, discrete. However, imposing such a fine discrete scale of 36 values
would rarely cluster patients together: only when they had a sequence of exactly
equal scores would the algorithm consider them part of the same cluster. For
this reason, it makes sense to use a coarser discretized scale: for example, a scale
with 6 discretization levels would enable for a difference of up to 6 points in IPSS
while still being able to capture increasing or decreasing trends, as variations of
the IPSS value would often result in a change to a different level.

The CCC-Biclustering library made available by its authors also computes
statistics for each cluster that it finds. One of the most important of these
statistics is a p-value that reflects how similar the patients in the same group are
among themselves. This p-value is calculated with basis on a hypothesis test in
which the null hypothesis assumes that a cluster, with its size and patient data,
was randomly generated. The lower the value of the p-value, the smaller is the
probability of finding this group of patients under this null hypothesis. Hence,
patients in groups with lower p-values can be expected to be more similar.

3.2 Visualization of Clinical Time-Series Data Clusters

We developed an interactive visualization mechanism and incorporated it into
the Umedicine application, to enable the exploration of time-series data as an-
alyzed by the CCC-Biclustering algorithm described in Section 3.1. The visual-
ization is composed of a matrix of line charts (illustrated in Fig. 6), where each
chart corresponds to a cluster of patients computed by the CCC-Biclustering al-
gorithm. Each chart also indicates the number of patients in the corresponding
group.

Users can set six different parameters to modify the visualization. Some of
these parameters correspond to parameters of the CCC-Biclustering algorithm
but were renamed for a more intuitive use by users with little knowledge of
statistics. In the same order as in Fig. 6, they are:

1. Allowed similarity between groups (Semelhança permitida entre gru-
pos): this parameter corresponds to the maximum overlap between clusters
computed by the CCC-Biclustering algorithm. In other words, it defines the
maximum percentage of patients in a group that can also be part of another
group. The user can choose five levels of similarity: very small, small, inter-
mediate, large and very large, corresponding to 1%, 5%, 10%, 25% and 50%
maximum overlap.

2. Number of IPSS levels (Número de níveis do IPSS ): corresponds to the
number of intervals/symbols chosen to discretize the IPSS scale. The larger
the number of IPSS levels, the narrower they are. Hence, a larger number of
levels leads to clusters where patients are more similar to each other. The



Fig. 6. Visualization of time-series clustering in Umedicine for the IPSS parameter

user has five options: very small, small, intermediate, large and very large,
corresponding to 3, 6, 9, 12 and 18 levels of discretization.

3. Minimum group size (Tamanho mínimo dos grupos): the minimum num-
ber of patients in each cluster to be displayed. Charts with a number of
patients inferior to the chosen number are not shown. The user has five op-
tions: very small, small, intermediate, large and very large. The ’very small’
option sets the minimum number of patients per cluster/chart to two. The
other options are computed as a function of the total number of patients in
the dataset and correspond to 10%, 20%, 40% and 60% of the total number
of patients, respectively.

4. Group homogeneity (Homogeneidade dos grupos): the larger this param-
eter, the smaller the maximum p-value of the clusters — as explained in
Section 3.1; clusters whose p-values exceed this value are not shown. The
user chooses among the options ’very small’, ’small’, ’intermediate’, ’large’
and ’very large’, which correspond to p-values 0.25, 0.125, 0.083, 0.0625 and
0.05.

5. Maximum number of clusters/charts to show (Número máximo de gru-
pos a visualizar): it takes into account the chosen presentation order of charts
to filter out exceeding clusters.

6. Presentation order (Ordem de apresentação): users can choose between
displaying charts ordered by decreasing number of patients per cluster, by
decreasing overall change in IPSS or by increasing overall change in IPSS.



The overall change in IPSS here is the simple difference between IPSS at the
final time point and the IPSS at the initial time point.

After setting these parameters as desired, the user generates the visualization
by clicking/tapping the ’Calculate’ (Calcular) button shown in Fig. 6.

Fig. 7. Example of information displayed over a chart (from figure 6)

Each chart can be selected with a mouse click or finger tap. This action
overlays information about the corresponding group of patients, as illustrated
in Fig. 7. The information shown includes the three most prevalent medical pa-
rameters in the patients belonging to the selected group (Características mais
comuns) and the treatment given to most patients (Tratamento mais comum).
Pressing the button at the bottom of the chart (Ver mais...) shows a table with
detailed information about the selected group of patients (Fig. 8). This informa-
tion includes the percentages of patients that were subject to the most common
treatments for this group, statistical information about weight, prostate volume
and age of these patients and, for each symptom and medical characteristic, the
percentage of patients of the cluster that has this symptom or characteristic.
This last part is sorted from highest to lowest.

Fig. 8. Example of information displayed when a user clicks the button ’Ver mais’
(meaning ’get more information’) on one of the charts shown in Fig. 7



4 Experimental Validation

To validate our solution, we performed: i) performance tests to analyze the be-
havior of the clustering algorithm according to the number of patients and the
number of data points over time; and ii) usability tests to evaluate the technique
for visualizing and inspecting the clusters of patients produced by the clustering
algorithm.

4.1 Performance Evaluation

To evaluate the performance of the clustering algorithm with medical time-series
data, we varied two input parameters: number of patients and number of time
points per patient. We measured the time spent to analyze the data (clustering)
and to display the results of the analysis (visualization). For the analysis (server
side), we measured the time between receiving the request from the client up to
the response from the server. Hence, it includes reading the data, computing the
clusters, computing the related statistics and organizing data for presentation.
Concerning the performance of displaying the results (client side), we measured
the time between receiving the cluster data from the server and displaying the
charts on the screen.

Experimental Setup To perform the evaluation of the clustering algorithm
we had to generate synthetic data, because at this phase of the project we do
not yet have real data from patients. We generated a synthetic dataset to be
representative of a collection of patients that answered the IPSS questionnaire at
several points in time after beginning a treatment7. In addition to the IPSS scores
we also generated data for various parameters relevant to the BPH pathology
(e.g. weight, prostate volume).

We performed two experiments to test the CCC-Biclustering. In the first
experiment, we varied the number of patients for a fixed number of time points
(5), and in the second, we varied the number of time points for a fixed number
of patients (1,000). The fixed values for time points and patients were chosen
to generate datasets with data close to reality. The experiments were performed
on a 2009 MacBook Pro laptop computer with 8 gigabytes of 1066MHz DDR3
memory, a 2.66 GHz Intel Core 2 Duo processor and a SATA hard disk drive.

Results and Discussion The results obtained for both experiments are shown
in Fig. 9. The left panel shows the behavior of our solution when we vary the
number of patients and the right panel shows the behavior of our solution when
we vary the number of time points per patient.

According to the CCC-Biclustering authors, the algorithm has a worst-case
complexity linear in the size of all input parameters. Our results comply with this
7 We are aware that synthetic data may not have the same behaviour as real data,
but our goal was to identify groups of patients.



Fig. 9. Performance measurements for the CCC-Biclustering algorithm and the cluster
visualization mechanism. Left panel: results for different numbers of patients for a fixed
number of 5 time points per patient. Right panel: results for different numbers of time
points per patient, for a fixed number of 1,000 patients.

expectation when we vary the number of patients (Fig. 9-left), but not when we
vary the number of time points (Fig. 9-right). We speculate that this deviation
from linearity is caused by data pre- and/or post-processing steps, such as the
computation of statistics. However, further investigation is necessary to explain
this result.

Although the time to compute clusters for a large number of time points is
relatively high, for realistic scenarios (less than 14 time points, corresponding to
14 appointments) the computation on the server side takes less than three min-
utes, making it possible to be used in an appointment scenario, where physicians
can perform the analysis while attending the patient. The results only suffer a
degradation of performance (with waiting times higher than 3 minutes) for more
than 14 time points per patient, an unlikely scenario.

The performance measured for increasing number of patients is also encour-
aging: a matrix with 25,000 patients and the realistic column size of 5 time points
could be analyzed in one minute. Assuming a linear trend, this means that data
from hundreds of thousands of patients could be analyzed in a few minutes.

The processing of the visualization in the front end, in turn, added a com-
paratively small waiting time, typically under half a second, which does not
represent a performance concern.

4.2 Usability Tests

To complement the performance tests, we performed a usability test with users,
to evaluate the visualization and inspection technique used to present the groups
of patients and their main characteristics.

Experimental Setup We recruited ten volunteers to participate in the tests,
half of them male. Their ages were between 24 and 34 years old and all of them



had a university degree. The test consisted of using the application to perform six
tasks (e.g identify the group of patients that improved their condition, the main
characteristics of this group of patients, etc.). After completing the tasks, we
asked users to answer a satisfaction questionnaire, composed of seven questions
to rate the usage of our visualization mechanism and its characteristics (e.g. color
scheme, presentation of information), and three open-answer questions inquiring
about the main difficulties, best features and suggested modifications to the
visualization.

Results and Discussion Table 1 summarizes information about the users and
how they rated the visualization (from 1 to 5, 5 being the best) on several topics.

Table 1. Usability test results

User 1 2 3 4 5 6 7 8 9 10 Average Standard Error
Sex F M F M F M M M F F NA NA
Age 26 24 33 33 33 26 33 33 34 31 30.6 3.7
YUC 15 16 16 18 20 27 22 20 24 26 20.4 4.3
Q1 5 4 4 4 5 5 4 4 5 5 4.5 0.5
Q2 4 3 3 4 4 4 4 4 4 4 3.8 0.4
Q3 5 5 4 5 5 5 5 5 3 5 4.7 0.7
Q4 4 5 4 5 5 4 4 5 4 5 4.5 0.5
Q5 5 5 4 4 5 5 4 5 4 5 4.6 0.5
Q6 4 5 4 4 5 3 3 4 4 5 4.1 0.7
Q7 5 5 5 4 5 5 4 4 5 5 4.7 0.5

YUC: How long have you been using computers, in years?
Q1: The color scheme is appropriate to visualize the data
Q2: The options given to control patient group generation are easy to understand
Q3: The user can understand when a patient improves or worsens
Q4: The user can understand that patients in the same group have similar IPSS
along time
Q5: The user gets a good understanding of the characteristics of patients in the
same group
Q6: It is easy to understand why patients are grouped together
Q7: The data displayed in the visualization table complement well the information
shown in the corresponding chart

Overall, the results shown in Table 1 indicate that the users were pleased
with their experience regarding the issues in questions Q1 to Q7. The lack of
clarity of the meaning of the visualization parameters was the main complaint
during the test. However, eight of the ten users recognized that once the meaning
of the options was understood, they could use them and interpret how they
impacted the observed results. The experiment showed that the presentation of



the options should be revised but, in general, users were able to complete the
tasks successfully.

In the last part of the test, we asked users to describe what, in their opin-
ion, were their main difficulties, the most positive aspects of the visualization
and what they would like to see changed. Most users complained explicitly about
the unintuitive options provided. Several users suggested to have the button that
closes the table staying visible while the user scrolls up or down to inspect the ta-
ble. Users tended to complimented the look and organization of the visualization
page, with two of them mentioning the ’clean’ look as a very positive aspect. Five
users pointed the identification of common characteristics of the groups (Fig. 7)
and the table with group statistics (Fig. 8) as the most positive aspects of the
visualization. Three users indicated that they liked the interaction experience,
especially its responsiveness. Other positive comments mentioned that it was
easy to understand when patients improve or worsen.

5 Related Work

This section provides an overview of: (i) the most relevant commercial medical
software applications that offer functionalities similar to the ones offered by
Umedicine; and (ii) research works focusing on some of Umedicine’s features.

There is a vast amount of medical software applications available in the mar-
ket, providing support to clinical practice (in particular clinical appointments).
The most important features offered are: (i) health center management aiming
at managing appointment scheduling and payments; (ii) electronic prescription
of medication; (iii) electronic health records to store clinical information about
patients, such as symptoms and treatments; and (iv) population health manage-
ment through graphics that show the evolution of health parameters for a set of
patients. The first two features are out of the scope of the current paper, so we
will not address them further.

The software applications that provide features (iii) and (iv) and that are
the most used in Portugal, are: Glintt HS8, iMed9 and MedicineOne10. Two
additional software applications used in Brazil (therefore, also supporting Por-
tuguese) are IClinic11 and HiDoctor12. Other software applications widely used
according to the Medical Economics web site13 are: CareAware14, and eClinical-
Works15, among others. We analyzed the functionalities provided by these tools
based on the information available in the corresponding web sites and on the
experience of our team’s physician in his daily activities in Portuguese hospitals.
8 http://www.glintt.com/
9 https://www.imed.com.pt/

10 http://www.medicineone.net/
11 https://iclinic.com.br/
12 https://hidoctor.com.br/
13 http://medicaleconomics.modernmedicine.com/medical-economics/content/tags/

top100ehrs/top-100-ehr-companies-part-1-4
14 https://store.cerner.com/items/2
15 https://www.eclinicalworks.com/



The result of our analysis of these applications is as follows. First, the forms
and screens of these applications’ user interfaces show all possible medical infor-
mation (e.g., examinations or symptoms) independently of the medical specialty.
This kind of user interface adds an overhead to the daily activity of physicians,
because they waste time searching for the most adequate information field to fill
in. Second, most applications typically support many free-form fields to be filled
in by physicians. Consequently, unstructured (or textual) data is stored; this
prevents the use of data mining algorithms on the data to discover knowledge
for assisting physicians in making decisions. Third, none of the analyzed tools
supports internationally-accepted questionnaires for assessing patient’s health
status (for example, IPSS in Urology) in electronic format. The electronic sup-
port for these questionnaires is important because it allows patients to answer
them comfortably at home (or wherever they wish). As a consequence, the com-
putation of a score that assesses their health condition may occur sooner. Very
few of these tools (for example, careAware) support the visualization of a pa-
tient’s health status evolution over time. Finally, only a few of these tools (e.g.,
eClinicalWorks) offers a functionality for analyzing the evolution of the health
status of a set of patients (i.e., a population) over time.

In terms of research literature, we present two types of work: (i) those whose
goal is to apply data mining algorithms to large medical datasets to extract useful
information, and (ii) those whose goal is to apply visualization techniques to
facilitate the exploration of data and analysis results by the end users. In the first
group, we highlight the work by Donzé et al [3] that provides an example of how
Logistic Regression can be used to make predictions about a patient outcome.
Che et al [1] show how Bayes networks can be used to detect temporal patterns
in time-series data, which is useful to predict the evolution of a patient over
time. Finally, Najjar et al.’s paper [6] describes a powerful clustering approach
that can be used to find groups of similar patients.

In the second group of research projects, LifeLines [8] was a seminal work
developed for visualization of a patient’s medical history. LifeLines2 [10,12,13] is
a system designed to search and explore event sequences in temporal categorical
data from multiple records of patient data. Gravi++ [4] is an application that
clusters patients according to the similarity of their ordinal categorical attribute
values. Furthermore, Gravi++ supports the visualization of the evolution of
patients through time with an animation controllable by the user.

To conclude, none of the available commercial systems fulfills the needs of
physicians in terms of medical data entry and analysis for clinical support. Ex-
isting research works provide important contributions in terms of the application
of data mining algorithms or visualization techniques that can be integrated into
our solution.

6 Conclusions

We described Umedicine, a software system that supports clinical activity by
keeping medical information up to date and stored in an organized way. It pro-



vides easy, quick and always-on access to a large amount of clinical data. The
medical information is kept persistently in an electronic and structured format. It
provides secure authentication for four types of user and a specific user interface
for each type of user. Additionally, the system includes a clustering algorithm
suited to discover groups of patients with similar medical histories and a vi-
sualization mechanism to explore the clustering results, which shows the main
characteristics, treatments and statistics of the patient clusters.

Experimental evaluation revealed that users were able to understand the dis-
covered groups of patients and the reasons (characteristics) why they were in
the same group. Users were also able to identify the situations where patients
improved or worsened. In spite of these results, our solution still needs some
improvements. One is to redesign the options of the visualization mechanism for
an easier understanding by users. The data analysis capabilities also have plenty
of room for expansion: other machine learning algorithms that take into account
the different widths of medical time series can be integrated into the system to
suggest treatments or predict treatment outcomes based on the patient’s his-
tory. To deploy Umedicine in a real hospital environment, two additional issues
should be taken into account: (i) the need for Application Programming Inter-
faces to enable the integration with third-party systems and (ii) the compliance
with international standards for representing health data, like SNOMED16 or
LOINC17. Finally, it is important to test the application in a real clinical en-
vironment, with actual physicians as users and data from real patients. This
experience will certainly guide future decisions regarding new functionalities to
be integrated in the system and eventually determine the development lines that
will be followed.
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