An introduction to Plasma Tomography

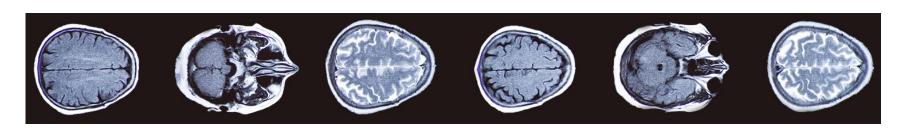
Diogo R. Ferreira*

IPFN/IST, University of Lisbon diogo.ferreira@tecnico.ulisboa.pt

(*special thanks to: Daniel H. Costa, Diogo D. Carvalho, Pedro J. Carvalho, André S. Duarte, Hugo Alves, Luís Guimarãis, Horácio Fernandes, José M. Bioucas-Dias)

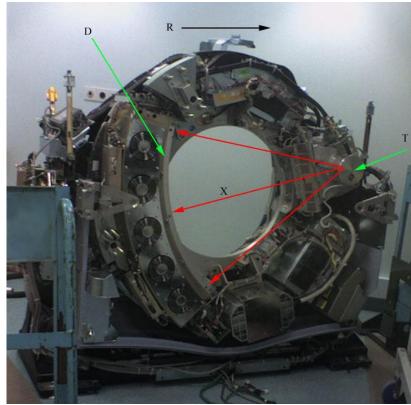
Computed Tomography

Medical applications



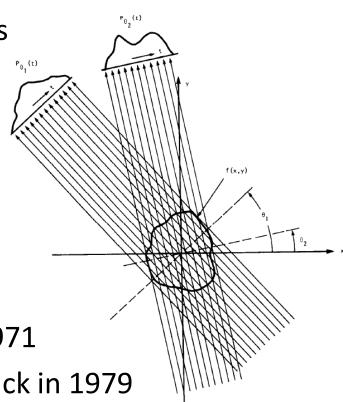
Computed Tomography

CT scanner internals

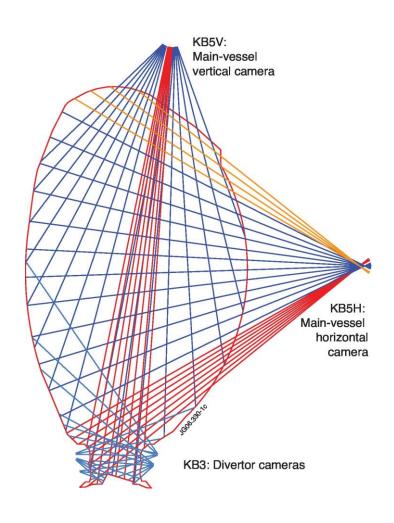


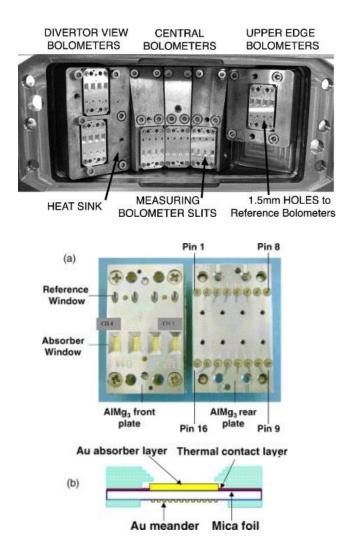
Computed Tomography

- Tomography problem
 - reconstruct image from its projections
 - each projection at a different angle
 - integral of the image at that angle
 - paper by J. Radon in 1917
 - Radon transform
 - inverse Radon transform
 - algorithm by A. Cormack in 1963-64
 - first CT scanner by G. Hounsfield in 1971
 - Nobel prize for Hounsfield and Cormack in 1979

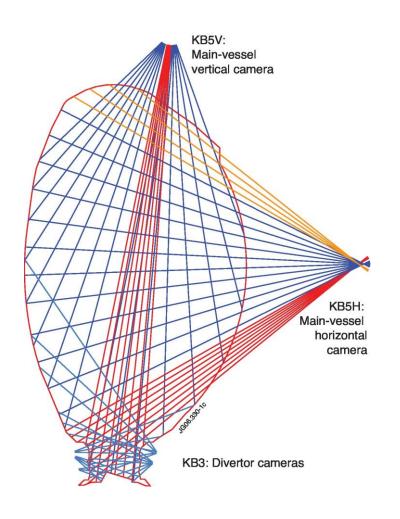


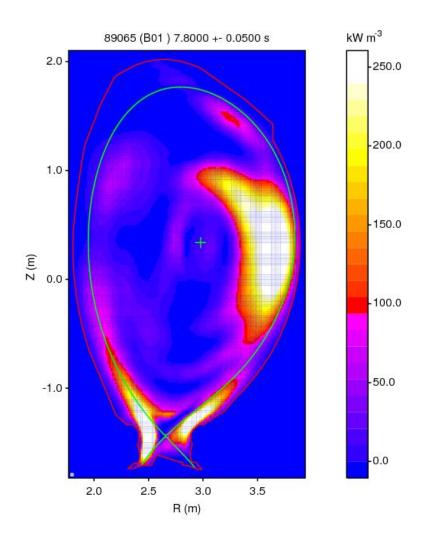
Tomography at the Joint European Torus (JET)



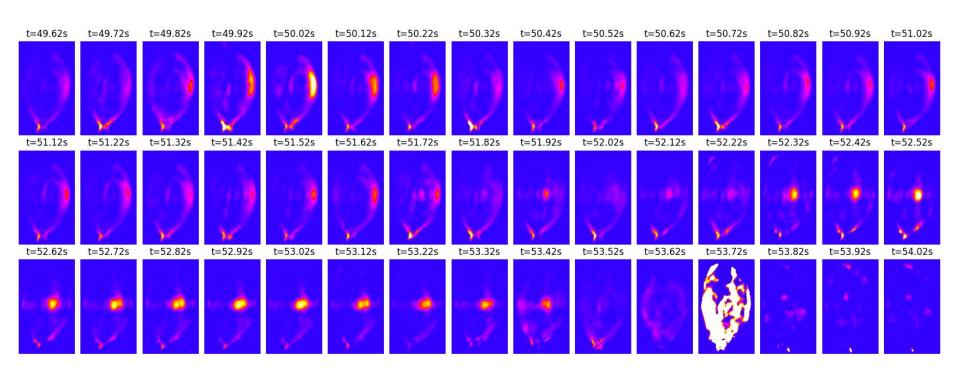


Tomography at the Joint European Torus (JET)



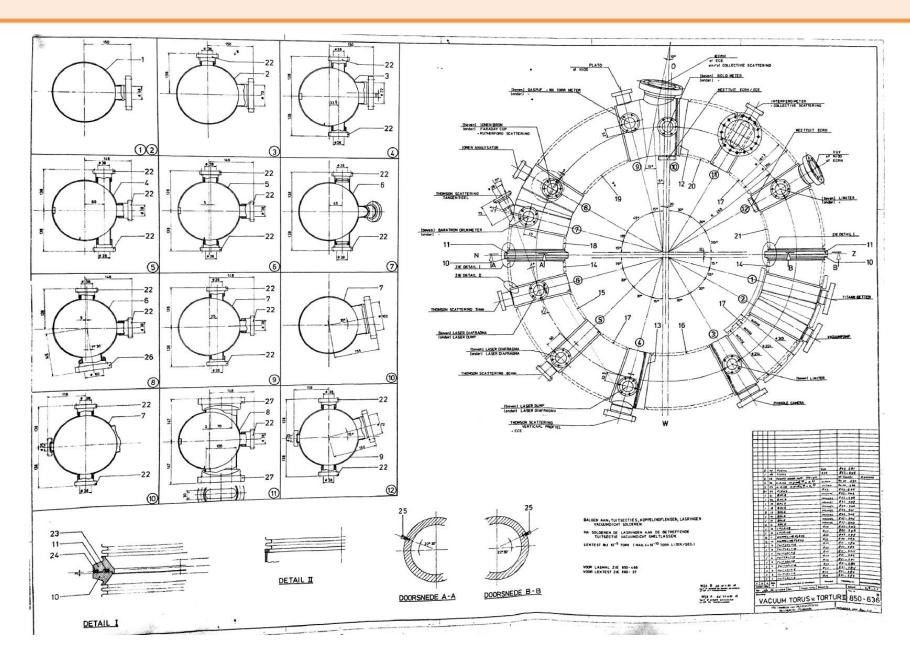


Tomography at the Joint European Torus (JET)

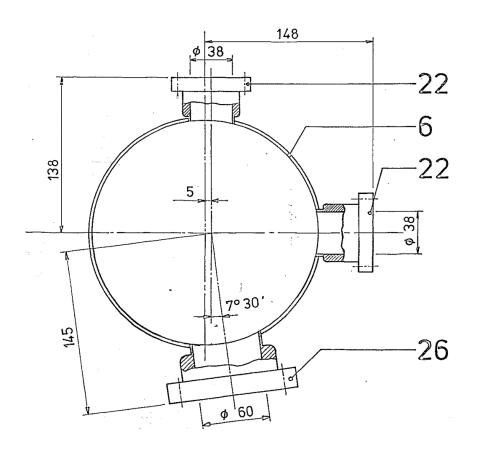


- Tomography at ISTTOK
 - cameras based on photodiode array + pinhole



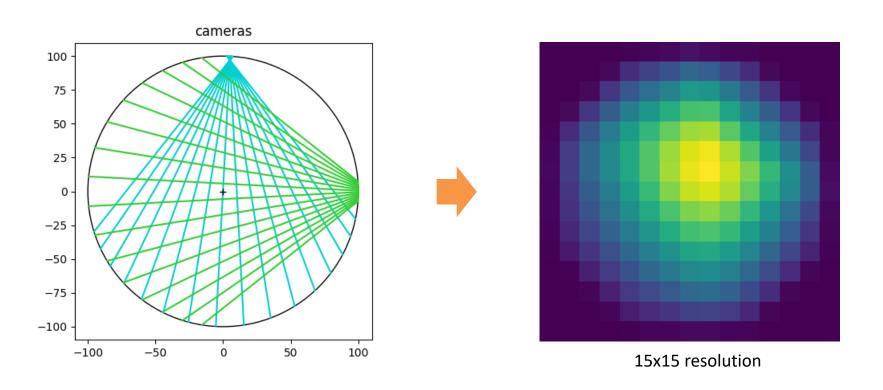


- ISTTOK setup (2019)
 - 2 cameras
 - vertical, horizontal
 - 16 detectors per camera
 - in fact 20 detectors, but
 4 are not used
 - lines of sight can be derived from detector and pinhole positions

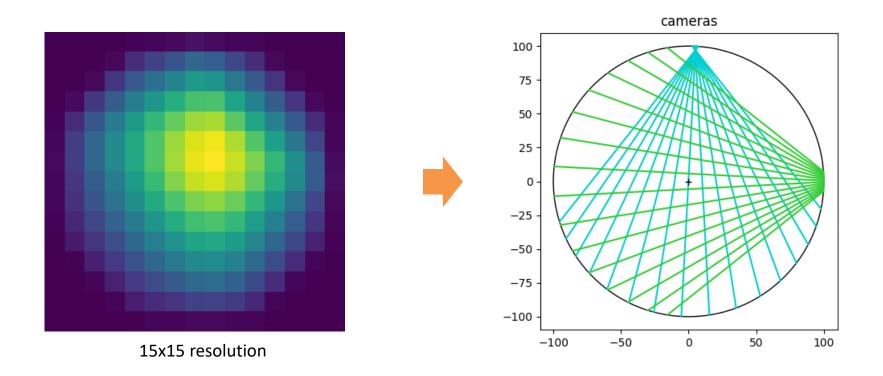


- Tomography methods
 - analytical methods (Fourier-based)
 - Fourier slice theorem
 - filtered backprojection (FBP)
 - Cormack's approach with basis functions
 - algebraic methods (pixel-based)
 - system of linear equations
 - iterative reconstruction techniques such as ART
 - solutions using regularization

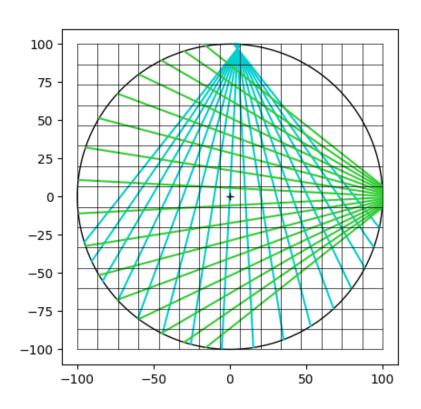
- Inverse problem
 - from detector measurements to plasma profile

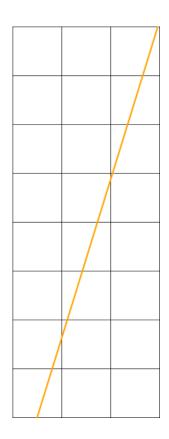


- Forward problem
 - from plasma profile to detector measurements

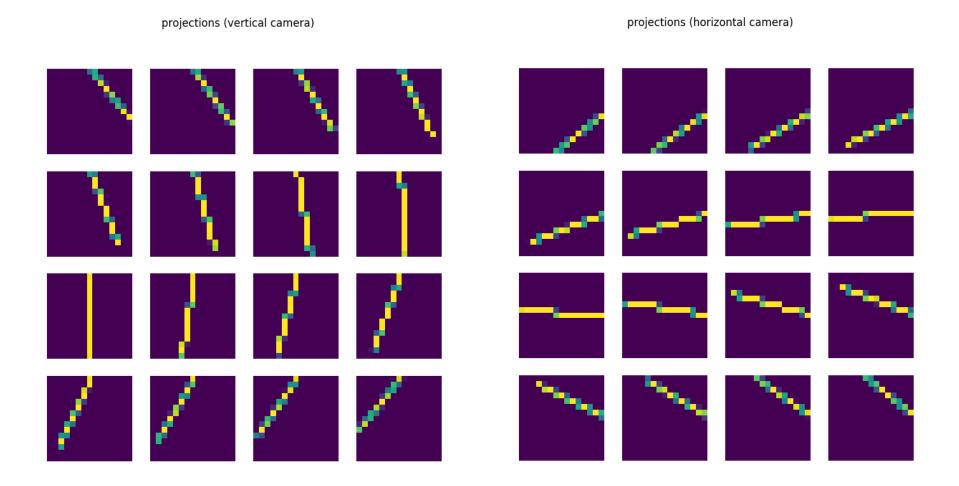


- Geometry of the problem
 - find the contribution of each pixel for each line of sight

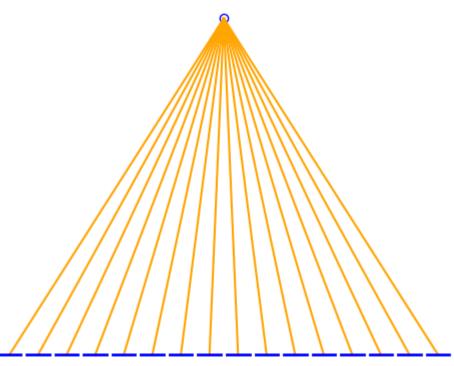


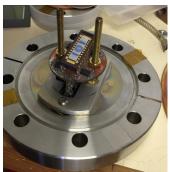


Contribution of each pixel to each line of sight

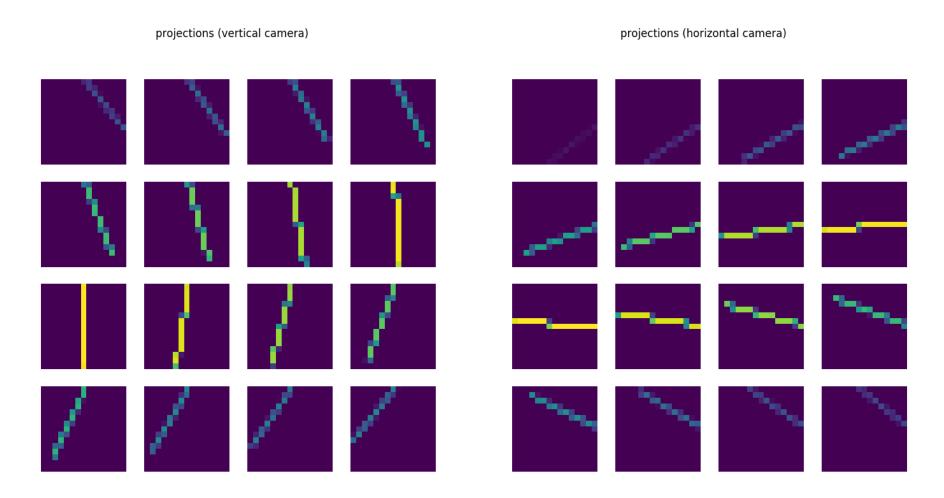


- Calibration factors (étendue)
 - angle of incidence on the detector
 - angle through the pinhole (and thickness)

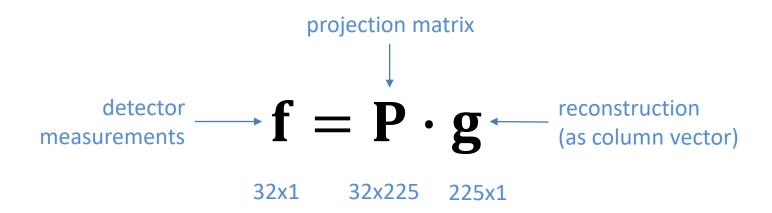




Contribution of each pixel to each line of sight

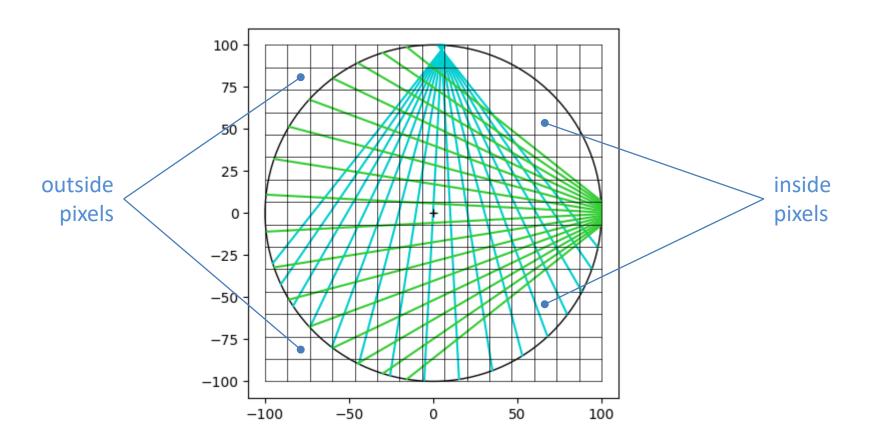


• In matrix form:



underdetermined system (32 equations for 225 unknowns)

Underdetermined system



- Regularization (general)
 - minimize:

$$\phi = \|\mathbf{f} - \mathbf{P}\mathbf{g}\|^2 + \alpha \|\mathbf{R}\mathbf{g}\|^2$$

$$\frac{\partial \phi}{\partial \mathbf{g}} = 0 \Rightarrow \mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha \mathbf{R}^{\mathrm{T}}\mathbf{R})^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

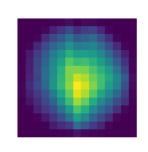
$$\mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{R}_{1}^{\mathrm{T}}\mathbf{R}_{1} + \alpha_{2}\mathbf{R}_{2}^{\mathrm{T}}\mathbf{R}_{2} + \cdots)^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

- Regularization (simple approach)
 - for every pixel
 - minimize the horizontal and vertical differences to neighbors
 - for outside pixels
 - minimize their norm

$$\phi = \|\mathbf{f} - \mathbf{P}\mathbf{g}\|^2 + \alpha_1 \|\mathbf{D}_{\mathbf{h}}\mathbf{g}\|^2 + \alpha_2 \|\mathbf{D}_{\mathbf{v}}\mathbf{g}\|^2 + \alpha_3 \|\mathbf{I}_{\mathbf{o}}\mathbf{g}\|^2$$

$$\mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{D}_{\mathrm{h}}^{\mathrm{T}}\mathbf{D}_{\mathrm{h}} + \alpha_{2}\mathbf{D}_{\mathrm{v}}^{\mathrm{T}}\mathbf{D}_{\mathrm{v}} + \alpha_{3}\mathbf{I}_{\mathrm{o}}^{\mathrm{T}}\mathbf{I}_{\mathrm{o}})^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

• Regularization matrix \mathbf{D}_h



	Γ1	- 1	0	0	0	• • •	0	ر 0
	0	1	- 1	0	0		0	0
	0	0	1	- 1	0		0	0
	0	0	0	1	- 1		0	0
225x225	0	0	0	0	1		0	0
	:					•••		
	0	0	0	0	0		- 1	0
	0	0	0	0	0		1	-1
	L-1	0	0	0	0	• • •	0	1

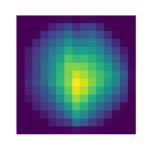
• Regularization matrix $\mathbf{D}_{\mathbf{v}}$


```
15 pixels
0
   0
           0
                    0
                       0
                               0
                                    0
            0
                    0
                               0
                                                            0
0
   0
           0
                    0
                       0
                               0
                                    0
                                                            0
                                0
                                                            0
                                        0
```

225x225

• Regularization matrix I_o

225x225



1	U	U	• • •	U	U	U	• • •	U	U	U
0	1	0		0	0	0		0	0	0
0	0	1	•••	0	0	0	• • •	0	0	0
:		:		:		:		:		:
0	0	0	•••	0	0	0	• • •	0	0	0
0	0	0		0	0	0		0	0	0
0	0	0	•••	0	0	0	• • •	0	0	0
:		:		:		:		:		:
0	0	0	•••	0	0	0	• • •	1	0	0
0	0	0		0	0	0		0	1	0
L0	0	0	• • •	0	0	0	• • •	0	0	1

- Tomographic inversion
 - one reconstruction

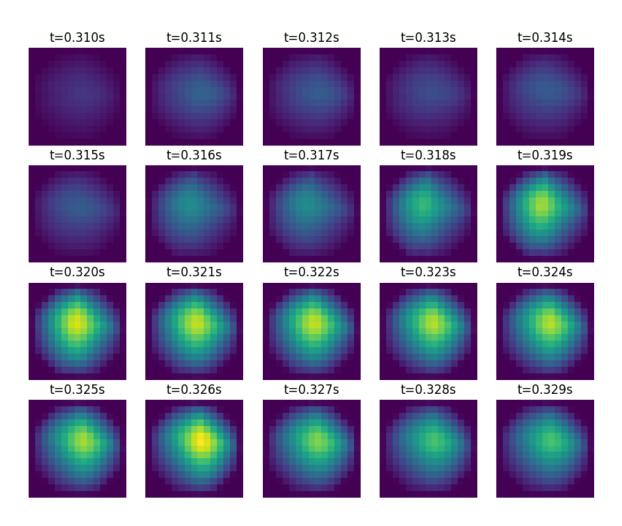
$$\mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{D}_{\mathrm{h}}^{\mathrm{T}}\mathbf{D}_{\mathrm{h}} + \alpha_{2}\mathbf{D}_{\mathrm{v}}^{\mathrm{T}}\mathbf{D}_{\mathrm{v}} + \alpha_{3}\mathbf{I}_{\mathrm{o}}^{\mathrm{T}}\mathbf{I}_{\mathrm{o}})^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

multiple reconstructions

$$\mathbf{M} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{D}_{\mathrm{h}}^{\mathrm{T}}\mathbf{D}_{\mathrm{h}} + \alpha_{2}\mathbf{D}_{\mathrm{v}}^{\mathrm{T}}\mathbf{D}_{\mathrm{v}} + \alpha_{3}\mathbf{I}_{\mathrm{o}}^{\mathrm{T}}\mathbf{I}_{\mathrm{o}})^{-1}\mathbf{P}^{\mathrm{T}}$$

$$\mathbf{g} = \mathbf{M} \cdot \mathbf{f}$$

Tomographic reconstructions for shot 47238



- Source code
 - available at: https://github.com/diogoff/isttok-tomography
 - cameras.py
 - finds the lines of sight for a given geometry
 - projections.py
 - finds the projection matrix for a given pixel resolution
 - signals.py
 - reads the camera signals for a given shot number
 - reconstructions.py
 - calculates the reconstructions at given times

- Other forms of regularization
 - generic
 - e.g. minimum Fisher information (MFI)
 - specific
 - e.g. smoothness along magnetic flux surfaces

Minimum Fisher information (MFI)

$$I_F = \int \frac{g'(x)^2}{g(x)} dx$$

- inspired by the concept of Fisher information
- differences should be small, but they are allowed to be larger where g itself is large

$$\mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{D}_{h}^{\mathrm{T}}\mathbf{D}_{h} + \alpha_{2}\mathbf{D}_{v}^{\mathrm{T}}\mathbf{D}_{v} + \alpha_{3}\mathbf{I}_{o}^{\mathrm{T}}\mathbf{I}_{o})^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

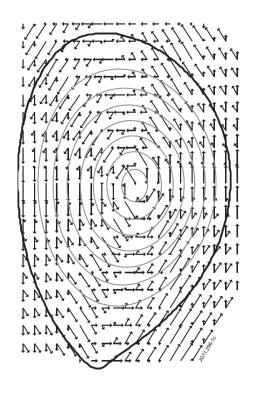
$$\mathbf{D}_{h}^{\mathrm{T}}\mathbf{D}_{h} \rightarrow \mathbf{D}_{h}^{\mathrm{T}}\mathbf{W}\mathbf{D}_{h}$$

$$\mathbf{D}_{v}^{\mathrm{T}}\mathbf{D}_{v} \rightarrow \mathbf{D}_{v}^{\mathrm{T}}\mathbf{W}\mathbf{D}_{v}$$

$$\mathbf{W} = diag\left(\frac{1}{\mathbf{g}}\right)$$

system becomes non-linear; solve iteratively for g

- Smoothness along magnetic flux surfaces
 - differences are taken along the direction of magnetic flux surfaces
 - plasma equilibrium (e.g. by EFIT) must be provided beforehand
 - system remains linear but now depends on data from other diagnostics



$$\mathbf{g} = (\mathbf{P}^{\mathrm{T}}\mathbf{P} + \alpha_{1}\mathbf{D}_{h}^{\mathrm{T}}\mathbf{D}_{h} + \alpha_{2}\mathbf{D}_{v}^{\mathrm{T}}\mathbf{D}_{v} + \alpha_{3}\mathbf{I}_{o}^{\mathrm{T}}\mathbf{I}_{o})^{-1}\mathbf{P}^{\mathrm{T}}\mathbf{f}$$

Bibliography

- A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, SIAM, 2001
- K. McCormick et al., New bolometry cameras for the JET Enhanced Performance Phase, Fusion Eng. Des. 74(1-4):679-683, Nov. 2005
- A. Huber et al., Upgraded bolometer system on JET for improved radiation measurements, Fusion Eng. Des. 82(5-14):1327-1334, Oct. 2007
- L. C. Ingesson et al., Soft X ray tomography during ELMs and impurity injection in JET, Nucl. Fusion 38(11):1675, 1998
- D. R. Ferreira et al., Full-Pulse Tomographic Reconstruction with Deep Neural Networks, Fusion Sci. Technol. 74(1-2):47-56, 2018
- P. J. Carvalho, Tomography algorithms for real-time control in ISTTOK, PhD thesis, IST/UTL, 2010
- J. Mlynar et al., Inversion Techniques in the Soft-X-Ray Tomography of Fusion Plasmas: Toward Real-Time Applications, Fusion Sci. Technol. 58(3):733-741, 2010
- M. Odstrcil et al., *Modern numerical methods for plasma tomography optimization*, Nucl. Instrum. Methods Phys. Res. A 686:156-161, 2012
- V. Loffelmann et al., Minimum Fisher Tikhonov Regularization Adapted to Real-Time Tomography, Fusion Sci. Technol. 69(2):505-513, 2016