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Deep Learning

• Convolutional Neural Networks (CNNs)
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Y. Lecun et al., Gradient-based learning applied to document recognition, 1998

A. Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, 2012
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Deep Learning

• Recurrent Neural Networks (RNNs)

• speech recognition

• language modeling

• machine translation

• time series

• …
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C. Olah, Understanding LSTM Networks, 2015

Simple RNN

LSTM
(Long short-term memory)
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Deep Learning

• Convolutional Neural Networks (CNNs)

• image processing

• e.g. plasma tomography

• Recurrent Neural Networks (RNNs)

• time series analysis

• e.g. disruption prediction
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Plasma Tomography

• Reconstruction of the 2D plasma radiation profile
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Plasma Tomography

• “Deconvolutional” neural network
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D. R. Ferreira et al., Full-pulse Tomographic Reconstruction with Deep Neural Networks, 2018
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Plasma Tomography

• Dataset

• JET ILW pulses 80128–92504

• ~28k sample reconstructions

• 80% training, 10% validation, 10% test

• Training

• loss function: mean absolute error

• min. validation loss: 0.0128 MW m-3

• Test set

• loss: 0.0147 MW m-3

• SSIM: 0.936

• PSNR: 35.4 dB
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D. D. Carvalho et al., Deep Neural Networks for Plasma Tomography with Applications to JET and COMPASS, ECPD 2019
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Plasma Tomography

• Full-pulse reconstruction (92213)
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Disruption Prediction

• Bolometer signals (92213)
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KB5V

KB5H
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Disruption Prediction

• Recurrent Neural Network
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Disruption Prediction

• Two variants
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• probability of disruption 

(classification)

• output: sigmoid activation

• loss: binary cross-entropy

• training: disruptive and non-

disruptive pulses

• time-to-disruption

(regression)

• output: no activation

• loss: mean absolute error

• training: disruptive pulses only
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sample (1s)

time to
disruption

Disruption Prediction

D. R. Ferreira Page 13

𝑡sample

• Dataset

• bolometer data for JET ILW pulses 80128–92504

• non-intentional disruptions from JET disruption DB

• total 9323 pulses, 1444 disruptive (~15%)

• 80% training, 10% validation, 10% test

• input: random samples from each pulse

• output (probability of disruption):

• 1 if pulse disruptive, 0 otherwise

• output (time-to-disruption):

• 𝑡disruption − 𝑡sample

𝑡disruption
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Disruption Prediction

• Training

• min. validation loss

• probability of disruption: 0.172 (binary cross-entropy)

• time-to-disruption: 2.45s (mean absolute error)
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Disruption Prediction

• Full-pulse prediction (90433)
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Disruption Prediction

• Full-pulse prediction (90363)
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Disruption Prediction

• Alarm-triggering thresholds

• example: 𝑝𝑟𝑑 ≥ 0.85 ٿ 𝑡𝑡𝑑 ≤ 1.5

• TP: 11.7% (16.8% disruptive pulses in the test set)

• TN: 77.9% (83.2% non-disruptive pulses in the test set)

• FP: 5.3% (false alarms)

• FN: 5.1% (missed alarms)

• precision: TP/(TP+FP) = 69.0%

• recall: TP/(TP+FN) = 69.4%

• comparison: APODIS*

• recall: 85.4%

• FP: 2.5% (false alarms)
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* Moreno et al., Disruption prediction on JET during the ILW experimental campaigns, 2016



PSFC Machine Learning Working Group (June 20, 2019)

Conclusion

• Several opportunities for deep learning

• CNNs for image processing (e.g. plasma tomography)

• RNNs for time series analysis (e.g. disruption prediction)

• From single to multiple diagnostics

• use (bolometer data) + (magnetic equilibrium) as input to CNN

• use (bolometer data) + (plasma parameters) as input RNN

• From JET to other devices

• CNN applied to JET and COMPASS (*)

• RNN applied to JET and DIII-D (**)
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(*) D. D. Carvalho et al., Deep Neural Networks for Plasma Tomography with Applications to JET and COMPASS, ECPD 2019
(**) J. Kates-Harbeck et al., Predicting disruptive instabilities in controlled fusion plasmas through deep learning, Nature, 2019


