

Applications of Deep Learning to Nuclear Fusion Research

Diogo R. Ferreira IST, University of Lisbon diogo.ferreira@tecnico.ulisboa.pt

The Sun

Nuclear Fusion Reaction

The Tokamak

JET (Joint European Torus) near Oxford, UK

JET (Joint European Torus) near Oxford, UK

© EUROfusion

JET Diagnostics

Tomography at JET

- Camera signals
 - sampling rate: 5 kHz
 - window average of 5 ms (25 samples)
 - 5 kHz / 25 = 200 Hz
- Tomographic reconstructions
 - pulse duration: ~30 sec
 - 30 sec × 200 Hz = 6000 reconstructions/pulse
 - in practice, only a few reconstructions per pulse
- Time per reconstruction
 - ~1h on average
 - 6000 × 1h = 250 days

Deep Learning

• Convolutional Neural Networks (CNNs)

Krizhevsky et al, Adv. Neural Inf. Proc. Sys. 25, 1097 (2012)

Deep Learning

• Inverse of a CNN ~ "deconvolutional" neural network

Training

- Dataset
 - pulses 80128 to 92504 (2011-2016)
 - 25584 sample reconstructions
 - 90% for training (23025), 10% for validation (2559)
- Training
 - accelerated gradient descent (Adam)
 - learning rate: 10⁻⁴
 - batch size: 307 (307 * 75 = 23025)
 - 75 batches = 75 updates/epoch

Training

Video Demo

Plasma Disruptions

• Disruptions are a major problem in tokamaks

Raw Camera Signals

Raw Camera Signals

Deep Learning

• Recurrent Neural Networks (RNNs)

Disruption Prediction

Disruption Prediction

- Time-to-disruption (regression)
 - last layer is Dense(1) with **no activation**
 - loss function is **mean absolute error** (mae)
 - use only **disruptive** pulses
- Probability of disruption (classification)
 - last layer is Dense(1) with **sigmoid** activation
 - loss function is **binary cross-entropy**
 - use both disruptive and non-disruptive pulses

Training

- Time-to-disruption (ttd)
 - 1683 disruptive pulses
 - 90% for training, 10% for validation
 - X: draw random samples from each pulse
 - y: (disruption time) (latest sample time)
- Probability of disruption (prd)
 - 9798 pulses (17% disruptive)
 - 90% for training, 10% for validation
 - X: draw random samples from each pulse
 - y: 1 if pulse contains disruption, 0 otherwise

Training

epoch

(false positives)

missed alarms (false negatives) very rare

Conclusion

- Deep learning and the analysis of fusion data
 - replacing compute-intensive tasks (e.g. tomography)
 - support for tokamak operation (e.g. disruption prediction)
 - both post-processing and real-time processing

CNN for plasma tomography

RNN for disruption prediction

Pointers

- Source code
 - Plasma tomography
 - <u>https://github.com/diogoff/plasma-tomography</u>
 - Disruption prediction
 - https://github.com/diogoff/plasma-disruptions
- More info
 - Full-pulse Tomographic Reconstruction with Deep Neural Networks
 - <u>https://arxiv.org/abs/1802.02242</u>
 - Artificial intelligence helps accelerate progress toward efficient fusion reactions
 - <u>https://www.pppl.gov/news/2017/12/artificial-intelligence-helps-accelerate-progress-toward-efficient-fusion-reactions</u>
 - Princeton Team Using AI for Fusion Up for Global Impact Award
 - <u>https://blogs.nvidia.com/blog/2018/03/05/ai-deep-learning-global-impact-awards-princeton/</u>